/N N /NN /AN
NONALN AV//N N VAN - - ___
NN NN NN NN N SN D NN N 2N
AN W W/ W VO W W W W N WA Ny ANV A U U U VANV A RN
AN W U W W/ W V7 WU W WEUHUU W VU W W N N W 4
N/ZINTZINT /NS /N /N L\ \/_/ N\/___/
/IN____/
_/__/ Version 4.0.3

A game programming library.
By Shawn Hargreaves, Apr 19, 2003.

See the AUTHORS file for a
complete list of contributors.
#include <std_disclaimer.h>
"I do not accept responsibility for any effects, adverse or otherwise, that this code may have
on you, your computer, your sanity, your dog, and anything else that you can think of. Use
it at your own risk."

Chapter 1: Using Allegro 1

1 Using Allegro

See readme.txt for a general introduction, copyright details, and information about how to
install Allegro and link your program with it.

1.1 install_allegro

int install_allegro(int system_id, int *errno_ptr, int (*atexit_ptr) ());

See also:

Initialises the Allegro library. You must call either this or allegro_init() before
doing anything other than using the Unicode routines. If you want to use a
text mode other than UTF-8, you can set it with set_uformat() before you call
this. The available system ID codes will vary from one platform to another, but
you will almost always want to pass SYSTEM_AUTODETECT. Alternatively,
SYSTEM_NONE installs a stripped down version of Allegro that won’t even try
to touch your hardware or do anything platform specific: this can be useful for
situations where you only want to manipulate memory bitmaps, such as the text
mode datafile tools or the Windows GDI interfacing functions. The errno_ptr
and atexit_ptr parameters should point to the errno variable and atexit function
from your libc: these are required because when Allegro is linked as a DLL, it
doesn’t have direct access to your local libc data. atexit_ptr may be NULL, in
which case it is your responsibility to call allegro_exit manually. Currently this
function always returns zero. If no system driver can be used, the program will
abort.

See Section 1.2 [allegro_init|, page 1.

See Section 1.3 [allegro_exit], page 1.

1.2 allegro_init

int allegro_init();

See also:

Macro which initialises the Allegro library. This is the same thing as calling
install_allegro(SYSTEM_AUTODETECT, &errno, atexit).

See Section 1.1 [install_allegro], page 1.

See Section 1.3 [allegro_exit], page 1.

1.3 allegro_exit

void allegro_exit();

Closes down the Allegro system. This includes returning the system to text
mode and removing whatever mouse, keyboard, and timer routines have been
installed. You don’t normally need to bother making an explicit call to this
function, because allegro_init() installs it as an atexit() routine so it will be
called automatically when your program exits.

2 Allegro Manual

See also:
See Section 1.1 [install_allegro], page 1.
See Section 1.2 [allegro_init|, page 1.

1.4 END_OF_MAIN

Macro END_OF_MAIN()
In order to maintain cross-platform compatibility, you have to put this macro
at the very end of your main function. This macro uses some ‘magic’ to mangle
your main procedure on platforms that need it like Windows or Linux. On the
other platforms this macro compiles to nothing, so you don’t have to #ifdef
around it. Example:

int main(void)

{
allegro_init();
/* more stuff goes here */
return O;

}

END_QOF_MAIN()

See also:

See Chapter 35 [Windows]|, page 234.
See Chapter 36 [Unix], page 242.

See Chapter 39 [Differences], page 248.

1.5 allegro_id

extern char allegro_id[];
Text string containing a date and version number for the library, in case you
want to display these somewhere.

1.6 allegro_error

extern char allegro_error [ALLEGRO_ERROR_SIZE] ;
Text string used by set_gfx_mode() and install_sound() to report error messages.
If they fail and you want to tell the user why, this is the place to look for a
description of the problem.

See also:
See Section 8.6 [set_gfx_mode], page 70.
See Section 23.5 [install_sound], page 160.

Chapter 1: Using Allegro

1.7 os_type

extern int os_type;

Set by allegro_init() to one of the values:

OSTYPE_UNKNOWN
OSTYPE_WIN3
OSTYPE_WINO95
OSTYPE_WINO98
OSTYPE_WINME
OSTYPE_WINNT
OSTYPE_WIN2000
OSTYPE_WINXP
OSTYPE_0S2
OSTYPE_WARP
OSTYPE_DOSEMU
OSTYPE_OPENDQOS
OSTYPE_LINUX
OSTYPE_SUNOS
OSTYPE_FREEBSD
OSTYPE_NETBSD
OSTYPE_IRIX
OSTYPE_QNX
OSTYPE_UNIX
OSTYPE_BEQS
OSTYPE_MACOS

See also:

See Section 1.2 [allegro_init|, page 1.
See Section 1.8 [os_version], page 3.

See Section 1.9 [os_multitasking], page 4.

1.8 os_version
extern int os_version;

extern int os_revision;

unknown, or regular MSDOS
Windows 3.1 or earlier
Windows 95

Windows 98

Windows ME

Windows NT

Windows 2000

Windows XP

0S/2

0S/2 Warp 3

Linux DOSEMU
Caldera OpenDOS
Linux

Sun0S/Solaris
FreeBSD

NetBSD

IRIX

QNX

Unknown Unix variant
BeOS

Mac0S

The major and minor version of the Operating System currently running. Set by
allegro_init(). If Allegro for some reason was not able to retrieve the version of
the Operating System, os_version and os_revision will be set to -1. For example:
Under Win98 SE (v4.10.2222) os_version will be set to 4 and os_revision to 10.

See also:

See Section 1.7 [os_type|, page 3.

See Section 1.9 [os_multitasking], page 4.

Allegro Manual

1.9 os_multitasking

extern int os_multitasking;

See also:

Set by allegro_init() to either TRUE or FALSE depending on whether your
Operating System is multitasking or not.

See Section 1.7 [os_type|, page 3.

See Section 1.8 [os_version], page 3.

1.10 allegro_message

void allegro_message(const char *msg, ...);

Outputs a message, using a printf() format string. This function must only
be used when you aren’t in graphics mode, eg. before calling set_gfx_mode(),
or after a set_gfx_mode(GFX_TEXT). On platforms that have a text console
(DOS and Unix) it will print the string to that console, attempting to work
around codepage differences by reducing any accented characters to 7 bit ASCII
approximations, and on platforms featuring a windowing system it will bring
up a GUI message box.

1.11 set_window_title

void set_window_title(const char *name);

See also:

On platforms that are capable of it, this routine alters the window title for your
Allegro program. Note that Allegro cannot set the window title when running
in a DOS box under Windows.

See Section 1.12 [set_window_close_button], page 4.

See Section 1.13 [set_window_close_hook], page 5.

1.12 set_window_close_button

int set_window_close_button(int enable);

On platforms that are capable of it, this routine disables or enables the window
close button for your Allegro program. You can call it before the window is
created if you wish. If the close button is successfully disabled, this function
returns zero.

On platforms where the close button either does not exist or cannot be
disabled, this function returns -1. If this happens, you may wish to use
set_window_close_hook() to handle the close event yourself.

When enabling the close button, the function will return the same value for
your platform as when disabling. That means it will return non-zero if the
button cannot be disabled, even though you are not trying to disable it.

Note that Allegro cannot manipulate the close button of a DOS box in Windows.

Chapter 1: Using Allegro 5

See also:

See Section 1.13 [set_window_close_hook], page 5.

See Section 1.11 [set_window_title|, page 4.

1.13 set_window_close_hook

void set_window_close_hook(void (*proc)());

See also:

On platforms that have a close button, this routine installs a hook function to
handle the close event. In other words, when the user clicks the close button
on your program’s window, the function you specify here will be called.

This function should not generally attempt to exit the program or save any
data itself. The function could be called at any time, and there is usually a
risk of conflict with the main thread of the program. Instead, you should set a
flag during this function, and test it on a regular basis in the main loop of the
program.

Pass NULL to this function to restore the close button’s default functionality.
On Windows and BeOS, the following message will appear:

Warning: forcing program shutdown may lead to data loss and unexpected
results. It is preferable to use the exit command inside the window.

Proceed anyway?
[Yes| [No]

This message will be translated into your selected language if a translation is
available in language.dat (see get_config_text()).

If the user clicks [Yes], the program will exit immediately in the same style as
Ctrl+Alt+End (see three_finger_flag).

In other operating systems, the program will exit immediately without prompt-
ing the user.

Note that Allegro cannot intercept the close button of a DOS box in Windows.

See Section 1.12 [set_window_close_button], page 4.

See Section 3.17 [get_config_text], page 33.

[

See Section 1.11 [set_window_title|, page 4.
[
[

See Section 6.20 [three_finger_flag], page 62.

1.14 desktop_color_depth

int desktop_color_depth();

On platforms that can run Allegro programs in a window on an existing desktop,
returns the currently selected desktop color depth (your program is likely to run
faster if it uses this same depth). On platforms where this information is not
available or does not apply, returns zero.

6 Allegro Manual

See also:

See Section 1.15 [get_desktop_resolution], page 6.

1.15 get_desktop_resolution

int get_desktop_resolution(int *width, int *height);
On platforms that can run Allegro programs in a window on an existing desktop,
this retrieves the current desktop resolution (e.g. you may want to call this
function before creating a large window because, with some windowed drivers,
a window cannot be created if it is larger than the desktop). Returns zero on
success, or a negative number if this information is not available or does not
apply, in which case the values stored in width and height are unspecified.

See also:

See Section 1.14 [desktop_color_depth], page 5.

1.16 yield_timeslice

void yield_timeslice();
On systems that support this, gives up the rest of the current scheduler times-
lice. Also known as the "play nice with multitasking" option.

1.17 check_cpu

void check_cpu();
Detects the CPU type, setting the following global variables. You don’t nor-
mally need to call this, because allegro_init() will do it for you.

See also:
See Section 1.18 [cpu_vendor|, page 6.
See Section 1.19 [cpu_family], page 7.
See Section 1.20 |
[

See Section 1.21 [cpu_capabilities], page 7.

cpu-model], page 7.

1.18 cpu_vendor

extern char cpu_vendor[];
Contains the CPU vendor name, if known (empty string on non-Intel platforms).

See also:

See Section 1.17 [check_cpu], page 6.
See Section 1.19 [cpu_family], page 7.
See Section 1.20 [cpu_model], page 7.

Chapter 1: Using Allegro 7

See Section 1.21 [cpu_capabilities], page 7.

1.19 cpu_family

extern int cpu_family;
Contains the Intel CPU type, where applicable: 3=386, 4=486, 5=Pentium,
6=PPro, etc.

See also:

See Section 1.17 [check_cpu], page 6.

[

See Section 1.18 [cpu_vendor|, page 6.

See Section 1.20 [cpu-model], page 7.
[

See Section 1.21 [cpu_capabilities], page 7.

1.20 cpu_model

extern int cpu_model;
Contains the Intel CPU submodel, where applicable. On a 486 (cpu_family=4),
zero or one indicates a DX chip, 2 an SX, 3 a 487 (SX) or 486 DX, 4 an SL, 5
an SX2, 7 a DX2 write-back enhanced, 8 a DX4 or DX4 overdrive, 14 a Cyrix,
and 15 is unknown. On a Pentium chip (cpu_family=5), 1 indicates a Pentium
(510\66, 567\66), 2 is a Pentium P54C, 3 is a Pentium overdrive processor, 5
is a Pentium overdrive for IntelDX4, 14 is a Cyrix, and 15 is unknown.

See also:

See Section 1.17 [check_cpu], page 6.

[

See Section 1.18 [cpu_vendor|, page 6.

See Section 1.19 [cpu_family], page 7.
[

See Section 1.21 [cpu_capabilities], page 7.

1.21 cpu_capabilities

extern int cpu_capabilities;
Contains CPU flags indicating what features are available on the current CPU.
The flags can be any combination of these:

CPU_ID - Indicates that the "cpuid" instruction is avail-J}

able. If this
is set, then all Allegro CPU variables are 100% reliable,|]
otherwise there may be some mistakes.

CPU_FPU - An x87 FPU is available.

CPU_MMX - Intel MMX instruction set is available.

CPU_MMXPLUS - Intel MMX+ instruction set is available.

8 Allegro Manual

CPU_SSE - Intel SSE instruction set is available.
CPU_SSE2 - Intel SSE2 instruction set is available.
CPU_3DNOW - AMD 3DNow! instruction set is available.

CPU_ENH3DNOW AMD Enhanced 3DNow! instruction set is available.ll
CPU_CMOV - Pentium Pro "cmov" instruction is available.

You can check for multiple features by OR~ing the flags together. For example,
to check if the CPU has an FPU and MMX instructions available, you’d do:

if ((cpu_capabilities & (CPU_FPU | CPU_MMX)) == (CPU_FPU | CPU_MMX))J}
printf ("CPU has both an FPU and MMX instructions!\n");

See also:

See Section 1.17 [check_cpu], page 6.

See Section 1.18 [cpu_vendor], page 6.

See Section 1.19 [cpu_family], page 7.

See Section 1.20 [cpu_model], page 7.

See Section 1.21 [cpu_capabilities], page 7.

2 Unicode routines

Allegro can manipulate and display text using any character values from 0 right up to 2°32-1
(although the current implementation of the grabber can only create fonts using characters
up to 2°16-1). You can choose between a number of different text encoding formats, which
controls how strings are stored and how Allegro interprets strings that you pass to it. This
setting affects all aspects of the system: whenever you see a function that returns a char *
type, or that takes a char * as an argument, that text will be in whatever format you have
told Allegro to use.

By default, Allegro uses UTF-8 encoded text (U-UTFR). This is a variable-width format,
where characters can occupy anywhere from one to six bytes. The nice thing about it is that
characters ranging from 0-127 are encoded directly as themselves, so UTF-8 is upwardly
compatible with 7 bit ASCII ("Hello, World!" means the same thing regardless of whether
you interpret it as ASCII or UTF-8 data). Any character values above 128, such as accented
vowels, the UK currency symbol, and Arabic or Chinese characters, will be encoded as a
sequence of two or more bytes, each in the range 128-255. This means you will never get
what looks like a 7 bit ASCII character as part of the encoding of a different character
value, which makes it very easy to manipulate UTF-8 strings.

There are a few editing programs that understand UTF-8 format text files. Alternatively,
you can write your strings in plain ASCII or 16 bit Unicode formats, and then use the
Allegro textconv program to convert them into UTF-8.

If you prefer to use some other text format, you can set Allegro to work with normal 8
bit ASCII (U_ASCII), or 16 bit Unicode (U_.UNICODE) instead, or you can provide some
handler functions to make it support whatever other text encoding you like (for example it
would be easy to add support for 32 bit UCS-4 characters, or the Chinese GB-code format).
There is some limited support for alternative 8 bit codepages, via the U_ASCII_CP mode.
This is very slow, so you shouldn’t use it for serious work, but it can be handy as an easy

Chapter 2: Unicode routines 9

way to convert text between different codepages. By default the U_ASCII_CP mode is set
up to reduce text to a clean 7 bit ASCII format, trying to replace any accented vowels
with their simpler equivalents (this is used by the allegro_message() function when it needs
to print an error report onto a text mode DOS screen). If you want to work with other
codepages, you can do this by passing a character mapping table to the set_ucodepage()
function.

Note that you can use the Unicode routines before you call install_allegro() or allegro_init().
If you want to work in a text mode other than UTF-8, it is best to set it with set_uformat()
just before you call these.

2.1 set_uformat

void set_uformat(int type);
Sets the current text encoding format. This will affect all parts of Allegro,
wherever you see a function that returns a char *, or takes a char * as a
parameter. The type should be one of the values:

U_ASCII - fixed size, 8 bit ASCII characters

U_ASCII_CP - alternative 8 bit codepage (see set_ucodepage())
U_UNICODE - fixed size, 16 bit Unicode characters

U_UTF8 - variable size, UTF-8 format Unicode characters

Although you can change the text format on the fly, this is not a good idea.
Many strings, for example the names of your hardware drivers and any lan-
guage translations, are loaded when you call allegro_init(), so if you change the
encoding format after this, they will be in the wrong format, and things will
not work properly. Generally you should only call set_uformat() once, before
allegro_init(), and then leave it on the same setting for the duration of your
program.

See also:

See Section 2.2 [get_uformat|, page 10.
See Section 2.3 [register_uformat|, page 10.
See Section 2.4 [set_ucodepage], page 10.
See Section 2.1 [set_uformat|, page 9.
See Section 2.8 [uconvert|, page 12.

See Section 2.23 [ustrsize], page 17.

See Section 2.12 [ugetc], page 13.

See Section 2.13 [ugetx], page 13.

See Section 2.14 [usetc], page 14.

See Section 2.15 [uwidth], page 14.

See Section 2.16 [ucwidth], page 14.

See Section 2.17 [uisok|, page 15.

See Section 2.18 [uoffset], page 15.

See Section 2.19 [ugetat], page 15.

10 Allegro Manual

See Section 2.20 [usetat], page 16.
See Section 2.21 [uinsert]|, page 16.
See Section 2.22 [uremove|, page 16.

See Section 1.2 [allegro_init], page 1.

2.2 get_uformat

int get_uformat(void);
Returns the currently selected text encoding format.

See also:

See Section 2.1 [set_uformat], page 9.

2.3 register_uformat

void register_uformat(int type, int (*u_getc) (const char *s), int

(*u_getx) (char **s), int (*u_setc) (char *s, int c), int (*u_width) (const

char *s), int (*u_cwidth) (int c¢), int (*u_isok) (int c));
Installs a set of custom handler functions for a new text encoding format. The
type is the ID code for your new format, which should be a 4-character string
as produced by the AL_ID() macro, and which can later be passed to functions
like set_uformat() and uconvert(). The function parameters are handlers that
implement the character access for your new type: see below for details of these.

See also:
See Section 2.1 [set_uformat], page 9.
See Section 2.8 [uconvert|, page 12.

See Section 2.12
See Section 2.13
See Section 2.14
See Section 2.15
See Section 2.16
See Section 2.17

ugetc|, page 13.
ugetx], page 13.
usetc|, page 14.
uwidth], page 14.
ucwidth], page 14.

uisok], page 15.

2.4 set_ucodepage

void set_ucodepage(const unsigned short *table, const unsigned short
*extras) ;
When you select the U_ASCII_CP encoding mode, a set of tables are used to
convert between 8 bit characters and their Unicode equivalents. You can use this
function to specify a custom set of mapping tables, which allows you to support
different 8 bit codepages. The table parameter points to an array of 256 shorts,
which contain the Unicode value for each character in your codepage. The extras

Chapter 2: Unicode routines 11

See also:

parameter, if not NULL, points to a list of mapping pairs, which will be used
when reducing Unicode data to your codepage. Each pair consists of a Unicode
value, followed by the way it should be represented in your codepage. The table
is terminated by a zero Unicode value. This allows you to create a many->one
mapping, where many different Unicode characters can be represented by a
single codepage value (eg. for reducing accented vowels to 7 bit ASCII).

See Section 2.1 [set_uformat|, page 9.

2.5 need_uconvert

int need_uconvert(const char *s, int type, int newtype);

See also:

Given a pointer to a string, a description of the type of the string, and the
type that you would like this string to be converted into, this function tells you
whether any conversion is required. No conversion will be needed if type and
newtype are the same, or if one type is ASCII, the other is UTF-8, and the string
contains only character values less than 128. As a convenience shortcut, you
can pass the value UUCURRENT as either of the type parameters, to represent
whatever text format is currently selected.

See Section 2.1 [set_uformat], page 9.

See Section 2.2

get_uformat], page 10.

[
[

See Section 2.7 [do_uconvert|, page 11.
[

See Section 2.8 [uconvert|, page 12.

2.6 uconvert_size
int uconvert_size(const char *s, int type, int newtype);

See also:

Returns the number of bytes that will be required to store the specified string

after a conversion from type to newtype, including the zero terminator. The
type parameters can use the value UUCURRENT as a shortcut to represent the
currently selected encoding format.

See Section 2.5 [need_uconvert], page 11.

See Section 2.7 [do_uconvert|, page 11.

12

Allegro Manual

2.7 do_uconvert

void do_uconvert(const char *s, int type, char *buf, int newtype, int

size);

See also:

Converts the specified string from type to newtype, storing at most size bytes
into the output buf. The type parameters can use the value U_CURRENT as
a shortcut to represent the currently selected encoding format.

See Section 2.8 [uconvert|, page 12.

2.8 uconvert

char *uconvert(const char *s, int type, char *buf, int newtype, int size);

See also:

Higher level function running on top of do_uconvert(). This function converts
the specified string from type to newtype, storing at most size bytes into the
output buf, but it checks before doing the conversion, and doesn’t bother if
the string formats are already the same (either both types are equal, or one is
ASCII, the other is UTF-8, and the string contains only 7 bit ASCII characters).
If a conversion was performed it returns a pointer to buf, otherwise it returns
a copy of s, so you must use the return value rather than assuming that the
string will always be moved to buf. As a convenience, if buf is NULL it will
convert the string into an internal static buffer. You should be wary of using
this feature, though, because that buffer will be overwritten the next time this
routine is called, so don’t expect the data to persist across any other library
calls.

See Section 2.1 [set_uformat|, page 9.

See Section 2.5
See Section 2.8

need_uconvert], page 11.

uconvert], page 12.

[
[
[
[

See Section 2.9 [uconvert_ascii], page 12.

See Section 2.10 [uconvert_toascii], page 12.

2.9 uconvert_ascii

char *uconvert_ascii(const char *s, char bufl[]);

See also:

Helper macro for converting strings from ASCII into the current encoding for-
mat. Expands to uconvert(s, U_ASCII, buf, U_CURRENT, sizeof(buf)).

See Section 2.8 [uconvert|, page 12.

Chapter 2: Unicode routines 13

2.10 uconvert_toascii

char *uconvert_toascii(const char *s, char bufl[]);
Helper macro for converting strings from the current encoding format into

ASCII. Expands to uconvert(s, UUCURRENT, buf, U_ASCII, sizeof(buf)).

See also:

See Section 2.8 [uconvert|, page 12.

2.11 empty_string

extern char empty_stringl[];
You can’t just rely on "" to be a valid empty string in any encoding format.
This global buffer contains a number of consecutive zeros, so it will be a valid
empty string no matter whether the program is running in ASCII, Unicode, or
UTF-8 mode.

2.12 ugetc

int ugetc(const char *s);
Low level helper function for reading Unicode text data. Given a pointer to a
string in the current encoding format, it returns the next character from the
string.

See also:

See Section 2.13 [ugetx], page 13.

See Section 2.14 [usetc], page 14.

See Section 2.15 [uwidth], page 14.

See Section 2.16 [ucwidth], page 14.

See Section 2.17 [uisok|, page 15.

2.13 ugetx

int ugetx(char *x*s);

int ugetxc(const char *xs);
Low level helper function for reading Unicode text data. Given the address of a
pointer to a string in the current encoding format, it returns the next character
from the string, and advances the pointer to the character after the one just
read.

ugetxc is provided for working with pointer-to-pointer-to-const char data.

See also:

See Section 2.12 [ugetc], page 13.
See Section 2.14 [usetc], page 14.
See Section 2.15 [uwidth], page 14.

14 Allegro Manual

See Section 2.16 [ucwidth], page 14.
See Section 2.17 [uisok|, page 15.

2.14 usetc

int usetc(char *s, int c);
Low level helper function for writing Unicode text data. It writes the specified
character to the given address in the current encoding format, and returns the
number of bytes written.

See also:

See Section 2.12 [ugetc], page 13.
See Section 2.13 [ugetx], page 13.
See Section 2.15 [uwidth], page 14.
See Section 2.16 [ucwidth], page 14.
See Section 2.17 [uisok|, page 15.

2.15 uwidth

int uwidth(const char *s);
Low level helper function for testing Unicode text data. It returns the number
of bytes occupied by the first character of the specified string, in the current
encoding format.

See also:

See Section 2.25 [uwidth_max], page 17.
See Section 2.12 [ugetc], page 13.

See Section 2.13 [ugetx], page 13.

See Section 2.16 [ucwidth], page 14.

[
[
[
See Section 2.14 [usetc], page 14.
[
See Section 2.17 [uisok]|, page 15.

2.16 ucwidth

int ucwidth(int c);
Low level helper function for testing Unicode text data. It returns the number
of bytes that would be occupied by the specified character value, when encoded
in the current format.

See also:
See Section 2.25 [uwidth_max], page 17.
See Section 2.12 [ugetc], page 13.

Chapter 2: Unicode routines 15

See Section 2.13 [ugetx], page 13.
See Section 2.14 [usetc], page 14.
See Section 2.15 |
[

See Section 2.17 [uisok]|, page 15.

uwidth], page 14.

2.17 uisok

int uisok(int c);
Low level helper function for testing Unicode text data. Tests whether the
specified value can be correctly encoded in the current format.

See also:
See Section 2.12 [ugetc], page 13.
See Section 2.13 [ugetx], page 13.

See Section 2.15 [uwidth], page 14.

[
[
See Section 2.14 [usetc], page 14.
[
See Section 2.16 [ucwidth], page 14.

2.18 uoffset

int uoffset(const char *s, int index);
Returns the offset in bytes from the start of the string to the character at the
specified index. If the index is negative, it counts backward from the end of the
string, so an index of -1 will return an offset to the last character.

See also:
See Section 2.19 [ugetat], page 15.
See Section 2.20 [usetat], page 16.
See Section 2.21 |
[

See Section 2.22 [uremove|, page 16.

uinsert|, page 16.

2.19 ugetat

int ugetat(const char *s, int index);
Returns the character value at the specified index within the string. A zero
index parameter will return the first character of the string. If the index is
negative, it counts backward from the end of the string, so an index of -1 will
return the last character of the string.

See also:
See Section 2.18 [uoffset], page 15.
See Section 2.20 [usetat], page 16.

16 Allegro Manual

See Section 2.21 [uinsert], page 16.

See Section 2.22 [uremove|, page 16.

2.20 usetat

int usetat(char *s, int index, int c);
Replaces the character at the specified index within the string with value c,
handling any adjustments for variable width data (ie. if ¢ encodes to a different
width than the previous value at that location). Returns the number of bytes
by which the trailing part of the string was moved. If the index is negative, it
counts backward from the end of the string.

See also:
See Section 2.18 [uoffset], page 15.
See Section 2.19 [ugetat], page 15.
See Section 2.21 |
[

See Section 2.22 [uremove|, page 16.

uinsert|, page 16.

2.21 uinsert

int uinsert(char *s, int index, int c);
Inserts the character c at the specified index within the string, sliding the rest of
the data along to make room. Returns the number of bytes by which the trailing
part of the string was moved. If the index is negative, it counts backward from
the end of the string.

See also:
See Section 2.18 [uoffset], page 15.
See Section 2.19 [ugetat], page 15.
See Section 2.20 |
[

See Section 2.22 [uremove|, page 16.

usetat], page 16.

2.22 uremove

int uremove(char *s, int index);
Removes the character at the specified index within the string, sliding the rest of
the data back to fill the gap. Returns the number of bytes by which the trailing
part of the string was moved. If the index is negative, it counts backward from
the end of the string.

See also:
See Section 2.18 [uoffset], page 15.
See Section 2.19 [ugetat], page 15.

Chapter 2: Unicode routines 17

See Section 2.20 [usetat], page 16.
See Section 2.21 [uinsert]|, page 16.

2.23 ustrsize

int ustrsize(const char *s);
Returns the size of the specified string in bytes, not including the trailing zero.

See also:

See Section 2.24 [ustrsizez], page 17.

2.24 ustrsizez

int ustrsizez(const char *s);
Returns the size of the specified string in bytes, including the trailing zero.

See also:

See Section 2.23 [ustrsize], page 17.

2.25 uwidth_max

int uwidth_max(int type);
Low level helper function for working with Unicode text data. Returns the
largest number of bytes that one character can occupy in the given encoding
format. Pass U_CURRENT to represent the current format.

See also:
See Section 2.15 [uwidth], page 14.
See Section 2.16 [ucwidth], page 14.

2.26 utolower

int utolower(int c);
This function returns c, converting it to lower case if it is upper case.

See also:

See Section 2.27 [utoupper], page 18.
See Section 2.12 [ugetc], page 13.
See Section 2.13 [ugetx], page 13.

See Section 2.15 [uwidth], page 14.

[
[
[
See Section 2.14 [usetc], page 14.
[
See Section 2.16 [ucwidth], page 14.

18 Allegro Manual

See Section 2.17 [uisok|, page 15.

2.27 utoupper

int utoupper(int c);
This function returns c¢, converting it to upper case if it is lower case.

See also:

See Section 2.26 [utolower], page 17.
See Section 2.12 [ugetc], page 13.
See Section 2.13 [ugetx], page 13.

See Section 2.15 [uwidth], page 14.
See Section 2.16 [ucwidth], page 14.

[
[
[
See Section 2.14 [usetc], page 14.
[
[
See Section 2.17 [uisok], page 15.

2.28 uisspace

int uisspace(int c);
Returns nonzero if ¢ is whitespace, that is, carriage return, newline, form feed,
tab, vertical tab, or space.

See also:

See Section 2.29
See Section 2.12
See Section 2.14
See Section 2.15
See Section 2.16
See Section 2.17

uisdigit], page 18.
ugetc|, page 13.
usetc|, page 14.
uwidth], page 14.
ucwidth], page 14.

uisok], page 15.

2.29 uisdigit

int uisdigit(int c);
Returns nonzero if ¢ is a digit.

See also:
See Section 2.28 [uisspace|, page 18.
See Section 2.12 [ugetc], page 13.

See Section 2.15 [uwidth], page 14.

[
[
See Section 2.14 [usetc], page 14.
[
See Section 2.16 [ucwidth], page 14.

Chapter 2: Unicode routines 19

See Section 2.17 [uisok|, page 15.

2.30 ustrdup

char *ustrdup(const char *src)
This functions copies the NULL-terminated string src into a newly allocated
area of memory. The memory returned by this call must be freed by the caller.
Returns NULL if it cannot allocate space for the duplicated string.

See also:

See Section 2.31 [_ustrdup|, page 19.
See Section 2.8 [uconvert|, page 12.
See Section 2.23 [ustrsize], page 17.
See Section 2.24 [ustrsizez], page 17.

2.31 _ustrdup

char *_ustrdup(const char *src, void* (*malloc_func) (size_t))
Does the same as ustrdup(), but allows the user to specify his own memory
allocater function.

See also:

See Section 2.30 [ustrdup], page 19.
See Section 2.8 [uconvert|, page 12.

See Section 2.23 [ustrsize], page 17.

See Section 2.24 [ustrsizez], page 17.

2.32 ustrcpy

char *ustrcpy(char *dest, const char *src);
This function copies src (including the terminating NULL character) into dest.
The return value is the value of dest.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.33 [ustrzcpy], page 19.
See Section 2.38 [ustrncpy], page 21.

20 Allegro Manual

2.33 ustrzcpy

char *ustrzcpy(char *dest, int size, const char *src);
This function copies src (including the terminating NULL character) into dest,
whose length in bytes is specified by size and which is guaranteed to be NULL-
terminated. The return value is the value of dest.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.32 [ustrcpy]|, page 19.
See Section 2.39 [ustrzncpy], page 21.

2.34 ustrcat

char *ustrcat(char *dest, const char *src);
This function concatenates src to the end of dest. The return value is the value
of dest.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.35 [ustrzcat], page 20.
See Section 2.40 [ustrncat], page 22.

2.35 ustrzcat

char *ustrzcat(char *dest, int size, const char *src);
This function concatenates src to the end of dest, whose length in bytes is
specified by size and which is guaranteed to be NULL-terminated. The return
value is the value of dest.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.34 [ustrcat], page 20.
See Section 2.41 [ustrzncat|, page 22.

2.36 ustrlen

int ustrlen(const char *s);
This function returns the number of characters in s. Note that this doesn’t
have to equal the string’s size in bytes.

See also:
See Section 2.8 [uconvert|, page 12.

See Section 2.23 [ustrsize], page 17.

Chapter 2: Unicode routines 21

See Section 2.24 [ustrsizez], page 17.

2.37 ustrcmp

int ustrcmp(const char *sl, const char *s2);
This function compares sl and s2. Returns zero if the strings are equal, a
positive number if sl comes after s2 in the ASCII collating sequence, else a
negative number.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.23 [ustrsize], page 17.
See Section 2.24 [ustrsizez], page 17.
See Section 2.42 [ustrncmp], page 22.
See Section 2.43 [ustricmp]|, page 23.

2.38 ustrncpy

char *ustrncpy(char *dest, const char *src, int n);
This function is like ustrepy() except that no more than n characters from src
are copied into dest. If src is shorter than n characters, NULL characters are
appended to dest as padding until n characters have been written. Note that if
src is longer than n characters, dest will not be NULL-terminated. The return
value is the value of dest.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.32 [ustrcpy], page 19.
See Section 2.39 [ustrzncpy], page 21.

2.39 ustrzncpy

char *ustrzncpy(char *dest, int size, const char *src, int n);
This function is like ustrzcpy() except that no more than n characters from src
are copied into dest. If src is shorter than n characters, NULL characters are
appended to dest as padding until n characters have been written. Note that
dest is guaranteed to be NULL-terminated. The return value is the value of
dest.

See also:
See Section 2.8 [uconvert|, page 12.
See Section 2.33 [ustrzcpy], page 19.

22 Allegro Manual

See Section 2.38 [ustrncpy], page 21.

2.40 ustrncat

char *ustrncat(char *dest, const char *src, int n);
This function is like ustrcat() except that no more than n characters from src are
appended to the end of dest. If the terminating NULL character in src is reached
before n characters have been written, the NULL character is copied, but no
other characters are written. If n characters are written before a terminating
NULL is encountered, the function appends its own NULL character to dest,
so that n+1 characters are written. The return value is the value of dest.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.34 [ustrcat], page 20.
See Section 2.41 [ustrzncat|, page 22.

2.41 ustrzncat

char *ustrzncat(char *dest, int size, const char *src, int n);
This function is like ustrzcat() except that no more than n characters from
src are appended to the end of dest. If the terminating NULL character in
src is reached before n characters have been written, the NULL character is
copied, but no other characters are written. Note that dest is guaranteed to be
NULL-terminated. The return value is the value of dest.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.35 [ustrzcat], page 20.
See Section 2.40 [ustrncat], page 22.

2.42 ustrncmp

int ustrncmp(const char *sl, const char *s2, int n);
This function compares up to n characters of s1 and s2. Returns zero if the sub-
strings are equal, a positive number if s1 comes after s2 in the ASCII collating
sequence, else a negative number.

See also:

See Section 2.8 [uconvert|, page 12.

See Section 2.23 [ustrsize], page 17.

See Section 2.24 [ustrsizez], page 17.
See Section 2.37 [ustrcmp], page 21.

Chapter 2: Unicode routines 23

See Section 2.43 [ustricmp], page 23.

2.43 ustricmp

int ustricmp(const char *sl, const char *s2);
This function compares sl and s2, ignoring case.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.23 [ustrsize|, page 17.
See Section 2.24 [ustrsizez], page 17.
See Section 2.37 [ustrcmp]|, page 21.
See Section 2.42 [ustrncmp]|, page 22.

2.44 ustrlwr

char *ustrlwr(char *s);
This function replaces all upper case letters in s with lower case letters.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.26 [utolower], page 17.
See Section 2.45 [ustrupr|, page 23.

2.45 ustrupr

char *ustrupr(char *s);
This function replaces all lower case letters in s with upper case letters.

See also:
See Section 2.8 [uconvert|, page 12.

See Section 2.26 [utolower], page 17.
See Section 2.44 [ustrlwr], page 23.

2.46 ustrchr

char *ustrchr(const char *s, int c);
This function returns a pointer to the first occurrence of ¢ in s, or NULL if no
match was found. Note that if ¢ is NULL, this will return a pointer to the end
of the string.

See also:

See Section 2.8 [uconvert|, page 12.

24 Allegro Manual

See Section 2.47 [ustrrchr], page 24.
See Section 2.48 [ustrstr], page 24.

See Section 2.49 |
[

See Section 2.50 [ustrtok], page 25.

ustrpbrk], page 24.

2.47 ustrrchr

char *ustrrchr(const char *s, int c);
This function returns a pointer to the last occurrence of ¢ in s, or NULL if no
match was found.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.46 [ustrchr], page 23.
See Section 2.48 [ustrstr], page 24.
See Section 2.49 [ustrpbrk], page 24.
See Section 2.50 [ustrtok], page 25.

2.48 ustrstr

char *ustrstr(const char *sl1, const char *s2);
This function finds the first occurence of s2 in s1. Returns a pointer within s1,
or NULL if s2 wasn’t found.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.46 [ustrchr], page 23.
See Section 2.47 [ustrrchr|, page 24.
See Section 2.49 [ustrpbrk], page 24.
See Section 2.50 [ustrtok], page 25.

2.49 ustrpbrk

char *ustrpbrk(const char *s, const char *set);
This function finds the first character in s that matches any character in set.
Returns a pointer to the first match, or NULL if none are found.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.46 [ustrchr], page 23.
See Section 2.47 [ustrrchr], page 24.
See Section 2.48 [ustrstr], page 24.

Chapter 2: Unicode routines 25

See Section 2.50 [ustrtok], page 25.

2.50 ustrtok

char *ustrtok(char *s, const char *set);

This function retrieves tokens from s which are delimited by characters from set.
To initiate the search, pass the string to be searched as s. For the remaining
tokens, pass NULL instead. Returns a pointer to the token, or NULL if no
more are found. Warning: Since ustrtok alters the string it is parsing, you
should always copy the string to a temporary buffer before parsing it. Also,
this function is not reentrant (ie. you cannot parse two strings at the same
time).

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.46 [ustrchr], page 23.
See Section 2.47 [ustrrchr], page 24.

[

[
See Section 2.48 [ustrstr], page 24.
See Section 2.49 [ustrpbrk], page 24.
[

See Section 2.51 [ustrtok_r|, page 25.

2.51 ustrtok_r

char *ustrtok_r(char *s, const char *set, char *xlast);
Reentrant version of ustrtok. The last parameter is used to keep track of where
the parsing is up to and must be a pointer to a char * variable allocated by the
user that remains the same while parsing the same string.

See also:
See Section 2.50 [ustrtok], page 25.

2.52 uatof

double uatof (const char *s);
Convert as much of the string as possible to an equivalent double precision real
number. This function is almost like ‘ustrtod(s, NULL)’. Returns the equivalent
value, or zero if the string does not represent a number.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.53 [ustrtol], page 26.
See Section 2.54 [ustrtod], page 26.

26

Allegro Manual

2.53 ustrtol

long ustrtol(const char *s, char **endp, int base);

See also:

This function converts the initial part of s to a signed integer, which is returned
as a value of type ‘long int’, setting *endp to point to the first unused character,
if endp is not a NULL pointer. The base argument indicates what base the
digits (or letters) should be treated as. If base is zero, the base is determined
by looking for ‘0x’, ‘0X’, or ‘0’ as the first part of the string, and sets the base
used to 16, 16, or 8 if it finds one. The default base is 10 if none of those
prefixes are found.

See Section 2.8 [uconvert|, page 12.
See Section 2.54 [ustrtod], page 26.
See Section 2.52 [uatof], page 25.

2.54 ustrtod

double ustrtod(const char *s, char **endp);

See also:

This function converts as many characters of s that look like a floating point
number into one, and sets *endp to point to the first unused character, if endp
is not a NULL pointer.

See Section 2.8 [uconvert|, page 12.
See Section 2.53 [ustrtol], page 26.
See Section 2.52 [uatof], page 25.

2.55 ustrerror

const char *ustrerror(int err);

See also:

This function returns a string that describes the error code ‘err’, which normally
comes from the variable ‘errno’. Returns a pointer to a static string that should
not be modified or free’d. If you make subsequent calls to ustrerror, the string
might be overwritten.

See Section 2.8 [uconvert|, page 12.

See Section 1.6 [allegro_error], page 2.

Chapter 2: Unicode routines 27

2.56 usprintf

int usprintf(char *buf, const char *format, ...);
This function writes formatted data into the output buffer. A NULL character
is written to mark the end of the string. Returns the number of characters
written, not including the terminating NULL character.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.57 [uszprintf], page 27.
See Section 2.58 [uvsprintf], page 27.

2.57 uszprintf

int uszprintf (char *buf, int size, const char *format, ...);
This function writes formatted data into the output buffer, whose length in
bytes is specified by size and which is guaranteed to be NULL terminated. Re-
turns the number of characters that would have been written without eventual
truncation (like with usprintf), not including the terminating NULL character.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.56 [usprintf], page 26.
See Section 2.59 [uvszprintf], page 27.

2.58 uvsprintf

int uvsprintf (char *buf, const char *format, va_list args);
This is like usprintf(), but you pass the variable argument list directly, instead
of the arguments themselves.

See also:

See Section 2.8 [uconvert|, page 12.
See Section 2.56 [usprintf], page 26.
See Section 2.59 [uvszprintf], page 27.

2.59 uvszprintf

int uvszprintf (char *buf, int size, const char *format, va_list args);
This is like uszprintf(), but you pass the variable argument list directly, instead
of the arguments themselves.

See also:
See Section 2.8 [uconvert|, page 12.
See Section 2.57 [uszprintf], page 27.

28 Allegro Manual

See Section 2.58 [uvsprintf], page 27.

3 Configuration routines

Various parts of Allegro, such as the sound routines and the load_joystick_data() function,
require some configuration information. This data is stored in text files as a collection of
"variable=value" lines, along with comments that begin with a ’#’ character and continue
to the end of the line. The configuration file may optionally be divided into sections, which
begin with a "[sectionname]" line. Each section has a unique namespace, to prevent variable
name conflicts, but any variables that aren’t in a section are considered to belong to all the
sections simultaneously.

By default the configuration data is read from a file called allegro.cfg, which can be located
either in the same directory as the program executable, or the directory pointed to by the
ALLEGRO environment variable. Under Unix, it also checks for ~/allegro.cfg, ~/.allegrorc,
/etc/allegro.cfg, and /etc/allegrorc, in that order; under BeOS only the last two are also
checked. If you don’t like this approach, you can specify any filename you like, or use a
block of binary configuration data provided by your program (which could for example be
loaded from a datafile).

You can store whatever custom information you like in the config file, along with the stan-
dard variables that are used by Allegro (see below).

3.1 set_config_file

void set_config file(const char *filename) ;
Sets the configuration file to be used by all subsequent config functions. If you
don’t call this function, Allegro will use the default allegro.cfg file, looking first
in the same directory as your program and then in the directory pointed to by
the ALLEGRO environment variable.

All pointers returned by previous calls to get_config_string() and other related
functions are invalidated when you call this function!

See also:

See Section 3.2 [set_config_datal, page 28.

See Section 3.3 [override_config_file], page 29.

See Section 3.5 [push_config_state|, page 29.

See Section 3.23 [standard config variables|, page 36.
See Section 3.18 [set_config_string], page 34.

See Section 3.11 [get_config_string], page 31.

3.2 set_config_data

void set_config_data(const char *data, int length);
Specifies a block of data to be used by all subsequent config functions, which
you have already loaded from disk (eg. as part of some more complicated

Chapter 3: Configuration routines 29

See also:

format of your own, or in a grabber datafile). This routine makes a copy of the
information, so you can safely free the data after calling it.

See Section 3.1 [set_config_file], page 28.

See Section 3.4 [override_config_datal, page 29.

See Section 3.5 [push_config_state|, page 29.

See Section 3.23 [standard config variables|, page 36.

See Section 3.18 [set_config_string], page 34.

See Section 3.11 [get_config_string], page 31.

3.3 override_config_file

void override_config_file(const char *filename);

See also:

Specifies a file containing config overrides. These settings will be used in addi-
tion to the parameters in the main config file, and where a variable is present
in both files this version will take priority. This can be used by application
programmers to override some of the config settings from their code, while still
leaving the main config file free for the end user to customise. For example,
you could specify a particular sample frequency and IBK instrument file, but
the user could still use an allegro.cfg file to specify the port settings and irq
numbers.

See Section 3.4 [override_config_datal, page 29.

See Section 3.1 [set_config-file], page 28.

3.4 override_config_data

void override_config_data(const char *data, int length);

See also:

Version of override_config_file() which uses a block of data that has already
been read into memory.

See Section 3.3 [override_config_file], page 29.

See Section 3.2 [set_config_datal, page 28.

3.5 push_config_state

void push_config_state();

Pushes the current configuration state (filename, variable values, etc). onto an
internal stack, allowing you to select some other config source and later restore
the current settings by calling pop_config_state(). This function is mostly in-
tended for internal use by other library functions, for example when you specify

30 Allegro Manual

a config filename to the save_joystick_data() function, it pushes the config state
before switching to the file you specified.

See also:
See Section 3.6 [pop-config_state], page 30.
See Section 3.1 [set_config_file], page 28.

3.6 pop_config_state

void pop_config_state();
Pops a configuration state previously stored by push_config_state(), replacing
the current config source with it.

See also:
See Section 3.5 [push_config_state|, page 29.

3.7 flush_config_file

void flush_config file();
Writes the current config file to disk if the contents have changed since it was
loaded or since the latest call to the function.

See also:

See Section 3.1 [set_config_file], page 28.

See Section 3.3 [override_config_file], page 29.
See Section 3.5 [push_config_state], page 29.

3.8 reload_config_texts

void reload_config_texts(const char *new_language) ;

Reloads the translated strings returned by get_config_text. This is useful to
switch to another language in your program at runtime. If you want to modify
the [system] language configuration variable yourself, or you have switched con-
figuration files, you will want to pass NULL to just reload whatever language
is currently selected. Or you can pass a string containing the two letter code
of the language you desire to switch to, and the function will modify the lan-
guage variable. After you call this function, the previously returned pointers of
get_config_text will be invalid.

See also:

See Section 3.17 [get_config_text], page 33.

See Section 3.11 [get_config_string], page 31.

See Section 3.23 [standard config variables|, page 36.

Chapter 3: Configuration routines 31

3.9 hook_config_section

void hook_config_section(const char *section, int (*intgetter) (const char

x*name, int def), const char *(*stringgetter) (const char *name, const char

xdef), void (xstringsetter) (const char *name, const char *value));
Takes control of the specified config file section, so that your hook functions will
be used to manipulate it instead of the normal disk file access. If both the getter
and setter functions are NULL, a currently present hook will be unhooked.
Hooked functions have the highest priority. If a section is hooked, the hook will
always be called, so you can also hook a ’#’ section: even override_config_file()
cannot override a hooked section.

See also:

See Section 3.10 [config_is_hooked], page 31.

3.10 config_is_hooked

int config_is_hooked(const char *section);
Returns TRUE if the specified config section has been hooked.

See also:

See Section 3.9 [hook_config_section], page 31.

3.11 get_config_string

const char *get_config_string(const char *section, const char *name, const
char *def);
Retrieves a string variable from the current config file. If the named variable
cannot be found, or its entry in the config file is empty, the value of def is
returned. The section name may be set to NULL to read variables from the
root of the file, or used to control which set of parameters (eg. sound or joystick)
you are interested in reading.

See also:

See Section 3.1 [set_config_file], page 28.
See Section 3.18 [set_config_string], page 34.
See Section 3.16 [get_config_argv], page 33.
See Section 3.14 [get_config_float], page 32.

[

[

See Section 3.13 [get_config_hex], page 32.

See Section 3.12 [get_config_int], page 31.
[

See Section 3.15 [get_config_id], page 33.

32 Allegro Manual

3.12 get_config_int

int get_config_int(const char *section, const char *name, int def);
Reads an integer variable from the current config file. See the comments about
get_config_string().

See also:

See Section 3.1 [set_config_file], page 28.

See Section 3.19 [set_config_int|, page 34.
See Section 3.11 [get_config_string], page 31.
See Section 3.16 [get_config_argv], page 33.

[

[

See Section 3.14 [get_config_float], page 32.

See Section 3.13 [get_config_hex], page 32.
[

See Section 3.15 [get_config_id], page 33.

3.13 get_config_hex

int get_config_hex(const char *section, const char *name, int def);
Reads an integer variable from the current config file, in hexadecimal format.
See the comments about get_config_string().

See also:

See Section 3.1 [set_config_file], page 28.

See Section 3.20 [set_config_hex], page 35.
See Section 3.11 [get_config_string], page 31.
See Section 3.16 [get_config_argv], page 33.

[
[
See Section 3.14 [get_config_float], page 32.
See Section 3.12 [get_config_int|, page 31.

[

See Section 3.15 [get_config_id], page 33.

3.14 get_config_float

float get_config_float(const char *section, const char #*name, float def);
Reads a floating point variable from the current config file. See the comments
about get_config_string().

See also:
See Section 3.1 [set_config_file], page 28.
See Section 3.21 [set_config_float], page 35.
See Section 3.11 [get_config_string], page 31.
See Section 3.16 [get_config_argv], page 33.
See Section 3.13 |
[

See Section 3.12 [get_config_int|, page 31.

get_config_hex], page 32.

Chapter 3: Configuration routines 33

See Section 3.15 [get_config_id], page 33.

3.15 get_config_id

int get_config_id(const char *section, const char *name, int def);
Reads a 4-letter driver ID variable from the current config file. See the com-
ments about get_config_string().

See also:

See Section 3.1 [set_config_file|, page 28.

See Section 3.22 [set_config_id], page 35.
See Section 3.11 [get_config_string], page 31.
See Section 3.16 [get_config_argv], page 33.

[

[

See Section 3.14 [get_config_float], page 32.

See Section 3.13 [get_config_hex], page 32.
[

See Section 3.12 [get_config_int|, page 31.

3.16 get_config_argv

char **get_config argv(const char *section, const char *name, int *argc);
Reads a token list (words separated by spaces) from the current config file,
returning a an argv style argument list, and setting argc to the number of
tokens (unlike arge/argv, this list is zero based). Returns NULL and sets argc
to zero if the variable is not present. The token list is stored in a temporary
buffer that will be clobbered by the next call to get_config_argv(), so the data
should not be expected to persist.

See also:

See Section 3.1 [set_config_file], page 28.

See Section 3.11 [get_config_string], page 31.
See Section 3.14 [get_config_float], page 32.
See Section 3.13 [get_config_hex], page 32.
See Section 3.12 [get_config_int], page 31.
See Section 3.15 [get_config_id], page 33.

3.17 get_config_text

const char *get_config_text(const char *msg);
This function is primarily intended for use by internal library code, but it may
perhaps be helpful to application programmers as well. It uses the language.dat
or XXtext.cfg files (where XX is a language code) to look up a translated
version of the parameter in the currently selected language, returning a suitable
translation if one can be found or a copy of the parameter if nothing else is

34

See also:

Allegro Manual

available. This is basically the same thing as calling get_config_string() with
[language] as the section, msg as the variable name, and msg as the default
value, but it contains some special code to handle Unicode format conversions.
The msg parameter is always given in ASCII format, but the returned string
will be converted into the current text encoding, with memory being allocated
as required, so you can assume that this pointer will persist without having to
manually allocate storage space for each string.

See Section 3.11 [get_config_string], page 31.

See Section 3.8 [reload_config_texts], page 30.

See Section 3.23 [standard config variables|, page 36.

3.18 set_config_string

void set_config string(const char *section, const char *name, const char

*xval) ;

See also:

Writes a string variable to the current config file, replacing any existing value it
may have, or removes the variable if val is NULL. The section name may be set
to NULL to write the variable to the root of the file, or used to control which
section the variable is inserted into. The altered file will be cached in memory,
and not actually written to disk until you call allegro_exit(). Note that you can
only write to files in this way, so the function will have no effect if the current
config source was specified with set_config_data() rather than set_config_file().

As a special case, variable or section names that begin with a ’#’ character
are treated specially and will not be read from or written to the disk. Addon
packages can use this to store version info or other status information into the
config module, from where it can be read with the get_config_string() function.

See Section 3.1 [set_config_file], page 28.

See Section 3.11 [get_config_string], page 31.

See Section 3.21 [set_config_float], page 35.

See Section 3.20 [set_config_hex], page 35.

[
[

See Section 3.19 [set_config_int], page 34.
[

See Section 3.22 [set_config_id], page 35.

3.19 set_config_int

void set_config_int(const char *section, const char *name, int val);

Writes an integer variable to the current config file. See the comments about
set_config_string().

Chapter 3: Configuration routines 35

See also:
See Section 3.1 [set_config_file], page 28.

See Section 3.12 [get_config_int], page 31.
See Section 3.18 [set_config_string], page 34.
See Section 3.21 [set_config_float], page 35.

See Section 3.20 |
[

See Section 3.22 [set_config_id], page 35.

set_config_hex], page 35.

3.20 set_config_hex

void set_config hex(const char *section, const char *name, int val);
Writes an integer variable to the current config file, in hexadecimal format. See
the comments about set_config_string().

See also:

See Section 3.1 [set_config_file], page 28.
See Section 3.13 [get_config_hex], page 32.
See Section 3.18 [set_config_string], page 34.
See Section 3.21 [set_config_float], page 35.
See Section 3.19 [set_config_int], page 34.
[

See Section 3.22 [set_config_id], page 35.

3.21 set_config_float

void set_config float(const char *section, const char *name, float val);
Writes a floating point variable to the current config file. See the comments
about set_config_string().

See also:

See Section 3.1 [set_config_file], page 28.
See Section 3.14 [get_config_float], page 32.
See Section 3.18 [set_config_string], page 34.
See Section 3.20 [set_config_hex], page 35.
See Section 3.19 [set_config_int], page 34.
See Section 3.22 [set_config_id], page 35.

3.22 set_config_id

void set_config_id(const char *section, const char *name, int val);
Writes a 4-letter driver ID variable to the current config file. See the comments
about set_config_string().

36

See also:

Allegro Manual

See Section 3.1 [set_config_file], page 28.

See Section 3.15 [get_config_id], page 33.

See Section 3.18 [set_config_string], page 34.

See Section 3.21
See Section 3.20

set_config_float], page 35.
set_config_hex], page 35.

[
[
[
[

See Section 3.19 [set_config_int|, page 34.

3.23 standard config variables

Allegro uses these standard variables from the configuration file:

e [system]
Section containing general purpose variables:

system = x
Specifies which system driver to use. This is currently only useful on Linux, for
choosing between the XWindows ("XWIN") or console ("LNXC") modes.

keyboard = x

Specifies which keyboard layout to use. The parameter is the name of a keyboard
mapping file produced by the keyconf utility, and can either be a fully qualified
file path or a basename like "us" or "uk". If the latter, Allegro will look first for a
separate config file with that name (eg. "uk.cfg") and then for an object with that
name in the keyboard.dat file (eg. "UK_CFG"). The config file or keyboard.dat
file can be stored in the same directory as the program, or in the location pointed
to by the ALLEGRO environment variable. Look in the keyboard.dat file to see
what mappings are currently available.

language = x

Specifies which language file to use for error messages and other bits of system
text. The parameter is the name of a translation file, and can either be a fully
qualified file path or a basename like "en" or "sp". If the latter, Allegro will look
first for a separate config file with a name in the form "entext.cfg", and then for
an object with that name in the language.dat file (eg. "ENTEXT_CFG"). The
config file or language.dat file can be stored in the same directory as the program,
or in the location pointed to by the ALLEGRO environment variable. Look in the
language.dat file to see which mappings are currently available.
menu_opening_delay = x

Sets how long the menus take to auto-open. The time is given in milliseconds
(default is 300). Specifying -1 will disable the auto-opening feature.

dga_mouse = x
X only: disable to work around a bug in some X servers’ DGA modes, concerning
the mouse. Default is on; enable the workaround by setting the variable to "0".

dga_centre = x

X only: instructs the DGA driver to centre the Allegro screen if the actual screen
resolution is higher than Allegro’s. Default is on; disable this feature by setting
the variable to "0".

