Mathématiques - 2 BCPST 1&2 - Lycée Michel Montaigne

DM $N^{\circ}8$ - A remettre le mardi 6 décembre 2011

« Chaîne de Markov - Partie à deux ou à une infinité de joueurs »

EXERCICE

N personnes $A_1,\ A_2,\ \cdots,\ A_N$ se transmettent dans cet ordre une information reçue préalablement par A_1 .

- L'information reçue par A_1 sera notée « Information Initiale ».
- Chaque personne transmet fidèlement l'information reçue avec la probabilité $p \in]0,1[$ ou la transforme en son contraire avec la probabilité q (q=1-p) de sorte que la n^{ème} personne reçoit l'information initiale ou son contraire.

On désigne par I_n l'événement « la nème personne reçoit l'Information Initiale » et l'on note : $p_n = P(I_n)$ et $q_n = 1 - p_n$.

- 1. Pour tout entier $n \in \{1, 2, \dots, N-1\}$, exprimer p_{n+1} et q_{n+1} en fonction de p_n et q_n .
- 2. Pour tout entier n compris entre 1 et N, on pose $X_n = \begin{pmatrix} p_n \\ q_n \end{pmatrix}$.
 - $\bullet\,$ Montrer qu'il existe une matrice A telle que :

$$\forall n \in \{1, 2, \dots, N\}, X_{n+1} = A X_n$$

- Que vaut X_1 ? En déduire X_N en fonction de $N,\ A$ et $X_1.$
- 3. Montrer que la matrice A est semblable à $\Delta = \begin{pmatrix} 1 & 0 \\ 0 & 2p-1 \end{pmatrix}$ et déterminer P tel que $\Delta = P^{-1}AP$.
- 4. En déduire successivement A^{N-1} et X_N dont vous expliciterez les termes. Vérifier que vous obtenez

$$P(I_N) = \frac{1}{2} + \frac{1}{2} (2p-1)^{N-1}$$
 et $P(\overline{I_N}) = \frac{1}{2} - \frac{1}{2} (2p-1)^{N-1}$

Quelles sont les limites de $P(I_N)$ et $P(\overline{I_N})$ lorsque N tend vers $+\infty$?

PROBLÈME

Première partie

Deux tireurs A_1 et A_2 disputent un match selon les règles suivantes :

- A_1 et A_2 tirent alternativement sur une cible jusqu'à ce que l'un des deux la touche. Celui-ci est alors déclaré vainqueur de ce match.
- A₁ tire en premier.

Le tireur A_1 touche la cible avec la probabilité $p_1 \in]0,1[$ supposée constante et l'on note $q_1 = 1 - p_1$. Le tireur A_2 touche la cible avec la probabilité $p_2 \in]0,1[$ supposée constante et l'on note $q_2 = 1 - p_2$. Les tirs sont indépendants et numérotés à partir de 1. On remarquera que A_1 tire à des rangs impairs.

- 1. Soit n un entier naturel quelconque.
 - (a) Calculer la probabilité que A_1 remporte le match au rang 2n + 1.
 - (b) Calculer la probabilité que A_2 remporte le match au rang 2n + 2.
 - (c) On note pour $i\in\left\{ 1,2\right\} ,$ G_{i} l'événement «A $_{i}$ remporte le match ». Montrer que $P\left(G_{1}\right) =\frac{p_{1}}{1-q_{1}q_{2}}$ et calculer $P\left(G_{2}\right) .$
 - (d) Démontrer que la probabilité de l'événement I : « le match dure indéfiniment » est nulle.
- 2. On dira que le match entre ces deux joueurs est équitable si $P(G_1) = P(G_2)$. Montrer l'équivalence des quatre propriétés suivantes :
 - i. Le match est équitable.

ii.
$$q_1 p_2 = p_1$$
.

iii.
$$p_2 = \frac{p_1}{1 - p_1}$$
.

