Corrigé du devoir maison nº 12

Partie I

1. Par linéarité de l'espérance, $E(T_n) = E(\Delta_1 + \dots + \Delta_n) = E(\Delta_1) + \dots + E(\Delta_n) = n \times \frac{1}{a}$. Les variables $\Delta_1, \dots, \Delta_n$ sont indépendantes, donc $V(T_n) = V(\Delta_1 + \dots + \Delta_n) = V(\Delta_1) + \dots + V(\Delta_n) = n \times \frac{1}{a^2}$.

$$E(T_n) = \frac{n}{a}, \ V(T_n) = \frac{n}{a^2}$$

- 2. Δ_1 et Δ_2 sont indépendantes donc une densité de T_2 est donnée par : $\forall x \in \mathbb{R}, \ f_2(x) = \int_{-\infty}^{+\infty} f(t) f(x-t) dt$ Pour $t < 0, \ f(t) = 0$ donc $f_2(x) = \int_0^{+\infty} f(t) f(x-t) dt$; de même pour $x < t, \ f(x-t) = 0$ donc Si $x \ge 0, \ f_2(x) = \int_0^x f(t) f(x-t) dt = \int_0^x a e^{-at} \times a e^{-a(x-t)} dt = \int_0^x a^2 e^{-ax} dt = a^2 x e^{-ax}$ et si x < 0 alors $\forall t \ge 0$ on a x - t < 0 donc $f_2(x) = 0$.
- 3. T_n admet une densité pour n=1 ou 2. Soit $n \in \mathbb{N}^*$: on suppose que T_n est une variable à densité, dont une densité f_n est donnée par : $\forall x \in \mathbb{R}, \ f_n(x) = a^n \frac{x^{n-1}}{(n-1)!} e^{-ax}$ si $x \geqslant 0$ et 0 sinon.

Les variables $\Delta_1, \ldots, \Delta_{n+1}$ sont indépendantes, donc Δ_{n+1} et T_n sont indépendantes, par conséquent T_{n+1} admet une densité définie par : $\forall x \in \mathbb{R}, \ f_{n+1}(x) = \int_{-\infty}^{+\infty} f_n(t) f(x-t) dt$, et par le même raisonnement qu'à

la question précédente, $f_{n+1}(x) = \int_0^x f_n(t) \times f(x-t) dt$ si $x \ge 0$ et 0 sinon.

Soit $x \ge 0$: $f_{n+1}(x) = \int_0^x a^n \frac{t^{n-1}}{(n-1)!} e^{-at} \times a e^{-a(x-t)} dt = \int_0^x a^{n+1} \frac{t^{n-1}}{(n-1)!} e^{-ax} dt = a^{n+1} e^{-ax} \left[\frac{t^n}{n!} \right]_0^x = a^{n+1} e^{-ax} \times \frac{x^n}{n!}$. On en déduit que pour tout $n \in \mathbb{N}^*$:

$$f_n(x) = a^n \frac{x^{n-1}}{(n-1)!} e^{-ax} \text{ si } x \geqslant 0 \text{ et } 0 \text{ si } x < 0$$

Partie II

- 1. Remarquons que $-\Delta_2(\Omega) = \mathbb{R}^-$, donc Pour $t \in \mathbb{R}$, $P(-\Delta_2 \leqslant t) = P(\Delta_2 \geqslant -t) = P(\Delta_2 > -t) = 1 F_{\Delta_2}(-t)$, donc $g(t) = F'_{\Delta_2}(-t) = f_{\Delta_2}(-t)$.
- 2. V_2 est la somme des deux variables aléatoires indépendantes W_1 et $-\Delta_2$, donc admet une densité h définie par : $\forall x \in \mathbb{R}, \ h(x) = \int_{-\infty}^{+\infty} f(t) \, g(x-t) \, \mathrm{d}t = \int_{0}^{+\infty} f_1(t) \, g(x-t) \, \mathrm{d}t \, \mathrm{car} \, f(t)$ est nulle pour t < 0.