Chapter 3: Configuration routines 37

dga_clear = x
X only: instructs the DGA driver to clear visible video memory on startup. Default
is on; disable this feature by setting the variable to "0".

e [graphics]
Section containing graphics configuration information, using the variables:

gfx_card = x

Specifies which graphics driver to wuse when the program requests
GFX_AUTODETECT. Multiple possible drivers can be suggested with extra
lines in the form "gfx_cardl = x", "gfx_card2 = x", etc, or you can specify
different drivers for each mode and color depth with variables in the form
"ofx_card_24bpp = x", "gfx_card_640x480x16 = x", etc.

gfx_cardw = x

Specifies which graphics driver to wuse when the program requests
GFX_AUTODETECT_WINDOWED. This variable functions exactly like
gfx_card in all other respects. If it is not set, Allegro will look for the gfx_card
variable.

vbeaf_driver = x

DOS and Linux only: specifies where to look for the VBE/AF driver (vbeaf.drv). If
this variable is not set, Allegro will look in the same directory as the program, and
then fall back on the standard locations (c:\ for DOS, /usr/local/lib, /usr/lib, /lib,
and / for Linux, or the directory specified with the VBEAF_PATH environment
variable).

framebuffer = x

Linux only: specifies what device file to use for the fbcon driver. If this variable
is not set, Allegro checks the FRAMEBUFFER environment variable, and then
defaults to /dev/fb0.

force_centering = x

Unix/X11 only: specifies whether to force window centering in fullscreen mode
when the XWFS driver is used (yes or no). Enabling this setting may cause some
artifacts to appear on KDE desktops.

disable_direct_updating = x

Windows only: specifies whether to disable direct updating when the
GFX_DIRECTX_WIN driver is used in color conversion mode (yes or no). Direct
updating can cause artifacts to be left on the desktop when the window is moved
or minimized; disabling it results in a significant performance loss.

e [mouse]
Section containing mouse configuration information, using the variables:

mouse = X
Mouse driver type. Available DOS drivers are:

MICK - mickey mode driver (normally the best)
I33 - int 0x33 callback driver
POLL - timer polling (for use under NT)

Linux console mouse drivers are:

38 Allegro Manual
MS - Microsoft serial mouse
IMS - Microsoft serial mouse with Intellimouse extension
LPS2 - PS2 mouse
LIPS - PS2 mouse with Intellimouse extension
GPMD - GPM repeater data (Mouse Systems protocol)
e num_buttons = x
Sets the number of mouse buttons viewed by Allegro. You don’t normally need to
set this variable because Allegro will autodetect it. You can only use it to restrict
the set of actual mouse buttons.
e cmulate_three = x
Sets whether to emulate a third mouse button by detecting chords of the left and
right buttons (yes or no). Defaults to yes if you have a two button mouse, no
otherwise.
e mouse_device = x
Linux only: specifies the name of the mouse device file (eg. /dev/mouse).
e mouse_accel_factor = x
Windows only: specifies the mouse acceleration factor. Defaults to 1. Set it to 0
in order to disable mouse acceleration. 2 accelerates twice as much as 1.
e [sound]

Section containing sound configuration information, using the variables:

digi_card = x

Sets the driver to use for playing digital samples.

midi_card = x

Sets the driver to use for MIDI music.

digi-input_card = x

Sets the driver to use for digital sample input.

midi_input_card = x

Sets the driver to use for MIDI data input.

digi_voices = x

Specifies the minimum number of voices to reserve for use by the digital sound
driver. How many are possible depends on the driver.

midi_voices = x

Specifies the minimum number of voices to reserve for use by the MIDI sound
driver. How many are possible depends on the driver.

digi_volume = x

Sets the volume for digital sample playback, from 0 to 255.

midi_volume = x

Sets the volume for midi music playback, from 0 to 255.

quality = x

Controls the sound quality vs. performance tradeoff for the sample mixing code.
This can be set to any of the values:

0 - fast mixing of 8 bit data into 16 bit buffers

Chapter 3: Configuration routines 39

1 - true 16 bit mixing (requires a 16 bit stereo soundcard)
2 - interpolated 16 bit mixing
e flip_pan = x
Toggling this between 0 and 1 reverses the left/right panning of samples, which
might be needed because some SB cards (including mine :-) get the stereo image
the wrong way round.

e sound._freq = x
DOS, Unix and BeOS: sets the sample frequency. With the SB driver, possible
rates are 11906 (any), 16129 (any), 22727 (SB 2.0 and above), and 45454 (only on
SB 2.0 or SB16, not the stereo SB Pro driver). On the ESS Audiodrive, possible
rates are 11363, 17046, 22729, or 44194. On the Ensoniq Soundscape, possible
rates are 11025, 16000, 22050, or 48000. On the Windows Sound System, possible
rates are 11025, 22050, 44100, or 48000. Don’t worry if you set some other number
by mistake: Allegro will automatically round it to the closest supported frequency.

e sound_bits = x
Unix and BeOS: sets the preferred number of bits (8 or 16).

e sound_stereo = x
Unix and BeOS: selects mono or stereo output (0 or 1).

e sound_port = x
DOS only: sets the soundcard port address (this is usually 220).

e sound_dma = x
DOS only: sets the soundcard DMA channel (this is usually 1).
e sound._irq = x
DOS only: sets the soundcard IRQ number (this is usually 7).
e fm_port = x
DOS only: sets the port address of the OPL synth (this is usually 388).
e mpu_port = x
DOS only: sets the port address of the MPU-401 MIDI interface (this is usually
330).
e mpu.irq = x
DOS only: sets the IRQ for the MPU-401 (this is usually the same as sound_irq).
e ibk_file = x
DOS only: specifies the name of a .IBK file which will be used to replace the
standard Adlib patch set.

e ibk_drum_file = x
DOS only: specifies the name of a .IBK file which will be used to replace the
standard set of Adlib percussion patches.

e oss_driver = x
Unix only: sets the OSS device driver name. Usually /dev/dsp or /dev/audio, but
could be a particular device (e.g. /dev/dsp2).

e oss_numfrags = x
oss_fragsize = x
Unix only: sets number of OSS driver fragments (buffers) and size of each buffer
in samples. Buffers are filled with data in the interrupts where interval between

40

Allegro Manual

subsequent interrupts is not less than 10 ms. If hardware can play all information
from buffers faster than 10 ms, then there will be clicks, when hardware have
played all data and library has not prepared new data yet. On the other hand, if
it takes too long for device driver to play data from all buffers, then there will be
delays between action which triggers sound and sound itself.

oss_midi_driver = x
Unix only: sets the OSS MIDI device name. Usually /dev/sequencer.

oss_mixer_driver = x
Unix only: sets the OSS mixer device name. Usually /dev/mixer.

esd_server = x
Unix only: where to find the ESD (Enlightened Sound Daemon) server.

alsa_card = x
alsa_pcmdevice = x
Unix only: paramaters for the ALSA sound driver system.

alsa_numfrags = x
Unix only: number of ALSA driver fragments (buffers).

alsa_fragsize = x
Unix only: size of each ALSA fragment, in samples.

alsa_rawmidi_card = x
Unix only: ALSA card to use for midi output.

alsa_rawmidi_device = x

Unix only: ALSA rawmidi device to use for output.

be_midi_quality = x

BeOS only: system MIDI synthesizer instruments quality. 0 uses low quality 8-bit
11 kHz samples, 1 uses 16-bit 22 kHz samples.

be_midi_freq = x

BeOS only: MIDI sample mixing frequency in Hz. Can be 11025, 22050 or 44100.
be_midi_interpolation = x

BeOS only: specifies the MIDI samples interpolation method. 0 doesn’t interpo-
late, it’s fast but has the worst quality; 1 does a fast interpolation with better
performances, but it’s a bit slower than the previous method; 2 does a linear inter-
polation between samples, it is the slowest method but gives the best performances.

be_midi_reverb = x
BeOS only: reverberation intensity, from 0 to 5. 0 disables it, 5 is the strongest
one.

patches = x

Specifies where to find the sample set for the DIGMID driver. This can either be
a Gravis style directory containing a collection of .pat files and a default.cfg index,
or an Allegro datafile produced by the pat2dat utility. If this variable is not set,
Allegro will look either for a default.cfg or patches.dat file in the same directory as
the program, the directory pointed to by the ALLEGRO environment variable, and
the standard GUS directory pointed to by the ULTRASND environment variable.

e [midimap]

If you are using the SB MIDI output or MPU-401 drivers with an external synthesiser

Chapter 4: Mouse routines 41

that is not General MIDI compatible, you can use the midimap section of the config
file to specify a patch mapping table for converting GM patch numbers into whatever
bank and program change messages will select the appropriate sound on your synth.
This is a real piece of self-indulgence. I have a Yamaha TG500, which has some great
sounds but no GM patch set, and I just had to make it work somehow...

This section consists of a set of lines in the form:

e p<n> = bank0 bankl prog pitch
With this statement, n is the GM program change number (1-128), bank0 and
bankl are the two bank change messages to send to your synth (on controllers #0
and #32), prog is the program change message to send to your synth, and pitch is
the number of semitones to shift everything that is played with that sound. Setting
the bank change numbers to -1 will prevent them from being sent.

For example, the line:
p36 =0349 12

specifies that whenever GM program 36 (which happens to be a fretless bass) is
selected, Allegro should send a bank change message #0 with a parameter of 0,
a bank change message #32 with a parameter of 34, a program change with a
parameter of 9, and then should shift everything up by an octave.

e [joystick]
Section containing joystick configuration information, using the variables:

e joytype = x
Specifies which joystick driver to wuse when the program requests
JOY_TYPE_AUTODETECT.

e joystick_device = x
BeOS only: specifies the name of the joystick device to be used. First device found
is used by default.

e throttle_axis = x
Linux only: sets which axis number the throttle is located at. This variable will
be used for every detected joystick. If you want to specify the axis number for
each joystick individually, use variables of the form throttle_axis_n, where n is the
joystick number.

See also:

See Section 3.1 [set_config_file], page 28.

See Section 3.18 [set_config_string], page 34.
See Section 3.11 [get_config_string], page 31.

4 Mouse routines

42 Allegro Manual

4.1 install_mouse

int install_mouse();
Installs the Allegro mouse handler. You must do this before using any other
mouse functions. Returns -1 on failure, otherwise the number of buttons on the
mouse.

See also:

See Section 4.2 [remove_mouse], page 42.

See Section 4.3 [poll_mouse], page 42.

See Section 4.5 [mouse_x|, page 43.

See Section 4.7 [show_mouse], page 44.

See Section 4.18 [get_mouse_mickeys|, page 47.
See Section 4.12 [position_mouse|, page 45.

[

See Section 4.14 [set_mouse_range], page 46.

See Section 4.15 [set_mouse_speed], page 46.
[

See Section 3.23 [standard config variables|, page 36.

4.2 remove_mouse

void remove_mouse();
Removes the mouse handler. You don’t normally need to bother calling this,
because allegro_exit() will do it for you.

See also:
See Section 4.1 [install_mouse|, page 41.

See Section 1.3 [allegro_exit], page 1.

4.3 poll_mouse

int poll_mouse();

Wherever possible, Allegro will read the mouse input asynchronously (ie. from
inside an interrupt handler), but on some platforms that may not be possible,
in which case you must call this routine at regular intervals to update the
mouse state variables. To help you test your mouse polling code even if you
are programming on a platform that doesn’t require it, after the first time that
you call this function Allegro will switch into polling mode, so from that point
onwards you will have to call this routine in order to get any mouse input at
all, regardless of whether the current driver actually needs to be polled or not.
Returns zero on success, or a negative number on failure (ie. no mouse driver
installed).

See also:

See Section 4.4 [mouse_needs_poll], page 43.

Chapter 4: Mouse routines 43

See Section 4.1 [install_mouse|, page 41.

See Section 4.5 [mouse_x|, page 43.

4.4 mouse_needs_poll

int mouse_needs_poll();

See also:

Returns TRUE if the current mouse driver is operating in polling mode.

See Section 4.3 [poll_mouse], page 42.

See Section 4.1 [install_mouse], page 41.

See Section 4.5 [mouse_x], page 43.

4.5 mouse_xX

extern volatile int mouse_x;

extern
extern
extern

extern

See also:

volatile int mouse_y;
volatile int mouse_z;
volatile int mouse_b;

volatile int mouse_pos;

Global variables containing the current mouse position and button state.
Wherever possible these values will be updated asynchronously, but if
mouse_needs_poll() returns TRUE, you must manually call poll_mouse()
to update them with the current input state. The mouse_x and mouse_y
positions are integers ranging from zero to the bottom right corner of the
screen. The mouse_z variable holds the current wheel position, when using
an input driver that supports wheel mice. The mouse_b variable is a bitfield
indicating the state of each button: bit 0 is the left button, bit 1 the right, and
bit 2 the middle button. For example:

if (mouse_b & 1)
printf ("Left button is pressed\n");

if (! (mouse_b & 2))
printf ("Right button is not pressed\n");
The mouse_pos variable has the current X coordinate in the high word and the
Y in the low word. This may be useful in tight polling loops where a mouse
interrupt could occur between your reading of the two separate variables, since
you can copy this value into a local variable with a single instruction and then
split it up at your leisure.

See Section 4.1 [install_mouse|, page 41.

See Section 4.3 [poll_mouse|, page 42.

44

Allegro Manual

See Section 4.4 [mouse_needs_poll], page 43.

4.6 mouse_sprite

extern BITMAP *mouse_sprite;

extern int mouse_x_focus;

extern int mouse_y_focus;

See also:

Global variables containing the current mouse sprite and the focus point.
These are read-only, and only to be modified using the set_mouse_sprite() and

set_mouse_sprite_focus() functions.

See Section 4.16 [set_mouse_sprite], page 46.

See Section 4.17 [set_mouse_sprite_focus|, page 47.

4.7 show_mouse

void show_mouse(BITMAP *bmp) ;

See also:

Tells Allegro to display a mouse pointer on the screen. This will only work if
the timer module has been installed. The mouse pointer will be drawn onto the
specified bitmap, which should normally be ’screen’ (see later for information
about bitmaps). To hide the mouse pointer, call show_mouse(NULL). Warning;:
if you draw anything onto the screen while the pointer is visible, a mouse
movement interrupt could occur in the middle of your drawing operation. If this
happens the mouse buffering and SVGA bank switching code will get confused
and will leave 'mouse droppings’ all over the screen. To prevent this, you must
make sure you turn off the mouse pointer whenever you draw onto the screen.

See Section 4.1 [install_mouse|, page 41.

See Section 5.1 [install_timer|, page 48.

See Section 4.16 [set_mouse_sprite], page 46.

See Section 4.8 [scare_mouse|, page 44.

See Section 4.11 [freeze_mouse_flag], page 45.

4.8 scare_mouse

void scare_mouse();

Helper for hiding the mouse pointer prior to a drawing operation. This will
temporarily get rid of the pointer, but only if that is really required (ie. the
mouse is visible, and is displayed on the physical screen rather than some other
memory surface, and it is not a hardware cursor). The previous mouse state is
stored for subsequent calls to unscare_mouse().

Chapter 4: Mouse routines 45

See also:
See Section 4.10 [unscare_mouse|, page 45.
See Section 4.9 [scare_mouse_area|, page 45.

See Section 4.7 [show_mouse], page 44.

4.9 scare_mouse_area

void scare_mouse_area(int x, int y, int w, int h);
Like scare_mouse(), but will only hide the cursor if it is inside the specified
rectangle. Otherwise the cursor will simply be frozen in place until you call
unscare_mouse(), so it cannot interfere with your drawing.

See also:
See Section 4.10 [unscare_mouse|, page 45.
See Section 4.8 [scare_mouse], page 44.

See Section 4.7 [show_mouse|, page 44.

4.10 unscare_mouse

void unscare_mouse();
Undoes the effect of a previous call to scare_mouse() or scare_mouse_area(),
restoring the original pointer state.

See also:
See Section 4.8 [scare_mouse|, page 44.

See Section 4.9 [scare_mouse_area|, page 45.

4.11 freeze_mouse_flag

extern volatile int freeze_mouse_flag;
If this flag is set, the mouse pointer won’t be redrawn when the mouse moves.
This can avoid the need to hide the pointer every time you draw to the screen,
as long as you make sure your drawing doesn’t overlap with the current pointer
position.

See also:

See Section 4.7 [show_mouse], page 44.

4.12 position_mouse

void position_mouse(int x, int y);
Moves the mouse to the specified screen position. It is safe to call even when a
mouse pointer is being displayed.

46 Allegro Manual

See also:

See Section 4.1 [install_mouse|, page 41.

See Section 4.13 [position_mouse_z|, page 46.
See Section 4.14 [set_mouse_range|, page 46.

See Section 4.15 [set_mouse_speed], page 46.

4.13 position_mouse_z

void position_mouse_z(int z);
Sets the mouse wheel position variable to the specified value.

See also:
See Section 4.1 [install_mouse|, page 41.

See Section 4.12 [position_mouse|, page 45.

4.14 set_mouse_range

void set_mouse_range(int x1, int yl1, int x2, int y2);
Sets the area of the screen within which the mouse can move. Pass the top left
corner and the bottom right corner (inclusive). If you don’t call this function

the range defaults to (0, 0, SCREEN_W-1, SCREEN_H-1).

See also:
See Section 4.1 [install_mouse|, page 41.
See Section 4.15 [set_mouse_speed], page 46.

See Section 4.12 [position_mouse|, page 45.

4.15 set_mouse_speed

void set_mouse_speed(int xspeed, int yspeed);
Sets the mouse speed. Larger values of xspeed and yspeed represent slower
mouse movement: the default for both is 2.

See also:
See Section 4.1 [install_mouse|, page 41.
See Section 4.14 [set_mouse_range|, page 46.

See Section 4.12 [position_mouse|, page 45.

Chapter 4: Mouse routines 47

4.16 set_mouse_sprite

void set_mouse_sprite(BITMAP *sprite);

See also:

You don’t like my mouse pointer? No problem. Use this function to supply an
alternative of your own. If you change the pointer and then want to get my
lovely arrow back again, call set_mouse_sprite(NULL).

As a bonus, set_mouse_sprite(NULL) uses the current palette in choosing colors
for the arrow. So if your arrow mouse sprite looks ugly after changing the
palette, call set_mouse_sprite(NULL).

See Section 4.1 [install_mouse|, page 41.

See Section 4.7 [show_mouse], page 44.

See Section 4.17 [set_mouse_sprite_focus], page 47.

4.17 set_mouse_sprite_focus

void set_mouse_sprite_focus(int x, int y);

See also:

The mouse focus is the bit of the pointer that represents the actual mouse
position, ie. the (mouse_x, mouse_y) position. By default this is the top left
corner of the arrow, but if you are using a different mouse pointer you might
need to alter it.

See Section 4.16 [set_mouse_sprite|, page 46.

4.18 get_mouse_mickeys

void get_mouse_mickeys(int *mickeyx, int *mickeyy);

See also:

Measures how far the mouse has moved since the last call to this function. The
mouse will continue to generate movement mickeys even when it reaches the
edge of the screen, so this form of input can be useful for games that require
an infinite range of mouse movement.

See Section 4.1 [install_mouse|, page 41.

4.19 mouse_callback

extern void (*mouse_callback) (int flags);

Called by the interrupt handler whenever the mouse moves or one
of the buttons changes state. This function must be in locked
memory, and must execute _very_ quickly! It is passed the event
flags that triggered the call, which is a bitmask containing any of
the values MOUSE_FLAG_MOVE, MOUSE_FLAG_LEFT_DOWN,

48 Allegro Manual

MOUSE_FLAG_LEFT_UP, MOUSE_FLAG_RIGHT_DOWN,
MOUSE_FLAG_RIGHT_UP, MOUSE_FLAG_MIDDLE_DOWN,
MOUSE_FLAG_MIDDLE_UP, and MOUSE_FLAG_MOVE_Z.

See also:
See Section 4.1 [install_mouse|, page 41.

5 Timer routines

Allegro can set up several virtual timer functions, all going at different speeds.

Under DOS it will constantly reprogram the clock to make sure they are all called at the
correct times. Because they alter the low level timer chip settings, these routines should not
be used together with other DOS timer functions like the djgpp uclock() routine. Moreover,
the FPU state is not preserved across Allegro interrupts so you ought not to use floating
point or MMX code inside timer interrupt handlers.

Under other platforms, they are usually implemented using threads, which run parallel to the
main thread. Therefore timer callbacks on such platforms will not block the main thread
when called, so you may need to use appropriate synchronisation devices (eg. mutexes,
semaphores, etc.) when accessing data that is shared by a callback and the main thread.
(Currently Allegro does not provide such devices.)

5.1 install_timer

int install_timer();
Installs the Allegro timer interrupt handler. You must do this before installing
any user timer routines, and also before displaying a mouse pointer, playing
FLI animations or MIDI music, and using any of the GUI routines. Returns
zero on success, or a negative number on failure (but you may decide not to
check the return value as this function is very unlikely to fail).

See also:
See Section 5.2 [remove_timer|, page 48.

See Section 5.3 [install_int], page 49.

5.2 remove_timer

void remove_timer();
Removes the Allegro timer handler (and, under DOS, passes control of the clock
back to the operating system). You don’t normally need to bother calling this,
because allegro_exit() will do it for you.

See also:
See Section 5.1 [install_timer|, page 48.
See Section 1.3 [allegro_exit], page 1.

Chapter 5: Timer routines 49

5.3 install_int

int install_int(void (*proc)(), int speed);

See also:

Installs a wuser timer handler, with the speed given as the number of
milliseconds between ticks. This is the same thing as install_int_ex(proc,
MSEC_TO_TIMER(speed)). If you call this routine without having first
installed the timer module, install_timer() will be called automatically. If
there is no room to add a new user timer, install_int() will return a negative
number, otherwise it returns zero.

See Section 5.1 [install_timer|, page 48.

See Section 5.5
See Section 5.4

remove._int], page 50.

install_int_ex], page 49.

[
[
[
[

See Section 5.6 [install_param_int], page 51.

5.4 install_int_ex

int install_int_ex(void (*proc)(), int speed);

Adds a function to the list of user timer handlers or, if it is already installed,
retroactively adjusts its speed (i.e makes as though the speed change occured
precisely at the last tick). The speed is given in hardware clock ticks, of which
there are 1193181 a second. You can convert from other time formats to hard-
ware clock ticks with the macros:

SECS_TO_TIMER(secs) - give the number of seconds between
each tick

give the number of milliseconds
between ticks

BPS_TO_TIMER (bps) - give the number of ticks each second
BPM_TO_TIMER (bpm) - give the number of ticks per minute

MSEC_TO_TIMER (msec)

If there is no room to add a new user timer, install_int_ex() will return a negative
number, otherwise it returns zero. There can only be sixteen timers in use at a
time, and some other parts of Allegro (the GUI code, the mouse pointer display
routines, rest(), the FLI player, and the MIDI player) need to install handlers
of their own, so you should avoid using too many at the same time. If you call
this routine without having first installed the timer module, install_timer() will
be called automatically.

Your function will be called by the Allegro interrupt handler and not directly
by the processor, so it can be a normal C function and does not need a special
wrapper. You should be aware, however, that it will be called in an interrupt
context, which imposes a lot of restrictions on what you can do in it. It should
not use large amounts of stack, it must not make any calls to the operating
system, use C library functions, or contain any floating point code, and it must
execute very quickly. Don’t try to do lots of complicated code in a timer handler:

50 Allegro Manual

as a general rule you should just set some flags and respond to these later in
your main control loop.

In a DOS protected mode environment like djgpp, memory is virtualised
and can be swapped to disk. Due to the non-reentrancy of DOS, if a disk
swap occurs inside an interrupt handler the system will die a painful death,
so you need to make sure you lock all the memory (both code and data)
that is touched inside timer routines. Allegro will lock everything it uses,
but you are responsible for locking your handler functions. The macros
LOCK_VARIABLE (variable), END_OF_FUNCTION (function_name),
END_OF_STATIC_FUNCTION (function_name), and LOCK_FUNCTION
(function_name) can be used to simplify this task. For example, if you want
an interrupt handler that increments a counter variable, you should write:

volatile int counter;

void my_timer_handler ()

{

counter++;

}

END_OF __FUNCTION(my_timer_handler)

and in your initialisation code you should lock the memory:

LOCK_VARIABLE (counter);
LOCK_FUNCTION (my_timer_handler);

Obviously this can get awkward if you use complicated data structures and
call other functions from within your handler, so you should try to keep your
interrupt routines as simple as possible.

See also:
See Section 5.1 [install_timer|, page 48.
See Section 5.5 [remove_int], page 50.

See Section 5.3 |
[

See Section 5.7 [install_param_int_ex], page 51.

install_int], page 49.

5.5 remove_int

void remove_int(void (*proc)());
Removes a function from the list of user interrupt routines. At program termi-
nation, allegro_exit() does this automatically.

See also:
See Section 5.3 [install_int], page 49.
See Section 5.4 [install_int_ex], page 49.

Chapter 5: Timer routines 51
See Section 5.8 [remove_param_int], page 51.

5.6 install_param_int

int install_param_int(void (*proc) (void *), void #*param, int speed);
Like install_int(), but the callback routine will be passed a copy of the specified
void pointer parameter. To disable the handler, use remove_param_int() instead
of remove_int().

See also:
See Section 5.1 [install_timer|, page 48.

[
See Section 5.8 [remove_param_int]|, page 51.
See Section 5.7 [install_param_int_ex|, page 51.
[

See Section 5.3 [install_int], page 49.

5.7 install_param_int_ex

int install_param_int_ex(void (*proc)(void *), void *param, int speed);
Like install_int_ex(), but the callback routine will be passed a copy of the spec-
ified void pointer parameter. To disable the handler, use remove_param_int()
instead of remove_int().

See also:
See Section 5.1 [install_timer]|, page 48.

See Section 5.8 [remove_param_int]|, page 51.
See Section 5.6 [
[

See Section 5.4 [install_int_ex], page 49.

install_param_int], page 51.

5.8 remove_param_int

void remove_param_int(void (*proc) (void *), void *param);
Like remove_int(), but for use with timer callbacks that have parameter values.
If there is more than one copy of the same callback active at a time, it identifies
which one to remove by checking the parameter value (so you can’t have more
than one copy of a handler using an identical parameter).

See also:
See Section 5.6 [install_param_int], page 51.
See Section 5.7 [install_param_int_ex], page 51.

See Section 5.5 [remove_int], page 50.

52

Allegro Manual

5.9 timer_can_simulate_retrace

int timer_can_simulate_retrace()

See also:

Checks whether it is possible to sync the timer module with the monitor retrace,
given the current platform and environment (at the moment this is only possible
when running in clean DOS mode in a VGA or mode-X resolution). Returns
non-zero if simulation is possible.

See Section 5.10 [timer_simulate_retrace], page 52.

See Section 5.11 [timer_is_using_retrace], page 53.

5.10 timer_simulate_retrace

void timer_simulate_retrace(int enable);

The DOS timer handler can be used to simulate vertical retrace interrupts. A
retrace interrupt can be extremely useful for implementing smooth animation,
but unfortunately the VGA hardware doesn’t support it. The EGA did, and
some SVGA chipsets do, but not enough, and not in a sufficiently standardised
way, for it to be useful. Allegro works around this by programming the timer
to generate an interrupt when it thinks a retrace is next likely to occur, and
polling the VGA inside the interrupt handler to make sure it stays in sync with
the monitor refresh. This works quite well in some situations, but there are a
lot of caveats:

- You can’t use the retrace simulator in SVGA modes. It will work with some
chipsets, but not others, and it conflicts with most VESA implementations.
Retrace simulation is only reliable in VGA mode 13h and mode-X.

- Retrace simulation doesn’t work under win95, because win95 returns garbage
when I try to read the elapsed time from the PIT. If anyone knows how I can
make this work, please tell me!

- Retrace simulation involves a lot of waiting around in the timer handler with
interrupts disabled. This will significantly slow down your entire system, and
may also cause static when playing samples on SB 1.0 cards (because they don’t
support auto-initialised DMA: SB 2.0 and above will be fine).

Bearing all those problems in mind, I'd strongly advise against relying on the
retrace simulator. If you are coding in mode-X, and don’t care about your
program working under win95, it is great, but it would be a good idea to give
the user an option to disable it.

Retrace simulation must be enabled before you use the triple buffering functions
in a mode-X resolution. It can also be useful for simple retrace detection, be-
cause the polling vsync() function can occasionally miss retraces if a soundcard
or timer interrupt occurs at exactly the same time as the retrace. When retrace
interrupt simulation is enabled, vsync() will check the retrace_count variable
rather than polling the VGA, so it won’t miss retraces even if they are masked
by other interrupts.

Chapter 5: Timer routines 53

See also:

See Section 5.1 [install_timer|, page 48.

See Section 5.12 [retrace_count], page 53.

See Section 5.13 [retrace_proc|, page 53.

See Section 8.14 [request_scroll], page 78.

See Section 11.1 [vsync|, page 93.

See Section 5.9 [timer_can_simulate_retrace|, page 52.
See Section 5.11 [timer_is_using_retrace|, page 53.

See Section 8.12 [enable_triple_buffer|, page 77.

5.11 timer_is_using_retrace

int timer_is_using_retrace()
Checks whether the timer module is currently synced with the monitor retrace
or not. Returns non-zero if it is.

See also:
See Section 5.10 [timer_simulate_retrace], page 52.

See Section 5.9 [timer_can_simulate_retrace|, page 52.

5.12 retrace_count

extern volatile int retrace_count;

If the retrace simulator is installed, this is incremented on each vertical retrace,
otherwise it is incremented 70 times a second (ignoring retraces). This provides
a useful way of controlling the speed of your program without the hassle of
installing user timer functions.

The speed of retraces varies depending on the graphics mode. In mode 13h and
200/400 line mode-X resolutions there are 70 retraces a second, and in 240,/480
line modes there are 60. It can be as low as 50 (in 376x282 mode) or as high
as 92 (in 400x300 mode).

See also:
See Section 5.10 [timer_simulate_retrace], page 52.
See Section 5.11 [timer_is_using_retrace], page 53.

See Section 5.13 [retrace_proc], page 53.

5.13 retrace_proc

extern void (*retrace_proc) ();
If the retrace simulator is installed, this function is called during every vertical
retrace, otherwise it is called 70 times a second (ignoring retraces). Set it to

54 Allegro Manual

NULL to disable the callback. The function must obey the same rules as regular
timer handlers (ie. it must be locked, and mustn’t call OS or libc functions)
but even more so: it must execute _very_ quickly, or it will mess up the timer
synchronisation. The only use I can see for this function is for doing palette
manipulations, because triple buffering can be done with the request_scroll()
function, and the retrace_count variable can be used for timing your code. If
you want to alter the palette in the retrace_proc you should use the inline
_set_color() function rather than the regular set_color() or set_palette(), and
you shouldn’t try to alter more than two or three palette entries in a single
retrace.

See also:
See Section 5.10 [timer_simulate_retrace|, page 52.
See Section 5.11 [timer_is_using_retrace|, page 53.
See Section 5.12 |
[

See Section 11.3 [_set_color], page 93.

retrace_count|, page 53.

5.14 rest

void rest(long time);
Once Allegro has taken over the timer the standard delay() function will no
longer work, so you should use this routine instead. The time is given in mil-
liseconds.

See also:
See Section 5.1 [install_timer|, page 48.
See Section 5.15 [rest_callback], page 54.

5.15 rest_callback

void rest_callback(long time, void (*callback) ())
Like rest(), but continually calls the specified function while it is waiting for
the required time to elapse.

See also:
See Section 5.1 [install_timer|, page 48.
See Section 5.14 [rest], page 54.

6 Keyboard routines

The Allegro keyboard handler provides both buffered input and a set of flags storing the
current state of each key. Note that it is not possible to correctly detect every combination
of keys, due to the design of the PC keyboard. Up to two or three keys at a time will

Chapter 6: Keyboard routines 55

work fine, but if you press more than that the extras are likely to be ignored (exactly which
combinations are possible seems to vary from one keyboard to another).

6.1 install_keyboard

int install_keyboard();
Installs the Allegro keyboard interrupt handler. You must call this before using
any of the keyboard input routines. Once you have set up the Allegro handler,
you can no longer use operating system calls or C library functions to access
the keyboard. Returns zero on success, or a negative number on failure (but
you may decide not to check the return value as this function is very unlikely to
fail). Note that on some platforms the keyboard won’t work unless you have set
a graphic mode, even if this function returns zero before calling set_gfx_mode.

See also:

See Section 6.2 [remove_keyboard], page 55.

See Section 6.4 [poll_keyboard], page 56.

See Section 6.6 [key], page 57.

See Section 6.8 [keypressed], page 58.

See Section 6.9 [readkey], page 59.

See Section 6.10 [ureadkey], page 59.

See Section 6.14 [keyboard_callback], page 60.

See Section 6.15 [keyboard_ucallback], page 61.

See Section 6.16 [keyboard_lowlevel_callback], page 61.
See Section 6.20 [three_finger_flag], page 62.

See Section 6.21 [key_led_flag], page 63.

See Section 6.17 [set_leds], page 62.

See Section 6.18 [set_keyboard_rate], page 62.

See Section 8.6 [set_gfx_mode], page 70.

See Section 3.23 [standard config variables]|, page 36.

6.2 remove_keyboard

void remove_keyboard();
Removes the keyboard handler, returning control to the operating system. You
don’t normally need to bother calling this, because allegro_exit() will do it for
you.

See also:
See Section 6.1 [install_keyboard], page 55.
See Section 1.3 [allegro_exit], page 1.

56

Allegro Manual

6.3 install_keyboard_hooks
void install_keyboard_hooks(int (*keypressed) (), int (*readkey) ());

See also:

You should only use this function if you *aren’t* using the rest of the keyboard
handler. It should be called in the place of install_keyboard(), and lets you
provide callback routines to detect and read keypresses, which will be used by
the main keypressed() and readkey() functions. This can be useful if you want
to use Allegro’s GUI code with a custom keyboard handler, as it provides a way
for the GUI to get keyboard input from your own code, bypassing the normal
Allegro input system.

See Section 6.1 [install_keyboard], page 55.

See Section 6.8 [keypressed], page 58.

See Section 6.9 [readkey], page 59.

6.4 poll_keyboard
int poll_keyboard();

See also:

See Section 6.5
See Section 6.1
See Section 6.6
See Section 6.7

Wherever possible, Allegro will read the keyboard input asynchronously (ie.
from inside an interrupt handler), but on some platforms that may not be
possible, in which case you must call this routine at regular intervals to update
the keyboard state variables. To help you test your keyboard polling code
even if you are programming on a platform that doesn’t require it, after the
first time that you call this function Allegro will switch into polling mode, so
from that point onwards you will have to call this routine in order to get any
keyboard input at all, regardless of whether the current driver actually needs
to be polled or not. The keypressed(), readkey(), and ureadkey() functions
call poll_keyboard() automatically, so you only need to use this function when
accessing the key|| array and key_shifts variable. Returns zero on success, or a
negative number on failure (ie. no keyboard driver installed).

keyboard_needs_poll], page 56.
install_keyboard|, page 55.
key], page 57.

key_shifts], page 58.

6.5 keyboard_needs_poll

int keyboard_needs_poll();

See also:

Returns TRUE if the current keyboard driver is operating in polling mode.

See Section 6.4 [poll_keyboard], page 56.

Chapter 6: Keyboard routines

See Section 6.1 [install_keyboard], page 55.

See Section 6.6 [key], page 57.

6.6 key

extern volatile char key[KEY_MAX];

Array of flags indicating the state of each key,
Wherever possible these values will be updated asynchronously,
keyboard_needs_poll() returns TRUE, you must manually call poll_keyboard()
to update them with the current input state. The scancodes are defined in
allegro/keyboard.h as a series of KEY_* constants (and are also listed below).
For example, you could write:

if (key[KEY_SPACE])
printf ("Space is pressed\n");

These are the keyboard scancodes:

KEY_A ... KEY_Z,

KEY_O ... KEY_9,
KEY_O_PAD ... KEY_9_PAD,
KEY_F1 ... KEY_F12,

KEY_ESC, KEY_TILDE, KEY_MINUS, KEY_EQUALS,
KEY_BACKSPACE, KEY_TAB, KEY_OPENBRACE, KEY_CLOSEBRACE,
KEY_ENTER, KEY_COLON, KEY_QUOTE, KEY_BACKSLASH,
KEY_BACKSLASH2, KEY_COMMA, KEY_STOP, KEY_SLASH,
KEY_SPACE,

KEY_INSERT, KEY_DEL, KEY_HOME, KEY_END, KEY_PGUP,
KEY_PGDN, KEY_LEFT, KEY_RIGHT, KEY_UP, KEY_DOWN,

KEY_SLASH_PAD, KEY_ASTERISK, KEY_MINUS_PAD,
KEY_PLUS_PAD, KEY_DEL_PAD, KEY_ENTER_PAD,

KEY_PRTSCR, KEY_PAUSE,

o7

ordered by scancode.

if

Note that the array is supposed to represent which keys are physically held
down and which keys are not, so it is semantically read-only.

KEY_ABNT_C1, KEY_YEN, KEY_KANA, KEY_CONVERT, KEY_NOCONVERT,

KEY_AT, KEY_CIRCUMFLEX, KEY_COLON2, KEY_KANJI,

KEY_LSHIFT, KEY_RSHIFT,
KEY_LCONTROL, KEY_RCONTROL,
KEY_ALT, KEY_ALTGR,

KEY_LWIN, KEY_RWIN, KEY_MENU,

58 Allegro Manual

KEY_SCRLOCK, KEY_NUMLOCK, KEY_CAPSLOCK

See also:

See Section 6.1 [install_keyboard], page 55.
See Section 6.4 [poll_keyboard], page 56.
See Section 6.7 [key_shifts|, page 58.

6.7 key_shifts

extern volatile int key_shifts;
Bitmask containing the current state of shift/ctrl/alt, the special Windows
keys, and the accent escape characters. Wherever possible this value will be
updated asynchronously, but if keyboard_needs_poll() returns TRUE, you must
manually call poll_keyboard() to update it with the current input state. This
can contain any of the flags:

KB_SHIFT_FLAG
KB_CTRL_FLAG
KB_ALT_FLAG
KB_LWIN_FLAG
KB_RWIN_FLAG
KB_MENU_FLAG
KB_SCROLOCK_FLAG
KB_NUMLOCK_FLAG
KB_CAPSLOCK_FLAG
KB_INALTSEQ_FLAG
KB_ACCENT1_FLAG
KB_ACCENT2_FLAG
KB_ACCENT3_FLAG
KB_ACCENT4_FLAG

See also:

See Section 6.1 [install_keyboard], page 55.
See Section 6.4 [poll_keyboard|, page 56.
See Section 6.6 [key], page 57.

6.8 keypressed

int keypressed();
Returns TRUE if there are keypresses waiting in the input buffer. This is
equivalent to the libc kbhit() function.

See also:
See Section 6.1 [install_keyboard], page 55.
See Section 6.9 [readkey], page 59.

Chapter 6: Keyboard routines 59

See Section 6.10 [ureadkey], page 59.

See Section 6.19 [clear_keybuf], page 62.
See Section 6.12 |
[

See Section 6.13 [simulate_ukeypress|, page 60.

simulate_keypress|, page 60.

6.9 readkey

int readkey();

Returns the next character from the keyboard buffer, in ASCII format. If the
buffer is empty, it waits until a key is pressed. The low byte of the return
value contains the ASCII code of the key, and the high byte the scancode. The
scancode remains the same whatever the state of the shift, ctrl and alt keys,
while the ASCII code is affected by shift and ctrl in the normal way (shift
changes case, ctrl+letter gives the position of that letter in the alphabet, eg.
ctrl+A = 1, ctrl+B = 2, etc). Pressing alt+key returns only the scancode, with
a zero ASCII code in the low byte. For example:

if ((readkey() & Oxff) == ’d’) // by ASCII code
printf ("You pressed ’d’\n");

if ((readkey() >> 8) == KEY_SPACE) // by scancode
printf ("You pressed Space\n");

if ((readkey() & Oxff) == 3) // ctrl+letter
printf ("You pressed Control+C\n");

if (readkey() == (KEY_X << 8)) // alt+letter
printf ("You pressed Alt+X\n");

This function cannot return character values greater than 255. If you need to
read Unicode input, use ureadkey() instead.

See also:

See Section 6.1 [install_keyboard], page 55.
See Section 6.10 [ureadkey], page 59.

See Section 6.8 [keypressed], page 58.

See Section 6.19 [clear_keybuf], page 62.

See Section 6.12 [simulate_keypress], page 60.

6.10 ureadkey

int ureadkey(int *scancode);
Returns the next character from the keyboard buffer, in Unicode format. If the
buffer is empty, it waits until a key is pressed. The return value contains the
Unicode value of the key, and if not NULL, the pointer argument will be set to

60 Allegro Manual

the scancode. Unlike readkey(), this function is able to return character values
greater than 255.

See also:

See Section 6.1 [install_keyboard], page 55.
See Section 6.9 [readkey], page 59.

See Section 6.8 [keypressed], page 58.

See Section 6.19 [clear_keybuf], page 62.

See Section 6.13 [simulate_ukeypress|, page 60.

6.11 scancode_to_ascii

int scancode_to_ascii(int scancode);
Converts the given scancode to an ASCII character for that key, returning the
unshifted uncapslocked result of pressing the key, or zero if the key isn’t a
character-generating key or the lookup can’t be done.

6.12 simulate_keypress

void simulate_keypress(int key);
Stuffs a key into the keyboard buffer, just as if the user had pressed it. The
parameter is in the same format returned by readkey().

See also:

See Section 6.1 [install_keyboard], page 55.
See Section 6.13 [simulate_ukeypress|, page 60.
See Section 6.8 [keypressed|, page 58.

See Section 6.9 [readkey], page 59.

6.13 simulate_ukeypress

void simulate_ukeypress(int key, int scancode);
Stuffs a key into the keyboard buffer, just as if the user had pressed it. The
parameter is in the same format returned by ureadkey/().

See also:

See Section 6.1 [install_keyboard], page 55.
See Section 6.12 [simulate_keypress|, page 60.
See Section 6.8 [keypressed], page 58.

See Section 6.10 [ureadkey], page 59.

Chapter 6: Keyboard routines 61

6.14 keyboard_callback

extern int (xkeyboard_callback) (int key);
If set, this function is called by the keyboard handler in response to every
keypress. It is passed a copy of the value that is about to be added into the
input buffer, and can either return this value unchanged, return zero to cause
the key to be ignored, or return a modified value to change what readkey() will
later return. This routine executes in an interrupt context, so it must be in
locked memory.

See also:

See Section 6.1 [install_keyboard], page 55.

See Section 6.9 [readkey], page 59.

See Section 6.10 [ureadkey], page 59.

See Section 6.15 [keyboard_ucallback], page 61.

See Section 6.16 [keyboard_lowlevel_callback], page 61.

6.15 keyboard_ucallback

extern int (xkeyboard_ucallback) (int key, int *scancode);
Unicode-aware version of keyboard_callback(). If set, this function is called by
the keyboard handler in response to every keypress. It is passed the character
value and scancode that are about to be added into the input buffer, can modify
the scancode value, and returns a new or modified key code. If it both sets the
scancode to zero and returns zero, the keypress will be ignored. This routine
executes in an interrupt context, so it must be in locked memory.

See also:

See Section 6.1 [install_keyboard], page 55.

See Section 6.9 [readkey], page 59.

See Section 6.10 [ureadkey], page 59.

See Section 6.14 [keyboard_callback], page 60.

See Section 6.16 [keyboard_lowlevel_callback], page 61.

6.16 keyboard_lowlevel_callback

extern void (*keyboard_lowlevel_callback) (int scancode);
If set, this function is called by the keyboard handler in response to every
keyboard event, both presses and releases. It will be passed a raw keyboard
scancode byte, with the top bit clear if the key has been pressed or set if it was
released. This routine executes in an interrupt context, so it must be in locked
memory.

See also:

See Section 6.1 [install_keyboard], page 55.

62 Allegro Manual

See Section 6.14 [keyboard_callback], page 60.
See Section 6.15 [keyboard_ucallback], page 61.

6.17 set_leds

void set_leds(int leds);

Overrides the state of the keyboard LED indicators. The parameter is a bitmask
containing any of the values KB_.SCROLOCK_FLAG, KB_LNUMLOCK_FLAG,
and KB_CAPSLOCK_FLAG, or -1 to restore the default behavior.

See also:
See Section 6.1 [install_keyboard], page 55.
See Section 6.21 [key_led_flag], page 63.

6.18 set_keyboard_rate

void set_keyboard_rate(int delay, int repeat);
Sets the keyboard repeat rate. Times are given in milliseconds. Passing zero
times will disable the key repeat.

See also:

See Section 6.1 [install_keyboard], page 55.
See Section 6.9 [readkey], page 59.

See Section 6.10 [ureadkey], page 59.

6.19 clear_keybuf

void clear_keybuf ();
Empties the keyboard buffer.

See also:

See Section 6.1 [install_keyboard], page 55.
See Section 6.8 [keypressed], page 58.

See Section 6.9 [readkey], page 59.

See Section 6.10 [ureadkey], page 59.

6.20 three_finger_flag

extern int three_finger_ flag;
The djgpp keyboard handler provides an ’emergency exit’ sequence which you
can use to kill off your program. If you are running under DOS this is the three
finger salute, ctrl+alt+del. Most multitasking OS’s will trap this combination
before it reaches the Allegro handler, in which case you can use the alternative

Chapter 7: Joystick routines 63

ctrl+alt+end. If you want to disable this behaviour in release versions of your
program, set this flag to FALSE.

See also:

See Section 6.1 [install_keyboard], page 55.

6.21 key_led_flag

extern int key_led_flag;
By default, the capslock, numlock, and scroll-lock keys toggle the keyboard
LED indicators when they are pressed. If you are using these keys for input in
your game (eg. capslock to fire) this may not be desirable, so you can clear this
flag to prevent the LED’s being updated.

See also:
See Section 6.1 [install_keyboard], page 55.
See Section 6.17 [set_leds], page 62.

7 Joystick routines

7.1 install_joystick

int install_joystick(int type);

Initialises the joystick, and calibrates the centre position value. The type pa-
rameter should usually be JOY_TYPE_AUTODETECT, or see the platform
specific documentation for a list of the available drivers. You must call this
routine before using any other joystick functions, and you should make sure
that the joystick is in the middle position at the time. Returns zero on success.
As soon as you have installed the joystick module, you will be able to read the
button state and digital (on/off toggle) direction information, which may be
enough for some games. If you want to get full analogue input, though, you
need to use the calibrate_joystick() functions to measure the exact range of the
inputs: see below.

See also:

See Section 7.2 [remove_joystick|, page 64.

See Section 7.9 [load_joystick_datal], page 68.

See Section 7.7 [calibrate_joystick|, page 67.

See Section 7.6 [calibrate_joystick_name|, page 67.
[

See Section 3.23 [standard config variables|, page 36.

See Section 7.3 [poll_joystick], page 64.
[
See Section 34.1 [JOY_TYPE_*/DOS], page 227.

64 Allegro Manual

7.2 remove_joystick

void remove_joystick();
Removes the joystick handler. You don’t normally need to bother calling this,
because allegro_exit() will do it for you.

See also:
See Section 7.1 [install_joystick], page 63.
See Section 1.3 [allegro_exit], page 1.

7.3 poll_joystick

int poll_joystick();
The joystick is not interrupt driven, so you need to call this function every now
and again to update the global position values. Returns zero on success or a
negative number on failure (usually because no joystick driver was installed).

See also:

See Section 7.1 [install_joystick], page 63.
See Section 7.5 [joy|, page 64.

See Section 7.4 [num_joysticks], page 64.

7.4 num_joysticks

extern int num_joysticks;
Global variable containing the number of active joystick devices. The current
drivers support a maximum of four controllers.

See also:
See Section 7.1 [install_joystick], page 63.
See Section 7.5 [joy|, page 64.

7.5 joy

extern JOYSTICK_INFO joyl[n];
Global array of joystick state information, which is updated by the
poll_joystick() function. Only the first num_joysticks elements will contain
meaningful information. The JOYSTICK_INFO structure is defined as:

typedef struct JOYSTICK_INFO
{
int flags; - status flags for this
joystick
int num_sticks; - how many stick inputs?

Chapter 7: Joystick routines 65

int num_buttons; - how many buttons?
JOYSTICK_STICK_INFO stickl[n]; - stick state information
JOYSTICK_BUTTON_INFO button[n]; - button state information

} JOYSTICK_INFO;

The button status is stored in the structure:

typedef struct JOYSTICK_BUTTON_INFO

{
int b; - boolean on/off flag
char *name; - description of this
button

} JOYSTICK_BUTTON_INFO;

You may wish to display the button names as part of an input configuration
screen to let the user choose what game function will be performed by each but-
ton, but in simpler situations you can safely assume that the first two elements
in the button array will always be the main trigger controls.

Each joystick will provide one or more stick inputs, of varying types. These can
be digital controls which snap to specific positions (eg. a gamepad controller,
the coolie hat on a Flightstick Pro or Wingman Extreme, or a normal joystick
which hasn’t yet been calibrated), or they can be full analogue inputs with a
smooth range of motion. Sticks may also have different numbers of axis, for
example a normal directional control has two, but the Flightstick Pro throttle
is only a single axis, and it is possible that the system could be extended in the
future to support full 3d controllers. A stick input is described by the structure:

typedef struct JOYSTICK_STICK_INFO

{

int flags; - status flags for this
input

int num_axis; - how many axis do we
have?

JOYSTICK_AXIS_INFO axis[n]; - axis state information

char *name; - description of this
input

} JOYSTICK_STICK_INFO;

A single joystick may provide several different stick inputs, but you can safely
assume that the first element in the stick array will always be the main direc-
tional controller.

Information about each of the stick axis is stored in the substructure:

typedef struct JOYSTICK_AXIS_INFO

{
int pos; - analogue axis position
int d1, d2; - digital axis position
char *name; - description of this axis

66

See also:

Allegro Manual

} JOYSTICK_AXIS_INFO;

This provides both analogue input in the pos field (ranging from -128 to 128
or from 0 to 255, depending on the type of the control), and digital values in
the d1 and d2 fields. For example, when describing the X-axis position, the
pos field will hold the horizontal position of the joystick, d1 will be set if it
is moved left, and d2 will be set if it is moved right. Allegro will fill in all
these values regardless of whether it is using a digital or analogue joystick,
emulating the pos field for digital inputs by snapping it to the min, middle, and
maximum positions, and emulating the d1 and d2 values for an analogue stick
by comparing the current position with the centre point.

The joystick flags field may contain any combination of the bit flags:
JOYFLAG_DIGITAL

This control is currently providing digital input.

JOYFLAG_ANALOGUE
This control is currently providing analogue input.

JOYFLAG_CALIB_DIGITAL
This control will be capable of providing digital input once it has been cali-
brated, but is not doing this at the moment.

JOYFLAG_CALIB_ANALOGUE
This control will be capable of providing analogue input once it has been cali-
brated, but is not doing this at the moment.

JOYFLAG_CALIBRATE

Indicates that this control needs to be calibrated. Many devices require multiple
calibration steps, so you should call the calibrate_joystick() function from a loop
until this flag is cleared.

JOYFLAG_SIGNED
Indicates that the analogue axis position is in signed format, ranging from -128
to 128. This is the case for all 2d directional controls.

JOYFLAG_UNSIGNED
Indicates that the analogue axis position is in unsigned format, ranging from 0
to 255. This is the case for all 1d throttle controls.

Note for people who spell funny: in case you don’t like having to type "ana-
logue", there are some #define aliases in allegro/joystick.h that will allow you
to write "analog" instead.

See Section 7.1 [install_joystick], page 63.

See Section 7.3 [poll_joystick], page 64.

See Section 7.7 [calibrate_joystick], page 67.

[
[
See Section 7.4 [num_joysticks|, page 64.
[
[

See Section 7.6 [calibrate_joystick_name|, page 67.

Chapter 7: Joystick routines 67

7.6 calibrate_joystick_name

const char *calibrate_joystick_name(int n);
Returns a text description for the next type of calibration that will be done on
the specified joystick, or NULL if no more calibration is required.

See also:

See Section 7.1 [install_joystick], page 63.
See Section 7.7 [calibrate_joystick], page 67.
See Section 7.5 [joy|, page 64.

See Section 7.4 [num_joysticks], page 64.

7.7 calibrate_joystick

int calibrate_joystick(int n);
Most joysticks need to be calibrated before they can provide full analogue in-
put. This function performs the next operation in the calibration series for
the specified stick, assuming that the joystick has been positioned in the man-
ner described by a previous call to calibrate_joystick_name(), returning zero on
success. For example, a simple routine to fully calibrate all the joysticks might
look like:

int 1i;

for (i=0; i<;num_joysticks; i++) {
while (joyl[i].flags & JOYFLAG_CALIBRATE) {
char *msg = calibrate_joystick_name(i);
printf("%s, and press a key\n", msg);
readkey () ;
if (calibrate_joystick(i) !'= 0) {
printf ("oops!\n");
exit(1);

See also:

See Section 7.1 [install_joystick], page 63.

See Section 7.6 [calibrate_joystick_name|, page 67.
See Section 7.5 [joy|, page 64.

See Section 7.4 [num_joysticks], page 64.

68

Allegro Manual

7.8 save_joystick_data

int save_joystick_data(const char *filename);

See also:

After all the headache of calibrating the joystick, you may not want to make
your poor users repeat the process every time they run your program. Call this
function to save the joystick calibration data into the specified configuration
file, from which it can later be read by load_joystick_data(). Pass a NULL
filename to write the data to the currently selected configuration file. Returns
ZEero on success.

See Section 7.9 [load_joystick_datal, page 68.

See Section 3.1 [set_config_file], page 28.

7.9 load_joystick_data

int load_joystick_data(const char *filename);

See also:

Restores calibration data previously stored by save_joystick_data() or the setup
utility. This sets up all aspects of the joystick code: you don’t even need to
call install_joystick() if you are using this function. Pass a NULL filename to
read the data from the currently selected configuration file. Returns zero on
success: if it fails the joystick state is undefined and you must reinitialise it
from scratch.

See Section 7.1 [install_joystick], page 63.

See Section 7.8 [save_joystick_datal, page 67.

See Section 3.1 [set_config_file], page 28.

7.10 initialise_joystick

int initialise_joystick();

See also:

Deprecated. Use install_joystick() instead.

See Section 7.1 [install_joystick], page 63.

8 Graphics modes

8.1 set_color_depth
void set_color_depth(int depth);

Sets the pixel format to be used by subsequent calls to set_gfx_mode() and
create_bitmap(). Valid depths are 8 (the default), 15, 16, 24, and 32 bits.

Chapter 8: Graphics modes 69

Note that you can retrieve the pixel format currently in use by calling bit-
map-_color_depth() on the ’screen’ bitmap, once a graphics mode has been set.

See also:

See Section 8.6 [set_gfx_mode], page 70.

See Section 10.11 [set_color_conversion], page 90.
See Section 12.3 [makecol], page 100.

See Section 12.9 [getr], page 102.

See Section 9.9 [bitmap_color_depth], page 83.

8.2 request_refresh_rate

void request_refresh_rate(int rate);

Requests that the next call to set_gfx_mode() try to use the specified refresh
rate, if possible. Not all drivers are able to control this at all, and even when
they can, not all rates will be possible on all hardware, so the actual settings
may differ from what you requested. After you call set_gfx_mode(), you can use
get_refresh_rate() to find out what was actually selected. At the moment only
the DOS VESA 3.0, X DGA 2.0 and some Windows DirectX drivers support
this function. The speed is specified in Hz, eg. 60, 70. To return to the normal
default selection, pass a rate value of zero.

See also:
See Section 8.6 [set_gfx_mode], page 70.
See Section 8.3 [get_refresh_rate], page 69.

8.3 get_refresh_rate

int get_refresh_rate(void);
Returns the current refresh rate, if known (not all drivers are able to report
this information). Returns zero if the actual rate is unknown.

See also:

See Section 8.2 [request_refresh_rate|, page 69.

8.4 get_gfx_mode_list

GFX_MODE_LIST *get_gfx_mode_list(int card);
Attempts to create a list of all the supported video modes for a certain graph-

ics driver. This function returns a pointer to a list structure of the type
GFX_MODE_LIST which has the following definition:

typedef struct GFX_MODE_LIST {
int num_modes;

70

See also:

Allegro Manual

GFX_MODE #*mode;
} GFX_MODE_LIST;

If this function returns NULL, it means the call failed. The mode entry points
to the actual list of video modes.

typedef struct GFX_MODE {
int width, height, bpp;
} GFX_MODE;
This list is terminated with an { 0, 0, 0 } entry.

Note that the card parameter must refer to a _real_ driver. This function fails
if you pass GFX_SAFE, GFX_AUTODETECT, or any other "magic" driver.

See Section 8.5 [destroy_gfx_mode_list], page 70.

See Section 8.6 [set_gfx_mode], page 70.

See Section 8.1 [set_color_depth]|, page 68.