iv.
$$1 - q_1 q_2 = 2p_1$$

- 3. Nous supposerons dans cette question le match équitable et désignerons par T la variable aléatoire égale au nombre de tirs effectués jusqu'à la fin du match.
 - (a) Montrer que $p_1 < \frac{1}{2}$
 - (b) Soit n un entier naturel non nul. Déterminer P(T=n) après avoir calculé P(T=1), P(T=2).
 - (c) Déterminer l'espérance de T notée E(T) et définie par

$$E\left(T\right) = \sum_{n=1}^{+\infty} n \times P\left(T = n\right)$$

Seconde partie

Dans cette partie entrent en lice une <u>suite illimitée</u> de tireurs $(A_n)_{n\in\mathbb{N}}$. Le match se déroule selon les règles suivantes :

- $-A_1, A_2, \cdots A_n, \cdots$ tirent alternativement sur une cible jusqu'à ce que l'un des deux la touche. Celui-ci est alors déclaré vainqueur de ce match.
- ${\rm A}_1$ tire en premier, ${\rm A}_2$ tire en second, ${\rm A}_3$ tire en troisième et ainsi de suite....

Pour $n \ge 1$, le tireur A_n touche la cible avec la probabilité $p_n \in [0,1[$ et l'on note $q_n = 1 - p_n$.

Les tirs sont indépendants et numérotés à partir de 1. On remarquera que chaque joueur ne peut tirer <u>au plus qu'une fois.</u>

Pour tout $n \in \mathbb{N}$, nous poserons

$$\varphi(n) = \begin{cases} \prod_{i=1}^{n} q_i & \text{si} \quad n \ge 1\\ 1 & \text{si} \quad n = 0 \end{cases}$$

- 1. Pour tout $n \in \mathbb{N}$, nous noterons G_n l'événement « A_n remporte le match ».
 - (a) Montrer que la probabilité de l'événement G_n vaut : $P(G_n) = \varphi(n-1) \varphi(n)$ et justifier la convergence de la suite $(\varphi(n))_{n \in \mathbb{N}}$.
 - (b) On note a la limite de cette suite. En déduire que la série de terme général $P(G_n)$ $(n \ge 1)$ est convergente et exprimer sa somme en fonction de a.
 - (c) Exprimer, en fonction de a, la probabilité de l'événement I: « le jeu dure indéfiniment ».
- 2. Nous nous proposons de déterminer a dans certaines situations.
 - (a) Montrer que si a est non nul alors q_n tend vers 1 quand n tend vers $+\infty$. La réciproque est-elle vraie?

Indication : on examinera le cas de la suite de terme général : $q_n = \frac{n}{n+1}$.

- (b) Déterminer a si : $\forall n \in \mathbb{N}^*, \ p_n = p \in]0,1[$
- (c) Déterminer a si : $\forall n \in \mathbb{N}^*, \ p_n = \frac{1}{(n+1)^2}$
- 3. (a) i. Si la suite $(p_n)_{n\in\mathbb{N}}$ tend vers 0, montrer qu'il existe un entier n_0 tel que

$$\forall n \ge n_0, \quad \frac{1}{2}p_n \le -\ln(1-p_n) \le \frac{3}{2}p_n$$

- ii. Si la suite (p_n) ne tend pas vers 0: quelle est la nature de la série de terme général p_n et celle de la série de terme général $\ln(1-p_n)$?
- iii. En déduire que les séries de terme général $\ln(1-p_n)$ et p_n sont toujours de même nature.
- (b) Exprimer $\sum_{k=1}^{n} \ln(1-p_k)$ en fonction de $\ln \varphi(n)$.

Comparer les natures de la suite $(\ln(\varphi(n)))_{n\in\mathbb{N}^*}$ et de la série de terme général p_n .

(c) En déduire que la probabilité que le jeu dure indéfiniment est nulle si et seulement si la série de terme général p_n diverge.