D'autre part, g(x-t)=0 si x-t>0, donc on est amené à distinguer deux cas :

•
$$x \ge 0$$
 : $h(x) = \int_x^{+\infty} f(t) g(x-t) dt = \int_x^{+\infty} b e^{-bt} a e^{a(x-t)} dt = \left[a b e^{ax} \frac{e^{-(a+b)t}}{a+b} \right]_x^{+\infty} = \frac{a b e^{-bx}}{a+b}$

•
$$x < 0$$
: $h(x) = \int_0^{+\infty} f(t) g(x-t) dt = \int_0^{+\infty} b e^{-bt} a e^{a(x-t)} dt = \left[a b e^{ax} \frac{e^{-(a+b)t}}{a+b} \right]_0^{+\infty} = \frac{a b e^{ax}}{a+b}$

3. La probabilité que V_2 soit négatif est égale à $F_{V_2}(0) = \int_{-\infty}^0 h(t) dt = \left[\frac{a e^{at}}{a+b}\right]_{-\infty}^0 = \frac{a}{a+b}$

La probabilité que V_2 soit positif est bien sûr égale à $1 - \frac{a}{a+b} = \frac{b}{a+b}$ qui est aussi $\int_0^{+\infty} h(t) dt$

Partie III

- 1. (a) Si u < 0, $F_2(u) = 0$ (le temps d'attente est nécessairement positif).
 - (b) Le temps d'attente est nul si le premier client par avant l'arrivée du deuxième, c'est à dire $T_1 + W_1 \le T_2$ ou encore $W_1 \le T_2 T_1 = \Delta_2$.

On a donc bien
$$[U_2 = 0] = [W_1 - \Delta_2 \leqslant 0]$$
 et $P(U_2 = 0) = P(V_2 \leqslant 0) = \frac{b}{a+b}$ d'après la partie précédente.

(c) De même, pour u>0 fixé, $[U_2\leqslant u]$ est réalisé si et seulement si l'attente est inférieure à u, c'est à dire nulle (événement $[U_2=0]$ étudié à la question précédente) ou strictement positive mais inférieure à u ($[0< W_1-\Delta_2\leqslant u]$)

Par conséquent, pour
$$u > 0$$
, $F_2(u) = F_2(0) + F_{V_2}(u) - F_{V_2}(0) = \frac{b}{a+b} + \int_0^u \frac{a \, b \, e^{a \, t}}{a+b} dt = 1 - \frac{a}{a+b} e^{-b \, u}$

- (d) U_2 n'est pas une variable à densité car $P(U_2 = 0) = \frac{b}{a+b} \neq 0$.
- 2. (a) L'espérance du temps de service est l'espérance de S, c'est à dire 3, puisque S suit une loi exponentielle de paramètre $\frac{1}{3}$, le temps de service moyen est de 2,52 pour la première simulation et de 3,73 pour la deuxième.
 - (b) L'espérance du nombre de clients par unité de temps est l'inverse du temps d'attente moyen, soit $\frac{1}{\Delta k} = a = 5$, les moyennes observées sont respectivement de 5,3 et 4,7 pour chacune des simulations.
 - (c) Les quatre colonnes représentent pour chaque client : l'instant d'arrivée, son attente au guichet, la durée de service et le temps total passé.
- 3. (a) $[T_k \leqslant t]$ signifie que le $k^{\rm e}$ client est déjà arrivé à l'instant t, donc le nombre X_t de clients arrivés à cet instant est au moins égal à $k: [T_k \leqslant t] = [X_t \geqslant k]$
 - (b) Considérons dans un premier temps $k=0:[X_t>0]=[T_1\leqslant t],$ donc $P(X_t=0)=\mathrm{e}^{-a\,t}.$ Soit à présent $k\in\mathbb{N}^*:P(X_t=k)=P(X_t\geqslant k)-P(X_t\geqslant k+1)=P(T_k\leqslant t)-P(T_{k+1}\leqslant t).$

Or d'après les calculs de la partie I,
$$P(T_k \le t) = \int_0^t a^k \frac{x^{k-1}e^{-ax}}{(k-1)!} dx$$
 et

$$\int_{0}^{t} a^{k+1} \frac{x^{k} e^{-ax}}{k!} dx = \left[-\frac{a^{k} x^{k}}{k!} e^{-ax} \right]_{0}^{t} + \int_{0}^{t} a^{k} \frac{x^{k-1} e^{-ax}}{(k-1)!} dx, \text{ donc } P(X_{t} = k) = \frac{(at)^{k}}{k!} e^{-at};$$
X_t suit une loi de Poisson de paramètre a t

(c) On peut donc simuler une loi de Poisson en simulant des sommes de variables exponentielles de même paramètre a et en considérant n, le plus grand entier tel que $T_n \leq 1$. La variable X ainsi définie suit une loi de Poisson de paramètre a.