8.5 destroy_gfx_mode_list

void destroy_gfx_mode_list(GFX_MODE_LIST #*mode_list);

See also:

Removes the mode list created by get_gfx_mode_list() from memory.

See Section 8.4 [get_gfx_mode_list], page 69.

See Section 8.6 [set_gfx_mode], page 70.

See Section 8.1 [set_color_depth|, page 68.

8.6 set_gfx_mode

int set_gfx_mode(int card, int w, int h, int v_w, int v_h);

Switches into graphics mode. The card parameter should wusually
be GFX_AUTODETECT, GFX_AUTODETECT_FULLSCREEN or
GFX_AUTODETECT_WINDOWED, or see the platform specific documenta-
tion for a list of the available drivers. The w and h parameters specify what
screen resolution you want.

The v_w and v_h parameters specify the minimum virtual screen size, in case
you need a large virtual screen for hardware scrolling or page flipping. You
should set them to zero if you don’t care about the virtual screen size. Virtual
screens can cause a lot of confusion, but they are really quite simple. Warning:
patronising explanation coming up, so you may wish to skip the rest of this
paragraph :-) Think of video memory as a rectangular piece of paper which is
being viewed through a small hole (your monitor) in a bit of cardboard. Since
the paper is bigger than the hole you can only see part of it at any one time,
but by sliding the cardboard around you can alter which portion of the image

Chapter 8: Graphics modes 71

is visible. You could just leave the hole in one position and ignore the parts
of video memory that aren’t visible, but you can get all sorts of useful effects
by sliding the screen window around, or by drawing images in a hidden part of
video memory and then flipping across to display them.

For example, you could select a 640x480 mode in which the monitor acts as
a window onto a 1024x1024 virtual screen, and then move the visible screen
around in this larger area. Initially, with the visible screen positioned at the
top left corner of video memory, this setup would look like:

O e —— (640,0)----(1024,0)
visible screen	
(0,480) ——————-—-- (640,480)	
the rest of video memory	

(0,1024) ~==============—m——— (1024,1024)
What’s that? You are viewing this with a proportional font? Hehehe.

When you call set_gfx_mode(), the v_w and v_h parameters represent the min-
imum size of virtual screen that is acceptable for your program. The range
of possible sizes is usually very restricted, and Allegro is likely to end up cre-
ating a virtual screen much larger than the one you request. On an SVGA
card with one megabyte of vram you can count on getting a 1024x1024 virtual
screen (256 colors) or 1024x512 (15 or 16 bpp), and with 512k vram you can get
1024x512 (256 color). Other sizes may or may not be possible: don’t assume
that they will work. In mode-X the virtual width can be any multiple of eight
greater than or equal to the physical screen width, and the virtual height will
be set accordingly (the VGA has 256k of vram, so the virtual height will be
256*1024 /virtual_width).

After you select a graphics mode, the physical and virtual screen sizes can be
checked with the macros SCREEN_W, SCREEN_H, VIRTUAL_W, and VIR-
TUAL_H.

If Allegro is unable to select an appropriate mode, set_gfx_mode() returns a
negative number and stores a description of the problem in allegro_error. Oth-
erwise it returns zero.

As a special case, if you use the magic driver code GFX_SAFE, Allegro will
guarantee that the mode will always be set correctly. It will try to select the res-
olution that you request, and if that fails, it will fall back upon whatever mode is
known to be reliable on the current platform (this is 320x200 VGA mode under
DOS, a 640x480 resolution under Windows, the actual framebuffer’s resolution
under Linux if it’s supported, etc). If it absolutely cannot set any graphics mode
at all, it will return negative as usual, meaning that there’s no possible video
output on the machine, and that you should abort your program immediately,
possibly after notifying this to the user with allegro_message. This fake driver

72

See also:

Allegro Manual

is useful for situations where you just want to get into some kind of workable
display mode, and can’t be bothered with trying multiple different resolutions
and doing all the error checking yourself. Note however, that after a successful
call to set_gfx_mode with this driver, you cannot make any assumptions about
the width, height or color depth of the screen: your code will have to deal with
this little detail.

Finally, GFX_TEXT is another magic driver which usually closes any previously
opened graphic mode, making you unable to use the global variable screen, and
in those environments that have text modes, sets one previously used or the
closest match to that (usually 80x25). With this driver the size parameters of
set_gfx_mode don’t mean anything, so you can leave them all to zero or any
other number you prefer.

See Section 8.1 [set_color_depth], page 68.

See Section 8.2 [request_refresh_rate|, page 69.

See Section 9.1 [screen], page 80.

See Section 8.11 [gfx_capabilities], page 74.

See Section 1.6 [allegro_error]|, page 2.

See Section 3.23 [standard config variables|, page 36.
See Section 34.2 [GFX_*/DOS], page 230.

See Section 35.1
See Section 36.2

GFX_*/Windows], page 235.
GFX_*/X], page 243.

See Section 36.1 [GFX_*/Linux]|, page 242.
See Section 37.1 [GFX_*/BeOS], page 245.

[
[
[
[
[
[

8.7 set_display_switch_mode

int set_display_switch_mode(int mode);

Sets how the program should handle being switched into the background, if the
user tabs away from it. Not all of the possible modes will be supported by every
graphics driver on every platform: you must call this routine after initializing
the graphics driver and if you request a mode that isn’t currently possible, it
will return -1. The available modes are:

e SWITCH_NONE
Disables switching. This is the default in single-tasking systems like DOS.
It may be supported on other platforms, but you should use it with caution,
because your users won’t be impressed if they want to tab away from your
program, but you don’t let them!

e SWITCH_PAUSE
Pauses the program whenever it is in the background. Execution will be
resumed as soon as the user switches back to it. This is the default in most
fullscreen multitasking environments, for example the Linux console, but
not under Windows.

Chapter 8: Graphics modes 73

See also:

e SWITCH_AMNESIA
Like SWITCH_PAUSE, but this mode doesn’t bother to remember the
contents of video memory, so the screen, and any video bitmaps that you
have created, will be erased after the user switches away and then back
to your program. This is not a terribly useful mode to have, but it is the
default for the fullscreen drivers under Windows because DirectDraw is too
dumb to implement anything better.

e SWITCH_.BACKGROUND
The program will carry on running in the background, with the screen
bitmap temporarily being pointed at a memory buffer for the fullscreen
drivers. You must take special care when using this mode, because bad
things will happen if the screen bitmap gets changed around when your
program isn’t expecting it (see below).

e SWITCH_.BACKAMNESIA
Like SWITCH_BACKGROUND, but this mode doesn’t bother to remem-
ber the contents of video memory (see SWITCH_AMNESIA). It is again
the only mode supported by the fullscreen drivers under Windows that lets
the program keep running in the background.

Note that you should be very careful when you are using graphics routines in
the switching context: you must always call acquire_screen() before the start
of any drawing code onto the screen and not release it until you are completely
finished, because the automatic locking mechanism may not be good enough to
work when the program runs in the background or has just been raised in the
foreground.

See Section 8.8 [set_display_switch_callback], page 73.

See Section 8.10 [get_display_switch_mode], page 74.

8.8 set_display_switch_callback

int set_display_switch_callback(int dir, void (*cb)());

See also:

Installs a notification callback for the switching mode that was previously se-
lected by calling set_display_switch_mode(). The direction parameter can either
be SWITCH_IN or SWITCH_OUT, depending whether you want to be noti-
fied about switches away from your program or back to your program. You
can sometimes install callbacks for both directions at the same time, but not
every platform supports this, so this function may return -1 if your request is
impossible. You can install several switch callbacks at the same time.

See Section 8.9 [remove_display_switch_callback], page 74.

See Section 8.7 [set_display_switch_mode], page 72.

74

Allegro Manual

8.9 remove_display_switch_callback

void remove_display_switch_callback(void (*cb) ());

See also:

Removes a notification callback that was previously installed by calling
set_display_switch_callback(). All the callbacks will automatically be removed
when you call set_display_switch_mode().

See Section 8.8 [set_display_switch_callback]|, page 73.

8.10 get_display_switch_mode

int get_display_switch_mode();

See also:

Returns the current display switching mode, in the same format passed to
set_display_switch_mode().

See Section 8.7 [set_display_switch_mode|, page 72.

8.11 gfx_capabilities

extern int gfx_capabilities;

Bitfield describing the capabilities of the current graphics driver and video
hardware. This may contain combination any of the flags:

GFX_CAN_SCROLL:
Indicates that the scroll_screen() function may be used with this driver.

GFX_CAN_TRIPLE_BUFFER:

Indicates that the request_scroll() and poll_scroll() functions may be used with
this driver. If this flag is not set, it is possible that the enable_triple_buffer()
function may be able to activate it.

GFX_HW_CURSOR:

Indicates that a hardware mouse cursor is in use. When this flag is set, it is safe
to draw onto the screen without hiding the mouse pointer first. Note that not
every cursor graphic can be implemented in hardware: in particular VBE/AF
only supports 2-color images up to 32x32 in size, where the second color is
an exact inverse of the first. This means that Allegro may need to switch
between hardware and software cursors at any point during the execution of
your program, so you should not assume that this flag will remain constant for
long periods of time. It only tells you whether a hardware cursor is in use at
the current time, and may change whenever you hide/redisplay the pointer.

GFX_HW_HLINE:

Indicates that the normal opaque version of the hline() function is implemented
using a hardware accelerator. This will improve the performance not only of
hline() itself, but also of many other functions that use it as a workhorse, for
example circlefill(), triangle(), and floodfill().

Chapter 8: Graphics modes 75

GFX_HW_HLINE_XOR:
Indicates that the XOR version of the hline() function, and any other functions
that use it as a workhorse, are implemented using a hardware accelerator.

GFX_HW_HLINE_SOLID_PATTERN:
Indicates that the solid and masked pattern modes of the hline() function,
and any other functions that use it as a workhorse, are implemented using a
hardware accelerator (see note below).

GFX_HW_HLINE_COPY_PATTERN:

Indicates that the copy pattern mode of the hline() function, and any other
functions that use it as a workhorse, are implemented using a hardware accel-
erator (see note below).

GFX_HW_FILL:
Indicates that the opaque version of the rectfill() function, the clear_bitmap()
routine, and clear_to_color(), are implemented using a hardware accelerator.

GFX_HW_FILL_XOR:
Indicates that the XOR version of the rectfill() function is implemented using
a hardware accelerator.

GFX_HW_FILL_SOLID_PATTERN:
Indicates that the solid and masked pattern modes of the rectfill() function are
implemented using a hardware accelerator (see note below).

GFX_HW_FILL_.COPY_PATTERN:
Indicates that the copy pattern mode of the rectfill() function is implemented
using a hardware accelerator (see note below).

GFX_HW_LINE:
Indicates that the opaque mode line() and vline() functions are implemented
using a hardware accelerator.

GFX_HW_LINE_XOR:
Indicates that the XOR version of the line() and vline() functions are imple-
mented using a hardware accelerator.

GFX_HW_TRIANGLE:
Indicates that the opaque mode triangle() function is implemented using a
hardware accelerator.

GFX_HW_TRIANGLE_XOR:
Indicates that the XOR version of the triangle() function is implemented using
a hardware accelerator.

GFX_HW_GLYPH:
Indicates that monochrome character expansion (for text drawing) is imple-
mented using a hardware accelerator.

GFX_HW_VRAM_BLIT:

Indicates that blitting from one part of the screen to another is implemented
using a hardware accelerator. If this flag is set, blitting within the video memory
will almost certainly be the fastest possible way to display an image, so it may
be worth storing some of your more frequently used graphics in an offscreen
portion of the video memory.

76

See also:

Allegro Manual

GFX_HW_VRAM_BLIT_MASKED:

Indicates that the masked_blit() routine is capable of a hardware accelerated
copy from one part of video memory to another, and that draw_sprite() will
use a hardware copy when given a sub-bitmap of the screen or a video memory
bitmap as the source image. If this flag is set, copying within the video memory
will almost certainly be the fastest possible way to display an image, so it may
be worth storing some of your more frequently used sprites in an offscreen
portion of the video memory.

Warning: if this flag is not set, masked_blit() and draw_sprite() will not work
correctly when used with a video memory source image! You must only try to
use these functions to copy within the video memory if they are supported in
hardware.

GFX_HW_MEM_BLIT:

Indicates that blitting from a memory bitmap onto the screen is being acceler-
ated in hardware.

GFX_HW_MEM_BLIT_MASKED:

Indicates that the masked_blit() and draw_sprite() functions are being acceler-
ated in hardware when the source image is a memory bitmap and the destination
is the physical screen.

GFX_HW_SYS_.TO_VRAM_BLIT:

Indicates that blitting from a system bitmap onto the screen is being accelerated
in hardware. Note that some acceleration may be present even if this flag is not
set, because system bitmaps can benefit from normal memory to screen blitting

as well. This flag will only be set if system bitmaps have further acceleration
above and beyond what is provided by GFX_HW_MEM_BLIT.

GFX_HW_SYS_.TO_VRAM_BLIT_MASKED:

Indicates that the masked_blit() and draw_sprite() functions are being accel-
erated in hardware when the source image is a system bitmap and the des-
tination is the physical screen. Note that some acceleration may be present
even if this flag is not set, because system bitmaps can benefit from nor-
mal memory to screen blitting as well. This flag will only be set if sys-

tem bitmaps have further acceleration above and beyond what is provided by
GFX_HW_MEM_BLIT_MASKED.

Note: even if the capabilities information says that patterned drawing is
supported by the hardware, it will not be possible for every size of pattern.
VBE/AF only supports patterns up to 8x8 in size, so Allegro will fall back
on the original non-accelerated drawing routines whenever you use a pattern
larger than this.

Note2: these hardware acceleration features will only take effect when you are
drawing directly onto the screen bitmap, a video memory bitmap, or a sub-
bitmap thereof. Accelerated hardware is most useful in a page flipping or triple
buffering setup, and is unlikely to make any difference to the classic "draw onto
a memory bitmap, then blit to the screen" system.

See Section 9.1 [screen], page 80.

Chapter 8: Graphics modes 7

See Section 9.5 [create_video_bitmap|, page 82.

See Section 8.13 [scroll_screen|, page 77.

See Section 8.14 [request_scroll], page 78.

See Section 4.7 [show_mouse], page 44.

See Section 8.12 [enable_triple_buffer], page 77.

8.12 enable_triple_buffer

int enable_triple_buffer();

See also:

If the GFX_CAN_TRIPLE_BUFFER bit of the gfx_capabilities field is not set,
you can attempt to enable it by calling this function. In particular if you
are running in mode-X in a clean DOS environment, this routine will enable
the timer retrace simulator, which will activate the triple buffering functions.
Returns zero if triple buffering is enabled.

See Section 8.11 [gfx_capabilities], page 74.

See Section 5.10
See Section 8.14

timer_simulate_retrace], page 52.

request_scroll], page 78.

[
[
[
[

See Section 8.17 [request_video_bitmap], page 79.

8.13 scroll_screen

int scroll_screen(int x, int y);

Attempts to scroll the hardware screen to display a different part of the virtual
screen (initially it will be positioned at 0, 0, which is the top left corner).
Returns zero on success: it may fail if the graphics driver can’t handle hardware
scrolling or the virtual screen isn’t large enough. You can use this to move the
screen display around in a large virtual screen space, or to page flip back and
forth between two non-overlapping areas of the virtual screen. Note that to
draw outside the original position in the screen bitmap you will have to alter
the clipping rectangle: see below.

Mode-X scrolling is reliable and will work on any card. Unfortunately most
VESA implementations can only handle horizontal scrolling in four pixel in-
crements, so smooth horizontal panning is impossible in SVGA modes. This
is a shame, but I can’t see any way round it. A significant number of VESA
implementations seem to be very buggy when it comes to scrolling in truecolor
video modes, so I suggest you don’t depend on this routine working correctly
in the truecolor resolutions unless you can be sure that SciTech Display Doctor
is installed.

Allegro will handle any necessary vertical retrace synchronisation when scrolling
the screen, so you don’t need to call vsync() before it. This means that
scroll_screen() has the same time delay effects as vsync().

78 Allegro Manual

See also:

See Section 8.6 [set_gfx_mode], page 70.

See Section 8.16 [show_video_bitmap], page 78.
See Section 8.14 [request_scroll], page 78.

See Section 8.17 [request_video_bitmap], page 79.

8.14 request_scroll

int request_scroll(int x, int y);
This function is used for triple buffering. It requests a hardware scroll to the
specified position, but returns immediately rather than waiting for a retrace.
The scroll will then take place during the next vertical retrace, but you can carry
on running other code in the meantime and use the poll_scroll() routine to detect
when the flip has actually taken place (see examples/ex3buf.c). Triple buffering
is only possible on certain hardware: it will work in any mode-X resolution if the
timer retrace simulator is active (but this doesn’t work correctly under win95),
plus it is supported by the VBE 3.0 and VBE/AF drivers for a limited number
of high-end graphics cards. You can look at the GFX_CAN_TRIPLE_BUFFER
bit in the gfx_capabilities flag to see if it will work with the current driver. This
function returns zero on success.

See also:
See Section 8.15 [poll_scroll], page 78.
See Section 8.17 [request_video_bitmap], page 79.

[

[
See Section 8.11 [gfx_capabilities], page 74.
See Section 5.10 [timer_simulate_retrace|, page 52.
[

See Section 8.13 [scroll_screen], page 77.

8.15 poll_scroll

int poll_scroll();
This function is used for triple buffering. It checks the status of a hardware
scroll previously initiated by the request_scroll() routine, returning non-zero if
it is still waiting to take place, and zero if it has already happened.

See also:
See Section 8.14 [request_scroll], page 78.
See Section 8.17 [request_video_bitmap], page 79.

Chapter 9: Bitmap objects 79

8.16 show_video_bitmap

int show_video_bitmap(BITMAP *bitmap);
Attempts to page flip the hardware screen to display the specified video bitmap
object, which must be the same size as the physical screen, and should have
been obtained by calling the create_video_bitmap() function. Returns zero on
success and non-zero on failure.

Allegro will handle any necessary vertical retrace synchronisation when
page flipping, so you don’t need to call vsync() before it. This means that
show_video_bitmap() has the same time delay effects as vsync().

See also:
See Section 8.13 [scroll_screen], page 77.

See Section 9.5 [create_video_bitmap]|, page 82.

8.17 request_video_bitmap

int request_video_bitmap(BITMAP *bitmap);

This function is used for triple buffering. It requests a page flip to display the
specified video bitmap object, but returns immediately rather than waiting for
a retrace. The flip will then take place during the next vertical retrace, but
you can carry on running other code in the meantime and use the poll_scroll()
routine to detect when the flip has actually taken place. Triple buffering is
only possible on certain hardware: see the comments about request_scroll().
Returns zero on success.

See also:

See Section 8.15 [poll_scroll], page 78.

See Section 8.14 [request_scroll], page 78.

See Section 8.11 [gfx_capabilities], page 74.

See Section 5.10 [timer_simulate_retrace|, page 52.
See Section 9.5 [create_video_bitmap]|, page 82.
See Section 8.13 [scroll_screen|, page 77.

9 Bitmap objects

Once you have selected a graphics mode, you can draw things onto the display via the
‘screen’ bitmap. All the Allegro graphics routines draw onto BITMAP structures, which
are areas of memory containing rectangular images, stored as packed byte arrays (in 8 bit
modes one byte per pixel, in 15 and 16 bit modes sizeof(short) bytes per pixel, in 24 bit
modes 3 bytes per pixel and in 32 bit modes sizeof(long) bytes per pixel). You can create
and manipulate bitmaps in system RAM, or you can write to the special ’screen’ bitmap
which represents the video memory in your graphics card.

For example, to draw a pixel onto the screen you would write:

80 Allegro Manual

putpixel(screen, x, y, color);

Or to implement a double-buffered system:

BITMAP *bmp = create_bitmap(320, 200); // make a bitmap in system RAM
clear_bitmap (bmp) ; // zero the memory bitmap
putpixel (bmp, x, y, color); // draw onto the memory bitmap

blit(bmp, screen, 0, 0, O, 0, 320, 200); // copy it to the screen
See below for information on how to get direct access to the image memory in a bitmap.
Allegro supports several different types of bitmaps:

- The screen bitmap, which represents the hardware video memory. Ultimately you have
to draw onto this in order for your image to be visible. It is destroyed by any subsequent
calls to set_gfx_mode().

- Memory bitmaps, which are located in system RAM and can be used to store graphics or
as temporary drawing spaces for double buffered systems. These can be obtained by calling
create_bitmap(), load_pcx(), or by loading a grabber datafile.

- Sub-bitmaps. These share image memory with a parent bitmap (which can be the screen, a
memory bitmap, or another sub-bitmap), so drawing onto them will also change their parent.
They can be of any size and located anywhere within the parent bitmap, and can have their
own clipping rectangles, so they are a useful way of dividing a bitmap into several smaller
units, eg. splitting a large virtual screen into multiple sections (see examples/exscroll.c).

- Video memory bitmaps. These are created by the create_video_bitmap() function, and
are usually implemented as sub-bitmaps of the screen object. They must be destroyed by
destroy_bitmap() before any subsequent calls to set_gfx_mode().

- System bitmaps. These are created by the create_system_bitmap() function, and
are a sort of halfway house between memory and video bitmaps. They live in system
memory, so you aren’t limited by the amount of video ram in your card, but they are
stored in a platform-specific format that may enable better hardware acceleration than is
possible with a normal memory bitmap (see the GFX_HW_SYS_TO_VRAM_BLIT and
GFX_HW_SYS_TO_VRAM_BLIT_MASKED flags in gfx_capabilities). System bitmaps
must be accessed in the same way as video bitmaps, using the bank switch functions and
bmp_write*() macros. Not every platform implements this type of bitmap: if they aren’t
available, create_system_bitmap() will function identically to create_bitmap(). They must
be destroyed by destroy_bitmap() before any subsequent calls to set_gfx_mode().

9.1 screen

extern BITMAP *screen;
Global pointer to a bitmap, sized VIRTUAL_W x VIRTUAL_H. This is created
by set_gfx_mode(), and represents the hardware video memory. Only a part of
this bitmap will actually be visible, sized SCREEN_W x SCREEN_H. Normally
this is the top left corner of the larger virtual screen, so you can ignore the extra
invisible virtual size of the bitmap if you aren’t interested in hardware scrolling
or page flipping. To move the visible window to other parts of the screen
bitmap, call scroll_screen(). Initially the clipping rectangle will be limited to

Chapter 9: Bitmap objects 81

the physical screen size, so if you want to draw onto a larger virtual screen
space outside this rectangle, you will need to adjust the clipping.

See also:

See Section 8.6 [set_gfx_mode], page 70.

See Section 9.15 [is_screen_bitmap], page 85.
See Section 9.5 [create_video_bitmap|, page 82.
See Section 8.13 [scroll_screen]|, page 77.

9.2 create_bitmap

BITMAP *create_bitmap(int width, int height);
Creates a memory bitmap sized width by height, and returns a pointer to it. The
bitmap will have clipping turned on, and the clipping rectangle set to the full
size of the bitmap. The image memory will not be cleared, so it will probably
contain garbage: you should clear the bitmap before using it. This routine
always uses the global pixel format, as specified by calling set_color_depth().

See also:
See Section 9.3 [create_bitmap_ex|, page 81.
See Section 9.4 [create_sub_bitmap|, page 81.

[
[
See Section 9.5 [create_video_bitmap|, page 82.
See Section 9.6 [create_system_bitmap], page 82.
See Section 9.7 [destroy_bitmap|, page 83.
See Section 8.1 [set_color_depth], page 68.

See Section 9.14 [is_memory_bitmap|, page 84.

9.3 create_bitmap_ex

BITMAP *create_bitmap_ex(int color_depth, int width, int height);
Creates a bitmap in a specific color depth (8, 15, 16, 24 or 32 bits per pixel).

See also:

See Section 9.2 [create_bitmap], page 81.

See Section 9.4 [create_sub_bitmap|, page 81.
See Section 9.5 [create_video_bitmap]|, page 82.
See Section 9.6 [create_system_bitmap]|, page 82.
See Section 9.7 [destroy_bitmap], page 83.

See Section 9.14 [is_memory_bitmap|, page 84.

82 Allegro Manual

9.4 create_sub_bitmap

BITMAP *create_sub_bitmap(BITMAP *parent, int x, y, width, height);
Creates a sub-bitmap, ie. a bitmap sharing drawing memory with a pre-existing
bitmap, but possibly with a different size and clipping settings. When creating
a sub-bitmap of the mode-X screen, the x position must be a multiple of four.
The sub-bitmap width and height can extend beyond the right and bottom
edges of the parent (they will be clipped), but the origin point must lie within
the parent region.

See also:

See Section 9.2 [create_bitmap]|, page 81.
See Section 9.3 [create_bitmap_ex], page 81.
See Section 9.7 [destroy_bitmap], page 83.
See Section 9.18 [is_sub_bitmap], page 85.

9.5 create_video_bitmap

BITMAP *create_video_bitmap(int width, int height);

Allocates a video memory bitmap of the specified size, returning a pointer to
it on success or NULL on failure (ie. if you have run out of vram). This
can be used to allocate offscreen video memory for storing source graphics
ready for a hardware accelerated blitting operation, or to create multiple video
memory pages which can then be displayed by calling show_video_bitmap().
Video memory bitmaps are usually allocated from the same space as the screen
bitmap, so they may overlap with it: it is not therefore a good idea to use the
global screen at the same time as any surfaces returned by this function.

See also:

See Section 9.2
See Section 9.3
See Section 9.6
See Section 9.4
See Section 9.7
See Section 9.1
See Section 8.16 [show_video_bitmap], page 78.

create_bitmap]|, page 81.
create_bitmap_ex|, page 81.
create_system_bitmap], page 82.
create_sub_bitmap], page 81.
destroy_bitmap]|, page 83.

—_— o e — — —

screen], page 80.

See Section 8.11 [gfx_capabilities], page 74.
See Section 9.16 [is-video_bitmap], page 85.

9.6 create_system_bitmap

BITMAP *create_system_bitmap(int width, int height);
Allocates a system memory bitmap of the specified size, returning a pointer to
it on success or NULL on failure.

Chapter 9: Bitmap objects 83

See also:
See Section 9.2 [create_bitmap]|, page 81.

See Section 9.3 [create_bitmap_ex], page 81.
See Section 9.5 [
[

See Section 9.4 [create_sub_bitmap]|, page 81.

create_video_bitmap], page 82.

See Section 9.7 [destroy_bitmap|, page 83.
See Section 9.17 [is_system_bitmap|, page 85.

9.7 destroy_bitmap

void destroy_bitmap(BITMAP *bitmap) ;
Destroys a memory bitmap, sub-bitmap, video memory bitmap, or system bit-
map when you are finished with it.

See also:
See Section 9.2 [create_bitmap]|, page 81.
See Section 10.1 [load-bitmap], page 87.

9.8 lock_bitmap

void lock_bitmap(BITMAP *bitmap);
Under DOS, locks all the memory used by a bitmap. You don’t normally need
to call this function unless you are doing very weird things in your program.

9.9 bitmap_color_depth

int bitmap_color_depth(BITMAP *bmp) ;
Returns the color depth of the specified bitmap (8, 15, 16, 24, or 32). Note
that calling it on the ’screen’ bitmap will return the pixel format currently in
use, as specified by the latest call to set_color_depth(), once a graphics mode
has been set.

See also:
See Section 8.1 [set_color_depth|, page 68.
See Section 9.10 [bitmap_mask_color|, page 83.

9.10 bitmap_mask_color

int bitmap_mask_color (BITMAP *bmp) ;
Returns the mask color for the specified bitmap (the value which is skipped
when drawing sprites). For 256 color bitmaps this is zero, and for truecolor
bitmaps it is bright pink (maximum red and blue, zero green).

84 Allegro Manual

See also:

See Section 12.12 [MASK_COLOR_8], page 104.
See Section 8.1 [set_color_depth|, page 68.

See Section 9.9 [bitmap_color_depth]|, page 83.

9.11 is_same_bitmap

int is_same_bitmap(BITMAP *bmpl, BITMAP *bmp2) ;
Returns TRUE if the two bitmaps describe the same drawing surface, ie. the
pointers are equal, one is a sub-bitmap of the other, or they are both sub-
bitmaps of a common parent.

See also:

See Section 9.4 [create_sub_bitmap]|, page 81.

9.12 is_linear_bitmap

int is_linear_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is a linear bitmap, ie. a memory bitmap, mode 13h
screen, or SVGA screen. Linear bitmaps can be used with the _putpixel(),
_getpixel(), bmp_write_line(), and bmp_read_line() functions.

See also:
See Section 9.13 [is_planar_bitmap|, page 84.
See Section 9.14 [is_memory_bitmap]|, page 84.

9.13 is_planar_bitmap

int is_planar_bitmap(BITMAP *bmp);
Returns TRUE if bmp is a planar (mode-X or Xtended mode) screen bitmap.

See also:
See Section 9.12 [is_linear_bitmap]|, page 84.
See Section 9.14 [is_memory_bitmap]|, page 84.

9.14 is_memory_bitmap

int is_memory_bitmap(BITMAP *bmp);
Returns TRUE if bmp is a memory bitmap, ie. it was created by calling cre-
ate_bitmap() or loaded from a grabber datafile or image file. Memory bitmaps
can be accessed directly via the line pointers in the bitmap structure, eg. bmp-
>line[y][x] = color.

Chapter 9: Bitmap objects 85

See also:
See Section 9.12 [is_linear_bitmap], page 84.
See Section 9.13 [is_planar_bitmap], page 84.

9.15 is_screen_bitmap

int is_screen_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is the screen bitmap, or a sub-bitmap of the screen.

See also:
See Section 9.1 [screen|, page 80.
See Section 9.4 [create_sub_bitmap]|, page 81.

9.16 is_video_bitmap

int is_video_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is the screen bitmap, a video memory bitmap, or a
sub-bitmap of either.

See also:

See Section 9.1 [screen], page 80.

See Section 9.5 [create_video_bitmap|, page 82.
See Section 9.4 [create_sub_bitmap]|, page 81.

9.17 is_system_bitmap

int is_system_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is a system bitmap object, or a sub-bitmap of one.

See also:
See Section 9.6 [create_system_bitmap|, page 82.
See Section 9.4 [create_sub_bitmap|, page 81.

9.18 is_sub_bitmap
int is_sub_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is a sub-bitmap.

See also:

See Section 9.4 [create_sub_bitmap|, page 81.

86

Allegro Manual

9.19 acquire_bitmap

void acquire_bitmap(BITMAP *bmp) ;

See also:

Locks the specified video memory bitmap prior to drawing onto it. This does
not apply to memory bitmaps, and only affects some platforms (Windows needs
it, DOS does not). These calls are not strictly required, because the drawing
routines will automatically acquire the bitmap before accessing it, but locking a
DirectDraw surface is very slow, so you will get much better performance if you
acquire the screen just once at the start of your main redraw function, and only
release it when the drawing is completely finished. Multiple acquire calls may be
nested, and the bitmap will only be truly released when the lock count returns
to zero. Be warned that DirectX programs activate a mutex lock whenever a
surface is locked, which prevents them from getting any input messages, so you
must be sure to release all your bitmaps before using any timer, keyboard, or
other non-graphics routines!

See Section 9.20 [release_bitmap|, page 86.

See Section 9.21 [acquire_screen|, page 86.

See Section 9.22 [release_screen]|, page 87.

9.20 release_bitmap
void release_bitmap(BITMAP *bmp);

See also:

Releases a bitmap that was previously locked by calling acquire_bitmap(). If
the bitmap was locked multiple times, you must release it the same number of
times before it will truly be unlocked.

See Section 9.19 [acquire_bitmap], page 86.

See Section 9.21 [acquire_screen], page 86.

See Section 9.22 [release_screen]|, page 87.

9.21 acquire_screen

void acquire_screen();

See also:

Shortcut version of acquire_bitmap(screen);

See Section 9.19 [acquire_bitmap], page 86.

See Section 9.20 [release_bitmap|, page 86.

See Section 9.22 [release_screen]|, page 87.

Chapter 10: Loading image files 87

9.22 release_screen

void release_screen();
Shortcut version of release_bitmap(screen);

See also:
See Section 9.19 [acquire_bitmap], page 86.
See Section 9.20 [release_bitmap|, page 86.

See Section 9.21 [acquire_screen|, page 86.

9.23 set_clip

void set_clip(BITMAP #*bitmap, int x1, int yl, int x2, int y2);

Each bitmap has an associated clipping rectangle, which is the area of the image
that it is ok to draw on. Nothing will be drawn to positions outside this space.
Pass the two opposite corners of the clipping rectangle: these are inclusive, eg.
set_clip(bitmap, 16, 16, 32, 32) will allow drawing to (16, 16) and (32, 32), but
not to (15, 15) and (33, 33). If x1, y1, x2, and y2 are all zero, clipping will
be turned off, which may slightly speed up some drawing operations (usually a
negligible difference, although every little helps) but will result in your program
dying a horrible death if you try to draw beyond the edges of the bitmap.

10 Loading image files

Warning: when using truecolor images, you should always set the graphics mode before
loading any bitmap data! Otherwise the pixel format (RGB or BGR) will not be known,
so the file may be converted wrongly.

10.1 load_bitmap

BITMAP *load_bitmap(const char *filename, RGB *pal) ;
Loads a bitmap from a file, returning a pointer to a bitmap and storing the
palette data in the specified location, which should be an array of 256 RGB
structures. You are responsible for destroying the bitmap when you are finished
with it. Returns NULL on error. At present this function supports BMP, LBM,
PCX, and TGA files, determining the type from the file extension.

If the file contains a truecolor image, you must set the video mode
or call set_color_conversion() before loading it. In this case, if the
destination color depth is 8-bit, the palette will be generated by calling
generate_optimized_palette() on the bitmap; otherwise, the returned palette
will be generated by calling generate_332_palette().

The pal argument may be NULL. In this case, the palette data are simply not
returned. Additionally, if the file is a truecolor image and the destination color
depth is 8-bit, the color conversion process will use the current palette instead
of generating an optimized one.

88 Allegro Manual

See also:
See Section 10.2 [load_bmp]|, page 88.
See Section 10.3 [load-lbm], page 88.
See Section 10.4 |
[

See Section 10.5 [load-tga], page 88.

load_pcx], page 88.

See Section 9.7 [destroy_bitmap|, page 83.

See Section 10.6 [save_bitmap]|, page 89.

See Section 10.10 [register_bitmap_file_type], page 90.
See Section 8.1 [set_color_depth], page 68.

See Section 10.11 [set_color_conversion], page 90.

See Section 11.19 [generate_optimized_palette], page 98.
See Section 11.18 [generate_332_palette], page 97.

10.2 load_bmp

BITMAP *load_bmp(const char *filename, RGB *pal);
Loads a 256 color or 24 bit truecolor Windows or OS/2 BMP file.

See also:

See Section 10.1 [load_bitmap]|, page 87.

10.3 load_lbm

BITMAP *load_lbm(const char *filename, RGB *pal);
Loads a 256 color IFF ILBM/PBM file.

See also:

See Section 10.1 [load_bitmap]|, page 87.

10.4 load_pcx

BITMAP *load_pcx(const char *filename, RGB *pal);
Loads a 256 color or 24 bit truecolor PCX file.

See also:

See Section 10.1 [load_bitmap]|, page 87.

10.5 load_tga
BITMAP *load_tga(const char *filename, RGB *pal);

Loads a 256 color, 15 bit hicolor, 24 bit truecolor, or 32 bit truecolor+alpha

TGA file.

Chapter 10: Loading image files 89

See also:
See Section 10.1 [load_bitmap]|, page 87.

10.6 save_bitmap

int save_bitmap(const char *filename, BITMAP *bmp, const RGB *pal);
Writes a bitmap into a file, using the specified palette, which should be an
array of 256 RGB structures. Returns non-zero on error. The output format
is determined from the filename extension: at present this function supports
BMP, PCX and TGA formats.

Two things to watch out for: on some video cards it may be faster to copy the
screen to a memory bitmap and save the latter, and if you use this to dump
the screen into a file you may end up with an image much larger than you were
expecting, because Allegro often creates virtual screens larger than the visible
screen. You can get around this by using a sub-bitmap to specify which part
of the screen to save, eg:

BITMAP *bmp;
PALETTE pal;

get_palette(pal);

bmp = create_sub_bitmap(screen, 0, 0, SCREEN_W, SCREEN_H);

save_bitmap("dump.pcx", bmp, pal);

destroy_bitmap (bmp) ;
See also:
See Section 10.7 [save_bmp]|, page 89.
See Section 10.8 [save_pcx], page 89.
See Section 10.9 |
[

See Section 10.1 [load_bitmap]|, page 87.

save_tgal, page 90.

See Section 10.10 [register_bitmap_file_type], page 90.

10.7 save_bmp

int save_bmp(const char *filename, BITMAP *bmp, const RGB *pal);
Writes a bitmap into a 256 color or 24 bit truecolor BMP file.

See also:

See Section 10.6 [save_bitmap], page 89.

10.8 save_pcx

int save_pcx(const char *filename, BITMAP *bmp, const RGB *pal);
Writes a bitmap into a 256 color or 24 bit truecolor PCX file.

90 Allegro Manual

See also:

See Section 10.6 [save_bitmap]|, page 89.

10.9 save_tga

int save_tga (const char *filename, BITMAP *bmp, const RGB *pal);
Writes a bitmap into a 256 color, 15 bit hicolor, 24 bit truecolor, or 32 bit
truecolor+alpha TGA file.

See also:

See Section 10.6 [save_bitmap], page 89.

10.10 register_bitmap_file_type

void register_bitmap_file_type(const char *ext, BITMAP *(xload) (const char
xfilename, RGB *pal), int (*save) (const char *filename, BITMAP *bmp, const
RGB *pal));
Informs the load_bitmap() and save_bitmap() functions of a new file type, pro-
viding routines to read and write images in this format (either function may be
NULL).

See also:
See Section 10.1 [load_bitmap]|, page 87.
See Section 10.6 [save_bitmap]|, page 89.

10.11 set_color_conversion

void set_color_conversion(int mode) ;

Specifies how to convert images between the various color depths when read-
ing graphics from external bitmap files or datafiles. The mode is a bitmask
specifying which types of conversion are allowed. If the appropriate bit is set,
data will be converted into the current pixel format (selected by calling the
set_color_depth() function), otherwise it will be left in the same format as the
disk file, leaving you to convert it manually before the graphic can be displayed.
The default mode is total conversion, so that all images will be loaded in the
appropriate format for the current video mode. Valid bit flags are:

COLORCONV_NONE // disable all format

// conversions
COLORCONV_8_T0_15 // expand 8 bits to 15 bits
COLORCONV_8_T0_16 // expand 8 bits to 16 bits
COLORCONV_8_T0_24 // expand 8 bits to 24 bits
COLORCONV_8_T0_32 // expand 8 bits to 32 bits

COLORCONV_15_T0_8 // reduce 15 bits to 8 bits

Chapter 10: Loading image files 91

COLORCONV_15_TO_16 // expand 15 bits to 16 bits
COLORCONV_15_T0_24 // expand 15 bits to 24 bits
COLORCONV_15_T0_32 // expand 15 bits to 32 bits
COLORCONV_16_T0_8 // reduce 16 bits to 8 bits
COLORCONV_16_T0_15 // reduce 16 bits to 15 bits
COLORCONV_16_T0_24 // expand 16 bits to 24 bits
COLORCONV_16_T0_32 // expand 16 bits to 32 bits
COLORCONV_24_T0_8 // reduce 24 bits to 8 bits
COLORCONV_24_T0_15 // reduce 24 bits to 15 bits
COLORCONV_24_T0_16 // reduce 24 bits to 16 bits
COLORCONV_24_T0_32 // expand 24 bits to 32 bits
COLORCONV_32_T0_8 // reduce 32 bit RGB to 8 bits
COLORCONV_32_TO0_15 // reduce 32 bit RGB to 15 bits
COLORCONV_32_T0O_16 // reduce 32 bit RGB to 16 bits
COLORCONV_32_T0_24 // reduce 32 bit RGB to 24 bits
COLORCONV_32A_TO_8 // reduce 32 bit RGBA to 8 bits
COLORCONV_32A_T0_15 // reduce 32 bit RGBA to 15 bits
COLORCONV_32A_TO_16 // reduce 32 bit RGBA to 16 bits
COLORCONV_32A_T0_24 // reduce 32 bit RGBA to 24 bits
COLORCONV_DITHER_PAL // dither when reducing to 8 bit
COLORCONV_DITHER_HI // dither when reducing to

// hicolor
COLORCONV_KEEP_TRANS // keep original transparency

For convenience, the following macros can be used to select common combina-
tions of these flags:

COLORCONV_EXPAND_256 // expand 256 colors to
// hi/truecolor
COLORCONV_REDUCE_T0_256 // reduce hi/truecolor to 256
// colors
COLORCONV_EXPAND_15_T0_16 // expand 15 bit hicolor to
// 16 bits
COLORCONV_REDUCE_16_T0_15 // reduce 16 bit hicolor to
// 15 bits

COLORCONV_EXPAND_HI_TO_TRUE // expand 15/16 bits to
// 24/32 bits

COLORCONV_REDUCE_TRUE_TO_HI // reduce 24/32 bits to
// 15/16 bits

COLORCONV_24_EQUALS_32 // convert between 24 and

// 32 bits
COLORCONV_TOTAL // everything to current format
COLORCONV_PARTTIAL // convert 15 <-> 16 and

// 24 <=> 32
COLORCONV_MOST // all but hi/truecolor <-> 256
COLORCONV_DITHER // dither during all color

// reductions

92 Allegro Manual

If you enable the COLORCONV_DITHER flag, dithering will be performed
whenever truecolor graphics are converted into a hicolor or paletted format,
including by the blit() function, and any automatic conversions that take place
while reading graphics from disk. This can produce much better looking results,
but is obviously slower than a direct conversion.

If you intend using converted bitmaps with functions like masked_blit() or
draw _sprite(), you should specify the COLORCONV_KEEP_TRANS flag. It
will ensure that the masked areas in the bitmap before and after the conver-
sion stay exactly the same, by mapping transparent colors to each other and
adjusting colors which would be converted to the transparent color otherwise.
It affects every blit() operation between distinct pixel formats and every auto-
matic conversion.

See also:

See Section 8.1 [set_color_depth], page 68.

See Section 10.1 [load_bitmap], page 87.

See Section 29.1 [load-datafile], page 191.

See Section 29.9 [fixup_datafile], page 193.
See Section 12.6 [makecoll5_dither], page 101.

11 Palette routines

All the Allegro drawing functions use integer parameters to represent colors. In truecolor
resolutions these numbers encode the color directly as a collection of red, green, and blue
bits, but in a regular 256 color mode the values are treated as indexes into the current
palette, which is a table listing the red, green and blue intensities for each of the 256
possible colors.

Palette entries are stored in an RGB structure, which contains red, green and blue intensities
in the VGA hardware format, ranging from 0-63, and is defined as:

typedef struct RGB
{

unsigned char r, g, b;
} RGB;

For example:

RGB black = { 0, 0, 0 1};
RGB white = { 63, 63, 63 };
RGB green = { 0, 63, 0 1I;
RGB grey = { 32, 32, 32 };

The type PALETTE is defined to be an array of 256 RGB structures.

You may notice that a lot of the code in Allegro spells 'palette’ as 'pallete’. This is because
the headers from my old Mark Williams compiler on the Atari spelt it with two I’s, so that
is what I'm used to. Allegro will happily accept either spelling, due to some #defines in
allegro/alcompat.h.

Chapter 11: Palette routines 93

11.1 vsync

void vsync();

See also:

Waits for a vertical retrace to begin. The retrace happens when the electron
beam in your monitor has reached the bottom of the screen and is moving back
to the top ready for another scan. During this short period the graphics card
isn’t sending any data to the monitor, so you can do things to it that aren’t
possible at other times, such as altering the palette without causing flickering
(snow). Allegro will automatically wait for a retrace before altering the palette
or doing any hardware scrolling, though, so you don’t normally need to bother
with this function.

See Section 11.4 [set_palette], page 94.

See Section 8.13 [scroll_screen], page 77.

See Section 5.10 [timer_simulate_retrace], page 52.

11.2 set_color

void set_color(int index, const RGB *p);

See also:

Sets the specified palette entry to the specified RGB triplet. Unlike the other
palette functions this doesn’t do any retrace synchronisation, so you should call
vsync() before it to prevent snow problems.

See Section 11.4 [set_palette], page 94.

See Section 11.6 [get_color], page 94.

See Section 11.3 [_set_color], page 93.

11.3 _set_color

void _set_color(int index, const RGB #*p);

See also:

This is an inline version of set_color(), intended for use in the vertical retrace
simulator callback function. It should only be used in VGA mode 13h and
mode-X, because some of the more recent SVGA chipsets aren’t VGA com-
patible (set_color() and set_palette() will use VESA calls on these cards, but
_set_color() doesn’t know about that).

See Section 11.2 [set_color], page 93.

See Section 8.6 [set_gfx_mode], page 70.

See Section 5.10 [timer_simulate_retrace], page 52.

94 Allegro Manual

11.4 set_palette

void set_palette(const PALETTE p);
Sets the entire palette of 256 colors. You should provide an array of 256 RGB
structures. Unlike set_color(), there is no need to call vsync() before this func-
tion.

See also:

See Section 8.6 [set_gfx_mode], page 70.

See Section 11.5 [set_palette_range], page 94.
See Section 11.2 [set_color], page 93.

See Section 11.7 [get_palette], page 94.

See Section 11.16 [select_palette|, page 97.
See Section 12.11 [palette_color], page 103.

11.5 set_palette_range

void set_palette_range(const PALETTE p, int from, int to, int vsync);
Sets the palette entries between from and to (inclusive: pass 0 and 255 to set
the entire palette). If vsync is set it waits for the vertical retrace, otherwise it
sets the colors immediately.

See also:
See Section 11.4 [set_palette], page 94.
See Section 11.8 [get_palette_range|, page 95.

11.6 get_color

void get_color(int index, RGB *p);
Retrieves the specified palette entry.

See also:
See Section 11.7 [get_palette], page 94.
See Section 11.2 [set_color], page 93.

11.7 get_palette

void get_palette(PALETTE p);
Retrieves the entire palette of 256 colors. You should provide an array of 256
RGB structures to store it in.

See also:
See Section 11.8 [get_palette_range|, page 95.
See Section 11.6 [get_color], page 94.

Chapter 11: Palette routines 95

See Section 11.4 [set_palette], page 94.

11.8 get_palette_range

void get_palette_range(PALETTE p, int from, int to);
Retrieves the palette entries between from and to (inclusive: pass 0 and 255 to
get the entire palette).

See also:
See Section 11.7 [get_palette], page 94.
See Section 11.5 [set_palette_range|, page 94.

11.9 fade_interpolate

void fade_interpolate(const PALETTE source, const PALETTE dest, PALETTE
output, int pos, int from, to);
Calculates a temporary palette part way between source and dest, returning it
in the output parameter. The position between the two extremes is specified by
the pos value: 0 returns an exact copy of source, 64 returns dest, 32 returns a
palette half way between the two, etc. This routine only affects colors between
from and to (inclusive: pass 0 and 255 to interpolate the entire palette).

See also:

See Section 11.14 [fade_in], page 96.
See Section 11.15 [fade_out], page 97.
See Section 11.13 [fade_from], page 96.

11.10 fade_from_range

void fade_from_range(const PALETTE source, const PALETTE dest, int speed,
int from, to);
Gradually fades a part of the palette from the source palette to the dest palette.
The speed is from 1 (the slowest) up to 64 (instantaneous). This routine only
affects colors between from and to (inclusive: pass 0 and 255 to fade the entire
palette).

See also:
See Section 11.13 [fade_from], page 96.

11.11 fade_in_range

void fade_in_range(const PALETTE p, int speed, int from, to);
Gradually fades a part of the palette from a black screen to the specified palette.
The speed is from 1 (the slowest) up to 64 (instantaneous). This routine only

96 Allegro Manual

affects colors between from and to (inclusive: pass 0 and 255 to fade the entire
palette).

See also:
See Section 11.14 [fade_in], page 96.

11.12 fade_out_range

void fade_out_range(int speed, int from, to);
Gradually fades a part of the palette from the current palette to a black screen.
The speed is from 1 (the slowest) up to 64 (instantaneous). This routine only
affects colors between from and to (inclusive: pass 0 and 255 to fade the entire
palette).

See also:
See Section 11.15 [fade_out], page 97.

11.13 fade_from

void fade_from(const PALETTE source, const PALETTE dest, int speed);
Fades gradually from the source palette to the dest palette. The speed is from
1 (the slowest) up to 64 (instantaneous).

See also:

See Section 11.14 [fade_in], page 96.

See Section 11.15 [fade_out], page 97.

See Section 11.9 [fade_interpolate], page 95.
See Section 11.10 [fade_from_range|, page 95.

11.14 fade_in

void fade_in(const PALETTE p, int speed);
Fades gradually from a black screen to the specified palette. The speed is from
1 (the slowest) up to 64 (instantaneous).

See also:

See Section 11.15 [fade_out], page 97.

See Section 11.13 [fade_from], page 96.

See Section 11.9 [fade_interpolate], page 95.
See Section 11.11 [fade_in_range|, page 95.

Chapter 11: Palette routines 97

11.15 fade_out

void fade_out(int speed);
Fades gradually from the current palette to a black screen. The speed is from
1 (the slowest) up to 64 (instantaneous).

See also:

See Section 11.14 [fade_in], page 96.

See Section 11.13 [fade_from], page 96.

See Section 11.9 [fade_interpolate], page 95.
See Section 11.11 [fade_in_range], page 95.

11.16 select_palette

void select_palette(const PALETTE p);
Ugly hack for use in various dodgy situations where you need to convert between
paletted and truecolor image formats. Sets the internal palette table in the
same way as the set_palette() function, so the conversion will use the specified
palette, but without affecting the display hardware in any way. The previous
palette settings are stored in an internal buffer, and can be restored by calling
unselect_palette().

See also:
See Section 11.4 [set_palette], page 94.
See Section 11.17 [unselect_palette], page 97.

11.17 unselect_palette

void unselect_palette();
Restores the palette tables that were in use before the last call to
select _palette().

See also:

See Section 11.16 [select_palette], page 97.

11.18 generate_332_palette

void generate_332_palette(PALETTE pal);
Constructs a fake truecolor palette, using three bits for red and green and two
for the blue. The load_bitmap() function returns this if the file does not contain
a palette itself (ie. you are reading a truecolor bitmap).

See also:

See Section 11.19 [generate_optimized_palette], page 98.

98 Allegro Manual

See Section 8.1 [set_color_depth|, page 68.

11.19 generate_optimized_palette

int generate_optimized_palette(BITMAP *bmp, PALETTE pal, const char

rsvd[256]) ;
Generates a 256 color palette suitable for making a reduced color version of
the specified truecolor image. The rsvd parameter points to a table indicating
which colors it is allowed to modify: zero for free colors which may be set to
whatever the optimiser likes, negative values for reserved colors which cannot
be used, and positive values for fixed palette entries that must not be changed,
but can be used in the optimisation.

See also:
See Section 11.18 [generate_332_palette], page 97.
See Section 8.1 [set_color_depth], page 68.

11.20 default_palette

extern PALETTE default_palette;
The default IBM BIOS palette. This will be automatically selected whenever
you set a new graphics mode.

See also:
See Section 11.21 [black_palette|, page 98.
See Section 11.22 [desktop_palette], page 98.

11.21 black_palette

extern PALETTE black_palette;
A palette containing solid black colors, used by the fade routines.

See also:
See Section 11.20 [default_palette], page 98.
See Section 11.22 [desktop_palette], page 98.

11.22 desktop_palette

extern PALETTE desktop_palette;
The palette used by the Atari ST low resolution desktop. I'm not quite sure
why this is still here, except that the grabber and test programs use it. It is
probably the only Atari legacy code left in Allegro, and it would be a shame to
remove it :-)

Chapter 12: Truecolor pixel formats 99

See also:
See Section 11.20 [default_palette], page 98.
See Section 11.21 [black_palette], page 98.

12 Truecolor pixel formats

In a truecolor video mode the red, green, and blue components for each pixel are packed
directly into the color value, rather than using a palette lookup table. In a 15 bit mode there
are 5 bits for each color, in 16 bit modes there are 5 bits each of red and blue and six bits of
green, and both 24 and 32 bit modes use 8 bits for each color (the 32 bit pixels simply have
an extra padding byte to align the data nicely). The layout of these components can vary
depending on your hardware, but will generally either be RGB or BGR. Since the layout is
not known until you select the video mode you will be using, you must call set_gfx_mode()
before using any of the following routines!

12.1 makecol8

int makecol8(int r, int g, int b);
int makecoll5(int r, int g, int b);
int makecoll6(int r, int g, int b);
int makecol24(int r, int g, int b);

int makecol32(int r, int g, int b);
These functions convert colors from a hardware independent form (red, green,
and blue values ranging 0-255) into various display dependent pixel formats.
Converting to 15, 16, 24, or 32 bit formats only takes a few shifts, so it is fairly
efficient. Converting to an 8 bit color involves searching the palette to find the
closest match, which is quite slow unless you have set up an RGB mapping
table (see below).

See also:

See Section 12.2 [makeacol32], page 99.

See Section 12.3 [makecol], page 100.

See Section 12.4 [makecol_depth], page 100.
See Section 12.6 [makecoll5_dither]|, page 101.
See Section 20.2 [rgb_map], page 149.

See Section 20.1 [bestfit_color], page 149.

See Section 8.1 [set_color_depth], page 68.

12.2 makeacol32

int makeacol32(int r, int g, int b, int a);
Converts an RGBA color into a 32 bit display pixel format, which includes an al-
pha (transparency) value. There are no versions of this routine for other color

100 Allegro Manual

depths, because only the 32 bit format has enough room to store a proper
alpha channel. You should only use RGBA format colors as the input to
draw_trans_sprite() or draw_trans_rle_sprite() after calling set_alpha_blender(),
rather than drawing them directly to the screen.

See also:

See Section 12.5 [makeacol], page 100.

See Section 19.12 [set_alpha_blender], page 144.

See Section 19.13 [set_write_alpha_blender|, page 144.

12.3 makecol

int makecol(int r, int g, int b);
Converts colors from a hardware independent format (red, green, and blue
values ranging 0-255) to the pixel format required by the current video mode,
calling the preceding 8, 15, 16, 24, or 32 bit makecol functions as appropriate.

See also:

See Section 12.5 [makeacol], page 100.

See Section 12.1 [makecol8], page 99.

See Section 12.4 [makecol_depth], page 100.
See Section 12.6 [makecoll5_dither], page 101.
See Section 20.2 [rgb_map], page 149.

See Section 8.1 [set_color_depth|, page 68.

12.4 makecol_depth

int makecol_depth(int color_depth, int r, int g, int b);
Converts colors from a hardware independent format (red, green, and blue
values ranging 0-255) to the pixel format required by the specified color depth.

See also:

See Section 12.5 [makeacol], page 100.
See Section 12.3 [makecol], page 100.
See Section 12.1 |
See Section 12.6 [makecoll5_dither]|, page 101.

See Section 20.2 [rgh_map], page 149.

makecol8], page 99.

See Section 8.1 [set_color_depth|, page 68.

Chapter 12: Truecolor pixel formats 101

12.5 makeacol , ,
int makeacol(int r, int g, int b, int a);

int makeacol_depth(int color_depth, int r, int g, int b, int a);

See also:

Convert RGBA colors into display dependent pixel formats. In anything less
than a 32 bit mode, these are the same as calling makecol() or makecol_depth(),
but by using these routines it is possible to create 32 bit color values that contain
a true 8 bit alpha channel along with the red, green, and blue components. You
should only use RGBA format colors as the input to draw_trans_sprite() or
draw_trans_rle_sprite() after calling set_alpha_blender(), rather than drawing
them directly to the screen.

See Section 12.3 [makecol], page 100.

See Section 12.4 [makecol_depth], page 100.

See Section 19.12 [set_alpha_blender], page 144.

See Section 19.13 [set_write_alpha_blender], page 144.

12.6 makecoll5_dither

int makecollb_dither(int r, int g, int b, int x, int y);

int makecoll6_dither(int r, int g, int b, int x, int y);

See also:

Given both a color value and a pixel coordinate, calculate a dithered 15 or
16 bit RGB value. This can produce better results when reducing images
from truecolor to hicolor. In addition to calling these functions directly, hi-
color dithering can be automatically enabled when loading graphics by calling
the set_color_conversion() function, for example set_color_conversion (COLOR-
CONV_REDUCE_TRUE_TO_HI | COLORCONV_DITHER).

