Mathématiques - 2 BCPST 1&2 - Lycée Michel Montaigne

DM N°3 - A remettre le mardi 4 octobre 2011

« Plan de solutions d'une équation différentielle linéaire d'ordre 1! »

EXERCICE

E est l'espace vectoriel des fonctions continues sur \mathbb{R} , à valeurs réelles; a est un réel strictement positif donné. À toute fonction de E, on associe la fonction $T_a(f)$, définie par :

$$\forall x \in \mathbb{R}, \ T_a(f)(x) = \frac{1}{2a} \int_{x-a}^{x+a} f(t) \ dt$$

- 1. Soit s la fonction définie sur \mathbb{R} par : $\forall t \in \mathbb{R}$, $s(t) = \sin\left(\frac{\pi t}{a}\right)$. Déterminer $T_a(s)$.
- **2**. Soit f une fonction quelconque de E.
 - (a) Montrer que $T_a(f)$ est de classe C^1 sur \mathbb{R} .
 - (b) Montrer que $T_a(f)$ est constante si et seulement si f est périodique de période 2a.
- 3. Montrer que l'application T_a est un endomorphisme de E. Est-il injectif? Est-il surjectif?

PROBLEME

1. On note $\mathcal S$ l'ensemble des fonctions dérivables sur $\mathbb R$, vérifiant

$$\forall x \in \mathbb{R}, \ xf'(x) = 3f(x).$$

- (a) Démontrer que S est un \mathbb{R} -espace vectoriel.
- (b) Résolution sur l'intervalle $]0, +\infty[$: déterminer l'ensemble S_+ des solutions, sur $]0, +\infty[$, de l'équation différentielle précédente.
- (c) Résolution sur l'intervalle $]-\infty,0[$: déterminer l'ensemble S_- des solutions, sur $]-\infty,0[$ de l'équation différentielle précédente.
- (d) En déduire les solutions de l'équation différentielle sur R.
- (e) On pose $f_+: x \mapsto \begin{cases} x^3 & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}$ et $f_-: x \mapsto \begin{cases} 0 & \text{si } x \ge 0 \\ x^3 & \text{si } x < 0 \end{cases}$ Représenter f_+ et f_- .

Justifier que la famille (f_+, f_-) est une base de l'espace vectoriel S.

2. $E = \mathbb{R}_3[X]$. On considère Φ l'application définie sur $\mathbb{R}_3[X]$ de la façon suivante :

$$\forall P \in \mathbb{R}_3[\mathbb{X}], \ \Phi(P) = XP' - 3P.$$

- (a) Démontrer que Φ est un endomorphisme de $\mathbb{R}_3[\mathbb{X}]$.
- (b) Démontrer que $\ker \Phi = \text{Vect}(X^3)$.
- (c) Démontrer que $\operatorname{Im} \Phi = \mathbb{R}_2[X]$.
- (d) Justifier que l'équation différentielle $xy' 3y = 2x^2 + x 1$ admet une unique solution polynomiale de degré inférieur ou égal à deux. On répondra à cette question sans résoudre l'équation différentielle $mais\ en\ utilisant\ les\ informations\ sur\ Im\ \Phi\ et\ \ker\Phi.$
- (e) On note $Q = 2X^2 + X 1$ et P l'unique polynôme de $\mathbb{R}_2[X]$ tel que $\Phi(P) = Q$. Déterminer P.
- **3**. Déterminer les solutions sur \mathbb{R} de l'équation différentielle : « $xy' 3y = 2x^2 + x 1$ ». Constituent-elles un espace vectoriel?