See Section 12.3 [makecol], page 100.

See Section 12.1 [makecol8], page 99.

See Section 10.11 [set_color_conversion], page 90.

102

12.7 getr8

getr8(int c);

int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

getg8(int c);

getb8(int c);

getr15(int
getglb(int
getb15(int
getr16(int
getgl6(int
getb16(int
getr24(int
getg24 (int
getb24 (int
getr32(int
getg32(int
getb32(int

c);
c);
c);
c);
c);
c);
c);
c);
c);
c);
c);

c);

Allegro Manual

Given a color in a display dependent format, these functions extract one of the

red, green, or blue components (ranging 0-255).

See also:

See Section 12.8 [geta32], page 102.

See Section 12.9 [getr], page 102.

See Section 12.10 [getr_depth], page 103.
See Section 12.3 [makecol], page 100.

See Section 8.1 [set_color_depth|, page 68.

12.8 geta32

int geta32(int c);
Given a color in a 32 bit pixel format, this function extracts the alpha compo-

nent (ranging 0-255).

See also:

See Section 12.7 [getr8], page 101.

Chapter 12: Truecolor pixel formats 103

12.9 getr

int getr(int c);
int getg(int c);
int getb(int c);

int geta(int c);
Given a color in the format being used by the current video mode, these func-
tions extract one of the red, green, blue, or alpha components (ranging 0-255),
calling the preceding 8, 15, 16, 24, or 32 bit get functions as appropriate. The
alpha part is only meaningful for 32 bit pixels.

See also:

See Section 12.7 [getr8], page 101.

See Section 12.10 [getr_depth], page 103.
See Section 12.3 [makecol], page 100.

See Section 8.1 [set_color_depth|, page 68.

12.10 getr_depth

int getr_depth(int color_depth, int c);
int getg_depth(int color_depth, int c);
int getb_depth(int color_depth, int c);

int geta_depth(int color_depth, int c);
Given a color in the format being used by the specified color depth, these
functions extract one of the red, green, blue, or alpha components (ranging
0-255). The alpha part is only meaningful for 32 bit pixels.

See also:

See Section 12.9 [getr], page 102.

See Section 12.7 [getr8], page 101.

See Section 12.8 [geta32], page 102.

See Section 12.3 [makecol], page 100.

See Section 8.1 [set_color_depth], page 68.

12.11 palette_color

extern int palette_color[256];
Table mapping palette index colors (0-255) into whatever pixel format is being
used by the current display mode. In a 256 color mode this just maps onto the
array index. In truecolor modes it looks up the specified entry in the current
palette, and converts that RGB value into the appropriate packed pixel format.

See also:

See Section 11.4 [set_palette], page 94.

104 Allegro Manual

See Section 12.3 [makecol], page 100.
See Section 8.1 [set_color_depth|, page 68.

12.12 MASK_COLOR_8
#define MASK_COLOR_8 O

#define MASK_COLOR_15 (5.5.5 pink)
#define MASK_COLOR_16 (5.6.5 pink)
#define MASK_COLOR_24 (8.8.8 pink)

#define MASK_COLOR_32 (8.8.8 pink)
Constants representing the colors used to mask transparent sprite pixels for
each color depth. In 256 color resolutions this is zero, and in truecolor modes
it is bright pink (maximum red and blue, zero green).

See also:

See Section 9.10 [bitmap_mask_color], page 83.
See Section 12.3 [makecol], page 100.

See Section 14.8 [draw_sprite], page 114.

See Section 14.6 [masked_blit], page 113.

13 Drawing primitives

Except for _putpixel(), all these routines are affected by the current drawing mode and the
clipping rectangle of the destination bitmap.

13.1 putpixel

void putpixel(BITMAP *bmp, int x, int y, int color);
Writes a pixel to the specified position in the bitmap, using the current drawing
mode and the bitmap’s clipping rectangle.

See also:

See Section 13.3 [getpixel], page 105.

See Section 13.2 [_putpixel], page 104.

See Section 19.1 [drawing_mode], page 138.

Chapter 13: Drawing primitives 105

13.2 _putpixel

void _putpixel(BITMAP *bmp, int x, int y, int color);
void _putpixell5(BITMAP *bmp, int x, int y, int color);
void _putpixell6(BITMAP *bmp, int x, int y, int color);
void _putpixel24(BITMAP *bmp, int x, int y, int color);

void _putpixel32(BITMAP *bmp, int x, int y, int color);
Like the regular putpixel(), but much faster because they are implemented as
an inline assembler functions for specific color depths. These won’t work in
mode-X graphics modes, don’t perform any clipping (they will crash if you try
to draw outside the bitmap!), and ignore the drawing mode.

See also:
See Section 13.1 [putpixel], page 104.

13.3 getpixel

int getpixel(BITMAP *bmp, int x, int y);
Reads a pixel from point x, y in the bitmap. Returns -1 if the point lies outside
the bitmap.

See also:
See Section 13.1 [putpixel], page 104.
See Section 13.4 [_getpixel], page 105.

13.4 _getpixel

int _getpixel (BITMAP *bmp, int x, int y);
int _getpixell5(BITMAP *bmp, int x, int y);
int _getpixell16(BITMAP *bmp, int x, int y);
int _getpixel24(BITMAP *bmp, int x, int y);

int _getpixel32(BITMAP *bmp, int x, int y);
Faster inline versions of getpixel() for specific color depths. These won’t work
in mode-X, and don’t do any clipping, so you must make sure the point lies
inside the bitmap.

See also:

See Section 13.3 [getpixel], page 105.

13.5 vline

void v1line(BITMAP *bmp, int x, int y1, int y2, int color);
Draws a vertical line onto the bitmap, from point (x, y1) to (x, y2).

106 Allegro Manual

See also:

See Section 13.6 [hline], page 106.

See Section 13.8 [line|, page 106.

See Section 19.1 [drawing_mode], page 138.

13.6 hline

void hline(BITMAP *bmp, int x1, int y, int x2, int color);
Draws a horizontal line onto the bitmap, from point (x1, y) to (x2, y).

See also:

See Section 13.5 [vline], page 105.

See Section 13.8 [line], page 106.

See Section 19.1 [drawing_mode], page 138.

13.7 do_line

void do_line(BITMAP *bmp, int x1, yl, x2, y2, int d, void (*proc) (BITMAP
*bmp, int x, int y, int d));
Calculates all the points along a line from point (x1, y1) to (x2, y2), calling
the supplied function for each one. This will be passed a copy of the bmp
parameter, the x and y position, and a copy of the d parameter, so it is suitable
for use with putpixel().

See also:

See Section 13.13 [do_circle], page 108.
See Section 13.16 [do_ellipse], page 108.
See Section 13.19 [do_arc], page 109.
See Section 13.8 [line|, page 106.

13.8 line

void line(BITMAP *bmp, int x1, int yl, int x2, int y2, int color);
Draws a line onto the bitmap, from point (x1, y1) to (x2, y2).

See also:

See Section 13.6 [hline], page 106.

See Section 13.5 [vline], page 105.

See Section 13.7 [do_line|, page 106.

See Section 19.1 [drawing_mode], page 138.

Chapter 13: Drawing primitives 107

13.9 triangle

void triangle(BITMAP *bmp, int x1, yi, x2, y2, x3, y3, int color);
Draws a filled triangle between the three points.

See also:

See Section 13.10 [polygon|, page 107.

See Section 18.2 [triangle3d], page 130.

See Section 19.1 [drawing_mode|, page 138.

13.10 polygon

void polygon(BITMAP *bmp, int vertices, const int *points, int color);
Draws a filled polygon with an arbitrary number of corners. Pass the number
of vertices and an array containing a series of x, y points (a total of vertices*2
values).

See also:

See Section 13.9 [triangle], page 107.

See Section 18.1 [polygon3d], page 127.
See Section 19.1 [drawing_mode], page 138.

13.11 rect

void rect (BITMAP *bmp, int x1, int y1, int x2, int y2, int color);
Draws an outline rectangle with the two points as its opposite corners.

See also:
See Section 13.12 [rectfill], page 107.
See Section 19.1 [drawing_mode|, page 138.

13.12 rectfill

void rectfill(BITMAP *bmp, int x1, int yl, int x2, int y2, int color);
Draws a solid, filled rectangle with the two points as its opposite corners.

See also:

See Section 13.11 [rect], page 107.

See Section 14.1 [clear_bitmap], page 111.
See Section 19.1 [drawing_mode], page 138.

108 Allegro Manual

13.13 do_circle

void do_circle(BITMAP *bmp, int x, int y, int radius, int d, void

(*proc) (BITMAP *bmp, int x, int y, int d));
Calculates all the points in a circle around point (x, y) with radius r, calling
the supplied function for each one. This will be passed a copy of the bmp
parameter, the x and y position, and a copy of the d parameter, so it is suitable
for use with putpixel().

See also:

See Section 13.16 [do_ellipse], page 108.
See Section 13.19 [do_arc], page 109.
See Section 13.7 [do_line|, page 106.
See Section 13.14 [circle], page 108.

See Section 13.15 [circlefill], page 108.

13.14 circle

void circle(BITMAP *bmp, int x, int y, int radius, int color);
Draws a circle with the specified centre and radius.

See also:
See Section 13.17 [ellipse], page 109.
See Section 13.20 [arc], page 110.

See Section 13.15 |
[

See Section 13.13 [do_circle], page 108.

circlefill], page 108.

See Section 19.1 [drawing_mode], page 138.

13.15 circlefill

void circlefill(BITMAP *bmp, int x, int y, int radius, int color);
Draws a filled circle with the specified centre and radius.

See also:

See Section 13.18 [ellipsefill], page 109.

See Section 13.14 [circle], page 108.

See Section 13.13 [do-_circle], page 108.

See Section 19.1 [drawing_mode], page 138.

Chapter 13: Drawing primitives 109

13.16 do_ellipse

void do_ellipse(BITMAP *bmp, int x, int y, int rx, ry, int d, void

(*proc) (BITMAP *bmp, int x, int y, int d));
Calculates all the points in an ellipse around point (x, y) with radius rx and
ry, calling the supplied function for each one. This will be passed a copy of the
bmp parameter, the x and y position, and a copy of the d parameter, so it is
suitable for use with putpixel().

See also:

See Section 13.13 [do_circle], page 108.
See Section 13.19 [do_arc], page 109.
See Section 13.7 [do_line|, page 106.
See Section 13.17 [ellipse], page 109.
See Section 13.18 [ellipsefill], page 109.

13.17 ellipse

void ellipse(BITMAP *bmp, int x, int y, int rx, int ry, int color);
Draws an ellipse with the specified centre and radius.

See also:
See Section 13.14 [circle], page 108.
See Section 13.20 [arc], page 110.

See Section 13.18 |
[

See Section 13.16 [do_ellipse], page 108.

ellipsefill], page 109.

See Section 19.1 [drawing_mode], page 138.

13.18 ellipsefill

void ellipsefill(BITMAP *bmp, int x, int y, int rx, int ry, int color);
Draws a filled ellipse with the specified centre and radius.

See also:

See Section 13.15 [circlefill], page 108.

See Section 13.17 [ellipse], page 109.

See Section 13.16 [do_ellipse], page 108.
See Section 19.1 [drawing_mode], page 138.

110 Allegro Manual

13.19 do_arc

void do_arc(BITMAP #*bmp, int x, int y, fixed al, fixed a2, int r, int d,

void (*proc) (BITMAP *bmp, int x, int y, int d4));
Calculates all the points in a circular arc around point (x, y) with radius r,
calling the supplied function for each one. This will be passed a copy of the
bmp parameter, the x and y position, and a copy of the d parameter, so it is
suitable for use with putpixel(). The arc will be plotted in an anticlockwise
direction starting from the angle al and ending when it reaches a2. These
values are specified in 16.16 fixed point format, with 256 equal to a full circle,
64 a right angle, etc. Zero is to the right of the centre point, and larger values
rotate anticlockwise from there.

See also:

See Section 13.13 [do_circle], page 108.
See Section 13.16 [do_ellipse], page 108.
See Section 13.7 [do_line|, page 106.
See Section 13.20 [arc], page 110.

13.20 arc

void arc(BITMAP *bmp, int x, y, fixed angl, ang2, int r, int color);
Draws a circular arc with centre x, y and radius r, in an anticlockwise direction
starting from the angle al and ending when it reaches a2. These values are
specified in 16.16 fixed point format, with 256 equal to a full circle, 64 a right
angle, etc. Zero is to the right of the centre point, and larger values rotate
anticlockwise from there.

See also:

See Section 13.14 [circle], page 108.

See Section 13.17 [ellipse], page 109.

See Section 19.1 [drawing_mode|, page 138.

13.21 calc_spline

void calc_spline(const int points[8], int npts, int *x, int *y);
Calculates a series of npts values along a bezier spline, storing them in the
output x and y arrays. The bezier curve is specified by the four x/y control
points in the points array: points[0] and points[1] contain the coordinates of
the first control point, points[2] and points[3] are the second point, etc. Control
points 0 and 3 are the ends of the spline, and points 1 and 2 are guides. The
curve probably won’t pass through points 1 and 2, but they affect the shape of
the curve between points 0 and 3 (the lines p0-pl and p2-p3 are tangents to the
spline). The easiest way to think of it is that the curve starts at p0, heading in
the direction of p1l, but curves round so that it arrives at p3 from the direction

Chapter 14: Blitting and sprites 111

of p2. In addition to their role as graphics primitives, spline curves can be
useful for constructing smooth paths around a series of control points, as in
exspline.c.

See also:
See Section 13.22 [spline], page 111.

13.22 spline

void spline(BITMAP *bmp, const int points[8], int color);
Draws a bezier spline using the four control points specified in the points array.

See also:
See Section 13.21 [calc_spline], page 110.
See Section 19.1 [drawing_mode], page 138.

13.23 floodfill

void floodfill(BITMAP *bmp, int x, int y, int color);
Floodfills an enclosed area, starting at point (x, y), with the specified color.

See also:
See Section 19.1 [drawing_mode], page 138.

14 Blitting and sprites

All these routines are affected by the clipping rectangle of the destination bitmap.

14.1 clear_bitmap

void clear_bitmap(BITMAP *bitmap) ;
Clears the bitmap to color 0.

See also:
See Section 14.3 [clear_to_color|, page 112.
See Section 14.2 [clear], page 111.

14.2 clear

void clear (BITMAP *bitmap);
An alias for clear_bitmap(), provided for backwards compatibility. It is imple-
mented as a static inline function. The aliasing may be switched off by defining
the preprocessor symbol ALLEGRO_NO_CLEAR_BITMAP_ALIAS before in-
cluding Allegro headers, eg:

112 Allegro Manual

#define ALLEGRO_NO_CLEAR_BITMAP_ALIAS
#include <allegro.h>

See also:

See Section 14.1 [clear_bitmap], page 111.

14.3 clear_to_color

void clear_to_color (BITMAP *bitmap, int color);
Clears the bitmap to the specified color.

See also:

See Section 14.1 [clear_bitmap], page 111.

14.4 blit

void blit (BITMAP *source, BITMAP *dest, int source_x, int source_y, int
dest_x, int dest_y, int width, int height);
Copies a rectangular area of the source bitmap to the destination bitmap. The
source_x and source_y parameters are the top left corner of the area to copy from
the source bitmap, and dest_x and dest_y are the corresponding position in the
destination bitmap. This routine respects the destination clipping rectangle,
and it will also clip if you try to blit from areas outside the source bitmap.

You can blit between any parts of any two bitmaps, even if the two memory
areas overlap (ie. source and dest are the same, or one is sub-bitmap of the
other). You should be aware, however, that a lot of SVGA cards don’t provide
separate read and write banks, which means that blitting from one part of the
screen to another requires the use of a temporary bitmap in memory, and is
therefore extremely slow. As a general rule you should avoid blitting from the
screen onto itself in SVGA modes.

In mode-X, on the other hand, blitting from one part of the screen to another
can be significantly faster than blitting from memory onto the screen, as long
as the source and destination are correctly aligned with each other. Copying
between overlapping screen rectangles is slow, but if the areas don’t overlap,
and if they have the same plane alignment (ie. (source_x%4) == (dest_x%4)),
the VGA latch registers can be used for a very fast data transfer. To take
advantage of this, in mode-X it is often worth storing tile graphics in a hidden
area of video memory (using a large virtual screen), and blitting them from
there onto the visible part of the screen.

If the GFX_HW_VRAM_BLIT bit in the gfx_capabilities flag is set, the current
driver supports hardware accelerated blits from one part of the screen onto
another. This is extremely fast, so when this flag is set it may be worth storing
some of your more frequently used graphics in an offscreen portion of the video
memory.

Chapter 14: Blitting and sprites 113

Unlike most of the graphics routines, blit() allows the source and destination
bitmaps to be of different color depths, so it can be used to convert images from
one pixel format to another.

See also:

See Section 14.6 [masked_blit], page 113.
See Section 14.5 [stretch_blit], page 113.
See Section 14.8 [draw_sprite|, page 114.
See Section 8.11 [gfx_capabilities], page 74.

14.5 stretch_blit

void stretch_blit(BITMAP *source, BITMAP *dest, int source_x, source_y,

source_width, source_height, int dest_x, dest_y, dest_width, dest_height);
Like blit(), except it can scale images (so the source and destination rectangles
don’t need to be the same size) and requires the source and destination bitmaps
to be of the same color depth. This routine doesn’t do as much safety checking
as the regular blit(): in particular you must take care not to copy from areas
outside the source bitmap, and you cannot blit between overlapping regions, ie.
you must use different bitmaps for the source and the destination. Moreover,
the source must be a memory bitmap.

See also:

See Section 14.4 [blit], page 112.

See Section 14.7 [masked_stretch_blit], page 114.
See Section 14.9 [stretch_sprite], page 115.

14.6 masked_blit

void masked_blit (BITMAP *source, BITMAP *dest, int source_x, int source_y,
int dest_x, int dest_y, int width, int height);
Like blit(), but skips transparent pixels, which are marked by a zero in 256 color
modes or bright pink for truecolor data (maximum red and blue, zero green),
and requires the source and destination bitmaps to be of the same color depth.
The source and destination regions must not overlap.

If the GFX_HW_VRAM_BLIT_MASKED bit in the gfx_capabilities flag is set,
the current driver supports hardware accelerated masked blits from one part
of the screen onto another. This is extremely fast, so when this flag is set it
may be worth storing some of your more frequently used sprites in an offscreen
portion of the video memory.

Warning: if the hardware acceleration flag is not set, masked_blit() will not
work correctly when used with a source image in system or video memory so
the latter must be a memory bitmap.

114

See also:

Allegro Manual

See Section 14.4 [blit], page 112.

See Section 14.7
See Section 14.8

masked_stretch_blit], page 114.
draw_sprite], page 114.

[
[
[
[

See Section 9.10 [bitmap_mask_color], page 83.

14.7 masked_stretch_blit

void masked_stretch_blit(BITMAP *source, BITMAP *dest, int source_x,
source_y, source_w, source_h, int dest_x, dest_y, dest_w, dest_h);

See also:

Like masked_blit(), except it can scale images (so the source and destination
rectangles don’t need to be the same size). This routine doesn’t do as much
safety checking as the regular masked_blit(): in particular you must take care
not to copy from areas outside the source bitmap. Moreover, the source must
be a memory bitmap.

See Section 14.4 [blit], page 112.

See Section 14.6 [masked_blit], page 113.
See Section 14.5 [stretch_blit], page 113.
See Section 14.9 [stretch_sprite], page 115.

14.8 draw_sprite

void draw_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y);

Draws a copy of the sprite bitmap onto the destination bitmap at the specified
position. This is almost the same as blit(sprite, bmp, 0, 0, x, y, sprite->w,
sprite->h), but it uses a masked drawing mode where transparent pixels are
skipped, so the background image will show through the masked parts of the
sprite. Transparent pixels are marked by a zero in 256 color modes or bright
pink for truecolor data (maximum red and blue, zero green).

If the GFX_HW_VRAM_BLIT_MASKED bit in the gfx_capabilities flag is set,
the current driver supports hardware accelerated sprite drawing when the source
image is a video memory bitmap or a sub-bitmap of the screen. This is ex-
tremely fast, so when this flag is set it may be worth storing some of your more
frequently used sprites in an offscreen portion of the video memory.

Warning: if the hardware acceleration flag is not set, draw_sprite() will not
work correctly when used with a sprite image in system or video memory so
the latter must be a memory bitmap.

Although generally not supporting graphics of mixed color depths, as a special
case this function can be used to draw 256 color source images onto truecolor
destination bitmaps, so you can use palette effects on specific sprites within a
truecolor program.

Chapter 14: Blitting and sprites 115

See also:

See Section 14.10 [draw_sprite_v_flip], page 115.
See Section 14.11 [draw_trans_sprite|, page 116.
See Section 14.12 [draw_lit_sprite|, page 116.

See Section 14.13 [draw_gouraud_sprite], page 117.
See Section 14.9 [stretch_sprite], page 115.

See Section 14.15 [rotate_sprite], page 117.

See Section 14.14 [draw_character|, page 117.

See Section 15.3 [draw_rle_sprite], page 121.

See Section 16.3 [draw_compiled_sprite], page 123.
See Section 14.6 [masked_blit], page 113.

See Section 14.4 [blit], page 112.

See Section 9.10 [bitmap_mask_color], page 83.

14.9 stretch_sprite

void stretch_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int w, int
h);
Like draw_sprite(), except it can stretch the sprite image to the specified width
and height and requires the sprite image and destination bitmap to be of the
same color depth. Moreover, the sprite image must be a memory bitmap.

See also:

See Section 14.8 [draw_sprite|, page 114.

See Section 14.5 [stretch_blit], page 113.

See Section 9.10 [bitmap_mask_color], page 83.

14.10 draw_sprite_v_{flip
void draw_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y);
void draw_sprite_h_flip(BITMAP *bmp, BITMAP *sprite, int x, int y);

void draw_sprite_vh_f1ip(BITMAP *bmp, BITMAP *sprite, int x, int y);
These are like draw_sprite(), but they flip the image about the vertical, hor-
izontal, or both, axes. This produces exact mirror images, which is not the
same as rotating the sprite (and it is a lot faster than the rotation routine).
The sprite must be a memory bitmap.

See also:
See Section 14.8 [draw_sprite|, page 114.
See Section 9.10 [bitmap_mask_color], page 83.

116

Allegro Manual

14.11 draw_trans_sprite

void draw_trans_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y);

See also:

Uses the global color_map table or truecolor blender functions to overlay the
sprite on top of the existing image. This must only be used after you have
set up the color mapping table (for 256 color modes) or blender functions (for
truecolor modes). Because it involves reading as well as writing the bitmap
memory, translucent drawing is very slow if you draw directly to video RAM,
so wherever possible you should use a memory bitmap instead. The bitmap
and sprite must normally be in the same color depth, but as a special case you
can draw 32 bit RGBA format sprites onto any hicolor or truecolor bitmap, as
long as you call set_alpha_blender() first, and you can draw 8 bit alpha images
onto a 32 bit RGBA destination, as long as you call set_write_alpha_blender()
first.

See Section 14.8 [draw_sprite|, page 114.
See Section 14.12 [draw_lit_sprite|, page 116.
See Section 15.4 [draw_trans_rle_sprite], page 121.

See Section 19.5 [color_map], page 140.

See Section 19.11 [set_trans_blender], page 143.

See Section 19.12 [set_alpha_blender], page 144.

See Section 19.13 [set_write_alpha_blender], page 144.

See Section 9.10 [bitmap_mask_color], page 83.

14.12 draw_lit_sprite

void draw_lit_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int color);

See also:

In 256 color modes, uses the global color_map table to tint the sprite image
to the specified color or to light it to the level specified by ’color’, depending
on the function which was used to build the table (create_trans_table or cre-
ate_light_table), and draws the resulting image to the destination bitmap. In
truecolor modes, uses the blender functions to light the sprite image using the
alpha level specified by ’color’ (the alpha level which was passed to the blender
functions is ignored) and draws the resulting image to the destination bitmap.
The ’color’ parameter must be in the range [0-255] whatever its actual meaning
is. This must only be used after you have set up the color mapping table (for
256 color modes) or blender functions (for truecolor modes).

See Section 14.8 [draw_sprite|, page 114.

See Section 14.11 [draw_trans_sprite], page 116.

See Section 14.13 [draw_gouraud_sprite], page 117.

See Section 15.5 [draw_lit_rle_sprite], page 122.

See Section 19.5 [color_map], page 140.

Chapter 14: Blitting and sprites 117

See Section 19.11 [set_trans_blender], page 143.

See Section 9.10 [bitmap_mask_color], page 83.

14.13 draw_gouraud_sprite

void draw_gouraud_sprite (BITMAP *bmp, BITMAP *sprite, int x, int y, int ci,
int c2, int c3, int c4);

See also:

More sophisticated version of draw_lit_sprite(): the ’color’ parameter is not
constant across the sprite image anymore but interpolated between the four
specified corner colors, which have the same actual meaning as it.

See Section 14.8 [draw_sprite], page 114.

See Section 14.12 [draw_lit_sprite], page 116.

See Section 19.5 [color_map], page 140.
See Section 19.11 [set_trans_blender]|, page 143.
See Section 9.10 [bitmap_mask_color], page 83.

14.14 draw_character
void draw_character (BITMAP *bmp, BITMAP *sprite, int x, int y, int color);

See also:

Draws a copy of the sprite bitmap onto the destination bitmap at the specified
position, drawing transparent pixels in the current text mode (skipping them if
the text mode is -1, otherwise drawing them in the text background color), and
setting all other pixels to the specified color. Transparent pixels are marked by
a zero in 256 color modes or bright pink for truecolor data (maximum red and
blue, zero green). The sprite must be an 8 bit image, even if the destination is
a truecolor bitmap.

See Section 14.8 [draw_sprite], page 114.

See Section 9.10 [bitmap_mask_color], page 83.

14.15 rotate_sprite
void rotate_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, fixed angle);

Draws the sprite image onto the bitmap. It is placed with its top left corner
at the specified position, then rotated by the specified angle around its centre.
The angle is a fixed point 16.16 number in the same format used by the fixed
point trig routines, with 256 equal to a full circle, 64 a right angle, etc. All
rotation functions can draw between any two bitmaps, even screen bitmaps or
bitmaps of different color depth.

118 Allegro Manual

See also:

See Section 14.8 [draw_sprite], page 114.

See Section 14.17 [rotate_scaled_sprite], page 118.

See Section 14.16 [rotate_sprite_v_flip|, page 118.

See Section 14.18 [rotate_scaled_sprite_v_flip], page 118.
See Section 14.19 [pivot_sprite], page 119.

See Section 14.20 [pivot_sprite_v_flip|, page 119.

See Section 14.21 [pivot_scaled_sprite], page 119.

See Section 14.22 [pivot_scaled_sprite_v_flip], page 120.
See Section 30.1 [itofix], page 195.

See Section 30.11 [fixed point trig], page 197.

14.16 rotate_sprite_v_flip

void rotate_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y, fixed
angle);
Like rotate_sprite, but also flips the image vertically. To flip horizontally, use
this routine but add itofix(128) to the angle. To flip in both directions, use
rotate_sprite() and add itofix(128) to its angle.

See also:
See Section 14.15 [rotate_sprite], page 117.

[
See Section 14.18 [rotate_scaled_sprite_v_flip|, page 118.
See Section 14.20 [pivot_sprite_v_flip|, page 119.

[

See Section 14.22 [pivot_scaled_sprite_v_flip], page 120.

14.17 rotate_scaled_sprite

void rotate_scaled_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, fixed
angle, fixed scale);
Like rotate_sprite(), but stretches or shrinks the image at the same time as
rotating it.

See also:

See Section 14.15 [rotate_sprite], page 117.

See Section 14.18 [rotate_scaled_sprite_v_flip], page 118.
See Section 14.21 [pivot_scaled_sprite], page 119.

See Section 14.22 [pivot_scaled_sprite_v_flip], page 120.

Chapter 14: Blitting and sprites 119

14.18 rotate_scaled_sprite_v_flip

void rotate_scaled_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int v,
fixed angle, fixed scale)
Draws the sprite, similar to rotate_scaled_sprite() except that it flips the sprite
vertically first.

See also:

See Section 14.15 [rotate_sprite], page 117.

See Section 14.17 [rotate_scaled_sprite], page 118.
See Section 14.16 [rotate_sprite_v_flip], page 118.

14.19 pivot_sprite

void pivot_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int cx, int
cy, fixed angle);
Like rotate_sprite(), but aligns the point in the sprite given by (cx, cy) to (x,
y) in the bitmap, then rotates around this point.

See also:

See Section 14.15 [rotate_sprite], page 117.

See Section 14.21 [pivot_scaled_sprite], page 119.
See Section 14.20 [pivot_sprite_v_flip], page 119.

14.20 pivot_sprite_v_flip

void pivot_sprite_v_f1lip(BITMAP *bmp, BITMAP *sprite, int x, int y, int cx,
int cy, fixed angle);
Like rotate_sprite_v_flip(), but aligns the point in the sprite given by (cx, cy)
to (x, y) in the bitmap, then rotates around this point.

See also:
See Section 14.15 [rotate_sprite], page 117.

See Section 14.16 [rotate_sprite_v_flip], page 118.
See Section 14.19 [pivot_sprite], page 119.

14.21 pivot_scaled_sprite

void pivot_scaled_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int cx,
int cy, fixed angle, fixed scale));
Like rotate_scaled_sprite(), but aligns the point in the sprite given by (cx, cy)
to (x, y) in the bitmap, then rotates and scales around this point.

See also:

See Section 14.15 [rotate_sprite], page 117.

120 Allegro Manual

See Section 14.17 [rotate_scaled_sprite], page 118.
See Section 14.19 [pivot_sprite], page 119.
See Section 14.22 [pivot_scaled_sprite_v_flip], page 120.

14.22 pivot_scaled_sprite_v_flip

void pivot_scaled_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y,
fixed angle, fixed scale)
Like rotate_scaled_sprite_v_flip(), but aligns the point in the sprite given by
(cx, cy) to (x, y) in the bitmap, then rotates and scales around this point.

See also:

See Section 14.15 [rotate_sprite], page 117.

See Section 14.18 [rotate_scaled_sprite_v_flip], page 118.
See Section 14.16 [rotate_sprite_v_flip], page 118.

See Section 14.19 [pivot_sprite], page 119.

See Section 14.21 [pivot_scaled_sprite], page 119.

15 RLE sprites

Because bitmaps can be used in so many different ways, the bitmap structure is quite
complicated, and it contains a lot of data. In many situations, though, you will find yourself
storing images that are only ever copied to the screen, rather than being drawn onto or
used as filling patterns, etc. If this is the case you may be better off storing your images in
RLE_SPRITE or COMPILED_SPRITE structures rather than regular bitmaps.

RLE sprites store the image in a simple run-length encoded format, where repeated zero
pixels are replaced by a single length count, and strings of non-zero pixels are preceded by
a counter giving the length of the solid run. RLE sprites are usually much smaller then
normal bitmaps, both because of the run length compression, and because they avoid most
of the overhead of the bitmap structure. They are often also faster than normal bitmaps,
because rather than having to compare every single pixel with zero to determine whether
it should be drawn, it is possible to skip over a whole run of zeros with a single add, or to
copy a long run of non-zero pixels with fast string instructions.

Every silver lining has a cloud, though, and in the case of RLE sprites it is a lack of flexibility.
You can’t draw onto them, and you can’t flip them, rotate them, or stretch them. In fact the
only thing you can do with them is to blast them onto a bitmap with the draw_rle_sprite()
function, which is equivalent to using draw_sprite() with a regular bitmap. You can convert
bitmaps into RLE sprites at runtime, or you can create RLE sprite structures in grabber
datafiles by making a new object of type 'RLE sprite’.

15.1 get_rle_sprite

RLE_SPRITE *get_rle_sprite(BITMAP *bitmap) ;
Creates an RLE sprite based on the specified bitmap (which must be a memory
bitmap).

Chapter 15: RLE sprites 121

See also:
See Section 15.3 [draw_rle_sprite], page 121.
See Section 15.2 [destroy_rle_sprite], page 121.

15.2 destroy_rle_sprite

void destroy_rle_sprite(RLE_SPRITE *sprite);
Destroys an RLE sprite structure previously returned by get_rle_sprite().

See also:

See Section 15.1 [get_rle_sprite], page 120.

15.3 draw_rle_sprite

void draw_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite, int x, int y);
Draws an RLE sprite onto a bitmap at the specified position.

See also:

See Section 15.1
See Section 14.8
See Section 16.3
See Section 15.4
See Section 15.5
See Section 9.10

get_rle_sprite], page 120.
draw_sprite], page 114.
draw_compiled_sprite], page 123.
draw_trans_rle_sprite], page 121.

draw_lit_rle_sprite|, page 122.

bitmap_mask_color|, page 83.

15.4 draw_trans_rle_sprite

void draw_trans_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite, int x,

int y);
Translucent version of draw_rle_sprite(). See the description of
draw_trans_sprite(). This must only be used after you have set up the color
mapping table (for 256 color modes) or blender functions (for truecolor
modes). The bitmap and sprite must normally be in the same color depth, but
as a special case you can draw 32 bit RGBA format sprites onto any hicolor or
truecolor bitmap, as long as you call set_alpha_blender() first.

See also:

See Section 15.3 [draw_rle_sprite], page 121.
See Section 15.5 [draw_lit_rle_sprite], page 122.
See Section 14.11 [draw_trans_sprite|, page 116.
See Section 19.5 [color_map], page 140.

See Section 19.11 [set_trans_blender]|, page 143.

122 Allegro Manual

See Section 19.12 [set_alpha_blender], page 144.
See Section 9.10 [bitmap-mask_color], page 83.

15.5 draw_lit_rle_sprite

void draw_lit_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite, int x, vy,
color) ;
Tinted version of draw_rle_sprite(). See the description of draw_lit_sprite().
This must only be used after you have set up the color mapping table (for 256
color modes) or blender functions (for truecolor modes).

See also:

See Section 15.3 [draw_rle_sprite], page 121.

See Section 15.4 [draw_trans_rle_sprite|, page 121.
See Section 14.12 [draw_lit_sprite|, page 116.

See Section 19.5 [color_map], page 140.

See Section 19.11 [set_trans_blender], page 143.
See Section 9.10 [bitmap_mask_color], page 83.

16 Compiled sprites

Compiled sprites are stored as actual machine code instructions that draw a specific image
onto a bitmap, using mov instructions with immediate data values. This is the fastest way
to draw a masked image: on my machine drawing compiled sprites is about five times as fast
as using draw_sprite() with a regular bitmap. Compiled sprites are big, so if memory is tight
you should use RLE sprites instead, and what you can do with them is even more restricted
than with RLE sprites, because they don’t support clipping. If you try to draw one off the
edge of a bitmap, you will corrupt memory and probably crash the system. You can convert
bitmaps into compiled sprites at runtime, or you can create compiled sprite structures in
grabber datafiles by making a new object of type 'Compiled sprite’ or ’"Compiled x-sprite’.

16.1 get_compiled_sprite

COMPILED_SPRITE *get_compiled_sprite(BITMAP *bitmap, int planar);
Creates a compiled sprite based on the specified bitmap (which must be a
memory bitmap). Compiled sprites are device-dependent, so you have to specify
whether to compile it into a linear or planar format. Pass FALSE as the second
parameter if you are going to be drawing it onto memory bitmaps or mode 13h
and SVGA screen bitmaps, and pass TRUE if you are going to draw it onto
mode-X or Xtended mode screen bitmaps.

See also:
See Section 16.3 [draw_compiled_sprite], page 123.
See Section 16.2 [destroy_compiled_sprite|, page 123.

Chapter 17: Text output 123

16.2 destroy_compiled_sprite

void destroy_compiled_sprite(COMPILED_SPRITE *sprite);
Destroys a compiled sprite structure previously returned by
get_compiled_sprite().

See also:
See Section 16.1 [get_compiled_sprite], page 122.

16.3 draw_compiled_sprite

void draw_compiled_sprite(BITMAP *bmp, const COMPILED_SPRITE *sprite, int
X, int y);
Draws a compiled sprite onto a bitmap at the specified position. The sprite
must have been compiled for the correct type of bitmap (linear or planar).
This function does not support clipping.

Hint: if not being able to clip compiled sprites is a problem, a neat trick is to
set up a work surface (memory bitmap, mode-X virtual screen, or whatever) a
bit bigger than you really need, and use the middle of it as your screen. That
way you can draw slightly off the edge without any trouble...

See also:

See Section 16.1 [get_compiled_sprite], page 122.
See Section 14.8 [draw_sprite|, page 114.

See Section 15.3 [draw_rle_sprite], page 121.

See Section 9.10 [bitmap_mask_color], page 83.

17 Text output

Allegro provides text output routines that work with both monochrome and color fonts,
which can contain any number of Unicode character ranges. The grabber program can create
fonts from sets of characters drawn in a bitmap file (see grabber.txt for more information),
and can also import GRX or BIOS format font files. The font structure contains a number of
hooks that can be used to extend it with your own custom drawing code: see the definition
in allegro/text.h for details.

17.1 font

extern FONT *xfont;
A simple 8x8 fixed size font (the mode 13h BIOS default). If you want to alter
the font used by the GUI routines, change this to point to one of your own
fonts. This font contains the standard ASCII (U+20 to U+7F), Latin-1 (U+A1
to U+FF), and Latin Extended-A (U+0100 to U+017F) character ranges.

See also:
See Section 17.4 [textout], page 124.

124 Allegro Manual

See Section 17.8 [textprintf], page 125.

17.2 allegro_404_char

extern int allegro_404_char;
When Allegro cannot find a glyph it needs in a font, it will instead output the
character given in allegro_404_char. By default, this is set to the caret symbol,

I~

See also:
See Section 17.1 [font], page 123.

17.3 text_mode

int text_mode(int mode);
Sets the mode in which text will be drawn. Returns previous mode. If mode is
zero or positive, text output will be opaque and the background of the characters
will be set to color #mode. If mode is negative, text will be drawn transparently
(ie. the background of the characters will not be altered). The default is a mode
of zero.

See also:
See Section 17.4 [textout], page 124.
See Section 17.8 [textprintf], page 125.

17.4 textout

void textout(BITMAP *bmp, const FONT *f, const char *s, int x, y, int
color) ;
Writes the string s onto the bitmap at position x, y, using the current text mode
and the specified font and foreground color. If the color is -1 and a color font
is in use, it will be drawn using the colors from the original font bitmap (the
one you imported into the grabber program), which allows multicolored text
output.

See also:

See Section 17.1
See Section 17.3
See Section 17.5
See Section 17.6
See Section 17.7
See Section 17.8 [textprintf], page 125.
See Section 17.13 [text_height|, page 127.

font], page 123.
text_mode|, page 124.
textout_centre], page 125.
textout_right], page 125.
textout_justify], page 125.

Chapter 17: Text output 125

See Section 17.12 [text_length], page 126.

17.5 textout_centre

void textout_centre(BITMAP *bmp, const FONT *f, const char *s, int x, vy,
color) ;
Like textout(), but interprets the x coordinate as the centre rather than the left
edge of the string.

See also:
See Section 17.4 [textout], page 124.
See Section 17.9 [textprintf_centre], page 126.

17.6 textout_right

void textout_right (BITMAP *bmp, const FONT *f, const char *s, int x, y,
color) ;
Like textout(), but interprets the x coordinate as the right rather than the left
edge of the string.

See also:
See Section 17.4 [textout], page 124.
See Section 17.10 [textprintf_right], page 126.

17.7 textout_justify

void textout_justify(BITMAP *bmp, const FONT *f, const char *s, int x1, int
x2, int y, int diff, int color);
Draws justified text within the region x1-x2. If the amount of spare space is
greater than the diff value, it will give up and draw regular left justified text
instead.

See also:
See Section 17.4 [textout], page 124.
See Section 17.11 [textprintf_justify], page 126.

17.8 textprintf

void textprintf (BITMAP *bmp, const FONT *f, int x, y, color, comnst char
*fmt, ...);
Formatted text output, using a printf() style format string.

See also:
See Section 17.1 [font], page 123.

126 Allegro Manual

See Section 17.3 [text_-mode], page 124.

See Section 17.9 [textprintf_centre], page 126.
See Section 17.10 [textprintf_right], page 126.
See Section 17.11 [textprintf_justify], page 126.
See Section 17.4 [textout], page 124.

See Section 17.13 [text_height], page 127.

See Section 17.12 [text_length], page 126.

17.9 textprintf_centre

void textprintf_centre(BITMAP *bmp, const FONT *f, int x, y, color, const
char *fmt, ...);
Like textprintf(), but interprets the x coordinate as the centre rather than the
left edge of the string.

See also:
See Section 17.8 [textprintf], page 125.
See Section 17.5 [textout_centre|, page 125.

17.10 textprintf_right

void textprintf_right (BITMAP *bmp, const FONT *f, int x, y, color, const
char *fmt, ...);
Like textprintf(), but interprets the x coordinate as the right rather than the
left edge of the string.

See also:
See Section 17.8 [textprintf], page 125.
See Section 17.6 [textout_right], page 125.

17.11 textprintf_justify

void textprintf_justify(BITMAP *bmp, const FONT *f, int x1, int x2, int y,
int diff, int color, const char *fmt, ...);
Like textout_justify, but using a printf() style format string.

See also:
See Section 17.8 [textprintf], page 125.
See Section 17.7 [textout_justify], page 125.

Chapter 18: Polygon rendering 127

17.12 text_length

int text_length(const FONT *f, const char *str);
Returns the length (in pixels) of a string in the specified font.

See also:
See Section 17.13 [text_height|, page 127.

17.13 text_height

int text_height(const FONT *f)
Returns the height (in pixels) of the specified font.

See also:
See Section 17.12 [text_length], page 126.

17.14 destroy_font

void destroy_font (FONT *f);
Frees the memory being used by a font structure.

18 Polygon rendering

18.1 polygon3d

void polygon3d(BITMAP *bmp, int type, BITMAP *texture, int vc, V3D *vtx[]);

void polygon3d_f (BITMAP *bmp, int type, BITMAP *texture, int vc, V3D_f

*vtx[]);
Draw 3d polygons onto the specified bitmap, using the specified rendering mode.
Unlike the regular polygon() function, these routines don’t support concave or
self-intersecting shapes, and they can’t draw onto mode-X screen bitmaps (if
you want to write 3d code in mode-X, draw onto a memory bitmap and then
blit to the screen). The width and height of the texture bitmap must be powers
of two, but can be different, eg. a 64x16 texture is fine, but a 17x3 one is not.
The vertex count parameter (vc) should be followed by an array containing
the appropriate number of pointers to vertex structures: polygon3d() uses the
fixed point V3D structure, while polygon3d_f() uses the floating point V3D_f
structure. These are defined as:

typedef struct V3D

fixed x, y, 2z; - position
fixed u, v; - texture map coordinates
int c; - color

} V3D;

128

Allegro Manual

typedef struct V3D_f

{
float x, y, z; - position
float u, v; - texture map coordinates
int c; - color

} V3D_f;

How the vertex data is used depends on the rendering mode:
The x and y values specify the position of the vertex in 2d screen coordinates.

The z value is only required when doing perspective correct texture mapping,
and specifies the depth of the point in 3d world coordinates.

The u and v coordinates are only required when doing texture mapping, and
specify a point on the texture plane to be mapped on to this vertex. The texture
plane is an infinite plane with the texture bitmap tiled across it. Each vertex
in the polygon has a corresponding vertex on the texture plane, and the image
of the resulting polygon in the texture plane will be mapped on to the polygon
on the screen.

We refer to pixels in the texture plane as texels. Each texel is a block, not just
a point, and whole numbers for u and v refer to the top-left corner of a texel.
This has a few implications. If you want to draw a rectangular polygon and
map a texture sized 32x32 on to it, you would use the texture coordinates (0,0),
(0,32), (32,32) and (32,0), assuming the vertices are specified in anticlockwise
order. The texture will then be mapped perfectly on to the polygon. However,
note that when we set u=32, the last column of texels seen on the screen is the
one at u=31, and the same goes for v. This is because the coordinates refer to
the top-left corner of the texels. In effect, texture coordinates at the right and
bottom on the texture plane are exclusive.

There is another interesting point here. If you have two polygons side by side
sharing two vertices (like the two parts of folded piece of cardboard), and you
want to map a texture across them seamlessly, the values of u and v on the
vertices at the join will be the same for both polygons. For example, if they are
both rectangular, one polygon may use (0,0), (0,32), (32,32) and (32,0), and
the other may use (32,0), (32,32), (64,32), (64,0). This would create a seamless
join.

Of course you can specify fractional numbers for u and v to indicate a point
part-way across a texel. In addition, since the texture plane is infinite, you can
specify larger values than the size of the texture. This can be used to tile the
texture several times across the polygon.

The c value specifies the vertex color, and is interpreted differently by various
rendering modes.

The type parameter specifies the polygon rendering mode, and can be any of
the values:

POLYTYPE_FLAT:
A simple flat shaded polygon, taking the color from the c value of the first

Chapter 18: Polygon rendering 129

vertex. This polygon type is affected by the drawing_mode() function, so it can
be used to render XOR or translucent polygons.

POLYTYPE_GCOL:

A single-color gouraud shaded polygon. The colors for each vertex are taken
from the ¢ value, and interpolated across the polygon. This is very fast, but
will only work in 256 color modes if your palette contains a smooth gradient
between the colors. In truecolor modes it interprets the color as a packed,
display-format value as produced by the makecol() function.

POLYTYPE_GRGB:

A gouraud shaded polygon which interpolates RGB triplets rather than a single
color. In 256 color modes this uses the global rgb_map table to convert the result
to an 8 bit paletted color, so it must only be used after you have set up the RGB
mapping table! The colors for each vertex are taken from the ¢ value, which is
interpreted as a 24 bit RGB triplet (0xFF0000 is red, 0x00FF00 is green, and
0x0000FF is blue).

POLYTYPE_ATEX:

An affine texture mapped polygon. This stretches the texture across the poly-
gon with a simple 2d linear interpolation, which is fast but not mathematically
correct. It can look ok if the polygon is fairly small or flat-on to the camera, but
because it doesn’t deal with perspective foreshortening, it can produce strange
warping artifacts. To see what I mean, run test.exe and see what happens to
the polygon3d() test when you zoom in very close to the cube.

POLYTYPE_PTEX:

A perspective-correct texture mapped polygon. This uses the z value from
the vertex structure as well as the u/v coordinates, so textures are displayed
correctly regardless of the angle they are viewed from. Because it involves
division calculations in the inner texture mapping loop, this mode is a lot
slower than POLYTYPE_ATEX, and it uses floating point so it will be very
slow on anything less than a Pentium (even with an FPU, a 486 can’t overlap
floating point division with other integer operations like the Pentium can).

POLYTYPE_ATEX_MASK:

POLYTYPE_PTEX_MASK:

Like POLYTYPE_ATEX and POLYTYPE_PTEX, but zero texture map pixels
are skipped, allowing parts of the texture map to be transparent.

POLYTYPE_ATEX_LIT:

POLYTYPE_PTEX_LIT:

Like POLYTYPE_ATEX and POLYTYPE_PTEX, but the global color_map
table (for 256 color modes) or blender function (for non-MMX truecolor modes)
is used to blend the texture with a light level taken from the c value in the vertex
structure. This must only be used after you have set up the color mapping table
or blender functions!

POLYTYPE_ATEX_MASK_LIT:

POLYTYPE_PTEX_MASK_LIT:

Like POLYTYPE_ATEX_LIT and POLYTYPE_PTEX_LIT, but zero texture
map pixels are skipped, allowing parts of the texture map to be transparent.

130

See also:

Allegro Manual

POLYTYPE_ATEX_TRANS:

POLYTYPE_PTEX_TRANS:

Render translucent textures. All the general rules for drawing translucent things
apply. However, these modes have a major limitation: they only work with
memory bitmaps or linear frame buffers (not with banked frame buffers). Don’t
even try, they do not check and your program will die horribly (or at least draw
wrong things).

POLYTYPE_ATEX_MASK_TRANS:

POLYTYPE_PTEX_MASK_TRANS:

Like POLYTYPE_ATEX_TRANS and POLYTYPE_PTEX_TRANS, but zero
texture map pixels are skipped.

If the CPU_MMX flag of the cpu_capabilities global variable is set, the GRGB
and truecolor *LIT routines will be optimised using MMX instructions. If the
CPU_3DNOW flag is set, the truecolor PTEX*LIT routines will take advantage
of the 3DNow! CPU extensions.

Using MMX for *LIT routines has a side effect: normally (without MMX), these
routines use the blender functions used also for other lighting functions, set with
set_trans_blender() or set_blender_mode(). The MMX versions only use the
RGB value passed to set_trans_blender() and do the linear interpolation them-
selves. Therefore a new set of blender functions passed to set_blender_mode()
is ignored.

See Section 18.2 [triangle3d], page 130.
See Section 18.3 [quad3d], page 131.

See Section 13.10 [polygon|, page 107.

See Section 18.5 [clip3d], page 131.

See Section 1.21 [cpu_capabilities], page 7.

18.2 triangle3d

void triangle3d(BITMAP *bmp, int type, BITMAP *tex, V3D *vl, *v2, *v3);
void triangle3d_f (BITMAP *bmp, int type, BITMAP *tex, V3D_f xvl, *v2, *v3);

See also:

Draw 3d triangles, using either fixed or floating point vertex structures. Un-
like quad3d]_f], triangle3d[-f] functions are not wrappers of polygon3d|[_f]. The
triangle3d[_f] functions use their own routines taking into account the constant-
ness of the gradients. Therefore triangle3d[_f](bmp, type, tex, v1, v2, v3) is
faster than polygon3d[_f](bmp, type, tex, 3, v[]).

See Section 18.1 [polygon3d], page 127.
See Section 18.3 [quad3d], page 131.
See Section 13.9 [triangle], page 107.

Chapter 18: Polygon rendering 131

18.3 quad3d

void quad3d(BITMAP *bmp, int type, BITMAP x*tex, V3D *vl, *v2, *v3, *v4);

void quad3d_f (BITMAP *bmp, int type, BITMAP *tex, V3D_f #*vl, *v2, *v3,

*v4) ;
Draw 3d quads, using either fixed or floating point vertex structures. These are
equivalent to calling polygon3d(bmp, type, tex, 4, v[]); or polygon3d_f(bmp,
type, tex, 4, v[]);

See also:
See Section 18.1 [polygon3d], page 127.
See Section 18.2 [triangle3d], page 130.

18.4 clip3d_f

int clip3d_f(int type, float min_z, float max_z, int vc, const V3D_f

*xvtx[], V3D_f *vout[], V3D_f *vtmp[], int out[]);
Clips the polygon given in vtx. The number of vertices is vc, the result goes in
vout, and vtmp and out are needed for internal purposes. The pointers in vtx,
vout and vtmp must point to valid V3D_f structures. As additional vertices
may appear in the process of clipping, so the size of vout, vtmp and out should
be at least vc * (1.5 ~ n), where n is the number of clipping planes (5 or 6),
and '~ denotes "to the power of". The frustum (viewing volume) is defined by
-2<x<z, -z<y<z, 0<min_z<z<max_z. If max_z<=min_z, the z<max_z clipping is
not done. As you can see, clipping is done in the camera space, with perspective
in mind, so this routine should be called after you apply the camera matrix, but
before the perspective projection. The routine will correctly interpolate u, v,
and c in the vertex structure. However, no provision is made for high/truecolor
GCOL.

See also:

See Section 18.1 [polygon3d], page 127.
See Section 18.5 [clip3d], page 131.

18.5 clip3d

int clip3d(int type, fixed min_z, fixed max_z, int vc, const V3D *vtx[],

V3D *vout[], V3D *vtmp[], int out[]);
Fixed point version of clip3d_f(). This function should be used with caution, due
to the limited precision of fixed point arithmetic and high chance of rounding
errors: the floating point code is better for most situations.

See also:
See Section 18.1 [polygon3d], page 127.
See Section 18.4 [clip3d_f], page 131.

132 Allegro Manual

18.6 zbuffered rendering

A Z-buffer stores the depth of each pixel that is drawn on a viewport. When a 3D object
is rendered, the depth of each of its pixels is compared against the value stored into the
Z-buffer: if the pixel is closer it is drawn, otherwise it is skipped.

No polygon sorting is needed. However, backface culling should be done because it prevents
many invisible polygons being compared against the Z-buffer. Z-buffered rendering is the
only algorithm supported by Allegro that directly solves penetrating shapes (see example
exzbuf.c, for instance). The price to pay is more complex (and slower) routines.

Z-buffered polygons are designed as an extension of the normal POLYTYPE_* rendering
styles. Just OR the POLYTYPE with the value POLYTYPE_ZBUF, and the normal
polygon3d(), polygon3d_f(), quad3d(), etc. functions will render z-buffered polygons.

Example:

polygon3d(bmp, POLYTYPE_ATEX | POLYTYPE_ZBUF, tex, vc, vtx);
Of course, the z coordinates have to be valid regardless of rendering style.

A Z-buffered rendering procedure looks like a double-buffered rendering procedure. You
should follow four steps: create a Z-buffer at the beginning of the program and make the
library use it by calling set_zbuffer(). Then, for each frame, clear the Z-buffer and draw
polygons with POLYTYPE_* | POLYTYPE_ZBUF and finally destroy the Z-buffer when

leaving the program.
Notes on Z-buffered renderers:

e Unlike the normal POLYTYPE_FLAT renderers, the Z-buffered ones don’t use the
hline() routine. Therefore DRAW_MODE has no effect.

e The *LIT* routines work the traditional way - through the set of blender routines.

e All the Z-buffered routines are much slower than their normal counterparts (they all
use the FPU to interpolate and test 1/z values).

18.7 create_zbuffer

ZBUFFER *create_zbuffer (BITMAP *bmp) ;
Creates a Z-buffer using the size of the BITMAP you are planning to draw on.
Several Z-buffers can be defined but only one can be used at the same time, so
you must call set_zbuffer() to make this Z-buffer active.

See also:

See Section 18.8 [create_sub_zbuffer], page 133.
See Section 18.9 [set_zbuffer|, page 133.

See Section 18.10 [clear_zbuffer], page 133.

See Section 18.11 [destroy_zbuffer|, page 134.

Chapter 18: Polygon rendering 133

18.8 create_sub_zbuffer

ZBUFFER *create_sub_zbuffer (ZBUFFER #*parent, int x, int y, int width, int

height) ;

See also:

Creates a sub-z-buffer, ie. a z-buffer sharing drawing memory with a pre-
existing z-buffer, but possibly with a different size. The same rules as for
sub-bitmaps apply: the sub-z-buffer width and height can extend beyond the
right and bottom edges of the parent (they will be clipped), but the origin point
must lie within the parent region.

When drawing z-buffered to a bitmap, the top left corner of the bitmap is
always mapped to the top left corner of the current z-buffer. So this function is
primarily useful if you want to draw to a sub-bitmap and use the corresponding
sub-area of the z-buffer. In other cases, eg. if you just want to draw to a sub-
bitmap of screen (and not to other parts of screen), then you would usually
want to create a normal z-buffer (not sub-z-buffer) the size of the visible screen.
You don’t need to first create a z-buffer the size of the virtual screen and then
a sub-z-buffer of that.

See Section 18.7 [create_zbuffer], page 132.

See Section 9.4 [create_sub_bitmap|, page 81.
See Section 18.11 [destroy_zbuffer|, page 134.

18.9 set_zbuffer
void set_zbuffer (ZBUFFER *zbuf) ;

See also:

Makes the given Z-buffer be the active one. This should have been previously
created with create_zbuffer().

See Section 18.7 [create_zbuffer], page 132.
See Section 18.10 [clear_zbuffer|, page 133.
See Section 18.11 [destroy_zbuffer], page 134.

18.10 clear_zbuffer
void clear_zbuffer (ZBUFFER *zbuf, float z);

See also:

Writes z into the given Z-buffer (0 means far away). This function should be
used to initialize the Z-buffer before each frame. Actually, low-level routines
compare depth of the current pixel with 1/z: for example, if you want to clip
polygons farther than 10, you must call clear_zbuffer(zbuf, 0.1);

See Section 18.7 [create_zbuffer], page 132.
See Section 18.9 [set_zbuffer], page 133.

134

Allegro Manual

See Section 18.11 [destroy_zbuffer], page 134.

18.11 destroy_zbuffer
void destroy_zbuffer (ZBUFFER *zbuf) ;

Destroys the Z-buffer when you are finished with it.

See also:

See Section 18.7 [create_zbuffer], page 132.
See Section 18.9 [set_zbuffer|, page 133.
See Section 18.10 [clear_zbuffer], page 133.

18.12 scene rendering

Allegro provides two simple approaches to remove hidden surfaces:

Z-buffering - (see above)

Scan-line algorithms - along each scanline on your screen, you keep track of what
polygons you are "in" and which is the nearest. This status changes only where the
scanline crosses some polygon edge. So you have to juggle an edge list and a polygon
list. And you have to sort the edges for each scanline (this can be countered by keeping
the order of the previous scanline - it won’t change much). The BIG advantage is
that you write each pixel only once. If you have a lot of overlapping polygons you can
get incredible speeds compared to any of the previous algorithms. This algorithm is
covered by the *_scene routines.

The scene rendering has approximately the following steps:

Initialize the scene (set the clip area, clear the bitmap, blit a background, etc.)
Call clear_scene().

Transform all your points to camera space.

Clip polygons.

Project with persp_project() or persp_project_f().

"Draw" polygons with scene_polygon3d() and/or scene_polygon3d_f(). This doesn’t
do any actual drawing, only initializes tables.

Render all the polygons defined previously to the bitmap with render_scene().
Overlay some non-3D graphics.

Show the bitmap (blit it to screen, flip the page, etc).

For each horizontal line in the viewport an x-sorted edge list is used to keep track of what
polygons are "in" and which is the nearest. Vertical coherency is used - the edge list for
a scanline is sorted starting from the previous one - it won’t change much. The scene
rendering routines use the same low-level asm routines as normal polygon3d().

Notes on scene rendering:

Chapter 18: Polygon rendering 135

e Unlike polygon3d(), scene_polygon3d() requires valid z coordinates for all vertices,
regardless of rendering style (unlike polygon3d(), which only uses z coordinate for
*PTEX™).

e All polygons passed to scene_polygon3d() have to be persp_project()’ed.

e After render_scene() the mode is reset to SOLID.

Using a lot of *MASK* polygons drastically reduces performance, because when a MASKed

polygon is the first in line of sight, the polygons underneath have to be drawn too. The
same applies to FLAT polygons drawn with DRAW_MODE_TRANS.

Z-buffered rendering works also within the scene renderer. It may be helpful when you have
a few intersecting polygons, but most of the polygons may be safely rendered by the normal
scanline sorting algo. Same as before: just OR the POLYTYPE with POLYTYPE_ZBUF.
Also, you have to clear the z-buffer at the start of the frame. Example:

clear_scene(buffer);
if (some_polys_are_zbuf) clear_zbuffer(0.);
while (polygons) {

if (this_poly_is_zbuf) type |= POLYTYPE_ZBUF;
scene_polygon3d(type, tex, vc, vtx);
}

render_scene() ;

18.13 create_scene

int create_scene(int nedge, int npoly);
Allocates memory for a scene, nedge and npoly are your estimates of how many
edges and how many polygons you will render (you cannot get over the limit
specified here). If you use same values in succesive calls, the space will be reused
(no new malloc()).

The memory allocated is a little less than 150 * (nedge + npoly) bytes. Returns
zero on success, or a negative number if allocations fail.

See also:
See Section 18.16 [scene_polygon3d], page 136.
See Section 18.17 [render_scene], page 137.

[

[
See Section 18.14 [clear_scene], page 135.
See Section 18.15 [destroy_scene], page 136.
[

See Section 18.18 [scene_gap]|, page 137.
See Section 18.7 [create_zbuffer], page 132.

18.14 clear_scene

void clear_scene(BITMAP *bmp) ;
Initializes a scene. The bitmap is the bitmap you will eventually render on.

136

See also:

Allegro Manual

See Section 18.13 [create_scene], page 135.

See Section 18.16 [scene_polygon3d], page 136.

See Section 18.15 [destroy_scene], page 136.

[
[
See Section 18.17 [render_scene], page 137.
[
[

See Section 18.18 [scene_gap], page 137.

18.15 destroy_scene

void destroy_scene();

See also:

Deallocate memory previously allocated by create_scene.

See Section 18.13 [create_scene], page 135.

See Section 18.16 [scene_polygon3d], page 136.

See Section 18.17 [render_scene], page 137.

[
[
See Section 18.14 [clear_scene], page 135.
[
[

See Section 18.18 [scene_gap]|, page 137.

18.16 scene_polygon3d

int scene_polygon3d(int type, BITMAP *texture, int vc, V3D *vtx[]);

int scene_polygon3d_f(int type, BITMAP *texture, int vc, V3D_f *vtx[]);

Puts a polygon in the rendering list. Nothing is really rendered at this moment.
Should be called between clear_scene() and render_scene().

Arguments are the same as for polygon3d(), except the bitmap is missing. The
one passed to clear_scene() will be used.

Unlike polygon3d(), the polygon may be concave or self-intersecting. Shapes
that penetrate one another may look OK, but they are not really handled by
this code.

Note that the texture is stored as a pointer only, and you should keep the actual
bitmap around until render_scene(), where it is used.

Since the FLAT style is implemented with the low-level hline() funtion, the
FLAT style is subject to DRAW_MODEs. All these modes are valid. Along
with the polygon, this mode will be stored for the rendering moment, and
also all the other related variables (color_map pointer, pattern pointer, anchor,
blender values).

The settings of the CPU_MMX and CPU_3DNOW flags of the cpu_capabilities
global variable on entry in this routine affect the choice of low-level asm routine
that will be used by render_scene() for this polygon.

Returns zero on success, or a negative number if it won’t be rendered for lack
of a rendering routine.

Chapter 18: Polygon rendering 137

See also:

See Section 18.13 [create_scene], page 135.

See Section 18.17

render_scene|, page 137.

[

See Section 18.14 [clear_scene], page 135.
[
[

See Section 18.15 [destroy_scene], page 136.

See Section 18.1 [polygon3d], page 127.

See Section 1.21 [cpu-capabilities], page 7.

18.17 render_scene

void render_scene();

See also:

Renders all the specified scene_polygon3d()’s on the bitmap passed to
clear_scene(). Rendering is done one scanline at a time, with no pixel being
processed more than once.

Note that between clear_scene() and render_scene() you shouldn’t change the
clip rectangle of the destination bitmap. For speed reasons, you should set the
clip rectangle to the minimum.

Note also that all the textures passed to scene_polygon3d() are stored as point-
ers only and actually used in render_scene().

See Section 18.13 [create_scene], page 135.

See Section 18.14 [clear_scene], page 135.

See Section 18.18 [scene_gap], page 137.

[
[
See Section 18.15 [destroy_scene], page 136.
[
[

See Section 18.16 [scene_polygon3d], page 136.

18.18 scene_gap

extern float scene_gap;

This number (default value = 100.0) controls the behaviour of the z-sorting
algorithm. When an edge is very close to another’s polygon plane, there is an
interval of uncertainty in which you cannot tell which object is visible (which
z is smaller). This is due to cumulative numerical errors for edges that have
undergone a lot of transformations and interpolations.

The default value means that if the 1/z values (in projected space) differ by
only 1/100 (one percent), they are considered to be equal and the x-slopes of
the planes are used to find out which plane is getting closer when we move to
the right.

Larger values means narrower margins, and increasing the chance of missing
true adjacent edges/planes. Smaller values means larger margins, and increas-
ing the chance of mistaking close polygons for adjacent ones. The value of 100

138 Allegro Manual

is close to the optimum. However, the optimum shifts slightly with resolution,
and may be application-dependent. It is here for you to fine-tune.

See also:

See Section 18.13 [create_scene], page 135.

See Section 18.14 [clear_scene], page 135.

See Section 18.15 [destroy_scene], page 136.
See Section 18.17 [render_scene], page 137.
See Section 18.16 [scene_polygon3d], page 136.

19 Transparency and patterned drawing

19.1 drawing_mode

void drawing mode(int mode, BITMAP *pattern, int x_anchor, int y_anchor);
Sets the graphics drawing mode. This only affects the geometric routines like
putpixel, lines, rectangles, circles, polygons, floodfill, etc, not the text output,
blitting, or sprite drawing functions. The mode should be one of the following

constants:

DRAW_MODE_SOLID - the default, solid color
drawing

DRAW_MODE_XOR - exclusive-or drawing
DRAW_MODE_COPY_PATTERN - multicolored pattern fill
DRAW_MODE_SOLID_PATTERN - single color pattern fill
DRAW_MODE_MASKED_PATTERN - masked pattern fill
DRAW_MODE_TRANS - translucent color blending

In DRAW_MODE_SOLID, pixels of the bitmap being drawn onto are simply
replaced by those produced by the drawing function.

In DRAW_MODE_XOR, pixels are written to the bitmap with an exclusive-
or operation rather than a simple copy, so drawing the same shape twice will
erase it. Because it involves reading as well as writing the bitmap memory, xor
drawing is a lot slower than the normal replace mode.

With the patterned modes, you provide a pattern bitmap which is tiled across
the surface of the shape. Allegro stores a pointer to this bitmap rather than
copying it, so you must not destroy the bitmap while it is still selected as the
pattern. The width and height of the pattern must be powers of two, but they
can be different, eg. a 64x16 pattern is fine, but a 17x3 one is not. The pattern
is tiled in a grid starting at point (x_anchor, y_anchor). Normally you should
just pass zero for these values, which lets you draw several adjacent shapes and
have the patterns meet up exactly along the shared edges. Zero alignment may
look peculiar if you are moving a patterned shape around the screen, however,
because the shape will move but the pattern alignment will not, so in some
situations you may wish to alter the anchor position.

Chapter 19: Transparency and patterned drawing 139

See also:

When you select DRAW_MODE_COPY_PATTERN, pixels are simply copied
from the pattern bitmap onto the destination bitmap. This allows the use of
multicolored patterns, and means that the color you pass to the drawing routine
is ignored. This is the fastest of the patterned modes.

In DRAW_MODE_SOLID_PATTERN, each pixel in the pattern bitmap is com-
pared with the mask color, which is zero in 256 color modes or bright pink for
truecolor data (maximum red and blue, zero green). If the pattern pixel is
solid, a pixel of the color you passed to the drawing routine is written to the
destination bitmap, otherwise a zero is written. The pattern is thus treated as
a monochrome bitmask, which lets you use the same pattern to draw different
shapes in different colors, but prevents the use of multicolored patterns.

DRAW_MODE_MASKED_PATTERN is almost the same as
DRAW_MODE_SOLID_PATTERN, but the masked pixels are skipped rather
than being written as zeros, so the background shows through the gaps.

In DRAW_MODE_TRANS, the global color_map table or truecolor blender
functions are used to overlay pixels on top of the existing image. This must
only be used after you have set up the color mapping table (for 256 color modes)
or blender functions (for truecolor modes). Because it involves reading as well
as writing the bitmap memory, translucent drawing is very slow if you draw
directly to video RAM, so wherever possible you should use a memory bitmap
instead.

See Section 19.2 [xor_mode], page 139.
See Section 19.3 [solid-mode], page 139.
See Section 19.5 [color_map], page 140.

See Section 19.11 [set_trans_blender], page 143.

19.2 xor_mode

void xor_mode(int on);

See also:

This is a shortcut for toggling xor drawing mode on and off. Calling
xor_mode(TRUE) is equivalent to drawing.mode (DRAW_MODE_XOR,
NULL, 0, 0); Calling xor.mode(FALSE) is equivalent to draw-
ing_mode(DRAW_MODE_SOLID, NULL, 0, 0);

See Section 19.1 [drawing_mode], page 138.

19.3 solid_mode

void solid_mode();

This is a shortcut for selecting solid drawing mode. It is equivalent to calling
drawing_mode(DRAW_MODE_SOLID, NULL, 0, 0);

140 Allegro Manual

See also:

See Section 19.1 [drawing_mode], page 138.

19.4 256 color transparency

In paletted video modes, translucency and lighting are implemented with a 64k lookup
table, which contains the result of combining any two colors ¢l and ¢2. You must set up
this table before you use any of the translucency or lighting routines. Depending on how you
construct the table, a range of different effects are possible. For example, translucency can
be implemented by using a color halfway between c1 and c2 as the result of the combination.
Lighting is achieved by treating one of the colors as a light level (0-255) rather than a
color, and setting up the table appropriately. A range of specialised effects are possible, for
instance replacing any color with any other color and making individual source or destination
colors completely solid or invisible.

Color mapping tables can be precalculated with the colormap utility, or generated at run-
time. The COLOR_MAP structure is defined as:

typedef struct {
unsigned char data[PAL_SIZE] [PAL_SIZE];
} COLOR_MAP;

19.5 color_map

extern COLOR_MAP *color_map;
Global pointer to the color mapping table. This must be set before using any
translucent or lit drawing functions in a 256 color video mode!

See also:

See Section 19.8 [create_color_table], page 141.
See Section 19.7 [create_light_table], page 141.

See Section 19.6 [create_trans_table], page 140.
See Section 19.9 [create_blender_table], page 142.
See Section 19.11 [set_trans_blender]|, page 143.
See Section 14.11 [draw_trans_sprite|, page 116.
See Section 14.12 [draw_lit_sprite|, page 116.

See Section 14.13 [draw_gouraud_sprite], page 117.
See Section 19.1 [drawing_mode|, page 138.

19.6 create_trans_table

void create_trans_table(COLOR_MAP *table, const PALETTE pal, int r, g, b,
void (*callback) (int pos));
Fills the specified color mapping table with lookup data for doing translucency
effects with the specified palette. When combining the colors ¢l and c¢2 with

Chapter 19: Transparency and patterned drawing 141

See also:

this table, the result will be a color somewhere between the two. The r, g, and b
parameters specify the solidity of each color component, ranging from 0 (totally
transparent) to 255 (totally solid). For 50% solidity, pass 128. This function
treats source color #0 as a special case, leaving the destination unchanged
whenever a zero source pixel is encountered, so that masked sprites will draw
correctly. If the callback function is not NULL, it will be called 256 times during
the calculation, allowing you to display a progress indicator.

See Section 19.5 [color_map], page 140.

See Section 19.7
See Section 19.8

create_light_table], page 141.
create_color_table], page 141.

[
[
[
[

See Section 19.9 [create_blender_table|, page 142.

See Section 14.11 [draw_trans_sprite|, page 116.

[
See Section 14.12 [draw_lit_sprite|, page 116.
[

See Section 14.13 [draw_gouraud_sprite], page 117.

19.7 create_light_table

void create_light_table(COLOR_MAP *table, const PALETTE pal, int r, g, b,
void (*callback) (int pos));

See also:

Fills the specified color mapping table with lookup data for doing lighting effects
with the specified palette. When combining the colors c1 and ¢2 with this table,
cl is treated as a light level from 0-255. At light level 255 the table will output
color ¢2 unchanged, at light level 0 it will output the r, g, b value you specify to
this function, and at intermediate light levels it will output a color somewhere
between the two extremes. The r, g, and b values are in the range 0-63. If the
callback function is not NULL, it will be called 256 times during the calculation,
allowing you to display a progress indicator.

See Section 19.5 [color_map], page 140.

See Section 19.6
See Section 19.8

create_trans_table|, page 140.
create_color_table], page 141.

[
[
[
[

See Section 19.9 [create_blender_table|, page 142.

See Section 14.11 [draw_trans_sprite|, page 116.

[
See Section 14.12 [draw_lit_sprite|, page 116.
[

See Section 14.13 [draw_gouraud_sprite], page 117.

142

Allegro Manual

19.8 create_color_table

void create_color_table(COLOR_MAP *table, const PALETTE pal, void
(*blend) (PALETTE pal, int x, int y, RGB *rgb), void (*callback) (int pos));

See also:

Fills the specified color mapping table with lookup data for doing customised
effects with the specified palette, calling the blend function to determine the
results of each color combination. Your blend routine will be passed a pointer
to the palette and the two colors which are to be combined, and should fill
in the RGB structure with the desired result in 0-63 format. Allegro will then
search the palette for the closest match to the RGB color that you requested, so
it doesn’t matter if the palette has no exact match for this color. If the callback
function is not NULL, it will be called 256 times during the calculation, allowing
you to display a progress indicator.

See Section 19.5 [color_map], page 140.

See Section 19.7 [create_light_table|, page 141.
[
[

See Section 19.6

create_trans_table], page 140.

See Section 19.9 [create_blender_table], page 142.

See Section 14.11 [draw_trans_sprite|, page 116.

[
See Section 14.12 [draw_lit_sprite], page 116.
[

See Section 14.13 [draw_gouraud_sprite], page 117.

19.9 create_blender_table

void create_blender_table(COLOR_MAP *table, const PALETTE pal, void
(*callback) (int pos));

See also:

Fills the specified color mapping table with lookup data for doing a palet-
ted equivalent of whatever truecolor blender mode is currently selected. After
calling set_trans_blender(), set_blender_mode(), or any of the other truecolor
blender mode routines, you can use this function to create an 8 bit mapping
table that will have the same results as whatever 24 bit blending mode you have
enabled.

See Section 19.5 [color_map], page 140.

See Section 19.7

create_light_table|, page 141.

[
[

See Section 19.6 [create_trans_table], page 140.
[

See Section 19.8 [create_color_table], page 141.

See Section 14.11 [draw_trans_sprite], page 116.

See Section 14.12
See Section 14.13

draw_lit_sprite], page 116.
draw_gouraud_sprite|, page 117.

[
[
[
[

See Section 19.11 [set_trans_blender]|, page 143.

Chapter 19: Transparency and patterned drawing 143

See Section 19.26 [set_blender_mode], page 148.

19.10 truecolor transparency

In truecolor video modes, translucency and lighting are implemented by a blender function
of the form:

unsigned long (*BLENDER_FUNC) (unsigned long x, y, n);
For each pixel to be drawn, this routine is passed two color parameters x and y, decomposes
them into their red, green and blue components, combines them according to some mathe-
matical transformation involving the interpolation factor n, and then merges the result back
into a single return color value, which will be used to draw the pixel onto the destination
bitmap.
The parameter x represents the blending modifier color and the parameter y represents the
base color to be modified. The interpolation factor n is in the range [0-255] and controls
the solidity of the blending.
When a translucent drawing function is used, x is the color of the source, y is the color of
the bitmap begin drawn onto and n is the alpha level that was passed to the function that
sets the blending mode (the RGB triplet that was passed to this function is not taken into
account).
When a lit sprite drawing function is used, x is the color represented by the RGB triplet
that was passed to the function that sets the blending mode (the alpha level that was passed
to this function is not taken into account), y is the color of the sprite and n is the alpha
level that was passed to the drawing function itself.
Since these routines may be used from various different color depths, there are three such
callbacks, one for use with 15 bit 5.5.5 pixels, one for 16 bit 5.6.5 pixels, and one for 24 bit
8.8.8 pixels (this can be shared between the 24 and 32 bit code since the bit packing is the
same).

19.11 set_trans_blender

void set_trans_blender(int r, int g, int b, int a);
Enables a linear interpolator blender mode for combining translucent or lit
truecolor pixels.

See also:

See Section 19.26 [set_blender_mode]|, page 148.

See Section 19.12 [set_alpha_blender], page 144.

See Section 19.13 [set_write_alpha_blender], page 144.
See Section 19.5 [color_map], page 140.

See Section 14.11 [draw_trans_sprite], page 116.

See Section 14.12 [draw_lit_sprite], page 116.

See Section 19.1 [drawing_mode], page 138.

See Section 19.14 [set_add_blender|, page 145.

144

Allegro Manual

See Section 19.15 [set_burn_blender|, page 145.

See Section 19.16 [set_color_blender]|, page 145.
See Section 19.17 [set_difference_blender], page 145.

See Section 19.18 [set_dissolve_blender|, page 146.
See Section 19.19 [set_dodge_blender], page 146.

See Section 19.21 [set_invert_blender], page 146.

See Section 19.22 [set_luminance_blender], page 147.

See Section 19.23 [set_multiply_blender|, page 147.

See Section 19.24 [set_saturation_blender|, page 147.

[
[
[
[
[
See Section 19.20 [set_hue_blender], page 146.
[
[
[
[
[

See Section 19.25 [set_screen_blender|, page 147.

19.12 set_alpha_blender
void set_alpha_blender();

See also:

Enables the special alpha-channel blending mode, which is used for drawing 32
bit RGBA sprites. After calling this function, you can use draw_trans_sprite()
or draw_trans_rle_sprite() to draw a 32 bit source image onto any hicolor or
truecolor destination. The alpha values will be taken directly from the source
graphic, so you can vary the solidity of each part of the image. You can’t use
any of the normal translucency functions while this mode is active, though, so
you should reset to one of the normal blender modes (eg. set_trans_blender())
before drawing anything other than 32 bit RGBA sprites.

See Section 19.11 [set_trans_blender]|, page 143.
See Section 14.11 [draw_trans_sprite|, page 116.

See Section 15.4 [draw_trans_rle_sprite|, page 121.

See Section 19.13 [set_write_alpha_blender|, page 144.

19.13 set_write_alpha_blender

void set_write_alpha_blender();

Enables the special alpha-channel editing mode, which is used for drawing alpha
channels over the top of an existing 32 bit RGB sprite, to turn it into an RGBA
format image. After calling this function, you can set the drawing mode to
DRAW_MODE_TRANS and then write draw color values (0-255) onto a 32
bit image. This will leave the color values unchanged, but alter the alpha to
whatever values you are writing. After enabling this mode you can also use
draw_trans_sprite() to superimpose an 8 bit alpha mask over the top of an
existing 32 bit sprite.

Chapter 19: Transparency and patterned drawing 145

See also:

See Section 19.12 [set_alpha_blender], page 144.
See Section 14.11 [draw_trans_sprite|, page 116.
See Section 19.1 [drawing_mode|, page 138.

19.14 set_add_blender

void set_add_blender(int r, int g, int b, int a);
Enables an additive blender mode for combining translucent or lit truecolor
pixels.

See also:
See Section 19.11 [set_trans_blender], page 143.
See Section 19.1 [drawing_mode|, page 138.

19.15 set_burn_blender

void set_burn_blender(int r, int g, int b, int a);
Enables a burn blender mode for combining translucent or lit truecolor pixels.
Here the lightness values of the colours of the source image reduce the lightness
of the destination image, darkening the image.

See also:
See Section 19.11 [set_trans_blender], page 143.
See Section 19.1 [drawing_mode|, page 138.

19.16 set_color_blender

void set_color_blender(int r, int g, int b, int a);
Enables a color blender mode for combining translucent or lit truecolor pixels.
Applies only the hue and saturation of the source image to the destination
image. The luminance of the destination image is not affected.

See also:
See Section 19.11 [set_trans_blender], page 143.
See Section 19.1 [drawing_mode|, page 138.

19.17 set_difference_blender

void set_difference_blender(int r, int g, int b, int a);
Enables a difference blender mode for combining translucent or lit truecolor
pixels. This makes an image which has colours calculated by the difference
between the source and destination colours.

146 Allegro Manual

See also:
See Section 19.11 [set_trans_blender]|, page 143.
See Section 19.1 [drawing_mode], page 138.

19.18 set_dissolve_blender

void set_dissolve_blender(int r, int g, int b, int a);
Enables a dissolve blender mode for combining translucent or lit truecolor pixels.
Randomly replaces the colours of some pixels in the destination image with
those of the source image. The number of pixels replaced depends on the alpha
value (higher value, more pixels replaced; you get the idea :).

See also:
See Section 19.11 [set_trans_blender], page 143.
See Section 19.1 [drawing_mode], page 138.

19.19 set_dodge_blender

void set_dodge_blender(int r, int g, int b, int a);
Enables a dodge blender mode for combining translucent or lit truecolor pixels.
The lightness of colours in the source lighten the colours of the destination.
White has the most effect; black has none.

See also:
See Section 19.11 [set_trans_blender]|, page 143.
See Section 19.1 [drawing_mode|, page 138.

19.20 set_hue_blender

void set_hue_blender(int r, int g, int b, int a);
Enables a hue blender mode for combining translucent or lit truecolor pixels.
This applies the hue of the source to the destination.

See also:
See Section 19.11 [set_trans_blender]|, page 143.
See Section 19.1 [drawing_mode|, page 138.

19.21 set_invert_blender

void set_invert_blender(int r, int g, int b, int a);
Enables an invert blender mode for combining translucent or lit truecolor pixels.
Blends the inverse (or negative) colour of the source with the destination.

Chapter 19: Transparency and patterned drawing 147

See also:
See Section 19.11 [set_trans_blender]|, page 143.
See Section 19.1 [drawing_mode], page 138.

19.22 set_luminance_blender

void set_luminance_blender(int r, int g, int b, int a);
Enables a luminance blender mode for combining translucent or lit truecolor
pixels. Applies the luminance of the source to the destination. The colour of
the destination is not affected.

See also:
See Section 19.11 [set_trans_blender]|, page 143.
See Section 19.1 [drawing_mode|, page 138.

19.23 set_multiply_blender

void set_multiply_blender(int r, int g, int b, int a);
Enables a multiply blender mode for combining translucent or lit truecolor
pixels. Combines the source and destination images, multiplying the colours to
produce a darker colour. If a colour is multiplied by white it remains unchanged;
when multiplied by black it also becomes black.

See also:

See Section 19.11 [set_trans_blender]|, page 143.
See Section 19.1 [drawing_mode], page 138.

19.24 set_saturation_blender

void set_saturation_blender(int r, int g, int b, int a);
Enables a saturation blender mode for combining translucent or lit truecolor
pixels. Applies the saturation of the source to the destination image.

See also:
See Section 19.11 [set_trans_blender|, page 143.
See Section 19.1 [drawing_mode], page 138.

19.25 set_screen_blender

void set_screen_blender(int r, int g, int b, int a);
Enables a screen blender mode for combining translucent or lit truecolor pixels.
This blender mode lightens the colour of the destination image by multiplying
the inverse of the source and destination colours. Sort of like the opposite of
the multiply blender mode.

148 Allegro Manual

See also:
See Section 19.11 [set_trans_blender]|, page 143.
See Section 19.1 [drawing_mode], page 138.

19.26 set_blender_mode

void set_blender_mode (BLENDER_FUNC bl15, b16, b24, int r, g, b, a);
Specifies a custom set of truecolor blender routines, which can be used to im-
plement whatever special interpolation modes you need. This function shares
a single blender between the 24 and 32 bit modes.

See also:

See Section 19.27 [set_blender_mode_ex|, page 148.
See Section 19.11 [set_trans_blender], page 143.
See Section 19.5 [color_map], page 140.

See Section 14.11 [draw_trans_sprite|, page 116.
See Section 14.12 [draw_lit_sprite|, page 116.

See Section 19.1 [drawing_mode], page 138.

19.27 set_blender_mode_ex

void set_blender_mode_ex (BLENDER_FUNC b15, bl6, b24, b32, blbx, bl6x, b24x,

int r, g, b, a);
Like set_blender_mode(), but allows you to specify a more complete set of
blender routines. The b15, bl6, b24, and b32 routines are used when draw-
ing pixels onto destinations of the same format, while b15x, b16x, and b24x are
used by draw_trans_sprite() and draw_trans_rle_sprite() when drawing RGBA
images onto destination bitmaps of another format. These blenders will be
passed a 32 bit x parameter, along with a y value of a different color depth,
and must try to do something sensible in response.

See also:
See Section 19.26 [set_blender_mode], page 148.
See Section 19.12 [set_alpha_blender], page 144.

20 Converting between color formats

In general, Allegro is designed to be used in only one color depth at a time, so you will
call set_color_depth() once and then store all your bitmaps in the same format. If you
want to mix several different pixel formats, you can use create_bitmap_ex() in place of
create_bitmap(), and call bitmap_color_depth() to query the format of a specific image.
Most of the graphics routines require all their input parameters to be in the same format
(eg. you cannot stretch a 15 bit source bitmap onto a 24 bit destination), but there are

Chapter 20: Converting between color formats 149

some exceptions: blit() and the rotation routines can copy between bitmaps of any format,
converting the data as required, draw_sprite() can draw 256 color source images onto desti-
nations of any format, draw_character() _always_ uses a 256 color source bitmap, whatever
the format of the destination, the draw_trans_sprite() and draw_trans_rle_sprite() functions
are able to draw 32 bit RGBA images onto any hicolor or truecolor destination, as long as
you call set_alpha_blender() first, and the draw_trans_sprite() function is able to draw an
8 bit alpha channel image over the top of an existing 32 bit image, as long as you call
set_write_alpha_blender() first.

Expanding a 256 color source onto a truecolor destination is fairly fast (obviously you must
set the correct palette before doing this conversion!). Converting between different truecolor
formats is slightly slower, and reducing truecolor images to a 256 color destination is very
slow (it can be sped up significantly if you set up the global rgb_map table before doing the
conversion).

20.1 bestfit_color

int bestfit_color(const PALETTE pal, int r, int g, int b);
Searches the specified palette for the closest match to the requested color, which
are specified in the VGA hardware 0-63 format. Normally you should call
makecol8() instead, but this lower level function may be useful if you need to
use a palette other than the currently selected one, or specifically don’t want
to use the rgb_map lookup table.

See also:

See Section 12.1 [makecol8], page 99.

20.2 rgb_map

extern RGB_MAP *rgb_map;
To speed up reducing RGB values to 8 bit paletted colors, Allegro uses a 32k
lookup table (5 bits for each color component). You must set up this table
before using the gouraud shading routines, and if present the table will also
vastly accelerate the makecol8() function. RGB tables can be precalculated
with the rgbmap utility, or generated at runtime. The RGB_MAP structure is
defined as:

typedef struct {
unsigned char datal[32][32][32];
} RGB_MAP;

See also:
See Section 20.3 [create_rgb_table], page 150.
See Section 12.1 [makecol8], page 99.

150 Allegro Manual

20.3 create_rgb_table

void create_rgb_table(RGB_MAP *table, const PALETTE pal, void

(*callback) (int pos));
Fills the specified RGB mapping table with lookup data for the specified palette.
If the callback function is not NULL, it will be called 256 times during the
calculation, allowing you to display a progress indicator.

See also:

See Section 20.2 [rgb_map], page 149.

20.4 hsv_to_rgb

void hsv_to_rgb(float h, float s, float v, int *r, int *g, int *Db);

void rgb_to_hsv(int r, int g, int b, float *h, float *s, float *v);
Convert color values between the HSV and RGB colorspaces. The RGB values
range from 0 to 255, hue is from 0 to 360, and saturation and value are from 0
to 1.

21 Direct access to video memory
The bitmap structure looks like:

typedef struct BITMAP

{
int w, h; - size of the bitmap in pixels
int clip; - non-zero if clipping is turned on
int cl, cr, ct, cb; - clip rectangle left, right, top, and bottom
int seg; - segment for use with the line pointers
unsigned char *line[]; - pointers to the start of each line

} BITMAP;

There is some other stuff in the structure as well, but it is liable to change and you shouldn’t
use anything except the above. The clipping rectangle is inclusive on the left and top (0
allows drawing to position 0) but exclusive on the right and bottom (10 allows drawing to
position 9, but not to 10). Note this is not the same format as you pass to set_clip(), which
takes inclusive coordinates for all four corners.

There are several ways to get direct access to the image memory of a bitmap, varying in
complexity depending on what sort of bitmap you are using.

The simplest approach will only work with memory bitmaps (obtained from cre-
ate_bitmap(), grabber datafiles, and image files) and sub-bitmaps of memory bitmaps.
This uses a table of char pointers, called ’line’, which is a part of the bitmap structure and
contains pointers to the start of each line of the image. For example, a simple memory
bitmap putpixel function is:

Chapter 21: Direct access to video memory 151

void memory_putpixel (BITMAP *bmp, int x, int y, int color)
{
bmp->1line[y] [x] = color;

For truecolor modes you need to cast the line pointer to the appropriate type, for example:

void memory_putpixel_15_or_16_bpp(BITMAP *bmp, int x, int y, int color)

{
((short *)bmp->linel[y]) [x] = color;
}
void memory_putpixel_32(BITMAP *bmp, int x, int y, int color)
{
((long *)bmp->line[y]) [x] = color;
}

If you want to write to the screen as well as to memory bitmaps, you need to use some
helper macros, because the video memory may not be part of your normal address space.
This simple routine will work for any linear screen, eg. a VESA linear framebuffers:

void linear_screen_putpixel (BITMAP *bmp, int x, int y, int color)
{

bmp_select (bmp) ;

bmp_write8((unsigned long)bmp->line[y]+x, color);
}

For truecolor modes you should replace the bmp_write8() with bmp_writel6(),
bmp_write24(), or bmp_write32(), and multiply the x offset by the number of bytes per
pixel. There are of course similar functions to read a pixel value from a bitmap, namely

bmp_read8(), bmp_read16(), bmp_read24() and bmp_read32().

This still won’t work in banked SVGA modes, however, or on platforms like Windows that
do special processing inside the bank switching functions. For more flexible access to bitmap
memory, you need to call the routines:

unsigned long bmp_write_line(BITMAP *bmp, int line);
Selects the line of a bitmap that you are going to draw onto.

unsigned long bmp_read_line(BITMAP *bmp, int line);
Selects the line of a bitmap that you are going to read from.

unsigned long bmp_unwrite_line(BITMAP *bmp) ;
Releases the bitmap memory after you are finished with it. You only need
to call this once at the end of a drawing operation, even if you have called
bmp_write_line() or bmp_read_line() several times before it.

152 Allegro Manual

These are implemented as inline assembler routines, so they are not as inefficient as they
might seem. If the bitmap doesn’t require bank switching (ie. it is a memory bitmap, mode
13h screen, etc), these functions just return bmp->linelline].

Although SVGA bitmaps are banked, Allegro provides linear access to the memory within
each scanline, so you only need to pass a y coordinate to these functions. Various x positions
can be obtained by simply adding the x coordinate to the returned address. The return
value is an unsigned long rather than a char pointer because the bitmap memory may not be
in your data segment, and you need to access it with far pointers. For example, a putpixel
using the bank switching functions is:

void banked_putpixel (BITMAP *bmp, int x, int y, int color)

{
unsigned long address = bmp_write_line(bmp, y);
bmp_select (bmp) ;
bmp_write8(address+x, color);
bmp_unwrite_line (bmp) ;

}

You will notice that Allegro provides separate functions for setting the read and write banks.
It is important that you distinguish between these, because on some graphics cards the banks
can be set individually, and on others the video memory is read and written at different
addresses. Life is never quite as simple as we might wish it to be, though (this is true even
when we _aren’t_ talking about graphics coding :-) and so of course some cards only provide
a single bank. On these the read and write bank functions will behave identically, so you
shouldn’t assume that you can read from one part of video memory and write to another at
the same time. You can call bmp_read_line(), and read whatever you like from that line, and
then call bmp_write_line() with the same or a different line number, and write whatever you
like to this second line, but you mustn’t call bmp_read_line() and bmp_write_line() together
and expect to be able to read one line and write the other simultaneously. It would be nice
if this was possible, but if you do it, your code won’t work on single banked SVGA cards.

And then there’s mode-X. If you’ve never done any mode-X graphics coding, you probably
won’t understand this, but for those of you who want to know how Allegro sets up the
mode-X screen bitmaps, here goes...

The line pointers are still present, and they contain planar addresses, ie. the actual location
at which you access the first pixel in the line. These addresses are guaranteed to be quad
aligned, so you can just set the write plane, divide your x coordinate by four, and add it to
the line pointer. For example, a mode-X putpixel is:

void modex_putpixel (BITMAP *b, int x, int y, int color)
{
outportw(0x3C4, (0x100<<(x&3))(2);
bmp_select (bmp) ;
bmp_write8((unsigned long)bmp->line[y]+(x>>2), color);

Chapter 22: FLIC routines 153

Oh yeah: the djgpp nearptr hack. Personally I don’t like this very much because it disables
memory protection and isn’t portable to other platforms, but a lot of people swear by
it because it can give you direct access to the screen memory via a normal C pointer.
Warning: this method will only work with the djgpp library, when using VGA 13h or a
linear framebuffer modes!

In your setup code:

#include <sys/nearptr.h>

unsigned char *screenmemory;
unsigned long screen_base_addr;

__djgpp_nearptr_enable();
__dpmi_get_segment_base_address(screen->seg, &screen_base_addr);

screenmemory = (unsigned char *)(screen_base_addr +
screen->1ine[0] -
__djgpp_base_address) ;

Then:

void nearptr_putpixel(int x, int y, int color)
{

screenmemory [x + y*VIRTUAL_W] = color;
}

22 FLIC routines

There are two high level functions for playing FLI/FLC animations: play_fli(), which reads
the data directly from disk, and play_memory_fli(), which uses data that has already been
loaded into RAM. Apart from the different sources of the data, these two functions behave
identically. They draw the animation onto the specified bitmap, which should normally be
the screen. Frames will be aligned with the top left corner of the bitmap: if you want to
position them somewhere else you will need to create a sub-bitmap for the FLI player to
draw onto. If loop is set the player will cycle when it reaches the end of the file, otherwise
it will play through the animation once and then return. If the callback function is not
NULL it will be called once for each frame, allowing you to perform background tasks of
your own. This callback should normally return zero: if it returns non-zero the player will
terminate (this is the only way to stop an animation that is playing in looped mode). The
FLI player returns FLI_OK if it reached the end of the file, FLI_ERROR if something went
wrong, and the value returned by the callback function if that was what stopped it. If you
need to distinguish between different return values, your callback should return positive
integers, since FLI_OK is zero and FLI_LERROR is negative. Note that the FLI player will
only work when the timer module is installed, and that it will alter the palette according
to whatever palette data is present in the animation file.

154 Allegro Manual

Occasionally you may need more detailed control over how an FLI is played, for example
if you want to superimpose a text scroller on top of the animation, or to play it back at a
different speed. You could do both of these with the lower level functions described below.

22.1 play_fli

int play_fli(const char *filename, BITMAP *bmp, int loop, int

(xcallback) () ;
Plays an Autodesk Animator FLI or FLC animation file, reading the data from
disk as it is required.

See also:
See Section 22.2 [play_memory_{li], page 154.

See Section 5.1 [install_timer]|, page 48.
See Section 22.11 [fli_frame], page 156.

22.2 play_memory_fli

int play_memory_fli(const void *fli_data, BITMAP *bmp, int loop, int

(*callback) ());
Plays an Autodesk Animator FLI or FLC animation, reading the data from a
copy of the file which is held in memory. You can obtain the fli_data pointer by
mallocing a block of memory and reading an FLI file into it, or by importing
an FLI into a grabber datafile. Playing animations from memory is obviously
faster than cueing them directly from disk, and is particularly useful with short,
looped FLI’s. Animations can easily get very large, though, so in most cases
you will probably be better just using play_fli().

See also:

See Section 22.1 [play_fli], page 154.
See Section 5.1 [install_timer|, page 48.
See Section 22.11 [fli_frame], page 156.

22.3 open_fli

int open_fli(const char *filename);

int open_memory_fli(const void *fli_data);
Open FLI files ready for playing, reading the data from disk or memory respec-
tively. Return FLI_OK on success. Information about the current FLI is held
in global variables, so you can only have one animation open at a time.

See also:
See Section 22.4 [close_fli], page 155.
See Section 22.5 [next_fli_frame], page 155.

Chapter 22: FLIC routines 155

22.4 close_fli

void close_f1li();
Closes an FLI file when you have finished reading from it.

See also:

See Section 22.3 [open_fli], page 154.

22.5 next_fli_frame

int next_fli_frame(int loop);
Reads the next frame of the current animation file. If loop is set the player
will cycle when it reaches the end of the file, otherwise it will return FLI_EOF.
Returns FLI_OK on success, FLI_ERROR or FLI_.NOT_OPEN on error, and
FLI_EOF on reaching the end of the file. The frame is read into the global
variables fli_bitmap and fli_palette.

See also:

See Section 22.3 [open_fli], page 154.
See Section 22.6 [fli_bitmap], page 155.
See Section 22.7 [fli_palette], page 155.
See Section 22.12 [fli_timer], page 157.
See Section 22.11 [fli_frame], page 156.

22.6 fli_bitmap

extern BITMAP *fli_bitmap;
Contains the current frame of the FLI/FLC animation.

See also:

See Section 22.5 [next_fli_frame], page 155.

See Section 22.8 [fli_bmp_dirty_from], page 156.
See Section 22.7 [fli_palette], page 155.

22.7 fli_palette

extern PALETTE fli_palette;
Contains the current FLI palette.

See also:

See Section 22.5 [next_fli_frame], page 155.
See Section 22.9 [fli_pal_dirty_from], page 156.
See Section 22.6 [fli_bitmap], page 155.

156 Allegro Manual

22.8 fli_bmp_dirty_from

extern int fli_bmp_dirty_from;

extern int fli_bmp_dirty_to;
These variables are set by next_fli_frame() to indicate which part of
the fli_bitmap has changed since the last call to reset_fli_variables(). If
fli_bmp_dirty_from is greater than fli_bmp_dirty_to, the bitmap has not
changed, otherwise lines fli_bmp_dirty_from to fli_bmp_dirty_to (inclusive)
have altered. You can use these when copying the fli_bitmap onto the screen,
to avoid moving data unnecessarily.

See also:
See Section 22.6 [fli_bitmap], page 155.
See Section 22.10 [reset_fli_variables|, page 156.

22.9 fli_pal_dirty_from

extern int fli_pal_dirty_from;

extern int fli_pal_dirty_to;
These variables are set by next_fli_frame() to indicate which part of
the fli_palette has changed since the last call to reset_fli_variables(). If
fli_pal_dirty_from is greater than fli_pal_dirty_to, the palette has not changed,
otherwise colors fli_pal_dirty_from to fli_pal_dirty_to (inclusive) have altered.
You can use these when updating the hardware palette, to avoid unnecessary
calls to set_palette().

See also:
See Section 22.7 [fli_palette], page 155.
See Section 22.10 [reset_fli_variables|, page 156.

22.10 reset_fli_variables

void reset_fli_variables();
Once you have done whatever you are going to do with the fli_bitmap and
fli_palette, call this function to reset the fli_bmp_dirty_* and fli_pal_dirty_*
variables.

See also:
See Section 22.8 [fli_bmp_dirty_from], page 156.
See Section 22.9 [fli_pal_dirty_from], page 156.

Chapter 23: Sound init routines 157

22.11 fli_frame

extern int fli_frame;
Global variable containing the current frame number in the FLI file. This
is useful for synchronising other events with the animation, for instance you
could check it in a play_fli() callback function and use it to trigger a sample at
a particular point.

See also:

See Section 22.1 [play_fli], page 154.

See Section 22.2 [play-memory_fli], page 154.
See Section 22.5 [next_fli_frame], page 155.

22.12 fli_timer

extern volatile int fli_timer;
Global variable for timing FLI playback. When you open an FLI file, a timer
interrupt is installed which increments this variable every time a new frame
should be displayed. Calling next_fli_frame() decrements it, so you can test it
and know that it is time to display a new frame if it is greater than zero.

See also:
See Section 5.1 [install_timer]|, page 48.
See Section 22.5 [next_fli_frame], page 155.

23 Sound init routines

23.1 detect_digi_driver

int detect_digi_driver(int driver_id);
Detects whether the specified digital sound device is available. Returns the
maximum number of voices that the driver can provide, or zero if the hardware
is not present. This function must be called _before_ install_sound().

See also:

See Section 23.5 [install_sound], page 160.

See Section 23.3 [reserve_voices|, page 158.
See Section 34.3 [DIGI_*/DOS], page 232.

See Section 35.2 [DIGI_*/Windows|, page 237.
See Section 36.3 [DIGI_*/Unix]|, page 244.

See Section 37.2 [DIGI_*/BeOS], page 246.
See Section 38.2 [DIGI_*/QNX], page 247.

158

Allegro Manual

23.2 detect_midi_driver

int detect_midi_driver(int driver_id);

See also:

Detects whether the specified MIDI sound device is available. Returns the
maximum number of voices that the driver can provide, or zero if the hardware
is not present. There are two special-case return values that you should watch
out for: if this function returns -1 it is a note-stealing driver (eg. DIGMID) that
shares voices with the current digital sound driver, and if it returns OxFFFF it
is an external device like an MPU-401 where there is no way to determine how
many voices are available. This function must be called _before_ install_sound|().

See Section 23.5 [install_sound], page 160.

See Section 23.3 [reserve_voices], page 158.
See Section 34.4 [MIDI_*/DOS], page 233.

See Section 36.4 [MIDI_*/Unix], page 244.
See Section 37.3 [MIDI_*/BeOS], page 246.

[
[
[
See Section 35.3 [MIDI_*/Windows|, page 237.
[
[
[

See Section 38.3 [MIDI_*/QNX], page 247.

23.3 reserve_voices
void reserve_voices(int digi_voices, int midi_voices);

See also:

Call this function to specify the number of voices that are to be used by the
digital and MIDI sound drivers respectively. This must be done _before_ call-
ing install_sound(). If you reserve too many voices, subsequent calls to in-
stall_sound() will fail. How many voices are available depends on the driver,
and in some cases you will actually get more than you reserve (eg. the FM
synth drivers will always provide 9 voices on an OPL2 and 18 on an OPL3, and
the SB digital driver will round the number of voices up to the nearest power of
two). Pass negative values to restore the default settings. You should be aware
that the sound quality is usually inversely related to how many voices you use,
so don’t reserve any more than you really need.

See Section 23.4 [set_volume_per_voice], page 158.

[
See Section 23.5 [install_sound], page 160.

See Section 23.1 [detect_digi_driver|, page 157.
See Section 23.2 [detect_midi_driver], page 158.

Chapter 23: Sound init routines 159

23.4 set_volume_per_voice

void set_volume_per_voice(int scale);
By default, when you reserve more voices for the digital sound driver, Allegro
will reduce the volume of each voice to compensate. This is done to avoid too
much distortion. The default volume per voice is such that, if you reserve n
voices, you can play up to n/2 normalised samples with centre panning without
risking distortion. The exception is when you have fewer than 8 voices, where
the volume remains the same as for 8 voices.

If the resultant output is either too loud or too quiet, this function can be
used to adjust the volume of each voice. You should first check that your
speakers are at a reasonable volume, Allegro’s global volume is at maximum
(see set_volume() below), and any other mixers such as the Windows Volume
Control are set reasonably.

Once you are sure that Allegro’s output level is unsuitable for your application,
use this function to adjust it. This must be done _before_ calling install_sound|().
Note that this function is currently only relevant for drivers that use the Allegro
mixer (which is most of them).

If you pass 0 to this function, each centred sample will play at the maximum
volume possible without distortion, as will all samples played through a mono
driver. Samples at the extreme left and right will distort if played at full volume.
If you wish to play panned samples at full volume without distortion, you should
pass 1 to this function. Note: this is different from the function’s behaviour
in WIPs 3.9.34, 3.9.35 and 3.9.36. If you used this function under one of these
WIPs, you will have to increase your parameter by one to get the same volume.

Each time you increase the parameter by one, the volume of each voice will
halve. For example, if you pass 4, you can play up to 16 centred samples at
maximum volume without distortion.

Here are the default values, dependent on the number of voices:

1-8 voices - set_volume_per_voice(2)
16 voices - set_volume_per_voice(3)
32 voices - set_volume_per_voice(4)
64 voices - set_volume_per_voice(5)

Of course this function does not override the volume you specify with
play_sample() or voice_set_volume(). It simply alters the overall output of the
program. If you play samples at lower volumes, or if they are not normalised,
then you can play more of them without distortion.

Warning: Allegro uses a clipping table to clip the waveform. The table is big
enough to accommodate a total output of up to 4 times the maximum possible
without distortion. If your output goes above this limit, the wave will "'wrap
around’ (peaks become troughs and vice versa), thus distorting much more.
You should be careful that this does not happen.

It is recommended that you hard-code the parameter into your program, rather
than offering it to the user. The user can alter the volume with the configuration
file instead, or you can provide for this with set_volume().

160

To restore volume per voice to its default behaviour, pass -1.

See also:
See Section 23.3 [reserve_voices], page 158.

See Section 23.7 [set_volume], page 161.

[

[
See Section 23.5 [install_sound], page 160.
See Section 23.1 [detect_digi_driver|, page 157.
[

See Section 23.2 [detect_midi-driver], page 158.

23.5 install_sound

int install_sound(int digi, int midi, const char *cfg_path);

Allegro Manual

Initialises the sound module. You should normally pass DIGI_AUTODETECT
and MIDI_AUTODETECT as the driver parameters to this function, in which
case Allegro will read hardware settings from the current configuration file.
This allows the user to select different values with the setup utility: see the
config section for details. Alternatively, see the platform specific documentation
for a list of the available drivers. The cfg_path parameter is only present for
compatibility with previous versions of Allegro, and has no effect on anything.
Returns zero if the sound is successfully installed, and -1 on failure. If it fails

it will store a description of the problem in allegro_error.

See also:

See Section 23.6
See Section 23.3
See Section 23.1
See Section 23.2
See Section 23.7
See Section 24.7
See Section 24.10 [voice control], page 164.

remove_sound], page 161.
reserve_voices|, page 158.
detect_digi_driver], page 157.
detect_midi_driver], page 158.

set_volume], page 161.

play_sample|, page 163.

See Section 25.4 [play_midi], page 172.

See Section 26.1 [play_audio_stream|, page 176.
See Section 27.1 [install_sound_input], page 177.
See Section 1.6 [allegro_error], page 2.

See Section 3.23
See Section 34.3
See Section 35.2
See Section 36.3
See Section 37.2
See Section 38.2
See Section 34.4
See Section 35.3

DIGI_*/DOS], page 232.
DIGI_*/Windows|, page 237.
DIGI_*/Unix], page 244.
DIGI_*/BeOS], page 246.
DIGI_*/QNX], page 247.
MIDI_*/DOS], page 233.
MIDI_*/Windows]|, page 237.

standard config variables|, page 36.

Chapter 24: Digital sample routines 161

See Section 36.4 [MIDI_*/Unix], page 244.
See Section 37.3 [MIDI_*/BeOS], page 246.
See Section 38.3 [MIDI_*/QNX], page 247.

23.6 remove_sound

void remove_sound();
Cleans up after you are finished with the sound routines. You don’t normally
need to call this, because allegro_exit() will do it for you.

See also:
See Section 23.5 [install_sound], page 160.
See Section 1.3 [allegro_exit], page 1.

23.7 set_volume

void set_volume(int digi_volume, int midi_volume);
Alters the global sound output volume. Specify volumes for both digital samples
and MIDI playback, as integers from 0 to 255, or pass a negative value to leave
one of the settings unchanged. If possible this routine will use a hardware
mixer to control the volume, otherwise it will tell the sample and MIDI players
to simulate a mixer in software.

See also:
See Section 23.5 [install_sound], page 160.

24 Digital sample routines

24.1 load_sample

SAMPLE *load_sample(const char *filename) ;
Loads a sample from a file, returning a pointer to it, or NULL on error. At
present this function supports both mono and stereo WAV and mono VOC files,
in 8 or 16 bit formats.

See also:
See Section 24.5 [destroy_sample], page 162.
See Section 24.3 [load_voc], page 162.

See Section 24.2 |
[

See Section 24.7 [play_sample], page 163.

load_wav], page 162.

See Section 24.10 [voice control], page 164.

162 Allegro Manual

24.2 load_wav

SAMPLE *load_wav(const char *filename);

Loads a sample from a RIFF WAV file.

See also:

See Section 24.1 [load_sample], page 161.

24.3 load_voc

SAMPLE *load_voc(const char *filename);
Loads a sample from a Creative Labs VOC file.

See also:

See Section 24.1 [load_sample], page 161.

24.4 create_sample

SAMPLE #*create_sample(int bits, int stereo, int freq, int len);
Constructs a new sample structure of the specified type. The data field points
to a block of waveform data: see the structure definition in allegro/digi.h for
details.

See also:
See Section 24.1 [load_sample], page 161.
See Section 24.5 [destroy_sample], page 162.

24.5 destroy_sample

void destroy_sample (SAMPLE *spl);
Destroys a sample structure when you are done with it. It is safe to call this
even when the sample might be playing, because it checks and will kill it off if
it is active.

See also:

See Section 24.1 [load-sample], page 161.

24.6 lock_sample

void lock_sample (SAMPLE *spl);
Under DOS, locks all the memory used by a sample. You don’t normally need
to call this function because load_sample() and create_sample() do it for you.

See also:

See Section 24.1 [load_sample], page 161.

Chapter 24: Digital sample routines 163
See Section 24.4 [create_sample], page 162.

24.7 play_sample

int play_sample(const SAMPLE *spl, int vol, int pan, int freq, int loop);

Triggers a sample at the specified volume, pan position, and frequency. The
volume and pan range from 0 (min/left) to 255 (max/right). Frequency is
relative rather than absolute: 1000 represents the frequency that the sample
was recorded at, 2000 is twice this, etc. If the loop flag is set, the sample will
repeat until you call stop_sample(), and can be manipulated while it is playing
by calling adjust_sample(). Returns the voice number that was allocated for
the sample (a non-negative number if successful).

See also:
See Section 23.5 [install_sound], page 160.
See Section 24.1 [load_sample], page 161.
See Section 24.8 |
[

See Section 24.9 [stop-sample|, page 163.

adjust_sample], page 163.

See Section 24.10 [voice control], page 164.

24.8 adjust_sample

void adjust_sample(const SAMPLE #*spl, int vol, int pan, int freq, int

loop);
Alters the parameters of a sample while it is playing (useful for manipulating
looped sounds). You can alter the volume, pan, and frequency, and can also
clear the loop flag, which will stop the sample when it next reaches the end of
its loop. If there are several copies of the same sample playing, this will adjust
the first one it comes across. If the sample is not playing it has no effect.

See also:

See Section 24.7 [play_sample], page 163.

24.9 stop_sample

void stop_sample(const SAMPLE *spl) ;
Kills off a sample, which is required if you have set a sample going in looped
mode. If there are several copies of the sample playing, it will stop them all.

See also:

See Section 24.7 [play_sample], page 163.

164 Allegro Manual

24.10 voice control

If you need more detailed control over how samples are played, you can use the lower level
voice functions rather than just calling play_sample(). This is rather more work, because
you have to explicitly allocate and free the voices rather than them being automatically
released when they finish playing, but allows far more precise specification of exactly how
you want everything to sound. You may also want to modify a couple of fields from the
sample structure:

int priority;
Ranging 0-255 (default 128), this controls how voices are
allocated if you attempt to play more than the driver can handle.
This may be used to ensure that the less important sounds are
cut off while the important ones are preserved.

unsigned long loop_start;

unsigned long loop_end;
Loop position in sample units, by default set to the start and end of
the sample.

See also:

See Section 23.5 [install_sound], page 160.

See Section 24.11 [allocate_voice], page 164.
See Section 24.12 [deallocate_voice], page 165.
See Section 24.13 [reallocate_voice], page 165.
See Section 24.14 [release_voice], page 165.

See Section 24.15 [voice_start], page 166.

See Section 24.17 [voice_set_priority]|, page 166.

[

[

[

[

[
See Section 24.18 [voice_check], page 166.
See Section 24.20 [voice_set_position], page 167.
See Section 24.21 [voice_set_playmode|, page 167.
See Section 24.23 [voice_set_volume], page 168.
See Section 24.27 [voice_set_frequency], page 169.
[

See Section 24.31 [voice_set_pan], page 170.

24.11 allocate_voice

int allocate_voice(const SAMPLE *spl);
Allocates a soundcard voice and prepares it for playing the specified sample,
setting up sensible default parameters (maximum volume, centre pan, no change
of pitch, no looping). When you are finished with the voice you must free it by
calling deallocate_voice() or release_voice(). Returns the voice number, or -1 if
no voices are available.

Chapter 24: Digital sample routines 165

See also:

See Section 24.10 [voice control], page 164.
See Section 24.12 [deallocate_voice], page 165.
See Section 24.13 [reallocate_voice|, page 165.
See Section 24.14 [release_voice], page 165.
See Section 24.1 [load_sample], page 161.

24.12 deallocate_voice

void deallocate_voice(int voice);
Frees a soundcard voice, stopping it from playing and releasing whatever re-
sources it is using.

See also:
See Section 24.11 [allocate_voice|, page 164.
See Section 24.16 [voice_stop], page 166.

24.13 reallocate_voice

void reallocate_voice(int voice, const SAMPLE *spl);
Switches an already-allocated voice to use a different sample. Calling reallo-
cate_voice(voice, sample) is equivalent to:

deallocate_voice(voice);
voice = allocate_voice(sample);

See also:

See Section 24.11 [allocate_voice], page 164.
See Section 24.12 [deallocate_voice], page 165.
See Section 24.1 [load_sample], page 161.

24.14 release_voice

void release_voice(int voice);
Releases a soundcard voice, indicating that you are no longer interested in
manipulating it. The sound will continue to play, and any resources that it is
using will automatically be freed when it finishes. This is essentially the same
as deallocate_voice(), but it waits for the sound to stop playing before taking
effect.

See also:

See Section 24.11 [allocate_voice|, page 164.

166 Allegro Manual

See Section 24.12 [deallocate_voice], page 165.

24.15 voice_start

void voice_start(int voice);
Activates a voice, using whatever parameters have been set for it.

See also:

See Section 24.10 [voice control], page 164.
See Section 24.11 [allocate_voice], page 164.
See Section 24.16 [voice_stop|, page 166.
See Section 24.14 [release_voice], page 165.

24.16 voice_stop

void voice_stop(int voice);
Stops a voice, storing the current position and state so that it may later be
resumed by calling voice_start().

See also:

See Section 24.15 [voice_start], page 166.

See Section 24.12 [deallocate_voice|, page 165.
See Section 24.14 [release_voice], page 165.

24.17 voice_set_priority

void voice_set_priority(int voice, int priority);
Sets the priority of a voice (range 0-255). This is used to decide which voices
should be chopped off, if you attempt to play more than the soundcard driver
can handle.

See also:

See Section 24.10 [voice control], page 164.

24.18 voice_check

SAMPLE *voice_check(int voice);
Checks whether a voice is currently allocated. It returns a copy of the sample
that the voice is using, or NULL if the voice is inactive (ie. it has been deallo-
cated, or the release_voice() function has been called and the sample has then
finished playing).

See also:

See Section 24.11 [allocate_voice|, page 164.

Chapter 24: Digital sample routines 167

See Section 24.15 [voice_start], page 166.
See Section 24.19 [voice_get_position], page 167.

24.19 voice_get_position

int voice_get_position(int voice);
Returns the current position of a voice, in sample units, or -1 if it has finished
playing.

See also:
See Section 24.10 [voice control], page 164.
See Section 24.20 [voice_set_position], page 167.

24.20 voice_set_position

void voice_set_position(int voice, int position);
Sets the position of a voice, in sample units.

See also:

See Section 24.10 [voice control], page 164.

See Section 24.19 [voice_get_position], page 167.
See Section 24.21 [voice_set_playmode|, page 167.

24.21 voice_set_playmode

void voice_set_playmode(int voice, int playmode);
Adjusts the loop status of the specified voice. This can be done while the voice
is playing, so you can start a sample in looped mode (having set the loop start
and end positions to the appropriate values), and then clear the loop flag when
you want to end the sound, which will cause it to continue past the loop end,
play the subsequent part of the sample, and finish in the normal way. The
mode parameter is a bitfield containing the following values:

e PLAYMODE_PLAY
Plays the sample a single time. This is the default if you don’t set the loop
flag.

e PLAYMODE_LOOP
Loops repeatedly through the sample, jumping back to the loop start po-
sition upon reaching the loop end.

e PLAYMODE_FORWARD
Plays the sample from beginning to end. This is the default if you don’t
set the backward flag.

e PLAYMODE_BACKWARD
Reverses the direction of the sample. If you combine this with the loop

168 Allegro Manual

flag, the sample jumps to the loop end position upon reaching the loop
start (ie. you do not need to reverse the loop start and end values when
you play the sample in reverse).

e PLAYMODE_BIDIR
When used in combination with the loop flag, causes the sample to change
direction each time it reaches one of the loop points, so it alternates between
playing forwards and in reverse.
See also:

See Section 24.10 [voice control], page 164.

24.22 voice_get_volume

int voice_get_volume(int voice);
Returns the current volume of the voice, range 0-255.
See also:
See Section 24.10 [voice control], page 164.
See Section 24.23 [voice_set_volume], page 168.

24.23 voice_set_volume

void voice_set_volume(int voice, int volume);
Sets the volume of the voice, range 0-255.

See also:

See Section 24.10 [voice control], page 164.

See Section 24.22 [voice_get_volume], page 168.

See Section 24.24 [voice_ramp_volume], page 168.

24.24 voice_ramp_volume

void voice_ramp_volume(int voice, int time, int endvol);
Starts a volume ramp (crescendo or diminuendo) from the current volume to
the specified ending volume, lasting for time milliseconds.

See also:

See Section 24.10 [voice control], page 164.

See Section 24.23 [voice_set_volume]|, page 168.

24.25 voice_stop_volumeramp

void voice_stop_volumeramp(int voice);
Interrupts a volume ramp operation.

Chapter 24: Digital sample routines 169

See also:

See Section 24.24 [voice_ramp_volume], page 168.

24.26 voice_get_frequency

int voice_get_frequency(int voice);
Returns the current pitch of the voice, in Hz.

See also:
See Section 24.10 [voice control], page 164.
See Section 24.27 [voice_set_frequency], page 169.

24.27 voice_set_frequency

void voice_set_frequency(int voice, int frequency);
Sets the pitch of the voice, in Hz.

See also:

See Section 24.10 [voice control], page 164.

See Section 24.26 [voice_get_frequency], page 169.
See Section 24.28 [voice_sweep_frequency], page 169.

24.28 voice_sweep_frequency

void voice_sweep_frequency(int voice, int time, int endfreq);
Starts a frequency sweep (glissando) from the current pitch to the specified
ending pitch, lasting for time milliseconds.

See also:
See Section 24.10 [voice control], page 164.
See Section 24.27 [voice_set_frequency], page 169.

24.29 voice_stop_frequency_sweep

void voice_stop_frequency_sweep(int voice);
Interrupts a frequency sweep operation.

See also:

See Section 24.28 [voice_sweep_frequency], page 169.

170 Allegro Manual

24.30 voice_get_pan

int voice_get_pan(int voice);
Returns the current pan position, from 0 (left) to 255 (right).
See also:
See Section 24.10 [voice control], page 164.
See Section 24.31 [voice_set_pan], page 170.

24.31 voice_set_pan

void voice_set_pan(int voice, int pan);
Sets the pan position, ranging from 0 (left) to 255 (right).
See also:
See Section 24.10 [voice control], page 164.
See Section 24.30 [voice_get_pan], page 170.
See Section 24.32 [voice_sweep_pan], page 170.

24.32 voice_sweep_pan

void voice_sweep_pan(int voice, int time, int endpan);
Starts a pan sweep (left right movement) from the current position to the spec-
ified ending position, lasting for time milliseconds.

See also:
See Section 24.10 [voice control], page 164.
See Section 24.31 [voice_set_pan], page 170.

24.33 voice_stop_pan_sweep

void voice_stop_pan_sweep(int voice);
Interrupts a pan sweep operation.

See also:

See Section 24.32 [voice_sweep_pan], page 170.

24.34 voice_set_echo

void voice_set_echo(int voice, int strength, int delay);
Sets the echo parameters for a voice (not currently implemented).

See also:

See Section 24.10 [voice control], page 164.

Chapter 25: MIDI music routines 171

24.35 voice_set_tremolo
void voice_set_tremolo(int voice, int rate, int depth);

Sets the tremolo parameters for a voice (not currently implemented).

See also:

See Section 24.10 [voice control], page 164.

24.36 voice_set_vibrato

void voice_set_vibrato(int voice, int rate, int depth);
Sets the vibrato parameters for a voice (not currently implemented).

See also:
See Section 24.10 [voice control], page 164.

25 MIDI music routines

25.1 load_midi

MIDI *load_midi(const char *filename);
Loads a MIDI file (handles both format 0 and format 1), returning a pointer to
a MIDI structure, or NULL on error.

See also:
See Section 25.2 [destroy_midi], page 171.
See Section 25.4 [play_midi|, page 172.

25.2 destroy_midi

void destroy_midi(MIDI *midi);
Destroys a MIDI structure when you are done with it. It is safe to call this
even when the MIDI file might be playing, because it checks and will kill it off
if it is active.

See also:
See Section 25.1 [load-midi], page 171.

25.3 lock_midi

void lock_midi(MIDI *midi);
Under DOS, locks all the memory used by a MIDI file. You don’t normally
need to call this function because load_midi() does it for you.

172 Allegro Manual

See also:
See Section 25.1 [load-midi], page 171.

25.4 play_midi

int play_midi(MIDI *midi, int loop);

Starts playing the specified MIDI file, first stopping whatever music was previ-
ously playing. If the loop flag is set, the data will be repeated until replaced
with something else, otherwise it will stop at the end of the file. Passing a
NULL pointer will stop whatever music is currently playing. Returns non-zero
if an error occurs (this may happen if a patch-caching wavetable driver is unable
to load the required samples, or at least it might in the future when somebody
writes some patch-caching wavetable drivers :-)

See also:
See Section 23.5 [install_sound], page 160.

See Section 25.1 [load-midi], page 171.

See Section 25.5 [play_looped_midi], page 172.
See Section 25.6 |
[
[

See Section 25.7 [midi_pause|, page 173.

stop-midi], page 172.

See Section 25.9 [midi_seek], page 173.
See Section 25.12 [midi_pos], page 174.
See Section 25.14 [midi_msg_callback], page 175.

25.5 play_looped_midi

int play_looped_midi(MIDI *midi, int loop_start, int loop_end) ;
Starts playing a MIDI file with a user-defined loop position. When the player
reaches the loop end position or the end of the file (loop_end may be -1 to only
loop at EOF), it will wind back to the loop start point. Both positions are
specified in the same beat number format as the midi_pos variable.

See also:
See Section 25.4 [play_midi], page 172.
See Section 25.13 [midi_loop_start], page 174.

25.6 stop_midi

void stop_midiQ);
Stops whatever music is currently playing. This is the same thing as calling
play_midi(NULL, FALSE).

Chapter 25: MIDI music routines

See also:
See Section 25.4 [play_midi|, page 172.
See Section 25.7 [midi_pause|, page 173.

25.7 midi_pause

void midi_pause();
Pauses the MIDI player.

See also:

See Section 25.4 [play_midi], page 172.
See Section 25.6 [stop-midi|, page 172.
See Section 25.8 [midi_resume], page 173.
See Section 25.9 [midi_seek], page 173.

25.8 midi_resume

void midi_resume();

Resumes playback of a paused MIDI file.

See also:

See Section 25.7 [midi_pause|, page 173.

25.9 midi_seek

int midi_seek(int target);

173

Seeks to the given midi_pos in the current MIDI file. If the target is earlier
in the file than the current midi_pos it seeks from the beginning; otherwise it
seeks from the current position. Returns zero if it could successfully seek to the
requested position. Otherwise, a return value of 1 means it stopped playing,
and midi-pos is set to the negative length of the MIDI file (so you can use this
function to determine the length of a MIDI file). A return value of 2 means the

MIDI file looped back to the start.

See also:
See Section 25.4 [play_midi], page 172.
See Section 25.12 [midi_pos], page 174.

174 Allegro Manual

25.10 midi_out

void midi_out(unsigned char *data, int length);
Streams a block of MIDI commands into the player in realtime, allowing you
to trigger notes, jingles, etc, over the top of whatever MIDI file is currently

playing.

See also:

See Section 23.5 [install_sound], page 160.

See Section 25.11 [load_midi_patches|, page 174.
See Section 27.12 [midi_recorder], page 181.

25.11 load_midi_patches

int load_midi_patches(Q);
Forces the MIDI driver to load the entire set of patches ready for use. You will
not normally need to call this, because Allegro automatically loads whatever
data is required for the current MIDI file, but you must call it before sending
any program change messages via the midi_out() command. Returns non-zero
if an error occurred.

See also:
See Section 23.5 [install_sound], page 160.
See Section 25.10 [midi_out], page 173.

25.12 midi_pos

extern volatile long midi_pos;
Stores the current position (beat number) in the MIDI file, or contains a neg-
ative number if no music is currently playing. Useful for synchronising anima-
tions with the music, and for checking whether a MIDI file has finished playing.

See also:
See Section 25.4 [play_midi], page 172.
See Section 25.14 [midi_msg_callback], page 175.

25.13 midi_loop_start

extern long midi_loop_start;

extern long midi_loop_end;
The loop start and end points, set by the play_looped_midi() function. These
may safely be altered while the music is playing, but you should be sure they
are always set to sensible values (start < end). If you are changing them both
at the same time, make sure to alter them in the right order in case a MIDI

Chapter 26: Audio stream routines 175

interrupt happens to occur in between your two writes! Setting these values to
-1 represents the start and end of the file respectively.

See also:

See Section 25.5 [play_looped_midi], page 172.

25.14 midi_msg_callback

extern void (*midi_msg_callback) (int msg, int bytel, int byte2);

extern void (*midi_meta_callback) (int type, const unsigned char *data, int
length);

extern void (*midi_sysex_callback) (const unsigned char *data, int length);

Hook functions allowing you to intercept MIDI player events. If set to anything
other than NULL, these routines will be called for each MIDI message, meta-
event, and system exclusive data block respectively. They will execute in an
interrupt handler context, so all the code and data they use should be locked,
and they must not call any operating system functions. In general you just
use these routines to set some flags and respond to them later in your mainline
code.

See also:

See Section 25.4 [play_midi|, page 172.

25.15 load_ibk

int load_ibk(char *filename, int drums);
Reads in a .IBK patch definition file for use by the Adlib driver. If drums is set,
it will load it as a percussion patch set, otherwise it will use it as a replacement
set of General MIDI instruments. You may call this before or after initialising
the sound code, or can simply set the ibk_file and ibk_drum_file variables in the
configuration file to have the data loaded automatically. Note that this function
has no effect on any drivers other than the Adlib one! Returns non-zero on error.

See also:
See Section 23.5 [install_sound], page 160.

26 Audio stream routines

The audio stream functions are for playing digital sounds that are too big to fit in a regular
SAMPLE structure, either because they are huge files that you want to load in pieces as the
data is required, or because you are doing something clever like generating the waveform
on the fly.

176

Allegro Manual

26.1 play_audio_stream

AUDIOSTREAM #*play_audio_stream(int len, bits, stereo, freq, vol, pan);

See also:

This function creates a new audio stream and starts it playing. The length is
the size of each transfer buffer (in samples), which should normally (but doesn’t
have to) be a power of two somewhere around 1k in size. Larger buffers are
more efficient and require fewer updates, but result in more latency between
you providing the data and it actually being played. The bits parameter must
be 8 or 16, freq is the sample rate of the data in Hertz. The vol and pan values
use the same 0-255 ranges as the regular sample playing functions. The stereo
parameter should be set to 1 for stereo streams, or 0 otherwise. If you want
to adjust the pitch, volume, or panning of a stream once it is playing, you can
use the regular voice_*() functions with stream->voice as a parameter. The
sample data is always in unsigned format, with stereo waveforms consisting of
alternating left /right samples, left sample first.

See Section 23.5 [install_sound], page 160.

See Section 26.3 [get_audio_stream_buffer], page 176.

See Section 26.2 [stop-audio_stream], page 176.

26.2 stop_audio_stream

void stop_audio_stream(AUDIOSTREAM *stream) ;

See also:

Destroys an audio stream when it is no longer required.

See Section 26.1 [play_audio_stream], page 176.

26.3 get_audio_stream_buffer
void *get_audio_stream_buffer (AUDIOSTREAM *stream) ;

See also:

You must call this function at regular intervals while an audio stream is playing,
to provide the next buffer of sample data (the smaller the stream buffer size,
the more often it must be called). If it returns NULL, the stream is still playing
the previous lot of data, so you don’t need to do anything. If it returns a value,
that is the location of the next buffer to be played, and you should load the
appropriate number of samples (however many you specified when creating the
stream) to that address, for example using an fread() from a disk file. After
filling the buffer with data, call free_audio_stream_buffer() to indicate that the
new data is now valid. Note that this function should not be called from a
timer handler...

See Section 26.1 [play_audio_stream], page 176.

Chapter 27: Recording routines 177
See Section 26.4 [free_audio_stream_buffer|, page 177.

26.4 free_audio_stream_buffer

void free_audio_stream_buffer (AUDIOSTREAM *stream) ;
Call this function after get_audio_stream_buffer() returns a non-NULL address,
to indicate that you have loaded a new block of samples to that location and
the data is now ready to be played.

See also:
See Section 26.3 [get_audio_stream_buffer|, page 176.

27 Recording routines

27.1 install_sound_input

int install_sound_input(int digi, int midi);
Initialises the sound recorder module, returning zero on success. You must
install the normal sound playback system before calling this routine. The
two card parameters should use the same constants as install_sound(), in-
cluding DIGI_NONE and MIDI_NONE to disable parts of the module, or
DIGI_AUTODETECT and MIDI_AUTODETECT to guess the hardware.

See also:

See Section 23.5 [install_sound], page 160.

See Section 27.8 [start_sound_input], page 179.
See Section 27.12 [midi-recorder|, page 181.
See Section 3.23 [standard config variables|, page 36.
See Section 34.3 [DIGI_*/DOS], page 232.

See Section 35.2 [DIGI_*/Windows]|, page 237.
See Section 36.3 [DIGI_*/Unix|, page 244.

See Section 37.2 [DIGI_*/BeOS], page 246.
See Section 38.2 [DIGI_*/QNX], page 247.

See Section 34.4 [MIDI_*/DOS], page 233.

See Section 35.3 [MIDI_*/Windows|, page 237.
See Section 36.4 [MIDI_*/Unix|, page 244.

See Section 37.3 [MIDI_*/BeOS], page 246.
See Section 38.3 [MIDI_*/QNX], page 247.

178 Allegro Manual

27.2 remove_sound_input

void remove_sound_input();
Cleans up after you are finished with the sound input routines. You don’t
normally need to call this, because remove_sound() and/or allegro_exit() will
do it for you.

See also:

See Section 27.1 [install_sound_input], page 177.
See Section 23.6 [remove_sound], page 161.

See Section 1.3 [allegro_exit], page 1.

27.3 get_sound_input_cap_bits

int get_sound_input_cap_bits();
Checks which sample formats are supported by the current audio input driver,
returning one of the bitfield values:
0 = audio input not supported
8 = eight bit audio input is supported
16 = sixteen bit audio input is supported
24 = both eight and sixteen bit audio input are supported

See also:
See Section 27.8 [start_sound_input], page 179.

See Section 27.6 [get_sound_input_cap_parm], page 179.
See Section 27.5 |
[

See Section 27.4 [get_sound_input_cap_stereo|, page 178.

get_sound_input_cap_rate], page 178.

27.4 get_sound_input_cap_stereo

int get_sound_input_cap_stereo();

Checks whether the current audio input driver is capable of stereo recording.
See also:
See Section 27.8 [start_sound_input|, page 179.
See Section 27.6 [get_sound_input_cap_parm]|, page 179.
See Section 27.3 [get_sound_input_cap_bits|, page 178.
[

See Section 27.5 [get_sound_input_cap_rate], page 178.

27.5 get_sound_input_cap_rate

int get_sound_input_cap_rate(int bits, int stereo);
Returns the maximum possible sample frequency for recording in the specified
format, or zero if these settings are not supported.

Chapter 27: Recording routines 179

See also:
See Section 27.8 [start_sound_input|, page 179.

See Section 27.6 [get_sound_input_cap_parm]|, page 179.
See Section 27.3 |
[

See Section 27.4 [get_sound_input_cap_stereo|, page 178.

get_sound_input_cap_bits|, page 178.

27.6 get_sound_input_cap_parm

int get_sound_input_cap_parm(int rate, int bits, int stereo);
Checks whether the specified recording frequency, number of bits, and
mono/stereo mode are supported by the current audio driver, returning one of
the values:

0 = it is impossible to record in this format

1 = recording is possible, but audio output will be suspended

2 = recording is possible at the same time as playing other sounds
-n = sampling rate not supported, but rate 'n’ would work instead

See also:

See Section 27.8 [start_sound_input], page 179.

See Section 27.3 [get_sound_input_cap_bits|, page 178.
See Section 27.5 [get_sound_input_cap_rate], page 178.
See Section 27.4 [get_sound_input_cap_stereo|, page 178.

27.7 set_sound_input_source

int set_sound_input_source(int source);
Selects the audio input source, returning zero on success or -1 if the hardware
does not provide an input select register. The parameter should be one of the
values:

SOUND_INPUT_MIC
SOUND_INPUT_LINE
SOUND_INPUT_CD

See also:

See Section 27.8 [start_sound_input|, page 179.

27.8 start_sound_input

int start_sound_input(int rate, int bits, int stereo);
Starts recording in the specified format, suspending audio playback as necessary
(this will always happen with the current drivers). Returns the buffer size in
bytes if successful, or zero on error.

180 Allegro Manual

See also:

See Section 27.1 [install_sound_input], page 177.

See Section 27.10 [read_sound_input], page 180.

See Section 27.9 [stop-sound_input], page 180.

See Section 27.11 [digi-recorder], page 180.

See Section 27.7 [set_sound_input_source], page 179.
See Section 27.6 [get_sound_input_cap_parm], page 179.

[

[
See Section 27.3 [get_sound_input_cap_bits], page 178.
See Section 27.5 [get_sound_input_cap_rate|, page 178.
[

See Section 27.4 [get_sound_input_cap_stereo|, page 178.

27.9 stop_sound_input

void stop_sound_input();
Stops audio recording, switching the card back into the normal playback mode.

See also:

See Section 27.8 [start_sound_input], page 179.

27.10 read_sound_input

int read_sound_input(void *buffer);

Retrieves the most recently recorded audio buffer into the specified location,
returning non-zero if a buffer has been copied or zero if no new data is yet
available. The buffer size can be obtained by checking the return value from
start_sound_input(). You must be sure to call this function at regular intervals
during the recording (typically around 100 times a second), or some data will be
lost. If you are unable to do this often enough from the mainline code, use the
digi_recorder() callback to store the waveform into a larger buffer of your own.
Note: many cards produce a click or popping sound when switching between
record and playback modes, so it is often a good idea to discard the first buffer
after you start a recording. The waveform is always stored in unsigned format,
with stereo data consisting of alternate left/right samples.

See also:

See Section 27.8 [start_sound_input], page 179.

27.11 digi_recorder

extern void (*digi_recorder) ();
If set, this function is called by the input driver whenever a new sample buffer
becomes available, at which point you can use read_sound_input() to copy the
data into a more permenent location. This routine runs in an interrupt context,

Chapter 28: File and compression routines 181

so it must execute very quickly, the code and all memory that it touches must
be locked, and you cannot call any operating system routines or access disk
files.

See also:
See Section 27.1 [install_sound_input], page 177.
See Section 27.8 [start_sound_input], page 179.

27.12 midi_recorder

extern void (*midi_recorder) (unsigned char data);
If set, this function is called by the MIDI input driver whenever a new byte
of MIDI data becomes available. It runs in an interrupt context, so it must
execute very quickly and all the code/data must be locked.

See also:
See Section 27.1 [install_sound_input], page 177.
See Section 25.10 [midi_out|, page 173.

28 File and compression routines

The following routines implement a fast buffered file I/O system, which supports the reading
and writing of compressed files using a ring buffer algorithm based on the LZSS compressor
by Haruhiko Okumura. This does not achieve quite such good compression as programs like
zip and lha, but unpacking is very fast and it does not require much memory. Packed files
always begin with the 32 bit value F_.PACK_MAGIC, and autodetect files with the value
F_NOPACK_MAGIC.

The following FA_* flags are guaranteed to work: FA_RDONLY, FA_HIDDEN,
FA_SYSTEM, FA_LABEL, FA_DIREC, FA_ARCH. Do not use any other flags from
DOS/Windows or your code will not compile on another platform. Flags FA_SYSTEM,
FA_LABEL and FA_ARCH are valuable only on DOS/Windows (entries with system flag,
volume labels and archive flag). FA_RDONLY is for directory entries with read-only flag
on DOS-like systems or unwritable by current user on Unix-like systems. FA_HIDDEN is
for entries with hidden flag on DOS-like systems or starting with ’.” on Unix (dotted files -
excluding ’.> and ’.."). FA_DIREC represents directories. Flags can be combined using ’|’
(binary OR operator).

When passed to the functions as the ’attrib’ parameter, these flags represent an upper set
in which the actual flag set of a matching file must be included. That is, in order for a file
to be matching, its attributes may contain any of the specified flags but must not contain
any of the unspecified flags. Thus, if you pass 'FA_DIREC | FA_RDONLY’, normal files
and directories will be included as well as read-only files and directories, but not hidden
files and directories. Similarly, if you pass 'FA_ARCH’ then both archived and non-archived
files will be included.

182 Allegro Manual

28.1 get_executable_name

void get_executable_name(char *buf, int size);
Fills buf with the full path to the current executable, writing at most size
bytes. This generally comes from argv[0], but on Unix systems if argv|[0] does
not specify the path, we search for our file in $PATH.

28.2 fix_filename_case

char *fix_filename_case(char *path);
Converts a filename to a standardised case. On DOS platforms, they will be
entirely uppercase. Returns a copy of the path parameter.

See also:
See Section 28.3 [fix_filename_slashes], page 182.
See Section 28.4 [fix_filename_path], page 182.

28.3 fix_filename_slashes

char *fix_filename_slashes(char *path);
Converts all the directory separators in a filename to a standard character. On
DOS platforms, this is a backslash. Returns a copy of the path parameter.

See also:
See Section 28.2 [fix_filename_case], page 182.
See Section 28.4 [fix_filename_path], page 182.

28.4 fix_filename_path

char *fix_filename_path(char *dest, const char #*path, int size);
Converts a partial filename into a full path, storing at most size bytes into the
dest buffer. Returns a copy of the dest parameter.

See also:
See Section 28.2 [fix_filename_case], page 182.
See Section 28.3 [fix_filename_slashes], page 182.

28.5 replace_filename

char *replace_filename(char *dest, const char #*path, const char *filename,
int size);
Replaces the specified path+filename with a new filename tail, storing at most
size bytes into the dest buffer. Returns a copy of the dest parameter.

See also:

See Section 28.8 [get_filename|, page 183.

Chapter 28: File and compression routines 183

See Section 28.6 [replace_extension], page 183.
See Section 28.7 [append_filename|, page 183.

28.6 replace_extension

char *replace_extension(char *dest, const char *filename, const char *ext,
int size);
Replaces the specified filename+extension with a new extension tail, storing at
most size bytes into the dest buffer. Returns a copy of the dest parameter.

See also:
See Section 28.9 [get_extension|, page 183.
See Section 28.5 [replace_filename], page 182.

28.7 append_filename

char *append_filename(char *dest, const char *path, const char *filename,
int size);
Concatenates the specified filename onto the end of the specified path, storing
at most size bytes into the dest buffer. Returns a copy of the dest parameter.

See also:

See Section 28.5 [replace_filename], page 182.

28.8 get_filename

char *get_filename(const char *path);
When passed a completely specified file path, this returns a pointer to the
filename portion. Both "\’ and ’/’ are recognized as directory separators.

See also:

See Section 28.9 [get_extension|, page 183.
See Section 28.10 [put_backslash], page 184.
See Section 28.5 [replace_filename], page 182.

28.9 get_extension

char *get_extension(const char *filename);
When passed a complete filename (with or without path information) this re-
turns a pointer to the file extension.

See also:

See Section 28.8 [get_filename|, page 183.

184 Allegro Manual

See Section 28.10 [put_backslash], page 184.
See Section 28.6 [replace_extension], page 183.

28.10 put_backslash

void put_backslash(char *filename);
If the last character of the filename is not a ’\’, ’/’, '#’ or a device separator
(ie. 2 under DOS), this routine will concatenate either a ’\’ or ’/’ on to it
(depending on the platform). Note: ignore the function name, it’s out of date.

See also:
See Section 28.9 [get_extension], page 183.
See Section 28.8 [get_filename|, page 183.

28.11 file_exists

int file_exists(const char *filename, int attrib, int *aret);
Checks whether a file matching the given name and attributes (see above) exists,
returning non-zero if it does. If aret is not NULL, it will be set to the attributes
of the matching file. If an error occurs the system error code will be stored in
errno.

See also:

See Section 28.12 [exists], page 184.
See Section 28.13 [file_size], page 184.
See Section 28.14 [file_time], page 185.

28.12 exists

int exists(const char *filename);
Shortcut version of file_exists(), which checks for normal files, which may have
the archive or read-only bits set, but are not hidden, directories, system files,
etc.

See also:

See Section 28.11 [file_exists], page 184.
See Section 28.13 [file_size], page 184.
See Section 28.14 [file_time], page 185.

Chapter 28: File and compression routines 185

28.13 file_size

long file_size(const char *filename);

See also:

Returns the size of a file, in bytes. If the file does not exist or an error occurs,
it will return zero and store the system error code in errno.

See Section 28.11 [file_exists|, page 184.
See Section 28.14 [file_time], page 185.

28.14 file_time

time_t file_time(const char *filename);

See also:

Returns the modification time (number of seconds since 00:00:00 GMT
1/1/1970) of a file. If the file does not exist or an error occurs, it will return
zero and store the system error code in errno.

See Section 28.11 [file_exists|, page 184.
See Section 28.13 [file_size|, page 184.

28.15 delete_file

int delete_file(const char *filename);

Removes a file from the disk.

28.16 for_each_file

int for_each_file(const char *name, int attrib, void (*callback) (const char
xfilename, int attrib, int param), int param);

Finds all the files on the disk which match the given wildcard specification and
file attributes (see above), and executes callback() once for each. callback()
will be passed three arguments, the first a string which contains the completed
filename, the second being the attributes of the file, and the third an int which
is simply a copy of param (you can use this for whatever you like). If an
error occurs an error code will be stored in errno, and callback() can cause
for_each_file() to abort by setting errno itself. Returns the number of successful
calls made to callback().

28.17 al_findfirst

int al_findfirst(const char *pattern, struct al_ffblk *info, int attrib);

Low-level function for searching files. This function finds the first file which
matches the given wildcard specification and file attributes (see above). The
information about the file (if any) will be put in the al_ffblk structure which you
have to provide. The function returns zero if a match is found, nonzero if none

186 Allegro Manual

is found or if an error occured and, in the latter case, sets errno accordingly.
The al_ftblk structure looks like:

struct al_ffblk

{
int attrib; - actual attributes of the file found
time_t time; - modification time of file
long size; - size of file
char name[512]; - name of file
};
There is some other stuff in the structure as well, but it is there for internal use

only.

See also:
See Section 28.18 [al_findnext], page 186.
See Section 28.19 [al_findclose|, page 186.

28.18 al_findnext

int al_findnext(struct al_ffblk *info);
This finds the next file in a search started by al_findfirst(). Returns zero if a
match is found, nonzero if none is found or if an error occured and, in the latter
case, sets errno accordingly.

See also:
See Section 28.17 [al_findfirst], page 185.
See Section 28.19 [al_findclose|, page 186.

28.19 al_findclose

void al_findclose(struct al_ffblk *info);
This closes a previously opened search with al_findfirst().

See also:
See Section 28.17 [al_findfirst], page 185.
See Section 28.18 [al_findnext], page 186.

28.20 find_allegro_resource

int find_allegro_resource(char *dest, const char *resource, const char
*ext, const char *datafile, const char *objectname, const char *envvar,
const char *subdir, int size);
Searches for a support file, eg. allegro.cfg or language.dat. Passed a resource
string describing what you are looking for, along with extra optional information

Chapter 28: File and compression routines 187

such as the default extension, what datafile to look inside, what the datafile
object name is likely to be, any special environment variable to check, and any
subdirectory that you would like to check as well as the default location, this
function looks in a hell of a lot of different places :-) Returns zero on success,
and stores a full path to the file (at most size bytes) into the dest buffer.

28.21 packfile_password

void packfile_password(const char *password);

See also:

Sets the encryption password to be used for all read/write operations on files
opened in future using Allegro’s packfile functions (whether they are compressed
or not), including all the save, load and config routines. Files written with an
encryption password cannot be read unless the same password is selected, so
be careful: if you forget the key, I can’t make your data come back again! Pass
NULL or an empty string to return to the normal, non-encrypted mode. If
you are using this function to prevent people getting access to your datafiles,
be careful not to store an obvious copy of the password in your executable: if
there are any strings like "I'm the password for the datafile", it would be fairly
easy to get access to your data :-)

Note #1: when writing a packfile, you can change the password to whatever
you want after opening the file, without affecting the write operation. On the
contrary, when writing a sub-chunk of a packfile, you must make sure that the
password that was active at the time the sub-chunk was opened is still active
before closing the sub-chunk. This is guaranteed to be true if you didn’t call
the packfile_password() routine in the meantime. Read operations, either on
packfiles or sub-chunks, have no such restriction.

Note #2: as explained above, the password is used for all read/write opera-
tions on files, including for several functions of the library that operate on files
without explicitly using packfiles, e.g load_bitmap(). The unencrypted mode
is mandatory in order for those functions to work. Therefore remember to
call packfile_password(NULL) before using them if you previously changed the
password. As a rule of thumb, always call packfile_password(NULL) when you
are done with operations on packfiles.

See Section 28.22 [pack_fopen|, page 187.
See Section 29.1 [load_datafile], page 191.

28.22 pack_fopen

PACKFILE *pack_fopen(const char *filename, const char *mode);

Opens a file according to mode, which may contain any of the flags:
e 'r’ - open file for reading.
e 'w’ - open file for writing, overwriting any existing data.

e 'p’ - open file in packed mode. Data will be compressed as it is written
to the file, and automatically uncompressed during read operations. Files

188

See also:

See Section 28.23
See Section 28.24
See Section 28.21
See Section 33.45

Allegro Manual

created in this mode will produce garbage if they are read without this flag
being set.

7'7

- open file for writing in normal, unpacked mode, but add the value
F_NOPACK_MAGIC to the start of the file, so that it can later be opened
in packed mode and Allegro will automatically detect that the data does
not need to be decompressed.

Instead of these flags, one of the constants F_READ, F_WRITE,
F_READ_PACKED, F_.WRITE_PACKED or F_-WRITE_NOPACK may be
used as the mode parameter. On success, pack_fopen() returns a pointer to a
file structure, and on error it returns NULL and stores an error code in errno.

An attempt to read a normal file in packed mode will cause errno to be set to
EDOM.

The packfile functions also understand several "magic" filenames that are used
for special purposes. These are:

e "#" - read data that has been appended to your executable file with the
exedat utility, as if it was a regular independent disk file.

e ’filename.dat#object_name’ - open a specific object from a datafile, and
read from it as if it was a regular file. You can treat nested datafiles
exactly like a normal directory structure, for example you could open ’file-
name.dat#graphics/levell /mapdata’.

e ’#object_name’ - combination of the above, reading an object from a
datafile that has been appended onto your executable.

With these special filenames, the contents of a datafile object or appended file
can be read in an identical way to a normal disk file, so any of the file access
functions in Allegro (eg. load_pcx() and set_config_file()) can be used to read
from them. Note that you can’t write to these special files, though: the fake file
is read only. Also, you must save your datafile uncompressed or with per-object
compression if you are planning on loading individual objects from it (otherwise
there will be an excessive amount of seeking when it is read). Finally, be aware
that the special Allegro object types aren’t the same format as the files you
import the data from. When you import data like bitmaps or samples into the
grabber, they are converted into a special Allegro-specific format, but the '#’
marker file syntax reads the objects as raw binary chunks. This means that if,
for example, you want to use load_pcx to read an image from a datafile, you
should import it as a binary block rather than as a BITMAP object.

packfile functions|, page 188.
pack_fopen_chunk], page 190.
packfile_password|, page 187.

file_select], page 225.

Chapter 28: File and compression routines 189

28.23 packfile functions

int pack_fclose(PACKFILE xf);

int pack_fseek(PACKFILE *f, int offset);

int pack_feof (PACKFILE *f);

int pack_ferror (PACKFILE *f);

int pack_getc(PACKFILE *f);

int pack_putc(int c, PACKFILE xf);

int pack_igetw(PACKFILE *f);

long pack_igetl(PACKFILE *f);

int pack_iputw(int w, PACKFILE *f);

long pack_iputl(long 1, PACKFILE *f);

int pack_mgetw(PACKFILE *f);

long pack_mgetl (PACKFILE *f);

int pack_mputw(int w, PACKFILE *f);

long pack_mputl(long 1, PACKFILE xf);

long pack_fread(void #*p, long n, PACKFILE *f);
long pack_fwrite(const void *p, long n, PACKFILE *f);
char *pack_fgets(char *p, int max, PACKFILE *f);

int pack_fputs(const char *p, PACKFILE *f);
These work like the equivalent stdio functions. There are some differences,
however:

Seeking only supports forward movement relative to the current position.
Note that seeking is very slow when reading compressed files, and so should
be avoided unless you are sure that the file is not compressed.

The pack_i* and pack_m* routines read and write 16 and 32 bit values
using the Intel and Motorola byte ordering systems (endianness) respec-
tively. Intel is least significant byte first (little-endian); Motorola is most
significant byte first (big-endian).

pack_fread() and pack_fwrite() take a single size parameter instead of that
silly size and num_elements system.

The pack_fgets() function does not include a trailing carriage return in the
returned string.

pack_fputs() always writes in the UTF-8 text encoding format, converting
from the current text encoding. Newlines (\n) are written as \r\n on
DOS/Windows. If you do not want either of these things to happen, use
pack_fwrite() and/or pack_putc() instead.

pack_feof() returns nonzero as soon as you reach the end of the file. It does
not wait for you to attempt to read beyond the end of the file, contrary to
the ISO C feof() function. The only way to know whether you have read
beyond the end of the file is to check the return value of the read operation
you use (and be wary of pack_*getl() as EOF is also a valid return value
with these functions).

190

See also:

Allegro Manual

See Section 28.22 [pack_fopen], page 187.

28.24 pack_fopen_chunk
PACKFILE *pack_fopen_chunk(PACKFILE *f, int pack);

See also:

Opens a sub-chunk of a file. Chunks are primarily intended for use by the
datafile code, but they may also be useful for your own file routines. A chunk
provides a logical view of part of a file, which can be compressed as an individual
entity and will automatically insert and check length counts to prevent reading
past the end of the chunk. To write a chunk to the file f, use the code:

/* assumes f is a PACKFILE * which has been opened */
f = pack_fopen_chunk(f, pack); /* in write mode */
write some data to f

f = pack_fclose_chunk(f);

The data written to the chunk will be prefixed with two length counts (32 bit,
big-endian). For uncompressed chunks these will both be set to the size of the
data in the chunk. For compressed chunks (created by setting the pack flag),
the first length will be the raw size of the chunk, and the second will be the
negative size of the uncompressed data.

To read the chunk, use the code:

/* assumes f is a PACKFILE * which has been opened */
f = pack_fopen_chunk(f, FALSE); */ in read mode */
read data from f

f = pack_fclose_chunk(f);

This sequence will read the length counts created when the chunk was written,
and automatically decompress the contents of the chunk if it was compressed.
The length will also be used to prevent reading past the end of the chunk
(Allegro will return EOF if you attempt this), and to automatically skip past
any unread chunk data when you call pack_fclose_chunk().

Chunks can be nested inside each other by making repeated calls to
pack_fopen_chunk(). When writing a file, the compression status is inherited
from the parent file, so you only need to set the pack flag if the parent is
not compressed but you want to pack the chunk data. If the parent file is
already open in packed mode, setting the pack flag will result in data being
compressed twice: once as it is written to the chunk, and again as the chunk
passes it on to the parent file.

See Section 28.25 [pack_fclose_chunk], page 191.

See Section 28.22 [pack_fopen|, page 187.

Chapter 29: Datafile routines 191

28.25 pack_fclose_chunk

PACKFILE xpack_fclose_chunk (PACKFILE xf);
Closes a sub-chunk of a file, previously obtained by calling pack_fopen_chunk().

See also:
See Section 28.24 [pack_fopen_chunk], page 190.

29 Datafile routines

Datafiles are created by the grabber utility, and have a .dat extension. They can contain
bitmaps, palettes, fonts, samples, MIDI music, FLI/FLC animations, and any other binary
data that you import.

Warning: when using truecolor images, you should always set the graphics mode before
loading any bitmap data! Otherwise the pixel format (RGB or BGR) will not be known,
so the file may be converted wrongly.

See the documentation for pack_fopen() for information about how to read directly from a
specific datafile object.

29.1 load_datafile

DATAFILE *load_datafile(const char *filename);
Loads a datafile into memory, and returns a pointer to it, or NULL on error.
If the datafile has been encrypted, you must first use the packfile_password()
function to set the appropriate key. See grabber.txt for more information. If
the datafile contains truecolor graphics, you must set the video mode or call
set_color_conversion() before loading it.

See also:

See Section 29.2 [load_datafile_callback], page 191.
See Section 29.3 [unload_datafile], page 192.

See Section 29.4 [load_datafile_object], page 192.
See Section 10.11 [set_color_conversion], page 90.
See Section 29.9 [fixup_datafile], page 193.

See Section 28.21 [packfile_password], page 187.
See Section 29.6 [find_datafile_object], page 193.
See Section 29.8 [register_datafile_object], page 193.

29.2 load_datafile_callback

DATAFILE *load_datafile_callback(const char *filename, void

(*callback) (DATAFILE *d));
Loads a datafile into memory, calling the specified hook function once for each
object in the file, passing it a pointer to the object just read.

192 Allegro Manual

See also:

See Section 29.1 [load-datafile], page 191.

See Section 29.3 [unload_datafile], page 192.

See Section 29.4 [load_datafile_object], page 192.
See Section 10.11 [set_color_conversion], page 90.
See Section 29.9 [fixup_datafile], page 193.

See Section 28.21 [packfile_password], page 187.
See Section 29.6 [find_datafile_object], page 193.
See Section 29.8 [register_datafile_object], page 193.

29.3 unload_datafile

void unload_datafile (DATAFILE *dat);
Frees all the objects in a datafile.

See also:
See Section 29.1 [load_datafile], page 191.

29.4 load_datafile_object

DATAFILE xload_datafile_object(const char *filename, const char
*objectname) ;
Loads a specific object from a datafile. This won’t work if you strip the object
names from the file, and it will be very slow if you save the file with global
compression. See grabber.txt for more information.

See also:

See Section 29.5 [unload_datafile_object], page 192.
See Section 29.1 [load-datafile], page 191.

See Section 10.11 [set_color_conversion], page 90.
See Section 29.6 [find_datafile_object], page 193.
See Section 29.8 [register_datafile_object], page 193.

29.5 unload_datafile_object

void unload_datafile_object (DATAFILE x*dat) ;
Frees an object previously loaded by load_datafile_object().

See also:
See Section 29.4 [load_datafile_object], page 192.

Chapter 29: Datafile routines 193

29.6 find_datafile_object

DATAFILE *find_datafile_object(const DATAFILE *dat, const char
*objectname) ;
Searches an already loaded datafile for an object with the specified name, re-
turning a pointer to it, or NULL if the object cannot be found. It understands
'/” and '#’ separators for nested datafile paths.

See also:
See Section 29.1 [load_datafile], page 191.
See Section 29.4 [load_datafile_object], page 192.

29.7 get_datafile_property

const char *get_datafile_property(const DATAFILE *dat, int type);
Returns the specified property string for the object, or an empty string if the
property isn’t present. See grabber.txt for more information.

29.8 register_datafile_object

void register_datafile_object(int id, void *(xload) (PACKFILE *f, long
size), void (*destroy) (void *data));
Used to add custom object types, specifying functions to load and destroy
objects of this type. See grabber.txt for more information.

See also:
See Section 29.1 [load_datafile], page 191.
See Section 29.4 [load_datafile_object], page 192.

29.9 fixup_datafile

void fixup_datafile(DATAFILE *data) ;

If you are using compiled datafiles (produced by the dat2s utility) on a platform
that doesn’t support constructors, or on a platform that does support construc-
tors and the datafiles contain truecolor images, you must call this function once
after your set the video mode that you will be using. This will ensure the
datafiles are properly initialised in the first case and convert the color values
into the appropriate format in the second case. It handles flipping between
RGB and BGR formats, and converting between different color depths when-
ever that can be done without changing the size of the image (ie. changing
between 15<->16 bit hicolor for both bitmaps and RLE sprites, and 24<->32 bit
truecolor for RLE sprites).

See also:

See Section 8.6 [set_gfx_mode], page 70.

194 Allegro Manual

See Section 10.11 [set_color_conversion], page 90.

29.10 using datafiles
When you load a datafile, you will obtain a pointer to an array of DATAFILE structures:

typedef struct DATAFILE

{
void *dat; - pointer to the actual data
int type; - type of the data
long size; - size of the data in bytes
void *prop; - list of object properties
} DATAFILE;
The type field will be one of the values:
DAT_FILE - dat points to a nested datafile
DAT_DATA - dat points to a block of binary data
DAT_FONT - dat points to a font object
DAT_SAMPLE - dat points to a sample structure
DAT_MIDI - dat points to a MIDI file
DAT_PATCH - dat points to a GUS patch file

DAT_FLI - dat points to an FLI/FLC animation
DAT_BITMAP dat points to a BITMAP structure
DAT_RLE_SPRITE - dat points to a RLE_SPRITE structure
DAT_C_SPRITE dat points to a linear compiled sprite
DAT_XC_SPRITE dat points to a mode-X compiled sprite
DAT_PALETTE dat points to an array of 256 RGB structures
DAT_END - special flag to mark the end of the data list

The grabber program can also produce a header file defining the index of each object
within the file as a series of #defined constants, using the names you gave the objects in
the grabber. So, for example, if you have made a datafile called foo.dat which contains a
bitmap called THE_IMAGE, you could display it with the code fragment:

#include "foo.h"

DATAFILE *data = load_datafile("foo.dat");
draw_sprite(screen, datal[THE_IMAGE].dat, x, y);

If you are programming in C++ you will get an error because the dat field is a void pointer
and draw_sprite() expects a BITMAP pointer. You can get around this with a cast, eg:

draw_sprite(screen, (BITMAP *)data[THE_IMAGE].dat, x, y);

When you load a single datafile object, you will obtain a pointer to a single DATAFILE
structure. This means that you don’t access it any more like an array, and it doesn’t have
any DAT_END object. Example:

Chapter 30: Fixed point math routines 195

music_object = load_datafile_object("datafile.dat", "MUSIC");
play_midi(music_object->dat);

30 Fixed point math routines

Allegro provides some routines for working with fixed point numbers, and defines the type
‘fixed” to be a signed 32 bit integer. The high word is used for the integer part and the low
word for the fraction, giving a range of -32768 to 32767 and an accuracy of about four or
five decimal places. Fixed point numbers can be assigned, compared, added, subtracted,
negated and shifted (for multiplying or dividing by powers of two) using the normal integer
operators, but you should take care to use the appropriate conversion routines when mixing
fixed point with integer or floating point values. Writing ’fixed_point_1 + fixed_point_2’ is
ok, but ’fixed_point + integer’ is not.

30.1 itofix

fixed itofix(int x);
Converts an integer to fixed point. This is the same thing as x<<16.

See also:

See Section 30.2 [fixtoi], page 195.
See Section 30.5 [ftofix]|, page 196.
See Section 30.6 [fixtof], page 196.

30.2 fixtoi

int fixtoi(fixed x);
Converts fixed point to integer, rounding as required.

See also:

See Section 30.1 [itofix], page 195.
See Section 30.5 [ftofix], page 196.
See Section 30.6 [fixtof], page 196.
See Section 30.3 [fixfloor], page 195.
See Section 30.4 [fixceil], page 196.

30.3 fixfloor

int fixfloor(fixed x);
Returns the greatest integer not greater than x. That is, it rounds towards
negative infinity.

See also:
See Section 30.2 [fixtoi], page 195.

196 Allegro Manual

See Section 30.4 [fixceil], page 196.

30.4 fixcelil

int fixceil(fixed x);
Returns the smallest integer not less than x. That is, it rounds towards positive
infinity.

See also:
See Section 30.2 [fixtoi], page 195.
See Section 30.3 [fixfloor|, page 195.

30.5 ftofix

fixed ftofix(double x);
Converts a floating point value to fixed point.

See also:

See Section 30.6 [fixtof], page 196.
See Section 30.1 [itofix], page 195.
See Section 30.2 [fixtoi], page 195.

30.6 fixtof

double fixtof(fixed x);
Converts fixed point to floating point.

See also:

See Section 30.5 [ftofix]|, page 196.
See Section 30.1 [itofix], page 195.
See Section 30.2 [fixtoi], page 195.

30.7 fixmul

fixed fixmul(fixed x, fixed y);
A fixed point value can be multiplied or divided by an integer with the normal
7 and ’/” operators. To multiply two fixed point values, though, you must use
this function.

If an overflow or division by zero occurs, errno will be set and the maximum
possible value will be returned, but errno is not cleared if the operation is
successful. This means that if you are going to test for overflow you should set
errno=0 before calling fixmul().

Chapter 30: Fixed point math routines 197

See also:

See Section 30.9 [fixadd], page 197.
See Section 30.10 [fixsub], page 197.
See Section 30.8 [fixdiv], page 197.

30.8 fixdiv
fixed fixdiv(fixed x, fixed y);

Fixed point division: see comments about fixmul().
See also:
See Section 30.9 [fixadd], page 197.
See Section 30.10 [fixsub], page 197.
See Section 30.7 [fixmul], page 196.

30.9 fixadd

fixed fixadd(fixed x, fixed y);
Although fixed point numbers can be added with the normal '+ integer op-
erator, that doesn’t provide any protection against overflow. If overflow is a
problem, you should use this function instead. It is slower than using integer
operators, but if an overflow occurs it will clamp the result, rather than just
letting it wrap, and set errno.

See also:

See Section 30.10 [fixsub], page 197.
See Section 30.7 [fixmul], page 196.
See Section 30.8 [fixdiv], page 197.

30.10 fixsub
fixed fixsub(fixed x, fixed y);

Fixed point subtraction: see comments about fixadd().
See also:
See Section 30.9 [fixadd], page 197.
See Section 30.7 [fixmul], page 196.
See Section 30.8 [fixdiv], page 197.

30.11 fixed point trig

The fixed point square root, sin, cos, tan, inverse sin, and inverse cos functions are im-
plemented using lookup tables, which are very fast but not particularly accurate. At the

198 Allegro Manual

moment the inverse tan uses an iterative search on the tan table, so it is a lot slower than
the others.

Angles are represented in a binary format with 256 equal to a full circle, 64 being a right
angle and so on. This has the advantage that a simple bitwise ’and’ can be used to keep
the angle within the range zero to a full circle, eliminating all those tiresome ’if (angle >=
360)’ checks.

30.12 fixsin

fixed fixsin(fixed x);
Lookup table sine.

See also:

See Section 30.11 [fixed point trig], page 197.

30.13 fixcos

fixed fixcos(fixed x);
Lookup table cosine.

See also:
See Section 30.11 [fixed point trig], page 197.

30.14 fixtan

fixed fixtan(fixed x);
Lookup table tangent.

See also:
See Section 30.11 [fixed point trig], page 197.

30.15 fixasin

fixed fixasin(fixed x);
Lookup table inverse sine.

See also:
See Section 30.11 [fixed point trig], page 197.

30.16 fixacos

fixed fixacos(fixed x);
Lookup table inverse cosine.

Chapter 31: 3D math routines 199

See also:
See Section 30.11 [fixed point trig], page 197.

30.17 fixatan

fixed fixatan(fixed x);
Fixed point inverse tangent.

See also:
See Section 30.11 [fixed point trig], page 197.

30.18 fixatan2

fixed fixatan2(fixed y, fixed x);
Fixed point version of the libc atan2() routine.

See also:
See Section 30.11 [fixed point trig], page 197.

30.19 fixsqrt

fixed fixsqrt(fixed x);
Fixed point square root.

30.20 fixhypot

fixed fixhypot(fixed x, fixed y);
Fixed point hypotenuse (returns the square root of x*x + y*y).

30.21 fix class

If you are programming in C++ you can ignore all the above and use the fix class instead,
which overloads a lot of operators to provide automatic conversion to and from integer and
floating point values, and calls the above routines as they are required. You should not
mix the fix class with the fixed typedef though, because the compiler will mistake the fixed
values for regular integers and insert unnecessary conversions. For example, if x is an object
of class fix, calling fixsqrt(x) will return the wrong result. You should use the overloaded
sqrt(x) or x.sqrt() instead.

30.22 fixed point aliases

The fixed point functions used to be named with an "f" prefix instead of "fix", eg. fixsqrt()
used to be fsqrt(), but were renamed due to conflicts with some libc implementations.
This should not affect most existing code as there are backwards compatibility aliases.
These aliases are static inline functions which map the old names to the new names, eg.
fsqrt() calls fixsqrt(). You can disable the aliases by defining the preprocessor macro AL-
LEGRO_NO_FIX_ALIASES before including allegro.h.

200 Allegro Manual

31 3D math routines

Allegro contains some 3d helper functions for manipulating vectors, constructing and using
transformation matrices, and doing perspective projections from 3d space onto the screen.
It is not, and never will be, a fully fledged 3d library (my goal is to supply generic sup-
port routines, not shrink-wrapped graphics code :-) but these functions may be useful for
developing your own 3d code.

Allegro uses a right-handed coordinate system, i.e. if you point the thumb of your right
hand along the x axis, and the index finger along the y axis, your middle finger points in
the direction of the z axis. This also means, for any rotation, if you point the thumb of
your right hand along the axis of rotation, then the fingers curl in the positive direction of
rotation.

All the 3d math functions are available in two versions: one which uses fixed point arith-
metic, and another which uses floating point. The syntax for these is identical, but the
floating point functions and structures are postfixed with '_f’, eg. the fixed point function
cross_product() has a floating point equivalent cross_product_f(). If you are programming
in C++, Allegro also overloads these functions for use with the 'fix’ class.

3d transformations are accomplished by the use of a modelling matrix. This is a 4x4 array
of numbers that can be multiplied with a 3d point to produce a different 3d point. By
putting the right values into the matrix, it can be made to do various operations like
translation, rotation, and scaling. The clever bit is that you can multiply two matrices
together to produce a third matrix, and this will have the same effect on points as applying
the original two matrices one after the other. For example, if you have one matrix that
rotates a point and another that shifts it sideways, you can combine them to produce a
matrix that will do the rotation and the shift in a single step. You can build up extremely
complex transformations in this way, while only ever having to multiply each point by a
single matrix.

Allegro actually cheats in the way it implements the matrix structure. Rotation and scaling
of a 3d point can be done with a simple 3x3 matrix, but in order to translate it and project
it onto the screen, the matrix must be extended to 4x4, and the point extended into 4d
space by the addition of an extra coordinate, w=1. This is a bad thing in terms of efficiency,
but fortunately an optimisation is possible. Given the 4x4 matrix:

(a, b, c, d)

(e, f, g, h)

(i, j, k, 1)

(m, n, o, p)
a pattern can be observed in which parts of it do what. The top left 3x3 grid implements
rotation and scaling. The three values in the top right column (d, h, and 1) implement
translation, and as long as the matrix is only used for affine transformations, m, n and o
will always be zero and p will always be 1. If you don’t know what affine means, read Foley
& Van Damme: basically it covers scaling, translation, and rotation, but not projection.
Since Allegro uses a separate function for projection, the matrix functions only need to
support affine transformations, which means that there is no need to store the bottom row
of the matrix. Allegro implicitly assumes that it contains (0,0,0,1), and optimises the matrix
manipulation functions accordingly.

Chapter 31: 3D math routines 201

Matrices are stored in the structures:

typedef struct MATRIX - fixed point matrix structure

{
fixed v[3][3]; - 3x3 scaling and rotation component
fixed t[3]; - x/y/z translation component

} MATRIX;

typedef struct MATRIX_f - floating point matrix structure

{
float v[3][3]; - 3x3 scaling and rotation component
float t[3]; - x/y/z translation component

} MATRIX_f

31.1 identity_matrix

extern MATRIX identity_matrix;

extern MATRIX_f identity_matrix_f;
Global variables containing the ’do nothing’ identity matrix. Multiplying by
the identity matrix has no effect.

31.2 get_translation_matrix

void get_translation_matrix(MATRIX *m, fixed x, fixed y, fixed z);

void get_translation_matrix_f(MATRIX_f *m, float x, float y, float z);
Constructs a translation matrix, storing it in m. When applied to the point
(px, py, pz), this matrix will produce the point (px+x, py+y, pz+z). In other
words, it moves things sideways.

See also:
See Section 31.23 [apply_matrix], page 207.
See Section 31.11 [get_transformation_matrix]|, page 204.

See Section 31.15 [gtranslate_matrix], page 205.

31.3 get_scaling_matrix
void get_scaling matrix(MATRIX *m, fixed x, fixed y, fixed z);

void get_scaling matrix_f(MATRIX_f *m, float x, float y, float z);
Constructs a scaling matrix, storing it in m. When applied to the point (px,
Py, pz), this matrix will produce the point (px*x, py*y, pz*z). In other words,
it stretches or shrinks things.

See also:
See Section 31.23 [apply_matrix], page 207.

See Section 31.11 [get_transformation_matrix], page 204.

202 Allegro Manual

See Section 31.16 [gscale_matrix], page 205.

31.4 get_x_rotate_matrix

void get_x_rotate_matrix (MATRIX *m, fixed r);

void get_x_rotate_matrix_f(MATRIX_f *m, float r);
Construct X axis rotation matrices, storing them in m. When applied to a
point, these matrices will rotate it about the X axis by the specified angle
(given in binary, 256 degrees to a circle format).

See also:

See Section 31.23 [apply_matrix], page 207.

See Section 31.7 [get_rotation_matrix]|, page 203.
See Section 31.5 [get_y_rotate_matrix], page 202.
See Section 31.6 [get_z_rotate_matrix]|, page 202.

31.5 get_y_rotate_matrix

void get_y_rotate_matrix (MATRIX *m, fixed r);

void get_y_rotate_matrix_f(MATRIX_f *m, float r);
Construct Y axis rotation matrices, storing them in m. When applied to a
point, these matrices will rotate it about the Y axis by the specified angle
(given in binary, 256 degrees to a circle format).

See also:

See Section 31.23 [apply_matrix|, page 207.

See Section 31.7 [get_rotation_matrix], page 203.
See Section 31.4 [get_x_rotate_matrix]|, page 202.
See Section 31.6 [get_z_rotate_matrix], page 202.

31.6 get_z_rotate_matrix

void get_z_rotate_matrix (MATRIX *m, fixed r);

void get_z_rotate_matrix_f(MATRIX_f *m, float r);
Construct Z axis rotation matrices, storing them in m. When applied to a point,
these matrices will rotate it about the Z axis by the specified angle (given in
binary, 256 degrees to a circle format).

See also:

See Section 31.23 [apply_matrix], page 207.

See Section 31.7 [get_rotation_matrix], page 203.
See Section 31.4 [get_x_rotate_matrix], page 202.

Chapter 31: 3D math routines 203

See Section 31.5 [get_y_rotate_matrix], page 202.

31.7 get_rotation_matrix
void get_rotation_matrix(MATRIX *m, fixed x, fixed y, fixed z);

void get_rotation_matrix_f(MATRIX_f *m, float x, float y, float z);
Constructs a transformation matrix which will rotate points around all three
axis by the specified amounts (given in binary, 256 degrees to a circle format).

See also:

See Section 31.23 [apply_-matrix|, page 207.

See Section 31.11 [get_transformation_matrix], page 204.
See Section 31.10 [get_vector_rotation_matrix]|, page 203.
See Section 31.4 [get_x_rotate_matrix], page 202.

See Section 31.5 [get_y_rotate_matrix|, page 202.
See Section 31.6 [get-z_rotate_matrix]|, page 202.
[

See Section 31.8 [get_align_matrix], page 203.

31.8 get_align_matrix

void get_align_matrix(MATRIX #*m, fixed xfront, yfront, zfront, fixed xup,
fixed yup, fixed zup);
Rotates a matrix so that it is aligned along the specified coordinate vectors
(they need not be normalized or perpendicular, but the up and front must not
be equal). A front vector of 1,0,0 and up vector of 0,1,0 will return the identity
matrix.

See also:
See Section 31.23 [apply_-matrix|, page 207.
See Section 31.13 [get_camera_matrix], page 204.

31.9 get_align_matrix_f

void get_align matrix_f (MATRIX *m, float xfront, yfront, zfront, float xup,

yup, zup);
Floating point version of get_align_matrix().

See also:

See Section 31.8 [get_align_matrix|, page 203.

204 Allegro Manual

31.10 get_vector_rotation_matrix

void get_vector_rotation_matrix (MATRIX *m, fixed x, y, z, fixed a);

void get_vector_rotation_matrix_f(MATRIX_f *m, float x, y, z, float a);
Constructs a transformation matrix which will rotate points around the speci-
fied x,y,z vector by the specified angle (given in binary, 256 degrees to a circle
format).

See also:

See Section 31.23 [apply_matrix], page 207.

See Section 31.7 [get_rotation_matrix]|, page 203.
See Section 31.8 [get_align_matrix], page 203.

31.11 get_transformation_matrix

void get_transformation_matrix(MATRIX *m, fixed scale, fixed xrot, yrot,
zrot, X, y, 2);
Constructs a transformation matrix which will rotate points around all three
axis by the specified amounts (given in binary, 256 degrees to a circle format),
scale the result by the specified amount (pass 1 for no change of scale), and
then translate to the requested x, y, z position.

See also:

See Section 31.23 [apply_-matrix|, page 207.

See Section 31.7 [get_rotation_matrix], page 203.
See Section 31.3 [get_scaling_matrix], page 201.
See Section 31.2 [get_translation_matrix], page 201.

31.12 get_transformation_matrix_f

void get_transformation_matrix_f(MATRIX_f *m, float scale, float xrot,
yrot, zrot, x, y, 2z);
Floating point version of get_transformation_matrix().

See also:

See Section 31.11 [get_transformation_matrix|, page 204.

31.13 get_camera_matrix

void get_camera_matrix(MATRIX #*m, fixed x, y, z, xfront, yfront, zfront,
fixed xup, yup, zup, fov, aspect);
Constructs a camera matrix for translating world-space objects into a nor-
malised view space, ready for the perspective projection. The x, y, and z
parameters specify the camera position, xfront, yfront, and zfront are the ’in

Chapter 31: 3D math routines 205

front’ vector specifying which way the camera is facing (this can be any length:
normalisation is not required), and xup, yup, and zup are the 'up’ direction
vector. The fov parameter specifies the field of view (ie. width of the camera
focus) in binary, 256 degrees to the circle format. For typical projections, a
field of view in the region 32-48 will work well. Finally, the aspect ratio is used
to scale the Y dimensions of the image relative to the X axis, so you can use it
to adjust the proportions of the output image (set it to 1 for no scaling).

See also:
See Section 31.23 [apply_matrix], page 207.
See Section 31.8 [get_align_matrix], page 203.

31.14 get_camera_matrix_f

void get_camera_matrix_f (MATRIX_f #*m, float x, y, z, xfront, yfront,
zfront, float xup, yup, zup, fov, aspect);
Floating point version of get_camera_matrix().

See also:

See Section 31.13 [get_camera_matrix], page 204.

31.15 gtranslate_matrix
void qtranslate_matrix(MATRIX #m, fixed x, fixed y, fixed z);

void qtranslate_matrix_f(MATRIX_f #*m, float x, float y, float z);
Optimised routine for translating an already generated matrix: this simply adds
in the translation offset, so there is no need to build two temporary matrices
and then multiply them together.

See also:

See Section 31.2 [get_translation_matrix], page 201.

31.16 gscale_matrix

void gscale_matrix(MATRIX #m, fixed scale);

void gscale_matrix_f(MATRIX_f *m, float scale);
Optimised routine for scaling an already generated matrix: this simply adds in
the scale factor, so there is no need to build two temporary matrices and then
multiply them together.

See also:

See Section 31.3 [get_scaling_matrix], page 201.

206 Allegro Manual

31.17 matrix_mul

void matrix_mul (const MATRIX *ml, *m2, MATRIX *out);

void matrix_mul_f (const MATRIX_f #*ml, *m2, MATRIX_f *out);
Multiplies two matrices, storing the result in out (this may be a duplicate of
one of the input matrices, but it is faster when the inputs and output are all
different). The resulting matrix will have the same effect as the combination of
ml and m2, ie. when applied to a point p, (p * out) = ((p * ml1) * m2). Any
number of transformations can be concatenated in this way. Note that matrix
multiplication is not commutative, ie. matrix_mul(ml, m2) != matrix_mul(m2,
ml).

See also:

See Section 31.23 [apply_matrix], page 207.

31.18 vector_length

fixed vector_length(fixed x, fixed y, fixed z);

float vector_length_f(float x, float y, float z);
Calculates the length of the vector (x, y, z), using that good ’ole Pythagoras
theorem.

See also:

See Section 31.19 [normalize_vector], page 206.

31.19 normalize_vector

void normalize_vector(fixed *x, fixed *y, fixed *z);

void normalize_vector_f (float *x, float *y, float *z);
Converts the vector (*x, *y, *z) to a unit vector. This points in the same
direction as the original vector, but has a length of one.

See also:
See Section 31.18 [vector_length], page 206.

See Section 31.20 [dot_product], page 206.
See Section 31.21 [cross_product], page 207.

31.20 dot_product

fixed dot_product(fixed x1, yi1, zl, x2, y2, z2);

float dot_product_f(float x1, yi1, zl, x2, y2, z2);
Calculates the dot product (x1, y1, z1) . (x2, y2, z2), returning the result.

See also:

See Section 31.21 [cross_product], page 207.

Chapter 31: 3D math routines 207

See Section 31.19 [normalize_vector], page 206.

31.21 cross_product

void cross_product(fixed x1, yi1, zl, x2, y2, z2, *xout, *yout, *zout);

void cross_product_f (float x1, y1, zl, x2, y2, z2, *xout, *yout, *zout);
Calculates the cross product (x1, y1, z1) x (x2, y2, z2), storing the result in

(*xout, *yout, *zout). The cross product is perpendicular to both of the input
vectors, so it can be used to generate polygon normals.

See also:
See Section 31.20 [dot_product], page 206.
See Section 31.22 [polygon_z_normal|, page 207.

See Section 31.19 [normalize_vector|, page 206.

31.22 polygon_z_normal

fixed polygon_z_normal(const V3D *v1, *v2, *v3);

float polygon_z_normal_f(const V3D_f *vl, *v2, *v3);
Finds the Z component of the normal vector to the specified three vertices
(which must be part of a convex polygon). This is used mainly in back-face
culling. The back-faces of closed polyhedra are never visible to the viewer,
therefore they never need to be drawn. This can cull on average half the poly-
gons from a scene. If the normal is negative the polygon can safely be culled.
If it is zero, the polygon is perpendicular to the screen.

See also:

See Section 31.21 [cross_product], page 207.

31.23 apply_matrix
void apply_matrix(const MATRIX *m, fixed x, y, z, *xout, *yout, *zout);

void apply_matrix_f(const MATRIX_f *m, float x, y, z, *xout, *yout, *zout);
Multiplies the point (x, y, z) by the transformation matrix m, storing the result
in (*xout, *yout, *zout).

See also:

See Section 31.17 [matrix_mul], page 206.

208 Allegro Manual

31.24 set_projection_viewport

void set_projection_viewport(int x, int y, int w, int h);
Sets the viewport used to scale the output of the persp_project() function. Pass
the dimensions of the screen area you want to draw onto, which will typically
be 0, 0, SCREEN_W, and SCREEN_H.

See also:

See Section 31.25 [persp_project], page 208.

31.25 persp_project

void persp_project(fixed x, y, z, *xout, *yout);

void persp_project_f(float x, y, z, *xout, *yout);
Projects the 3d point (x, y, z) into 2d screen space, storing the result in
(*xout, *yout) and using the scaling parameters previously set by calling
set_projection_viewport(). This function projects from the normalized viewing
pyramid, which has a camera at the origin and facing along the positive z
axis. The x axis runs left/right, y runs up/down, and z increases with depth
into the screen. The camera has a 90 degree field of view, ie. points on the
planes x=z and -x=z will map onto the left and right edges of the screen, and
the planes y=z and -y=z map to the top and bottom of the screen. If you
want a different field of view or camera location, you should transform all your
objects with an appropriate viewing matrix, eg. to get the effect of panning
the camera 10 degrees to the left, rotate all your objects 10 degrees to the
right.

See also:
See Section 31.24 [set_projection_viewport], page 207.

32 Quaternion math routines

Quaternions are an alternate way to represent the rotation part of a transformation, and
can be easier to manipulate than matrices. As with a matrix, you can encode a geometric
transformations in one, concatenate several of them to merge multiple transformations, and
apply them to a vector, but they can only store pure rotations. The big advantage is that
you can accurately interpolate between two quaternions to get a part-way rotation, avoiding
the gimbal problems of the more conventional euler angle interpolation.

Quaternions only have floating point versions, without any _f suffix. Other than that,
most of the quaternion functions correspond with a matrix function that performs a similar
operation.

Quaternion means ’of four parts’, and that’s exactly what it is. Here is the structure:

typedef struct QUAT
{

Chapter 32: Quaternion math routines 209

float w, x, y, Z;
}

You will have lots of fun figuring out what these numbers actually mean, but that is beyond
the scope of this documentation. Quaternions do work — trust me.

32.1 identity_quat

extern QUAT identity_quat;
Global variable containing the ’do nothing’ identity quaternion. Multiplying by
the identity quaternion has no effect.

32.2 get_x_rotate_quat

void get_x_rotate_quat (QUAT *q, float r);
void get_y_rotate_quat(QUAT *q, float r);
void get_z_rotate_quat(QUAT *q, float r);
Construct axis rotation quaternions, storing them in q. When applied to a

point, these quaternions will rotate it about the relevant axis by the specified
angle (given in binary, 256 degrees to a circle format).

32.3 get_rotation_quat

void get_rotation_quat(QUAT *q, float x, float y, float z);
Constructs a quaternion that will rotate points around all three axis by the
specified amounts (given in binary, 256 degrees to a circle format).

32.4 get_vector_rotation_quat

void get_vector_rotation_quat(QUAT *q, float x, y, z, float a);
Constructs a quaternion that will rotate points around the specified x,y,z vector
by the specified angle (given in binary, 256 degrees to a circle format).

32.5 quat_to_matrix

void quat_to_matrix(const QUAT *q, MATRIX_f *m);
Constructs a rotation matrix from a quaternion.

32.6 matrix_to_quat

void matrix_to_quat(const MATRIX_f *m, QUAT *q);
Constructs a quaternion from a rotation matrix. Translation is discarded during
the conversion. Use get_align_matrix_f() if the matrix is not orthonormalized,
because strange things may happen otherwise.

32.7 quat_mul

void quat_mul(const QUAT *p, const QUAT *q, QUAT *out);
Multiplies two quaternions, storing the result in out. The resulting quaternion
will have the same effect as the combination of p and q, ie. when applied to a

210 Allegro Manual

point, (point * out) = ((point * p) * q). Any number of rotations can be con-
catenated in this way. Note that quaternion multiplication is not commutative,
ie. quat_mul(p, q) != quat_mul(q, p).

32.8 apply_quat

void apply_quat(const QUAT *q, float x, y, z, *xout, *yout, *zout);
Multiplies the point (x, y, z) by the quaternion g, storing the result in (*xout,
*yout, *zout). This is quite a bit slower than apply_matrix_f(), so only use it
to translate a few points. If you have many points, it is much more efficient to
call quat_to_matrix() and then use apply_matrix_f().

32.9 quat_interpolate

void quat_interpolate(const QUAT *from, *to, float t, QUAT *out);
Constructs a quaternion that represents a rotation between from and to. The
argument t can be anything between 0 and 1 and represents where between
from and to the result will be. 0 returns from, 1 returns to, and 0.5 will return
a rotation exactly in between. The result is copied to out. This function will
create the short rotation (less than 180 degrees) between from and to.

32.10 quat_slerp

void quat_slerp(const QUAT *from, *to, float t, QUAT *out, int how);
The same as quat_interpolate(), but allows more control over how the rotation
is done. The how parameter can be any one of the values:

QUAT_SHORT - like quat_interpolate(), use shortest path
QUAT_LONG - rotation will be greater than 180 degrees
QUAT_CW - rotate clockwise when viewed from above
QUAT_CCW - rotate counterclockwise when viewed from above
QUAT_USER - the quaternions are interpolated exactly as given

33 GUI routines

Allegro contains an object-oriented dialog manager, which was originally based on the Atari
GEM system (form_do(), objc_draw(), etc: old ST programmers will know what I'm talking
about :-) You can use the GUI as-is to knock out simple interfaces for things like the test
program and grabber utility, or you can use it as a basis for more complicated systems of
your own. Allegro lets you define your own object types by writing new dialog procedures,
so you can take complete control over the visual aspects of the interface while still using
Allegro to handle input from the mouse, keyboard, joystick, etc.

A GUI dialog is stored as an array of DIALOG objects, each one containing the fields:

typedef struct DIALOG

{
int (*proc) (int, DIALOG *, int); - dialog procedure (message handler)
int x, y, w, h; - position and size of the object

Chapter 33: GUI routines 211

int fg, bg; - foreground and background colors
int key; - ASCII keyboard shortcut
int flags; - flags about the status of

the object
int di, d2; - whatever you want to use them for
void *dp, *dp2, *dp3; - pointers to more

object-specific data
} DIALOG;

The array should end with an object which has the proc pointer set to NULL.
The flags field may contain any combination of the bit flags:

D_EXIT - this object should close the dialog when it is clicked

D_SELECTED - this object is selected

D_GOTFOCUS - this object has got the input focus

D_GOTMOUSE - the mouse is currently on top of this object

D_HIDDEN - this object is hidden and inactive

D_DISABLED - this object is greyed-out and inactive

D_DIRTY - this object needs to be redrawn

D_INTERNAL - don’t use this! It is for internal use by the
library...

D_USER - any powers of two above this are free for your own use

Each object is controlled by a dialog procedure, which is stored in the proc pointer. This
will be called by the dialog manager whenever any action concerning the object is required,
or you can call it directly with the object_message() function. The dialog procedure should
follow the form:

int foo(int msg, DIALOG *d, int c);

It will be passed a flag (msg) indicating what action it should perform, a pointer to the
object concerned (d), and if msg is MSG_CHAR or MSG_XCHAR, the key that was pressed
(c). Note that d is a pointer to a specific object, and not to the entire dialog.

The dialog procedure should return one of the values:

D_O_K - normal return status

D_CLOSE - tells the dialog manager to close the dialog

D_REDRAW - tells the dialog manager to redraw the entire dialog
D_REDRAWME - tells the dialog manager to redraw the current object
D_WANTFOCUS - requests that the input focus be given to this object
D_USED_CHAR - MSG_CHAR and MSG_XCHAR return this if they used the key

Dialog procedures may be called with any of the messages:

MSG_START:
Tells the object to initialise itself. The dialog manager sends this to all the objects in a
dialog just before it displays the dialog.

MSG_END:
Sent to all objects when closing a dialog, allowing them to perform whatever cleanup oper-
ations they require.

212 Allegro Manual

MSG_DRAW:
Tells the object to draw itself onto the screen. The mouse pointer will be turned off when
this message is sent, so the drawing code does not need to worry about it.

MSG_CLICK:

Informs the object that a mouse button has been clicked while the mouse was on top of the
object. Typically an object will perform its own mouse tracking as long as the button is
held down, and only return from this message handler when it is released.

MSG_DCLICK:

Sent when the user double-clicks on an object. A MSG_CLICK will be sent when the button
is first pressed, then MSG_DCLICK if it is released and pressed again within a short space
of time.

MSG_KEY:
Sent when the keyboard shortcut for the object is pressed, or if enter, space, or a joystick
button is pressed while it has the input focus.

MSG_CHAR:

When a key is pressed, this message is sent to the object that has the input focus, with a
readkey() format character code (ASCII value in the low byte, scancode in the high byte) as
the ¢ parameter. If the object deals with the keypress it should return D_USED_CHAR, oth-
erwise it should return D_O_K to allow the default keyboard interface to operate. If you need

to access Unicode character input, you should use MSG_UCHAR instead of MSG_CHAR.

MSG_UCHAR:

If an object ignores the MSG_CHAR input, this message will be sent immediately after it,
passed the full Unicode key value as the ¢ parameter. This enables you to read character
codes greater than 255, but cannot tell you anything about the scancode: if you need to
know that, use MSG_CHAR instead. This handler should return D_USED_CHAR if it
processed the input, or D_O_K otherwise.

MSG_XCHAR:

When a key is pressed, Allegro will send a MSG_CHAR and MSG_UCHAR to the object
with the input focus. If this object doesn’t process the key (ie. it returns D_O_K rather
than D_.USED_CHAR), the dialog manager will look for an object with a matching keyboard
shortcut in the key field, and send it a MSG_KEY. If this fails, it broadcasts a MSG_XCHAR
to all objects in the dialog, allowing them to respond to special keypresses even when they
don’t have the input focus. Normally you should ignore this message (return D_O_K rather
than D_USED_CHAR), in which case Allegro will perform default actions such as moving
the focus in response to the arrow keys and closing the dialog if ESC is pressed.

MSG_WANTFOCUS:
Queries whether an object is willing to accept the input focus. It should return
D_WANTFOCUS if it does, or D_O_K if it isn’t interested in getting user input.

MSG_GOTFOCUS:
MSG_LOSTFOCUS:
Sent whenever an object gains or loses the input focus. These messages will always be
followed by a MSG_DRAW, to let objects display themselves differently when they have
the input focus. If you return D_-WANTFOCUS in response to a MSG_LOSTFOCUS event,
this will prevent your object from losing the focus when the mouse moves off it onto the

Chapter 33: GUI routines 213

screen background or some inert object, so it will only lose the input focus when some other
object is ready to take over the focus (this trick is used by the d_edit_proc() object).

MSG_GOTMOUSE:

MSG_LOSTMOUSE:

Sent when the mouse moves on top of or away from an object. Unlike the focus messages,
these are not followed by a MSG_DRAW, so if the object is displayed differently when the
mouse is on top of it, it is responsible for redrawing itself in response to these messages.

MSG_IDLE:
Sent whenever the dialog manager has nothing better to do.

MSG_RADIO:
Sent by radio button objects to deselect other buttons in the same group when they are
clicked. The group number is passed in the ¢ message parameter.

MSG_WHEEL:
Sent to the focused object whenever the mouse wheel moves. The ¢ message parameter
contains the number of clicks.

MSG_LPRESS, MSG_MPRESS, MSG_RPRESS:
Sent when the corresponding mouse button is pressed.

MSG_LRELEASE, MSG_MRELEASE, MSG_RRELEASE:
Sent when the corresponding mouse button is released.

MSG_USER:
The first free message value. Any numbers from here on (MSG_USER, MSG_USER+1,
MSG_USER+2, ... MSG_USER+n) are free to use for whatever you like.

Allegro provides several standard dialog procedures. You can use these as they are to
provide simple user interface objects, or you can call them from within your own dialog
procedures, resulting in a kind of OOP inheritance. For instance, you could make an object
which calls d_button_proc to draw itself, but handles the click message in a different way,
or an object which calls d_button_proc for everything except drawing itself, so it would
behave like a normal button but could look completely different.

Since the release of Allegro version 3.9.33 (CVS), some GUI objects and menus are being
drawn differently unlike in previous Allegro versions. The changes are the following;:

e Shadows under d_shadow_box_proc and d_button_proc are always black.

e The most important (and immediately visible) change is, that some objects are being
drawn smaller. The difference is exactly one pixel in both height and width, when
comparing to previous versions. The reason is, that in previous versions these objects
were too large on the screen - their size was d->w+1 and d->h+1 pixels (and not d->w
and d->h, as it should be). This change affects the following objects :

d_box_proc,
d_shadow_box_proc,
d_button_proc,
d_check_proc,
d_radio_proc,
d_list_proc,
d_text_list_proc and

214 Allegro Manual

d_textbox_proc.

When you want to convert old dialogs to look equally when compiling with the new

Allegro version, just increase the size of the mentioned objects by one pixel in both
width and height fields.

e When a GUI menu item (not in a bar menu) has a child menu, there is a small arrow
next to the child menu name, pointing to the right - so the user can immediately see
that this menu item has a child menu - and there is no need to use such menu item
names as for example "New...", to show that it has a child menu. The submenu will
be drawn to the right of the parent menu, trying not to overlap it.

33.1 d_clear_proc

int d_clear_proc(int msg, DIALOG *d, int c);
This just clears the screen when it is drawn. Useful as the first object in a
dialog.

33.2 d_box_proc

int d_box_proc(int msg, DIALOG *d, int c);

int d_shadow_box_proc(int msg, DIALOG *d, int c);
These draw boxes onto the screen, with or without a shadow.

33.3 d_bitmap_proc

int d_bitmap_proc(int msg, DIALOG *d, int c);
This draws a bitmap onto the screen, which should be pointed to by the dp
field.

33.4 d_text_proc

int d_text_proc(int msg, DIALOG *d, int c);
int d_ctext_proc(int msg, DIALOG *d, int c);

int d_rtext_proc(int msg, DIALOG *d, int c);

These draw text onto the screen. The dp field should point to the string
to display. d_ctext_proc() centres the string around the x coordinate, and
d_rtext_proc() right aligns it. Any ’&’ characters in the string will be replaced
with lines underneath the following character, for displaying keyboard shortcuts
(as in MS Windows). To display a single ampersand, put "&&". To draw the
text in something other than the default font, set the dp2 field to point to your
custom font data.

33.5 d_button_proc

int d_button_proc(int msg, DIALOG *d, int c);
A button object (the dp field points to the text string). This object can be
selected by clicking on it with the mouse or by pressing its keyboard shortcut.

Chapter 33: GUI routines 215

If the D_EXIT flag is set, selecting it will close the dialog, otherwise it will
toggle on and off. Like d_text_proc(), ampersands can be used to display the
keyboard shortcut of the button.

33.6 d_check_proc

int d_check_proc(int msg, DIALOG *d, int c);
This is an example of how you can derive objects from other objects. Most of
the functionality comes from d_button_proc(), but it displays itself as a check
box. If the d1 field is non-zero, the text will be printed to the right of the check,
otherwise it will be on the left.

Note: the object width should allow space for the text as well as the check box
(which is square, with sides equal to the object height).

33.7 d_radio_proc

int d_radio_proc(int msg, DIALOG *d, int c);
A radio button object. A dialog can contain any number of radio button groups:
selecting a radio button causes other buttons within the same group to be
deselected. The dp field points to the text string, d1 specifies the group number,
and d2 is the button style (O=circle, 1=square).

33.8 d_icon_proc

int d_icon_proc(int msg, DIALOG *d, int c);

A bitmap button. The fg color is used for the dotted line showing focus, and
the bg color for the shadow used to fill in the top and left sides of the button
when "pressed". dl is the "push depth", ie. the number of pixels the icon
will be shifted to the right and down when selected (default 2) if there is no
"selected" image. d2 is the distance by which the dotted line showing focus is
indented (default 2). dp points to a bitmap for the icon, while dp2 and dp3 are
the selected and disabled images respectively (optional, may be NULL).

33.9 d_keyboard_proc

int d_keyboard_proc(int msg, DIALOG *d, int c);

This is an invisible object for implementing keyboard shortcuts. You can put
an ASCII code in the key field of the dialog object (a character such as ’a’ to
respond to a simple keypress, or a number 1-26 to respond to a control key a-z),
or you can put a keyboard scancode in the d1 and/or d2 fields. When one of
these keys is pressed, the object will call the function pointed to by dp. This
should return an int, which will be passed back to the dialog manager, so it can
return D_O_K, D_REDRAW, D_CLOSE, etc.

33.10 d_edit_proc

int d_edit_proc(int msg, DIALOG *d, int c);
An editable text object (the dp field points to the string). When it has the
input focus (obtained by clicking on it with the mouse), text can be typed into

216 Allegro Manual

this object. The dl field specifies the maximum number of characters that it
will accept, and d2 is the text cursor position within the string.

33.11 d_list_proc

int d_list_proc(int msg, DIALOG *d, int c);
A list box object. This will allow the user to scroll through a list of items and to
select one by clicking or with the arrow keys. If the D_EXIT flag is set, double
clicking on a list item will close the dialog. The index of the selected item is
held in the d1 field, and d2 is used to store how far it has scrolled through the
list. The dp field points to a function which will be called to obtain information
about the contents of the list. This should follow the form:

char *foobar(int index, int *list_size);

If index is zero or positive, the function should return a pointer to the string
which is to be displayed at position index in the list. If index is negative, it
should return NULL and list_size should be set to the number of items in the
list.

To create a multiple selection listbox, set the dp2 field to an array of byte flags
indicating the selection state of each list item (non-zero for selected entries).
This table must be at least as big as the number of objects in the list!

33.12 d_text_list_proc

int d_text_list_proc(int msg, DIALOG *d, int c);
Like d_list_proc, but allows the user to type in the first few characters of a
listbox entry in order to select it. Uses dp3 internally, so you mustn’t store
anything important there yourself.

33.13 d_textbox_proc

int d_textbox_proc(int msg, DIALOG *d, int c);

A text box object. The dp field points to the text which is to be displayed in
the box. If the text is long, there will be a vertical scrollbar on the right hand
side of the object which can be used to scroll through the text. The default is
to print the text with word wrapping, but if the D_SELECTED flag is set, the
text will be printed with character wrapping. The d1 field is used internally to
store the number of lines of text, and d2 is used to store how far it has scrolled
through the text.

33.14 d_slider_proc

int d_slider_proc(int msg, DIALOG *d, int c);
A slider control object. This object holds a value in d2, in the range from 0
to d1. It will display as a vertical slider if h is greater than or equal to w,
otherwise it will display as a horizontal slider. The dp field can contain an
optional bitmap to use for the slider handle, and dp2 can contain an optional

Chapter 33: GUI routines 217

callback function, which is called each time d2 changes. The callback function
should have the following prototype:

int function(void *dp3, int d2);
The d_slider_proc object will return the value of the callback function.

33.15 d_menu_proc

int d_menu_proc(int msg, DIALOG *d, int c);

See also:

This object is a menu bar which will drop down child menus when it is clicked
or if an alt+key corresponding to one of the shortcuts in the menu is pressed.
It ignores a lot of the fields in the dialog structure, in particular the color is
taken from the gui_*_color variables, and the width and height are calculated
automatically (the w and h fields from the DIALOG are only used as a minimum
size.) The dp field points to an array of menu structures: see do_menu() for
more information. The top level menu will be displayed as a horizontal bar, but
when child menus drop down from it they will be in the normal vertical format
used by do_menu(). When a menu item is selected, the return value from the
menu callback function is passed back to the dialog manager, so your callbacks
should return D_O_K, D_.REDRAW, or D_CLOSE.

See Section 33.39 [gui menus|, page 223.

See Section 33.41 [active_menu|, page 224.

See Section 33.42 [gui_menu_draw_menu], page 224.

33.16 d_yield_proc
int d_yield_proc(int msg, DIALOG *d, int c);

An invisible helper object that yields timeslices for the scheduler (if the system
supports it) when the gui has nothing to do but waiting for user actions. You
should put one instance of this object in each dialog array because it may be
needed on systems with an unusual scheduling algorithm (for instance QNX)
in order to make the GUI fully responsive.

33.17 gui_mouse_focus

extern int gui_mouse_focus;

If set, the input focus follows the mouse pointer around the dialog, otherwise a
click is required to move it.

33.18 gui_fg_color

extern int gui_fg_color;

extern int gui_bg_color;

The foreground and background colors for the standard dialogs (alerts, menus,
and the file selector). They default to 255 and 0.

218

See also:

Allegro Manual

See Section 33.19 [gui-mg_color|, page 218.

See Section 33.27 [set_dialog_color|, page 219.

33.19 gui_mg_color

extern int gui_mg_color;

See also:

The color used for displaying greyed-out dialog objects (with the D_DISABLED
flag set). Defaults to 8.

See Section 33.18 [gui_fg_color], page 217.

See Section 33.27 [set_dialog_color], page 219.

33.20 gui_font_baseline

extern

int

gui_font_baseline;
If set to a non-zero value, adjusts the keyboard shortcut underscores to account
for the height of the descenders in your font.

33.21 gui_mouse_x

extern
extern
extern

extern

int
int
int

int

(*gui_mouse_x) ();

(*gui_mouse_y) () ;

(*gui_mouse_z) () ;

(*gui_mouse_b) () ;
Hook functions, used by the GUI routines whenever they need to access the
mouse state. By default these just return copies of the mouse_x, mouse_y,

mouse_z, and mouse_b variables, but they could be used to offset or scale the
mouse position, or read input from a different source entirely.

33.22 gui font

You can change the global 'font’ pointer to make the GUI objects use something other than
the standard 8x8 font. The standard dialog procedures, menus, and alert boxes, will work
with fonts of any size, but the gfx_mode_select() dialog will look wrong with anything other
than 8x8 fonts.

33.23 gui_textout

int gui_textout(BITMAP *bmp, const char *s, int x, y, color, centre);

Helper function for use by the GUI routines. Draws a text string onto the
screen, interpreting the ’&’ character as an underbar for displaying keyboard
shortcuts. Returns the width of the output string in pixels.

Chapter 33: GUI routines 219

See also:

See Section 33.24 [gui_strlen], page 219.

33.24 gui_strlen

int gui_strlen(const char *s);
Helper function for use by the GUI routines. Returns the length of a string in
pixels, ignoring ’&’ characters.

See also:

See Section 33.23 [gui-textout], page 218.

33.25 position_dialog

void position_dialog(DIALOG *dialog, int x, int y);
Moves an array of dialog objects to the specified screen position (specified as
the top left corner of the dialog).

See also:

See Section 33.26 [centre_dialog], page 219.

33.26 centre_dialog

void centre_dialog(DIALOG *dialog);
Moves an array of dialog objects so that it is centered in the screen.

See also:
See Section 33.25 [position_dialog], page 219.
See Section 33.27 [set_dialog_color|, page 219.

33.27 set_dialog_color

void set_dialog_color(DIALOG *dialog, int fg, int bg);
Sets the foreground and background colors of an array of dialog objects.

See also:

See Section 33.18 [gui_fg_color]|, page 217.
See Section 33.19 [gui-mg_color], page 218.
See Section 33.26 [centre_dialog], page 219.

220 Allegro Manual

33.28 find_dialog_focus

int find_dialog_focus(DIALOG *dialog) ;
Searches the dialog for the object which has the input focus, returning an index
or -1 if the focus is not set. This is useful if you are calling do_dialog() several
times in a row and want to leave the focus in the same place it was when the
dialog was last displayed, as you can call do_dialog(dlg, find_dialog_focus(dlg));

See also:

See Section 33.33 [do_dialog], page 221.

See Section 33.35 [init_dialog], page 221.

See Section 33.29 |offer_focus|, page 220.

33.29 offer_focus

int offer_focus(DIALOG *d, int obj, int *focus_obj, int force);
Offers the input focus to a particular object. Normally the function sends the
MSG_WANTFOCUS message to query whether the object is willing to accept
the focus. However, passing any non zero value as force argument instructs the
function to authoritatively set the focus to the object.

See also:
See Section 33.28 [find_dialog_focus|, page 220.

33.30 object_message

int object_message(DIALOG *dialog, int msg, int c);
Sends a message to an object and returns the answer it has generated. Re-
member that the first parameter is the dialog object (not a whole array) that
you wish to send the message to. For example, to make the second object in a
dialog draw itself, you might write:

object_message(&dialog[1], MSG_DRAW, 0);

See also:

See Section 33.31 [dialog_message], page 220.

33.31 dialog_message

int dialog_message(DIALOG *dialog, int msg, int c, int *obj);
Sends a message to all the objects in an array. If any of the dialog procedures
return values other than D_O_K, it returns the value and sets obj to the index
of the object which produced it.

See also:

See Section 33.30 [object_message|, page 220.

Chapter 33: GUI routines 221
See Section 33.32 [broadcast_dialog_message], page 221.

33.32 broadcast_dialog_message

int broadcast_dialog_message(int msg, int c);
Broadcasts a message to all the objects in the active dialog. If any of the dialog
procedures return values other than D_O_K, it returns that value.

See also:
See Section 33.31 [dialog_message], page 220.
See Section 33.38 [active_dialog], page 222.

33.33 do_dialog

int do_dialog(DIALOG *dialog, int focus_obj);
The basic dialog manager function. This displays a dialog (an array of dialog
objects, terminated by one with a NULL dialog procedure), and sets the input
focus to the focus_obj (-1 if you don’t want anything to have the focus). It
interprets user input and dispatches messages as they are required, until one of
the dialog procedures tells it to close the dialog, at which point it returns the
index of the object that caused it to exit.

See also:

See Section 33.34 [popup-dialog], page 221.
See Section 33.35 [init-dialog], page 221.

See Section 33.26 [centre_dialog], page 219.
See Section 33.27 [set_dialog_color], page 219.
See Section 33.28 [find_dialog_focus], page 220.

33.34 popup_dialog

int popup_dialog(DIALOG *dialog, int focus_obj);
Like do_dialog(), but it stores the data on the screen before drawing the dialog
and restores it when the dialog is closed. The screen area to be stored is
calculated from the dimensions of the first object in the dialog, so all the other
objects should lie within this one.

See also:
See Section 33.33 [do_dialog], page 221.

222 Allegro Manual

33.35 init_dialog

DIALOG_PLAYER *init_dialog(DIALOG *dialog, int focus_obj);
This function provides lower level access to the same functionality as
do_dialog(), but allows you to combine a dialog box with your own program
control structures. It initialises a dialog, returning a pointer to a player object
that can be used with update_dialog() and shutdown_dialog(). With these
functions, you could implement your own version of do_dialog() with the lines:

DIALOG_PLAYER *player = init_dialog(dialog, focus_obj);

while (update_dialog(player))

3

return shutdown_dialog(player);

See also:

See Section 33.36 [update_dialog], page 222.
See Section 33.37 [shutdown_dialog], page 222.
See Section 33.33 [do_dialog], page 221.

33.36 update_dialog

int update_dialog(DIALOG_PLAYER *player);
Updates the status of a dialog object returned by init_dialog(). Returns TRUE
if the dialog is still active, or FALSE if it has terminated. Upon a return value
of FALSE, it is up to you whether to call shutdown_dialog() or to continue
execution. The object that requested the exit can be determined from the
player->obj field.

See also:
See Section 33.35 [init_dialog], page 221.

33.37 shutdown_dialog

int shutdown_dialog(DIALOG_PLAYER *player);
Destroys a dialog player object returned by init_dialog(), returning the object
that caused it to exit (this is the same as the return value from do_dialog()).

See also:
See Section 33.35 [init_dialog], page 221.

Chapter 33: GUI routines 223

33.38 active_dialog

extern DIALOG *active_dialog;
Global pointer to the most recent activated dialog. This may be useful if an
object needs to iterate through a list of all its siblings.

See also:

See Section 33.33 [do_dialog], page 221.

See Section 33.35 [init_dialog], page 221.

See Section 33.32 [broadcast_dialog_message], page 221.

33.39 gui menus

Popup or pulldown menus are created as an array of the structures:

typedef struct MENU

{
char *text; - the text to display for the menu item
int (*proc) (void); - called when the menu item is clicked
struct MENU *child; - nested child menu
int flags; - disabled or checked state
void *dp; - pointer to any data you need

} MENU;

Each menu item contains a text string. This can use the ’&’ character to indicate keyboard
shortcuts, or can be an zero-length string to display the item as a non-selectable splitter
bar. If the string contains a "\t" tab character, any text after this will be right-justified,
eg. for displaying keyboard shortcut information. The proc pointer is a function which will
be called when the menu item is selected, and child points to another menu, allowing you
to create nested menus. Both proc and child may be NULL. The proc function returns an
integer which is ignored if the menu was brought up by calling do_menu(), but which is
passed back to the dialog manager if it was created by a d_menu_proc() object. The array
of menu items is terminated by an entry with a NULL text pointer.

Menu items can be disabled (greyed-out) by setting the D_DISABLED bit in the flags field,
and a check mark can be displayed next to them by setting the D_SELECTED bit. With
the default alignment and font this will usually overlap the menu text, so if you are going
to use checked menu items it would be a good idea to prefix all your options with a space
or two, to ensure there is room for the check.

See also:
See Section 33.40 [do_menu]|, page 223.
See Section 33.15 [d_menu_proc|, page 217.

See Section 33.42 [gui_menu_draw_menu|, page 224.

224 Allegro Manual

33.40 do_menu

int do_menu(MENU #*menu, int x, int y)
Displays and animates a popup menu at the specified screen coordinates (these
will be adjusted if the menu does not entirely fit on the screen). Returns the
index of the menu item that was selected, or -1 if the menu was cancelled. Note
that the return value cannot indicate selection from child menus, so you will
have to use the callback functions if you want multi-level menus.

See also:
See Section 33.39 [gui menus|, page 223.

[

See Section 33.15 [d_menu_proc|, page 217.

See Section 33.41 [active_menu], page 224.
[

See Section 33.42 [gui_menu_draw_menu], page 224.

33.41 active_menu

extern MENU *active_menu;
When a menu callback procedure is triggered, this will be set to the menu item
that was selected, so your routine can determine where it was called from.

See also:

See Section 33.39 [gui menus|, page 223.

33.42 gui_menu_draw_menu

extern void (*gui_menu_draw_menu) (int x, int y, int w, int h);
extern void (*gui_menu_draw_menu_item) (MENU *m, int x, int y, int w, int h,
int bar, int sel);
If set, these functions will be called whenever a menu needs to be drawn, so
you can change how menus look.
gui_menu_draw_menu() is passed the position and size of the menu. It should
draw the background of the menu onto screen.
gui_menu_draw_menu_item() is called once for each menu item that is to be
drawn. bar will be set if the item is part of a top-level horizontal menu bar,
and sel will be set if the menu item is selected. It should also draw onto screen.

See also:

See Section 33.39 [gui menus|, page 223.

33.43 alert

int alert(const char *s1, *s2, *s3, const char *bl, *b2, int cl, c2);
Displays a popup alert box, containing three lines of text (s1-s3), and with
either one or two buttons. The text for these buttons is passed in bl and b2

Chapter 33: GUI routines 225

See also:

(b2 may be NULL), and the keyboard shortcuts in ¢l and ¢2. Returns 1 or 2
depending on which button was clicked. If the alert is dismissed by pressing
ESC when ESC is not one of the keyboard shortcuts, it treats it as a click on
the second button (this is consistent with the common "Ok", "Cancel" alert).

See Section 33.44 [alert3], page 225.
See Section 33.18 [gui_fg_color], page 217.

33.44 alert3

int alert3(const char *s1, *s2, *s3, const char *bl, *b2, *b3, int cl, c2,

c3);

See also:

Like alert(), but with three buttons. Returns 1, 2, or 3.

See Section 33.43 [alert], page 224.
See Section 33.18 [gui_fg_color]|, page 217.

33.45 file_select

int file_select(const char #*message, char *path, const char *ext);

See also:

Deprecated. Use file_select_ex() instead, passing the two constants
OLD_FILESEL_WIDTH and OLD_FILESEL_HEIGHT if you want the file
selector to be displayed with the dimensions of the old file selector.

See Section 33.46 [file_select_ex]|, page 225.
See Section 33.18 [gui_fg_color], page 217.

33.46 file_select_ex

int file_select_ex(const char *message, char *path, const char *ext, int
size, int w, int h);

Displays the Allegro file selector, with the message as caption. The path param-
eter contains the initial filename to display (this can be used to set the starting
directory, or to provide a default filename for a save-as operation). The user
selection is returned by altering the path buffer, whose maximum capacity in
bytes is specified by the size parameter. Note that it should have room for at
least 80 characters (not bytes), so you should reserve 6x that amount, just to
be sure. The list of files is filtered according to the file extensions in the ext
parameter. Passing NULL includes all files; "PCX;BMP" includes only files
with .PCX or .BMP extensions. If you wish to control files by their attributes,
one of the fields in the extension list can begin with a slash, followed by a set

226

See also:

Allegro Manual

of attribute characters. Any attributes written on their own, or with a + before
them, indicate to include only files which have that attribute set. Any attributes
with a -’ before them indicate to leave out any files with that attribute. The
flag characters are 'r’ (read-only), ’h’ (hidden), ’s’ (system), ’d’ (directory),
and ’a’ (archive). For example, an extension string of "PCX;BMP;/+r-d" will
display only PCX or BMP files that are read-only, and no directories. The file
selector is stretched to the width and height specified in the w and h parame-
ters, and to the size of the standard Allegro font. If either the width or height
argument is set to zero, it is stretched to the corresponding screen dimension.
This function returns zero if it was closed with the Cancel button or non-zero
if it was OK’d.

See Section 33.18 [gui_fg_color], page 217.

33.47 gfx_mode_select

int gfx_mode_select(int *card, int *w, int *h);

See also:

Displays the Allegro graphics mode selection dialog, which allows the user to
select a screen mode and graphics card. Stores the selection in the three vari-
ables, and returns zero if it was closed with the Cancel button or non-zero if it
was OK’d.

See Section 33.48 [gfx_mode_select_ex|, page 226.

See Section 8.6 [set_gfx_mode], page 70.

See Section 33.18 [gui_fg_color], page 217.

33.48 gfx_mode_select_ex

int gfx_mode_select_ex(int *card, int *w, int *h, int *color_depth);

See also:

Extended version of the graphics mode selection dialog, which allows the user
to select the color depth as well as the resolution and hardware driver. This
version of the function reads the initial values from the parameters when it
activates, so you can specify the default values.

See Section 33.47 [gfx_mode_select], page 226.

See Section 8.1 [set_color_depth|, page 68.

See Section 8.6 [set_gfx_mode], page 70.

See Section 33.18 [gui-fg_color], page 217.

Chapter 34: DOS specifics 227

33.49 gui_shadow_box_proc

extern int (*gui_shadow_box_proc) (int msg, struct DIALOG *d, int c);
extern int (xgui_ctext_proc) (int msg, struct DIALOG *d, int c);
extern int (*gui_button_proc) (int msg, struct DIALOG *d, int c);
extern int (*gui_edit_proc) (int msg, struct DIALOG *d, int c);
extern int (*gui_list_proc) (int msg, struct DIALOG *d, int c);

extern int (xgui_text_list_proc) (int msg, struct DIALOG *d, int c);
If set, these functions will be used by the standard Allegro dialogs. This allows
you to customise the look and feel, much like gui_fg_color and gui_bg_color, but
much more flexiblely.

See also:

See Section 33.43 [alert], page 224.

See Section 33.44 [alert3], page 225.

See Section 33.45 [file_select|, page 225.

See Section 33.47 [gfx_mode_select], page 226.
See Section 33.18 [gui_fg_color], page 217.

34 DOS specifics

34.1 JOY_TYPE_*/DOS

Drivers JOY_TYPE_x/D0OS
The DOS library supports the following type parameters for the
install_joystick() function:

e JOY_-TYPE_AUTODETECT

Attempts to autodetect your joystick hardware. It isn’t possible to
reliably distinguish between all the possible input setups, so this routine
can only ever choose the standard joystick, Sidewider, GamePad Pro,
or GrIP drivers, but it will use information from the configuration
file if one is available (this can be created using the setup utility or
by calling the save_joystick_data() function), so you can always use
JOY_TYPE_AUTODETECT in your code and then select the exact
hardware type from the setup program.

e JOY_TYPE_NONE
Dummy driver for machines without any joystick.

e JOY_TYPE_STANDARD
A normal two button stick.

e JOY_TYPE_2PADS
Dual joystick mode (two sticks, each with two buttons).

e JOY_TYPE_4BUTTON
Enable the extra buttons on a 4-button joystick.

228

Allegro Manual

JOY_TYPE_6BUTTON
Enable the extra buttons on a 6-button joystick.

JOY_TYPE_S8BUTTON
Enable the extra buttons on an 8-button joystick.

JOY_TYPE_FSPRO
CH Flightstick Pro or compatible stick, which provides four buttons, an
analogue throttle control, and a 4-direction coolie hat.

JOY_TYPE_WINGEX

A Logitech Wingman Extreme, which should also work with any Thrust-
master Mk.I compatible joystick. It provides support for four buttons and
a coolie hat. This also works with the Wingman Warrior, if you plug in the
15 pin plug (remember to unplug the 9-pin plug!) and set the tiny switch
in front to the "H" position (you will not be able to use the throttle or the
spinner though).

JOY_TYPE_SIDEWINDER
The Microsoft Sidewinder digital pad (supports up to four controllers, each
with ten buttons and a digital direction control).

JOY_TYPE_SIDEWINDER_AG
An alternative driver to JOY_TYPE_SIDEWINDER. Try this if your
Sidewinder isn’t recognized with JOY_TYPE_SIDEWINDER.

JOY_TYPE_GAMEPAD_PRO
The Gravis GamePad Pro (supports up to two controllers, each with ten
buttons and a digital direction control).

JOY_TYPE_GRIP
Gravis GrIP driver, using the grip.gll driver file.

JOY_TYPE_GRIP4
Version of the Gravis GrIP driver that is constrained to only move along
the four main axis.

JOY_TYPE_SNESPAD_LPT1
JOY_TYPE_SNESPAD_LPT?2
JOY_TYPE_SNESPAD_LPTS3
SNES joypads connected to LPT1, LPT2, and LPT3 respectively.

JOY_TYPE_PSXPAD_LPT1

JOY_TYPE_PSXPAD_LPT2

JOY_TYPE_PSXPAD_LPT3

PSX joypads connected to LPT1, LPT2, and LPT3 respectively. See
http://www.ziplabel.com/dpadpro/index.html for information about the
parallel cable required. The driver automagically detects which types of
PSX pads are connected out of digital, analog (red or green mode), Neg-
Con, multi taps, Namco light guns, Jogcons (force feedback steering wheel)
and the mouse. If the controller isn’t recognised it is treated as an analog
controller, meaning the driver should work with just about anything. You
can connect controllers in any way you see fit, but only the first 8 will be
used.

Chapter 34: DOS specifics 229

The Sony Dual Shock or Namco Jogcon will reset themselves (to digital
mode) after not being polled for 5 seconds. This is normal, the same thing
happens on a Playstation, it’s designed to stop any vibration in case the
host machine crashes. Other mode switching controllers may have similar
quirks. However, if this happens to a Jogcon controller the mode button
is disabled. To reenable the mode button on the Jogcon you need to hold
down the Start and Select buttons at the same time.

The G-con4b needs to be connected to (and pointed at) a TV type monitor
connected to your computer. The composite video out on my video card
works fine for this (a Hercules Stingray 128/3D 8Mb). The TV video modes
in Mame should work too.

e JOY_TYPE_NG64PAD_LPT1
JOY_TYPE_N64PAD_LPT?2
JOY_TYPE_N64PAD_LPT3
N64 joypads connected to LPT1, LPT2, and LPT3 respectively. See
http://www.st-hans.de/N64.htm for information about the necessary
hardware adaptor. It supports up to four controllers on a single parallel
port. There is no need to calibrate the analog stick, as this is done by the
controller itself when powered up. This means that the stick has to be
centred when the controller is initialised. One possible issue people may
have with this driver is that it is physically impossible to move the analog
stick fully diagonal, but I can’t see this causing any major problems. This
is because of the shape of the rim that the analog stick rests against. Like
the Gravis Game Pad Pro, this driver briefly needs to disable hardware
interrupts while polling. This causes a noticable performance hit on my
machine in both drivers, but there is no way around it. At a (very) rough
guess I'd say it slows down Mame 5% - 10%.

e JOY_TYPE_DB9_LPT1
JOY_TYPE_DB9_LPT2
JOY_TYPE_DB9_LPT3
A pair of two-button joysticks connected to LPT1, LPT2, and LPT3 re-
spectively. Port 1 is compatible with Linux joy-db9 driver (multisystem
2-button), and port 2 is compatible with Atari interface for DirectPad
Pro. See the source file (src/dos/multijoy.c) for pinout information.

e JOY_TYPE_TURBOGRAFIX_LPT1
JOY_TYPE_TURBOGRAFIX_LPT2
JOY_TYPE_TURBOGRAFIX_LPT3
These drivers support up to 7 joysticks, each one with up to
5 buttons, connected to LPT1, LPT2, and LPT3 respectively.
They use the TurboGraFX interface by Steffen Schwenke: see

http://www.burg-halle.de/~schwenke /parport.html for details on how to
build this.

e JOY_-TYPE_WINGWARRIOR
A Wingman Warrior joystick.

e JOY_TYPE_IFSEGA_ISA
JOY_TYPE_IFSEGA_PCI

230

See also:

Allegro Manual

JOY_TYPE_IFSEGA_PCI_FAST
Drivers for the IF-SEGA joystick interface cards by the IO-DATA company
(these come in PCI, PCI2, and ISA variants).

See Section 7.1 [install_joystick], page 63.

34.2 GFX_

* /'DOS

Drivers GFX_x*/D0S
The DOS library supports the following card parameters for the set_gfx_mode()
function:

GFX_TEXT
Return to text mode.

GFX_AUTODETECT
Let Allegro pick an appropriate graphics driver.

GFX_AUTODETECT_FULLSCREEN
Autodetects a graphics driver, but will only use fullscreen drivers, failing
if these are not available on current platform.

GFX_AUTODETECT_WINDOWED
Same as above, but uses only windowed drivers. This will always fail under
DOS.

GFX_SAFE
Special driver for when you want to reliably set a graphics mode and don’t
really care what resolution or color depth you get. See the set_gfx_mode()
documentation for details.
GFX_VGA
The standard 256 color VGA mode 13h, using the GFX_VGA driver. This
is normally sized 320x200, which will work on any VGA but doesn’t support
large virtual screens and hardware scrolling. Allegro also provides some
tweaked variants of the mode which are able to scroll, sized 320x100 (with
a 200 pixel high virtual screen), 160x120 (with a 409 pixel high virtual
screen), 256x256 (no scrolling), and 80x80 (with a 819 pixel high virtual
screen).
GFX_MODEX
Mode-X will work on any VGA card, and provides a range of different 256
color tweaked resolutions.

e Stable mode-X resolutions:

e Square aspect ratio: 320x240

e Skewed aspect ratio: 256x224, 256x240, 320x200, 320x400,
320x480, 320x600, 360x200, 360x240, 360x360, 360x400, 360x480

These have worked on every card/monitor that I've tested.

e Unstable mode-X resolutions:

Chapter 34: DOS specifics 231

e Square aspect ratio: 360x270, 376x282, 400x300

e Skewed aspect ratio: 256x200, 256x256, 320x350, 360x600,
376x308, 376x564, 400x150, 400x600

These only work on some monitors. They were fine on my old machine,
but don’t get on very well with my new monitor. If you are worried
about the possibility of damaging your monitor by using these modes,
don’t be. Of course I'm not providing any warranty with any of this,
and if your hardware does blow up that is tough, but I don’t think
this sort of tweaking can do any damage. From the documentation of
Robert Schmidt’s TWEAK program:

"Some time ago, putting illegal or unsupported values or combinations
of such into the video card registers might prove hazardous to both
your monitor and your health. T have *never® claimed that bad things
can’t happen if you use TWEAK, although I'm pretty sure it never
will. I've never heard of any damage arising from trying out TWEAK,
or from general VGA tweaking in any case."

Most of the mode-X drawing functions are slower than in mode 13h, due
to the complexity of the planar bitmap organisation, but solid area fills
and plane-aligned blits from one part of video memory to another can be
significantly faster, particularly on older hardware. Mode-X can address
the full 256k of VGA RAM, so hardware scrolling and page flipping are
possible, and it is possible to split the screen in order to scroll the top part
of the display but have a static status indicator at the bottom.

e GFX_VESA1
Use the VESA 1.x driver.

e GFX_VESA2B
Use the VBE 2.0 banked mode driver.

e GFX_VESA2L
Use the VBE 2.0 linear framebuffer driver.

e GFX_VESA3
Use the VBE 3.0 driver. This is the only VESA driver that supports the
request_refresh_rate() function.

The standard VESA modes are 640x480, 800x600, and 1024x768. These
ought to work with any SVGA card: if they don’t, get a copy of the SciTech
Display Doctor and see if that fixes it. What color depths are available
will depend on your hardware. Most cards support both 15 and 16 bit
resolutions, but if at all possible I would advise you to support both (it’s
not hard...) in case one is not available. Some cards provide both 24 and
32 bit truecolor, in which case it is a choice between 24 (saves memory)
or 32 (faster), but many older cards have no 32 bit mode and some newer
ones don’t support 24 bit resolutions. Use the vesainfo test program to see
what modes your VESA driver provides.

Many cards also support 640x400, 1280x1024, and 1600x1200, but these
aren’t available on everything, for example the S3 chipset has no 640x400

232 Allegro Manual

mode. Other weird resolution may be possible, eg. some Tseng boards can
do 640x350, and the Avance Logic has a 512x512 mode.

The SciTech Display Doctor provides several scrollable low resolution
modes in a range of different color depths (320x200, 320x240, 320x400,
320x480, 360x200, 360x240, 360x400, and 360x480 all work on my ET4000
with 8, 15, or 16 bits per pixel). These are lovely, allowing scrolling and
page flipping without the complexity of the mode-X planar setup, but
unfortunately they aren’t standard so you will need Display Doctor in
order to use them.

e GFX_VBEAF
VBE/AF is a superset of the VBE 2.0 standard, which provides an API
for accessing hardware accelerator features. VBE/AF drivers are currently
only available from the FreeBE/AF project or as part of the SciTech Dis-
play Doctor package, but they can give dramatic speed improvements when
used with suitable hardware. For a detailed discussion of hardware accel-
eration issues, refer to the documentation for the gfx_capabilities flag.

You can use the afinfo test program to check whether you have a VBE/AF
driver, and to see what resolutions it supports.

The SciTech VBE/AF drivers require nearptr access to be enabled, so any
stray pointers are likely to crash your machine while their drivers are in
use. This means it may be a good idea to use VESA while debugging your
program, and only switch to VBE/AF once the code is working correctly.
The FreeBE/AF drivers do not have this problem.

e GFX_XTENDED

An unchained 640x400 mode, as described by Mark Feldman in the
PCGPE. This uses VESA to select an SVGA mode (so it will only work
on cards supporting the VESA 640x400 resolution), and then unchains
the VGA hardware as for mode-X. This allows the entire screen to be
addressed without the need for bank switching, but hardware scrolling and
page flipping are not possible. This driver will never be autodetected (the
normal VESA 640x400 mode will be chosen instead), so if you want to use
it you will have to explicitly pass GFX_XTENDED to set_gfx_mode().

See also:

See Section 8.6 [set_gfx_mode], page 70.

34.3 DIGI_*/DOS

Drivers DIGI_x*/DOS
The DOS sound functions support the following digital soundcards:

DIGI_AUTODETECT let Allegro pick a digital sound driver

DIGI_NONE - no digital sound
DIGI_SB - Sound Blaster (autodetect type)
DIGI_SB10 - SB 1.0 (8 bit mono single shot dma)

Chapter 34: DOS specifics 233

DIGI_SB15 - SB 1.5 (8 bit mono single shot dma)

DIGI_SB20 - SB 2.0 (8 bit mono auto-initialised
dma)

DIGI_SBPRO - SB Pro (8 bit stereo)

DIGI_SB16 - SB16 (16 bit stereo)

DIGI_AUDIODRIVE - ESS AudioDrive

DIGI_SOUNDSCAPE - Ensoniq Soundscape

DIGI_WINSOUNDSYS - Windows Sound System

See also:

See Section 23.1 [detect_digi_driver|, page 157.
See Section 23.5 [install_sound], page 160.

See Section 27.1 [install_sound_input], page 177.

34.4 MIDI_*/DOS

Drivers MIDI_x*/DOS
The DOS sound functions support the following MIDI soundcards:

MIDI_AUTODETECT - let Allegro pick a MIDI sound driver
MIDI_NONE - no MIDI sound
MIDI_ADLIB - Adlib or SB FM synth (autodetect type)
MIDI_OPL2 - OPL2 synth (mono, used in Adlib and SB)
MIDI_2X0PL2 - dual OPL2 synths (stereo, used in

SB Pro-I)
MIDI_OPL3 - OPL3 synth (stereo, SB Pro-II

and above)
MIDI_SB_OUT - SB MIDI interface
MIDI_MPU - MPU-401 MIDI interface
MIDI_DIGMID - sample-based software wavetable player
MIDI_AWE32 - AWE32 (EMU8B000O chip)

See also:

See Section 23.2 [detect_midi_driver|, page 158.
See Section 23.5 [install_sound], page 160.

See Section 27.1 [install_sound_input], page 177.

34.5 split_modex_screen

void split_modex_screen(int line);
This function is only available in mode-X. It splits the VGA display into two
parts at the specified line. The top half of the screen can be scrolled to any
part of video memory with the scroll_screen() function, but the part below the
specified line number will remain fixed and will display from position (0, 0) of
the screen bitmap. After splitting the screen you will generally want to scroll

234 Allegro Manual

so that the top part of the display starts lower down in video memory, and
then create two sub-bitmaps to access the two sections (see examples/exscroll.c
for a demonstration of how this could be done). To disable the split, call
split_modex_screen(0).

See also:
See Section 8.6 [set_gfx_mode], page 70.
See Section 8.13 [scroll_screen|, page 77.

34.6 i_love_bill

extern int i_love_bill;

When running in clean DOS mode, the timer handler dynamically reprograms
the clock chip to generate interrupts at exactly the right times, which gives
an extremely high accuracy. Unfortunately, this constant speed adjustment
doesn’t work under most multitasking systems (notably Windows), so there is
an alternative mode that just locks the hardware timer interrupt to a speed
of 200 ticks per second. This reduces the accuracy of the timer (for instance,
rest() will round the delay time to the nearest 5 milliseconds), and prevents the
vertical retrace simulator from working, but on the plus side, it makes Allegro
programs work under Windows. This flag is set by allegro_init() if it detects
the presence of a multitasking OS, and enables the fixed rate timer mode.

See also:

See Section 5.1 [install_timer|, page 48.
See Section 1.2 [allegro_init|, page 1.
See Section 1.7 [os_type|, page 3.

35 Windows specifics

A Windows program that uses the Allegro library is only required to include one or more
header files from the include/allegro tree, or allegro.h; however, if it also needs to directly
call non portable Win32 API functions, it must include the Windows-specific header file
winalleg.h after the Allegro headers, and before any Win32 API header file. By default
winalleg.h includes the main Win32 C API header file windows.h. If instead you want to
use the C++ interface to the Win32 API (a.k.a. the Microsoft Foundation Classes), define
the preprocessor symbol ALLEGRO_AND_MFC before including any Allegro header so
that afxwin.h will be included. Note that, in this latter case, the Allegro debugging macros
ASSERT() and TRACE() are renamed AL_ASSERT() and AL_TRACE() respectively.

Windows GUI applications start with a WinMain() entry point, rather than the standard
main() entry point. Allegro is configured to build GUI applications by default and to do
some magic in order to make a regular main() work with them, but you have to help it out
a bit by writing END_OF_MAIN() right after your main() function. If you don’t want to do
that, you can just include winalleg.h and write a WinMain() function. Note that this magic
may bring about conflicts with a few programs using direct calls to Win32 API functions;

Chapter 35: Windows specifics 235

for these programs, the regular WinMain() is required and the magic must be disabled by
defining the preprocessor symbol ALLEGRO_NO_MAGIC_MAIN before including Allegro
headers.

If you want to build a console application using Allegro, you have to define the preprocessor
symbol USE_CONSOLE before including Allegro headers; it will instruct the library to use
console features and also to disable the special processing of the main() function described
above.

When creating the main window, Allegro searches the executable for an ICON resource
named "allegro_icon". If it is present, Allegro automatically loads it and uses it as its
application icon; otherwise, Allegro uses the default IDI_APPLICATION icon. See the
manual of your compiler for a method to create an ICON resource, or use the wfixicon
utility from the tools/win directory.

DirectX requires that system and video bitmaps (including the screen) be locked before you
can draw onto them. This will be done automatically, but you can usually get much better
performance by doing it yourself: see the acquire_bitmap() function for details.

Due to a major oversight in the design of DirectX, there is no way to preserve the contents
of video memory when the user switches away from your program. You need to be prepared
for the fact that your screen contents, and the contents of any video memory bitmaps, may
be destroyed at any point. You can use the set_display_switch_callback() function to find
out when this happens.

On the Windows platform, the only return values for the desktop_color_depth() function
are 8, 16, 24 and 32. This means that 15-bit and 16-bit desktops cannot be differentiated
and are both reported as 16-bit desktops. See below for the consequences for windowed and
overlay DirectX drivers.

35.1 GFX_*/Windows

Drivers GFX_x*/Windows
The Windows library supports the following card parameters for the
set_gfx_mode() function:

e GFX_TEXT
This closes any graphic mode previously opened with set_gfx_mode.

e GFX_AUTODETECT
Let Allegro pick an appropriate graphics driver.

e GFX_AUTODETECT_FULLSCREEN
Autodetects a graphics driver, but will only use fullscreen drivers, failing
if these are not available on current platform.

e GFX_AUTODETECT_WINDOWED

Same as above, but uses only windowed drivers.

e GFX_SAFE
Special driver for when you want to reliably set a graphics mode and don’t
really care what resolution or color depth you get. See the set_gfx_mode()
documentation for details.

¢ GFX_DIRECTX
Alias for GFX_DIRECTX_ACCEL.

236 Allegro Manual

GFX_DIRECTX_ACCEL
The regular fullscreen DirectX driver, running with hardware acceleration
enabled.

GFX_DIRECTX_SOFT
DirectX fullscreen driver that only uses software drawing, rather than any
hardware accelerated features.

GFX_DIRECTX_SAFE
Simplified fullscreen DirectX driver that doesn’t support any hardware
acceleration, video or system bitmaps, etc.

GFX_DIRECTX_WIN

The regular windowed DirectX driver, running in color conversion mode
when the color depth doesn’t match that of the Windows desktop. Color
conversion is much slower than direct drawing and is not supported between
15-bit and 16-bit color depths. This limitation is needed to work around
that of desktop_color_depth() (see above) and allows to select the direct
drawing mode in a reliable way on desktops reported as 16-bit:

if (desktop_color_depth() == 16) {
set_color_depth(16);
if (set_gfx_mode (GFX_DIRECTX_WIN, 640, 480, 0, 0) !'= 0) {J|
set_color_depth(15);
if (set_gfx_mode (GFX_DIRECTX_WIN, 640, 480, 0, 0) '= 0) {|]
/* 640x480 direct drawing mode not supported */
goto Error;
}
}
/* ok, we are in direct drawing mode */

}

Note that, mainly for performance reasons, this driver requires the width
of the screen to be a multiple of 4.

e GFX_DIRECTX_OVL
The DirectX overlay driver. It uses special hardware features to run your
program in a windowed mode: it doesn’t work on all hardware, but per-
formance is excellent on cards that are capable of it. It requires the color
depth to be the same as that of the Windows desktop. In light of the
limitation of desktop_color_depth() (see above), the reliable way of setting
the overlay driver on desktops reported as 16-bit is:

if (desktop_color_depth() == 16) {
set_color_depth(16);
if (set_gfx_mode(GFX_DIRECTX_OVL, 640, 480, 0, 0) !'= 0) {fi
set_color_depth(15);
if (set_gfx_mode (GFX_DIRECTX_OVL, 640, 480, 0, 0) '= 0) {fi
/* 640x480 overlay driver not supported */
goto Error;

Chapter 35: Windows specifics

}

237

/* ok, the 640x480 overlay driver is running */

}
e GFX_GDI

The windowed GDI driver. It is extremely slow, but is guaranteed to work
on all hardware, so it can be useful for situations where you want to run
in a window and don’t care about performance. Note that this driver
features a hardware mouse cursor emulation in order to speed up basic
mouse operations (like GUI operations).

See also:
See Section 8.6 [set_gfx_mode], page 70.

35.2 DIGI_*/Windows

Drivers DIGI_*/Windows
The Windows sound functions

DIGI_AUTODETECT
DIGI_NONE
DIGI_DIRECTX(n)

DIGI_DIRECTAMX (n)

DIGI_WAVOUTID(n)

See also:

support the following digital soundcards:

let Allegro pick a digital sound driver

no digital sound

use DirectSound device #n (zero-based) withll
direct mixing

use DirectSound device #n (zero-based) withll
Allegro mixing

high (n=0) or low (n=1) quality WaveOut devicel}

See Section 23.1 [detect_digi_driver|, page 157.

See Section 23.5 [install_sound], page 160.

See Section 27.1 [install_sound_input], page 177.

35.3 MIDI_*/Windows

Drivers MIDI_x*/Windows
The Windows sound functions

MIDI_AUTODETECT
MIDI_NONE
MIDI_WIN32MAPPER
MIDI_WIN32(n)
MIDI_DIGMID

support the following MIDI soundcards:

let Allegro pick a MIDI sound driver
no MIDI sound

use win32 MIDI mapper

use win32 device #n (zero-based)
sample-based software wavetable player

The following functions provide a platform specific interface to seamlessly integrate Allegro
into general purpose Win32 programs. To use these routines, you must include winalleg.h

after other Allegro headers.

238

See also:

Allegro Manual

See Section 23.2 [detect_midi_driver], page 158.

See Section 23.5 [install_sound], page 160.

See Section 27.1 [install_sound_input], page 177.

35.4 win_get_window

HWND win_get_window(void);

Retrieves a handle to the window used by Allegro. Note that Allegro uses an
underlying window even though you don’t set any graphics mode, unless you
have installed the neutral system driver (SYSTEM_NONE).

35.5 win_set_window

void win_set_window (HWND wnd) ;

Registers an user-created window to be used by Allegro. This function is meant
to be called before initialising the library with allegro_init() or installing the
autodetected system driver (SYSTEM_AUTODETECT). It lets you attach Al-
legro to any already existing window and prevents the library from creating
its own, thus leaving you total control over the window; in particular, you are
responsible for processing the events as usual (Allegro will automatically mon-
itor a few of them, but will not filter out any of them). You can then use
every component of the library (mouse, keyboard, sound, timers and so on) ex-
cept the graphics subsystem, bearing in mind that some Allegro functions are
blocking (e.g readkey() if the key buffer is empty) and thus must be carefully
manipulated by the window thread.

However you can also call it after the library has been initialised, provided that
no graphics mode is set. In this case the keyboard, mouse, sound and sound
recording modules will be restarted.

Passing NULL instructs Allegro to switch back to its built-in window if an user-
created window was registered, or to request a new handle from Windows for
its built-in window if this was already in use.

35.6 win_set_wnd_create_proc

void win_set_wnd_create_proc(HWND (*proc) (WNDPROC)) ;

Registers an user-defined procedure to be used by Allegro for creating
its window. This function must be called *before* initializing the
library with allegro_init() or installing the autodetected system driver
(SYSTEM_AUTODETECT). It lets you customize Allegro’s window but
only by its creation: unlike with win_set_window(), you have no control over
the window once it has been created (in particular, you are not responsible
for processing the events). The registered function will be passed a window
procedure (WNDPROC object) that it must make the procedure of the new
window of and it must return a handle to the new window. You can then use
the full-featured library in the regular way.

Chapter 35: Windows specifics 239

35.7 win_get_dc

HDC win_get_dc(BITMAP *bmp) ;
Retrieves a handle to the device context of a DirectX video or system bitmap.

35.8 win_release_dc

void win_release_dc(BITMAP *bmp, HDC dc);
Releases a handle to the device context of the bitmap that was previously
retrieved with win_get_dc().

35.9 GDI routines

The following GDI routines are a very platform specific thing, to allow drawing Allegro
memory bitmaps onto a Windows device context. When you want to use this, you’ll have
to install the neutral system driver (SYSTEM_NONE) or attach Allegro to an external
window with win_set_window().

There are two ways to draw your Allegro bitmaps to the Windows GDI. When you are using
static bitmaps (for example just some pictures loaded from a datafile), you can convert them
to DDB (device-dependent bitmaps) with convert_bitmap_to_hbitmap() and then just use
Win32’s BitBlt() to draw it.

When you are using dynamic bitmaps (for example some things which react to user input),
it’s better to use set_palette_to_hdc() and blit_to_hdc() functions, which work with DIB
(device-independent bitmaps).

There are also functions to blit from a device context into an Allegro BITMAP, so you can
do things like screen capture.

All the drawing and conversion functions use the current palette as a color conversion table.
You can alter the current palette with the set_palette_to_hdc() or select_palette() functions.
Warning: when the GDI system color palette is explicitly changed, (by another application,
for example) the current Allegro palette is not updated along with it!

To use these routines, you must include winalleg.h after Allegro headers.

35.10 set_gdi_color_format

void set_gdi_color_format(void);
Tells Allegro to use the GDI color layout for truecolor images. This is optional,
but it will make the conversions work faster. If you are going to call this, you
should do it right after initialising Allegro and before creating any graphics.

35.11 set_palette_to_hdc

void set_palette_to_hdc(HDC dc, PALETTE pal);
Selects and realizes an Allegro palette on the specified device context.

35.12 convert_palette_to_hpalette

HPALETTE convert_palette_to_hpalette(PALETTE pal);
Converts an Allegro palette to a Windows palette and returns a handle to it.
You should call DeleteObject() when you no longer need it.

240 Allegro Manual

See also:

See Section 35.13 [convert_hpalette_to_palette], page 240.

35.13 convert_hpalette_to_palette

void convert_hpalette_to_palette(HPALETTE hpal, PALETTE pal);
Converts a Windows palette to an Allegro palette.

See also:

See Section 35.12 [convert_palette_to_hpalette], page 239.

35.14 convert_bitmap_to_hbitmap

HBITMAP convert_bitmap_to_hbitmap(BITMAP *bitmap) ;
Converts an Allegro memory bitmap to a Windows DDB and returns a handle
to it. This bitmap uses its own memory, so you can destroy the original bitmap
without affecting the converted one. You should call DeleteObject() when you
no longer need this bitmap.

See also:

See Section 35.15 [convert_hbitmap_to_bitmap]|, page 240.

35.15 convert_hbitmap_to_bitmap

BITMAP *convert_hbitmap_to_bitmap(HBITMAP bitmap) ;
Creates an Allegro memory bitmap from a Windows DDB.

See also:

See Section 35.14 [convert_bitmap_to_hbitmap]|, page 240.

35.16 draw_to_hdc

void draw_to_hdc(HDC dc, BITMAP *bitmap, int x, int y);
Draws an entire Allegro bitmap to a Windows device context, using the same
parameters as the draw_sprite() function.

See also:

See Section 35.17 [blit_to_hdc|, page 241.

See Section 35.18 [stretch_blit_to_hdc], page 241.
See Section 14.8 [draw_sprite], page 114.

Chapter 35: Windows specifics 241

35.17 blit_to_hdc

void blit_to_hdc(BITMAP *bitmap, HDC dc, int sx, sy, dx, dy, w, h);
Blits an Allegro memory bitmap to a Windows device context, using the same
parameters as the blit() function.

See also:

See Section 35.16 [draw_to_hdc], page 240.

See Section 35.18 [stretch_blit_to_hdc], page 241.
See Section 35.19 [blit_from_hdc], page 241.

See Section 14.4 [blit], page 112.

35.18 stretch_blit_to_hdc

void stretch_blit_to_hdc(BITMAP *bitmap, HDC dc, int sx, sy, sw, sh, int
dx, dy, dw, dh);
Blits an Allegro memory bitmap to a Windows device context, using the same
parameters as the stretch_blit() function.

See also:

See Section 35.16 [draw_to_hdc], page 240.

See Section 35.17 [blit_to_hdc|, page 241.

See Section 35.20 [stretch_blit_from_hdc], page 241.
See Section 14.5 [stretch_blit], page 113.

35.19 blit_from_hdc

void blit_from_hdc(HDC hdc, BITMAP *bitmap, int sx, sy, dx, dy, w, h);
Blits from a Windows device context to an Allegro memory bitmap, using the
same parameters as the blit() function. See stretch_blit_from_hdc() for details.

See also:

See Section 35.20 [stretch_blit_from_hdc], page 241.
See Section 35.17 [blit_to_hdc], page 241.

See Section 14.4 [blit], page 112.

35.20 stretch_blit_from_hdc

void stretch_blit_from_hdc(HDC hcd, BITMAP *bitmap, int sx, sy, sw, sh, int
dx, dy, dw, dh);
Blits from a Windows device context to an Allegro memory bitmap, using
the same parameters as the stretch_blit() function. It uses the current Allegro
palette and does conversion to this palette, regardless of the current DC palette.

242

Allegro Manual

So if you are blitting from 8 bit mode, you should first set the DC palette with
the set_palette_to_hdc() function.

See also:

See Section 35.19 [blit_from_hdc|, page 241.
See Section 35.18 [stretch_blit_to_hdc], page 241.
See Section 14.5 [stretch_blit], page 113.

36 Unix specifics

In order to locate things like the config and translation files, Allegro needs to know the
path to your executable. Since there is no standard way to find that, it needs to capture
a copy of your argv[] parameter, and it does this with some preprocessor macro trickery.
Unfortunately it can’t quite pull this off without a little bit of your help, so you will have
to write END_OF_MAIN() right after your main() function. Pretty easy, really, and if you
forget, you’ll get a nice linker error about a missing _mangled_main function to remind you

)

36.1 GFX_

* /Linux

Drivers GFX_*/Linux
When running in Linux console mode, Allegro supports the following card pa-
rameters for the set_gfx_mode() function:

GFX_TEXT
Return to text mode.

GFX_AUTODETECT
Let Allegro pick an appropriate graphics driver.

GFX_AUTODETECT_FULLSCREEN
Autodetects a graphics driver, but will only use fullscreen drivers, failing
if these are not available on current platform.

GFX_AUTODETECT_WINDOWED
Same as above, but uses only windowed drivers. This will always fail under
Linux console mode.

GFX_SAFE

Special driver for when you want to reliably set a graphics mode and don’t
really care what resolution or color depth you get. See the set_gfx_mode()
documentation for details.

GFX_FBCON

Use the framebuffer device (eg. /dev/fb0). This requires you to have
framebuffer support compiled into your kernel, and correctly configured
for your hardware. It is currently the only console mode driver that will
work without root permissions, unless you are using a development version

of SVGAIib.

GFX_VBEAF
Use a VBE/AF driver (vbeaf.drv), assuming that you have installed one

Chapter 36: Unix specifics 243

See also:

which works under Linux (currently only two of the FreeBE/AF project
drivers are capable of this: I don’t know about the SciTech ones). VBE/AF
requires root permissions, but is currently the only Linux driver which
supports hardware accelerated graphics.

GFX_SVGALIB
Use the SVGALib library for graphics output. This requires root permis-
sions if your version of SVGALlib requires them.

GFX_VGA

GFX_MODEX

Use direct hardware access to set standard VGA or mode-X resolutions,
supporting the same modes as in the DOS versions of these drivers. Re-
quires root permissions.

See Section 8.6 [set_gfx_mode], page 70.
See Section 36.2 [GFX_*/X], page 243.

36.2 GFX_

* /X

Drivers GFX_*/X
When running in X mode, Allegro supports the following card parameters for
the set_gfx_mode() function:

GFX_TEXT
This closes any graphic mode previously opened with set_gfx_mode.

GFX_AUTODETECT
Let Allegro pick an appropriate graphics driver.

GFX_AUTODETECT_FULLSCREEN
Autodetects a graphics driver, but will only use fullscreen drivers, failing
if these are not available on current platform.

GFX_AUTODETECT_WINDOWED
Same as above, but uses only windowed drivers.

GFX_SAFE

Special driver for when you want to reliably set a graphics mode and don’t
really care what resolution or color depth you get. See the set_gfx_mode()
documentation for details.

GFX_XWINDOWS
The standard X graphics driver. This should work on any Unix system,
and can operate remotely. It does not require root permissions.

GFX_XWINDOWS_FULLSCREEN

The same as above, but while GFX_XWINDOWS runs windowed, this
one uses the XF86VidMode extension to make it run in fullscreen mode
even without root permissions. You're still using the standard X protocol
though, so expect the same low performances as with the windowed driver
version.

244 Allegro Manual

e GFX_XDGA
Use the XFree86 DGA 1.0 extension to write directly to the screen surface.
DGA is normally much faster than the standard X mode, but does not
produce such well behaved windowed programs, and will not work remotely.
This driver requires root permissions.

e GFX_XDGA_FULLSCREEN
Like GFX_XDGA, but also changes the screen resolution so that it will
run fullscreen. This driver requires root permissions.

e GFX_XDGA2
Use new DGA 2.0 extension provided by XFree86 4.0.x. This will work
in fullscreen mode, and it will support hardware acceleration if available.
This driver requires root permissions.

e GFX_XDGA2_SOFT
The same as GFX_XDGA2, but turns off hardware acceleration support.
This driver requires root permissions.

See also:
See Section 8.6 [set_gfx_mode], page 70.
See Section 36.1 [GFX_*/Linux]|, page 242.

36.3 DIGI_*/Unix

Drivers DIGI_*/Unix
The Unix sound functions support the following digital soundcards:

DIGI_AUTODETECT - let Allegro pick a digital sound driver
DIGI_NONE - no digital sound

DIGI_0SS - Open Sound System

DIGI_ESD - Enlightened Sound Daemon

DIGI_ARTS - aRts (Analog Real-Time Synthesizer)
DIGI_ALSA - ALSA sound driver

See also:

See Section 23.1 [detect_digi_driver]|, page 157.
See Section 23.5 [install_sound], page 160.

See Section 27.1 [install_sound_input], page 177.

36.4 MIDI_*/Unix

Drivers MIDI_*/Unix
The Unix sound functions support the following MIDI soundcards:

MIDI_AUTODETECT - let Allegro pick a MIDI sound driver
MIDI_NONE - no MIDI sound

Chapter 37: BeOS specifics 245

See also:

MIDI_0SS - Open Sound System
MIDI_DIGMID - sample-based software wavetable player
MIDI_ALSA - ALSA RawMIDI driver

See Section 23.2 [detect_midi_driver], page 158.
See Section 23.5 [install_sound], page 160.
See Section 27.1 [install_sound_input], page 177.

37 BeOS specifics

37.1 GFX_

* /BeOS

Drivers GFX_x*/Be0S
BeOS Allegro supports the following card parameters for the set_gfx_mode()
function:

See also:

GFX_TEXT
This closes any graphic mode previously opened with set_gfx_mode.

GFX_AUTODETECT
Let Allegro pick an appropriate graphics driver.

GFX_AUTODETECT_FULLSCREEN
Autodetects a graphics driver, but will only use fullscreen drivers, failing
if these are not available on current platform.

GFX_AUTODETECT_WINDOWED
Same as above, but uses only windowed drivers.

GFX_SAFE

Special driver for when you want to reliably set a graphics mode and don’t
really care what resolution. See the set_gfx_mode() documentation for
details.

GFX_BEOS_FULLSCREEN
Fullscreen exclusive mode. Supports only resolutions higher or equal to
640x480, and uses hardware acceleration if available.

GFX_BEOS_FULLSCREEN_SAFE
Works the same as GFX_FULLSCREEN, but disables acceleration.

GFX_BEOS_-WINDOWED
Fast windowed mode using the BDirectWindow class. Not all graphics
cards support this.

See Section 8.6 [set_gfx_mode], page 70.

246 Allegro Manual

37.2 DIGI_*/BeOS

Drivers DIGI_x*/Be(OS
The BeOS sound functions support the following digital soundcards:

DIGI_AUTODETECT - let Allegro pick a digital sound driver
DIGI_NONE - no digital sound
DIGI_BEOS - Be(OS digital output

See also:

See Section 23.1 [detect_digi_driver|, page 157.
See Section 23.5 [install_sound], page 160.

See Section 27.1 [install_sound_input], page 177.

37.3 MIDI_*/BeOS

Drivers MIDI_x*/Be(S
The BeOS sound functions support the following MIDI soundcards:

MIDI_AUTODETECT let Allegro pick a MIDI sound driver

MIDI_NONE - no MIDI sound
MIDI_BEOS - BeOS MIDI output
MIDI_DIGMID - sample-based software wavetable player

See also:

See Section 23.2 [detect_midi_driver], page 158.
See Section 23.5 [install_sound], page 160.

See Section 27.1 [install_sound_input], page 177.

38 QNX specifics

38.1 GFX_*/QNX

Drivers GFX_*/QNX
QNX Allegro supports the following card parameters for the set_gfx_mode()
function:
e GFX_TEXT
This closes any graphic mode previously opened with set_gfx_mode.
e GFX_AUTODETECT
Let Allegro pick an appropriate graphics driver.
e GFX_AUTODETECT_FULLSCREEN
Autodetects a graphics driver, but will only use fullscreen drivers, failing
if these are not available on current platform.

Chapter 38: QNX specifics 247

e GFX_AUTODETECT_WINDOWED
Same as above, but uses only windowed drivers.

e GFX_SAFE
Special driver for when you want to reliably set a graphics mode and don’t
really care what resolution. See the set_gfx_mode() documentation for
details.

e GFX_PHOTON_DIRECT

Fullscreen exclusive mode through Photon.

e GFX_PHOTON
Windowed mode in a Photon window. Note that, mainly for performance
reasons, this driver requires the width of the screen to be a multiple of 4.

See also:
See Section 8.6 [set_gfx_mode], page 70.

38.2 DIGI_*/QNX

Drivers DIGI_x*/QNX
The QNX sound functions support the following digital soundcards:

DIGI_AUTODETECT - let Allegro pick a digital sound driver
DIGI_NONE - no digital sound
DIGI_ALSA - ALSA sound driver

See also:

See Section 23.1 [detect_digi_driver|, page 157.
See Section 23.5 [install_sound], page 160.

See Section 27.1 [install_sound_input], page 177.

38.3 MIDI_*/QNX

Drivers MIDI_*/QNX
The QNX sound functions support the following MIDI soundcards:

MIDI_AUTODETECT let Allegro pick a MIDI sound driver

MIDI_NONE - no MIDI sound
MIDI_ALSA - ALSA RawMIDI driver
MIDI_DIGMID - sample-based software wavetable player

The following functions provide a platform specific interface to seamlessly integrate Allegro
into general purpose QNX programs. To use these routines, you must include gnxalleg.h
after other Allegro headers.

See also:
See Section 23.2 [detect_midi_driver], page 158.

248 Allegro Manual

See Section 23.5 [install_sound], page 160.
See Section 27.1 [install_sound_input], page 177.

38.4 gnx_get_window

PtWidget_t gnx_get_window(void);
Retrieves a handle to the window used by Allegro. Note that Allegro uses an
underlying window even though you don’t set any graphics mode, unless you
have installed the neutral system driver (SYSTEM_NONE).

39 Differences between platforms

Here’s a quick summary of things that may cause problems when moving your code from
one platform to another (you can find a more detailed version of this in the docs section of
the Allegro website).

The Windows and Unix versions require you to write END_OF_MAIN() after your main()
function, which is used to magically turn an ANSI C style main() into a Windows style
WinMain(), and so that the Unix code can grab a copy of your argv|[| parameter.

On many platforms Allegro runs very slowly if you rely on it in order to automatically lock
bitmaps when drawing onto them. For good performance, you need to call acquire_bitmap()
and release_bitmap() yourself, and try to keep the amount of locking to a minimum.

The Windows version may lose the contents of video memory if the user switches away from
your program, so you need to deal with that.

None of the currently supported platforms require input polling, but it is possible that some
future ones might, so if you want to ensure 100% portability of your program, you should
call poll_mouse() and poll_keyboard() in all the relevant places.

Allegro defines a number of standard macros that can be used to check various attributes
of the current platform:

ALLEGRO_PLATFORM_STR
Text string containing the name of the current platform.

ALLEGRO_DOS

ALLEGRO_DJGPP

ALLEGRO_WATCOM
ALLEGRO_WINDOWS

ALLEGRO_MSVC

ALLEGRO_MINGW32

ALLEGRO_BCC32

ALLEGRO_UNIX

ALLEGRO_LINUX

ALLEGRO_BEOS

ALLEGRO_QNX

ALLEGRO_GCC

Defined if you are building for a relevant system. Often several of these will apply, eg.
DOS+Watcom, or Windows+GCC+MinGW32.

Chapter 40: Reducing your executable size 249

ALLEGRO_I386

ALLEGRO_BIG_ENDIAN

ALLEGRO_LITTLE_ENDIAN

Defined if you are building for a processor of the relevant type.

ALLEGRO_VRAM_SINGLE_SURFACE

Defined if the screen is a single large surface that is then partitioned into multiple video
sub-bitmaps (eg. DOS), rather than each video bitmap being a totally unique entity (eg.
Windows).

ALLEGRO_CONSOLE_OK

Defined if when you are not in a graphics mode, there is a text mode console that you
can printf() to, and from which the user could potentially redirect stdout to capture it even
while you are in a graphics mode. If this define is absent, you are running in an environment
like Windows that has no stdout at all.

ALLEGRO_MAGIC_MAIN
Defined if Allegro uses a magic main, i.e takes over the main() entry point and turns it into
a secondary entry point suited to its needs.

ALLEGRO_LFN
Non-zero if long filenames are supported, or zero if you are limited to 8.3 format (in the
djgpp version, this is a variable depending on the runtime environment).

LONG_LONG
Defined to whatever represents a 64-bit "long long" integer for the current compiler, or not
defined if that isn’t supported.

OTHER_PATH_SEPARATOR

Defined to a path separator character other than a forward slash for platforms that use one
(eg. a backslash under DOS and Windows), or defined to a forward slash if there is no other
separator character.

DEVICE_SEPARATOR
Defined to the filename device separator character (a colon for DOS and Windows), or to
zero if there are no explicit devices in paths (Unix).

Allegro also defines a number of standard macros that can be used to insulate you from
some of the differences between systems:

USE_CONSOLE

If you define this prior to including Allegro headers, Allegro will be set up for building
a console application rather than the default GUI program on some platforms (especially
Windows).

INLINE
Use this in place of the regular "inline" function modifier keyword, and your code will work
correctly on any of the supported compilers.

ZERO_SIZE_ARRAY (type, name)

Use this to declare zero-sized arrays in terminal position inside structures, like in the BIT-
MAP structure. These arrays are effectively equivalent to the flexible array members of
ISO C99.

250 Allegro Manual

40 Reducing your executable size

Some people complain that Allegro produces very large executables. This is certainly true:
with the djgpp version, a simple "hello world" program will be about 200k, although the
per-executable overhead is much less for platforms that support dynamic linking. But
don’t worry, Allegro takes up a relatively fixed amount of space, and won’t increase as your
program gets larger. As George Foot so succinctly put it, anyone who is concerned about
the ratio between library and program code should just get to work and write more program
code to catch up :-)

Having said that, there are several things you can do to make your programs smaller:

e For all platforms, you can use an executable compressor called UPX, which is available
at http://upx.tsx.org/ . This usually manages a compression ratio of about 40%.

e When using djgpp: for starters, read the djgpp FAQ section 8.14, and take note of the
-s switch. And don’t forget to compile your program with optimisation enabled!

e If a DOS program is only going to run in a limited number of graphics modes, you can
specify which graphics drivers you would like to include with the code:

BEGIN_GFX_DRIVER_LIST
driverl
driver?2
etc...
END_GFX_DRIVER_LIST

where the driver names are any of the defines:

GFX_DRIVER_VBEAF
GFX_DRIVER_VGA
GFX_DRIVER_MODEX
GFX_DRIVER_VESA3
GFX_DRIVER_VESA2L
GFX_DRIVER_VESA2B
GFX_DRIVER_XTENDED
GFX_DRIVER_VESA1

This construct must be included in only one of your C source files. The ordering of the
names is important, because the autodetection routine works down from the top of the
list until it finds the first driver that is able to support the requested mode. I suggest
you stick to the default ordering given above, and simply delete whatever entries you
aren’t going to use.

e If your DOS program doesn’t need to use all the possible color depths, you can specify
which pixel formats you want to support with the code:

BEGIN_COLOR_DEPTH_LIST
depthl
depth2
etc...
END_COLOR_DEPTH_LIST

Chapter 40: Reducing your executable size 251

where the color depth names are any of the defines:

COLOR_DEPTH_8

COLOR_DEPTH_15
COLOR_DEPTH_16
COLOR_DEPTH_24
COLOR_DEPTH_32

Removing any of the color depths will save quite a bit of space, with the exception of
the 15 and 16 bit modes: these share a great deal of code, so if you are including one
of them, there is no reason not to use both. Be warned that if you try to use a color
depth which isn’t in this list, your program will crash horribly!

e In the same way as the above, you can specify which DOS sound drivers you want to
support with the code:

BEGIN_DIGI_DRIVER_LIST
driverl
driver?2
etc...
END_DIGI_DRIVER_LIST

using the digital sound driver defines:

DIGI_DRIVER_SOUNDSCAPE
DIGI_DRIVER_AUDIODRIVE
DIGI_DRIVER_WINSOUNDSYS
DIGI_DRIVER_SB

and for the MIDI music:

BEGIN_MIDI_DRIVER_LIST
driverl
driver?2
etc...
END_MIDI_DRIVER_LIST

using the MIDI driver defines:

MIDI_DRIVER_AWE32
MIDI_DRIVER_DIGMID
MIDI_DRIVER_ADLIB
MIDI_DRIVER_MPU
MIDI_DRIVER_SB_0OUT
If you are going to use either of these sound driver constructs, you must include both.

e Likewise for the DOS joystick drivers, you can declare an inclusion list:

BEGIN_JOYSTICK_DRIVER_LIST
driverl

252 Allegro Manual

driver?2
etc...
END_JOYSTICK_DRIVER_LIST

using the joystick driver defines:

JOYSTICK_DRIVER_WINGWARRIOR
JOYSTICK_DRIVER_SIDEWINDER
JOYSTICK_DRIVER_GAMEPAD_PRO
JOYSTICK_DRIVER_GRIP
JOYSTICK_DRIVER_STANDARD
JOYSTICK_DRIVER_SNESPAD
JOYSTICK_DRIVER_PSXPAD
JOYSTICK_DRIVER_N64PAD
JOYSTICK_DRIVER_DB9
JOYSTICK_DRIVER_TURBOGRAFX
JOYSTICK_DRIVER_IFSEGA_ISA
JOYSTICK_DRIVER_IFSEGA_PCI
JOYSTICK_DRIVER_IFSEGA_PCI_FAST

The standard driver includes support for the dual joysticks, increased numbers of but-
tons, Flightstick Pro, and Wingman Extreme, because these are all quite minor varia-
tions on the basic code.

e If you are _really_ serious about this size, thing, have a look at the top of
include/allegro/alconfig.h and you will see the lines:

#define ALLEGRO_COLORS8
#define ALLEGRO_COLOR16
#define ALLEGRO_COLOR24
#define ALLEGRO_COLOR32

If you comment out any of these definitions and then rebuild the library, you will
get a version without any support for the absent color depths, which will be even
smaller than using the DECLARE_COLOR_DEPTH_LIST() macro. Removing the
ALLEGRO_COLORI16 define will get rid of the support for both 15 and 16 bit hicolor
modes, since these share a lot of the same code.

Note: the aforementioned methods for removing unused hardware drivers only apply to
statically linked versions of the library, eg. DOS. On Windows and Unix platforms, you
can build Allegro as a DLL or shared library, which prevents these methods from working,
but saves so much space that you probably won’t care about that. Removing unused color
depths from alconfig.h will work on any platform, though.

If you are distributing a copy of the setup program along with your game, you may be able
to get a dramatic size reduction by merging the setup code into your main program, so that
only one copy of the Allegro routines will need to be linked. See setup.txt for details. In
the djgpp version, after compressing the executable, this will probably save you about 200k
compared to having two separate programs for the setup and the game itself.

Chapter 41: Debugging 253

41 Debugging

There are three versions of the Allegro library: the normal optimised code, one with ex-
tra debugging support, and a profiling version. See the platform specific readme files for
information about how to install and link with these alternative libs. Although you will
obviously want to use the optimised library for the final version of your program, it can be
very useful to link with the debug lib while you are working on it, because this will make
debugging much easier, and includes assert tests that will help to locate errors in your code
at an earlier stage. Allegro also contains some debugging helper functions:

41.1 al_assert

void al_assert(const char *file, int line);
Raises an assert for an error at the specified file and line number. The file
parameter is always given in ASCII format. If you have installed a custom
assert handler it uses that, or if the environment variable ALLEGRO_ASSERT
is set it writes a message into the file specified by the environment, otherwise
it aborts the program with an error message. You will usually want to use the
ASSERT() macro instead of calling this function directly.

See also:

See Section 41.3 [ASSERT], page 253.

See Section 41.2 [al_trace], page 253.

See Section 41.5 [register_assert_handler|, page 254.

41.2 al_trace

void al_trace(const char *msg, ...);
Outputs a debugging trace message, using a printf() format string given in
ASCII. If you have installed a custom trace handler it uses that, or if the
environment variable ALLEGRO_TRACE is set it writes into the file specified
by the environment, otherwise it writes the message to "allegro.log" in the
current directory. You will usually want to use the TRACE() macro instead of
calling this function directly.

See also:

See Section 41.4 [TRACE], page 254.

See Section 41.1 [al_assert], page 253.

See Section 41.6 [register_trace_handler|, page 254.

41.3 ASSERT

void ASSERT (condition);
Debugging helper macro. Normally compiles away to nothing, but if you defined
the preprocessor symbol DEBUGMODE before including Allegro headers, it
will check the supplied condition and call al_assert() if it fails.

254 Allegro Manual

See also:

See Section 41.1 [al_assert], page 253.

See Section 41.4 [TRACE], page 254.

See Section 41.5 [register_assert_handler|, page 254.

41.4 TRACE

void TRACE(char *msg, ...);
Debugging helper macro. Normally compiles away to nothing, but if you defined
the preprocessor symbol DEBUGMODE before including Allegro headers, it
passes the supplied message given in ASCII format to al_trace().

See also:

See Section 41.2 [al_trace], page 253.

See Section 41.3 [ASSERT], page 253.

See Section 41.6 [register_trace_handler], page 254.

41.5 register_assert_handler

void register_assert_handler(int (*handler) (const char *msg));
Supplies a custom handler function for dealing with assert failures. Your call-
back will be passed a formatted error message in ASCII, and should return
non-zero if it has processed the error, or zero to continue with the default
actions. You could use this to ignore assert failures, or to display the error
messages on a graphics mode screen without aborting the program.

See also:

See Section 41.1 [al_assert], page 253.

See Section 41.3 [ASSERT], page 253.

See Section 41.6 [register_trace_handler], page 254.

41.6 register_trace_handler

void register_trace_handler(int (*handler) (const char *msg));
Supplies a custom handler function for dealing with trace output. Your callback
will be passed a formatted error message in ASCII, and should return non-zero
if it has processed the message, or zero to continue with the default actions. You
could use this to ignore trace output, or to display the messages on a second
monochrome monitor, etc.

See also:
See Section 41.2 [al_trace], page 253.
See Section 41.4 [TRACE], page 254.

Chapter 42: Makefile targets 255

See Section 41.5 [register_assert_handler|, page 254.

42 Makefile targets

There are a number of options that you can use to control exactly how Allegro will be
compiled. On Unix platforms you do this by passing arguments to the configure script (run
"configure ~help" for a list), but on other platforms you can set the environment variables:

DEBUGMODE=1
Selects a debug build, rather than the normal optimised version.

DEBUGMODE=2
Selects a build intended to debug Allegro itself, rather than the normal optimised
version.

PROFILEMODE=1

Selects a profiling build, rather than the normal optimised version.

WARNMODE=1

Selects strict compiler warnings. If you are planning to work on Allegro yourself, rather
than just using it in your programs, you should be sure to have this mode enabled.
STATICLINK=1 (MSVC and Mingw32 only)

Link as a static library, rather than the default DLL.

TARGET_ARCH_COMPAT=[cpu] (implemented for most GNU platforms)
This option will optimize for the given processor while maintaining compatibility with
older processors. Example: set TARGET_ARCH_COMPAT=i586

TARGET_ARCH_EXCL=[cpu] (implemented for most GNU platforms)
This option will optimize for the given processor. Please note that using it will cause the
code to *NOT* run on older processors. Example: set TARGET_ARCH_EXCL=i586

TARGET_OPTS=[opts| (implemented for most GNU platforms)
This option allows you to customize general compiler optimisations.

CROSSCOMPILE=1 (djgpp only)

Allows you to build the djgpp library under Linux, using djgpp as a cross-compiler.
ALLEGRO_USE_C=1 (djgpp only)

Allows you to build the djgpp library using C drawing code instead of the usual asm
routines. This is only really useful for testing, since the asm version is faster.

If you only want to recompile a specific test program or utility, you can specify it as an
argument to make, eg. "make demo" or "make grabber". The makefiles also provide some
special pseudo-targets:

"default’

The normal build process. Compiles the current library version (one of optimised,
debugging, or profiling, selected by the above environment variables), builds the test
and example programs, and converts the documentation files.

"all’

Compiles all three library versions (optimised, debugging, and profiling), builds the
test and example programs, and converts the documentation files.

256

Allegro Manual

lib’
Compiles the current library version (one of optimised, debugging, or profiling, selected
by the above environment variables).

"install’

Copies the current library version (one of optimised, debugging, or profiling, selected
by the above environment variables), into your compiler lib directory, recompiling it as
required, and installs the Allegro headers.

"installall’
Copies all three library versions (optimised, debugging, and profiling), into your com-
piler lib directory, recompiling them as required, and installs the Allegro headers.

"uninstall’
Removes the Allegro library and headers from your compiler directories.

"docs’

Converts the documentation files from the ._tx sources.

'docs-dvi’ (Unix only)

Creates the allegro.dvi device independent documentation file. This is not a default
target, since you need the texi2dvi tool to create it. The generated file is especially
prepared to be printed on paper.

"docs-ps’ or ’docs-gzipped-ps’ (Unix only)

Creates a Postcript file from the previously generated DVI file. This is not a default
target, since you need the texi2dvi and dvips tools to create it. The second target
compresses the generated Postscript file. The generated file is especially prepared to
be printed on paper.

‘install-man’ or ’install-gzipped-man’ (Unix only)

This generates Unix man pages for each Allegro function or variable and installs them.
The second target compresses the manual pages after installing them.

'install-info’ or ’install-gzipped-info’ (Unix only)

Converts the documentation to Info format and installs it. The second target com-
presses the info file after installing it.

"clean’

Removes generated object and library files, either to recover disk space or to force a
complete rebuild the next time you run make. This target is designed so that if you
run a "make install" followed by "make clean", you will still have a functional version
of Allegro.

"distclean’

Like "make clean", but more so. This removes all the executable files and the docu-
mentation, leaving you with only the same files that are included when you unzip a
new Allegro distribution.

'veryclean’

Use with extreme caution! This target deletes absolutely all generated files, including
some that may be non-trivial to recreate. After you run "make veryclean", a simple
rebuild will not work: at the very least you will have to run "make depend", and
perhaps also fixdll.bat if you are using the Windows library. These targets make use of
non-standard tools like SED, so unless you know what you are doing and have all this
stuff installed, you should not use them.

Chapter 43: Conclusion 257

e ’depend’
Regenerates the dependency files (obj/*/makefile.dep). You need to run this after
"make veryclean", or whenever you add new headers to the Allegro sources.

e ’compress’ (djgpp, Mingw32 and MSVC only)
Uses the DJP or UPX executable compressors (whichever you have installed) to com-
press the example executables and utility programs, which can recover a significant
amount of disk space.

43 Conclusion

All good things must come to an end. Writing documentation is not a good thing, though,
and that means it goes on for ever. There is always something I've forgotten to explain, or
some essential detail I've left out, but for now you will have to make do with this. Feel free
to ask if you can’t figure something out.

Enjoy. I hope you find some of this stuff useful.
By Shawn Hargreaves.
http://alleg.sourceforge.net/

258 Allegro Manual

Table of Contents

1 Using Allegro..........ciiiiiiinneen.. 1
1.1 install_allegro....... ... 1
1.2 allegro_init. 1
1.3 allegro_exit ... 1
1.4 END_OF_MAIN 2
1.5 allegro_ido 2
1.6 allegro_erroro 2
17 08 YD . e 3
1.8 OS_VEISION ..ottt e 3
1.9 os_multitasking 4
1.10 allegro_messagecouueiiinei i 4
1.11 set_window_title......... 4
1.12 set_window_close_button............ 4
1.13 set_window_close_hook........... 5
1.14 desktop_color_depth 5
1.15 get_desktop_resolution........... L 6
1.16 yield_timeslice o 6
117 check_cpu ..o 6
1I8 cpu_vendor 6
1.19 cpufamily. 7
1.20 cpu_model. 7
1.21 cpu_capabilities 7

2 Unicoderoutinescovvivnnnn.. 8
2.1 set_uformat 9
2.2 get_uformat. 10
2.3 register_uformat........ ... 10
2.4 set_ucodepage. 10
2.5 mneed_uConvVertot 11
2.6 UCONVEIT_SIZE. . . ottt e e e e 11
2.7 do_UCONVETt . .o\t e 11
2.8 UCONVETH . ..o 12
2.9 uconvert_asCii...........oiiii 12
2.10 uconvert_toasCii...........ouiiiii 12
2.11 empty_sString......... ..o 13
212 ugetc. ... 13
213 UZEbX . ot 13
214 USELC . .ot 14
215 uwidth ... 14
216 ucwidtho 14
217 WISOK . oo 15
218 woffset. 15
2.19 ugetab. ... 15

ii

2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
241
2.42
2.43
2.44
2.45
2.46
2.47
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59

Allegro Manual

USEtat . . ot 16
L0888 173 o 16
UTEINOVE . o o oottt e e e et e e e e e et e e e e et e e e et 16
USETSIZE . . vt 17
USEISIZOZ . v ottt 17
uwidth_omax 17
UEOLOWeT . . .o 17
UBOUPDET .« vttt 18
UISSPACE -+ v v eev et et e e e e e e 18
WISAIGIt .« .o e e 18
USEEAUD . oo 19
USETAUD . - e 19
USETCDY - v oot 19
USETZCPY v ov et 19
USEICAt . .o 20
USETZCAL .« . oot 20
ustrlen 20
USETCIND .« oot 21
USETTICDY - v e ettt e e e e e 21
USHIZIICDY « « v vttt e e e e e e e e e 21
ustrncat 22
USETZICAL . . . 22
USETNCID . . o 22
L0500 13 001 o P 23
USUEIWT Lo 23
USETUDT « .« oot 23
USETChT . 23
USEITCIT .o 24
USEES T . 24
UStEPDIK . . 24
USEItOK . oo 25
USETtOK T o 25
UatOf . . 25
USEIOL. oo 26
USEIEOd . . oo 26
L8) 0) 26
usprintf 26
uszprintf. 27
uvsprintf 27
UvsSzZprintl 27

3 Configuration routines 28
3.1 set_config file 28
3.2 set_config_data......... 28
3.3 override_config_file 29
3.4 override_config_data......... 29
3.5 push_config_state........... ... 29
3.6 pop-config_state.......... ... 30
3.7 flush_configfile 30
3.8 reload_config_texts 30
3.9 hook_config_section..............iiii 31
3.10 config_is_hooked 31
311 get_config_string i 31
312 get_config_int 31
3.13 get_config_hex 32
3.14 get_config_float 32
3.15 get_config id. 33
3.16 get_config_argv. 33
317 get_config_text...... ... 33
3.18 set_config_string 34
3.19 set_configint ... 34
3.20 set_config hex..... ... 35
3.21 set_config_float........ 35
3.22 set_config_id 35
3.23 standard config variables........... 36

4 Mouseroutines............ccoviiiiiinnn.. 41
4.1 installlmouse 41
4.2 TEMOVE_TNOUSE . . oo vvete et e e ettt et e e et 42
4.3 POllLmouUSe. . ..ot 42
4.4 mouse_needs_poll...... 43
4D TNOUSE_X .« ottt ettt e e e e e e e e e 43
4.6 MOUSE_SPTIte . ..ottt 44
4.7 ShOW_IMOUSEttt 44
4.8 SCATE_INOUSE . o .o vt ettt ettt et e e e e 44
4.9 SCATE_TNOUSE_ATEA . . . ot vee v e et et e et e e e e 45
410 UNSCATE_TNOUSE -« . v v ettt et et e ettt e et e e e 45
4.11 freeze_mouse_flag....... 45
412 POSIEION_TNOUSE v ettt ettt et 45
4.13 POSIEION_TNOUSE_Z . .. oottt e e e 46
414 SEt_IMOUSE_TANGE . . . v v oe ettt et ettt e et e e 46
4.15 set_mouse_speed 46
4.16 set_mouse_sSprite 46
4.17 set_mouse_sprite_focus.......... 47
4.18 get_mouse_-mickeys 47

4.19

mouse_callback. 47

iii

iv Allegro Manual

5 Timerroutinesovvuuun.. 48
5.1 install_timer 48
5.2 Temove_timer 48
5.3 dmstallint. ... 49
5.4 installiint_ex....... ... 49
D.0 TEMOVE_INb. 50
5.6 install_param_int.......... 51
5.7 install_param_int_ex........... 51
5.8 remove_param_int............. . 51
5.9 timer_can_simulate_retrace........... 52
5.10 timer_simulate_retrace........... 52
5.11 timer_is_using.retrace i 53
5.12 retrace_count 53
D.13 Tetrace_ProC . ..o vt 53
0. 14 TeSt .ot o4
5.15 rest_callback...... 54

6 Keyboard routines........................ 54
6.1 install_keyboard........... 55
6.2 remove_keyboard......... 55
6.3 install_keyboard_hooks 56
6.4 pollkeyboard....... 56
6.5 keyboard_needs_poll........ 56
6.6 KeY ..ot 57
6.7 key_shifts..... ... o 58
6.8 keypressed 58
6.9 readkey. 59
6.10 ureadkey 59
6.11 scancode_to_ascii.............oooiiiiiiiiini 60
6.12 simulate_keypress 60
6.13 simulate_ukeypress.......... 60
6.14 keyboard_callback......... 60
6.15 keyboard_ucallback........... 61
6.16 keyboard_lowlevel_callback.............. 61
6.17 set_leds....... .o 62
6.18 set_keyboard_rate........... 62
6.19 clear_keybuf 62
6.20 three_finger flag........... 62

6.21 key_led_flag...... ... 63

7 Joystick routines.......................... 63

7.1 dnstall_joystick 63
7.2 remove_joystick 64
7.3 polljoystick 64
7.4 num_joysticks........ ... 64
85 T T) 2 64
7.6 calibrate_joystick-name............. 67
7.7 calibrate_joystick......... 67
7.8 save_joystick_data........... ... 67
7.9 load_joystick_data........... 68
7.10 initialise_joystick 68
8 Graphicsmodes 68
8.1 set_color_depth 68
8.2 request_refresh_rate 69
8.3 get_refresh_rate 69
8.4 get_gfx mode list 69
8.5 destroy_gfx_mode_list............. 70
8.6 set_gfx_mode 70
8.7 set_display_switch_mode 72
8.8 set_display_switch_callback............., 73
8.9 remove_display_switch_callback.............................. 74
8.10 get_display_switch_.mode................................... 74
8.11 gfx_capabilities........... ... 74
8.12 enable_triple_buffer........... 7
8.13 SCrOll_SCIeenot 77
8.14 request_scroll 78
8.15 pollscroll 78
8.16 show_video_bitmap............ 78
8.17 request_video_bitmap.............. 79
9 Bitmapobjects............... 79
9.1 SCTEEIL . .o vttt 80
9.2 create_bitmap.......... ... 81
9.3 create_bitmap_ex.......... ... 81
9.4 create_sub_bitmap......... 81
9.5 create_video_bitmap 82
9.6 create_system_bitmap 82
9.7 destroy_bitmap 83
9.8 lock_bitmap 83
9.9 bitmap_color_depth......... 83
9.10 bitmap_-mask_color........... 83
9.11 is_same_bitmapot 84
9.12 is_linear_bitmap......... ... 84
9.13 is_planar_bitmap 84
9.14 is_memory_bitmap 84
9.15 is_screen_bitmap 85

Allegro Manual

vi
9.16 is_video bitmap............coiiii 85
9.17 is_system_bitmap 85
9.18 is_sub_bitmap......... ..o 85
9.19 acquire_bitmap 86
9.20 release_bitmap 86
9.21 ACQUITE_SCIEEIL . . o\ vt et ettt et e e e e e e e e et e 86
9.22 1elease_SCTeeNo vt e 87
9.23 set_Clip ..o 87

10 Loading image files...................... 87
10.1 load-bitmapo 87
10.2 load bmpo 88
10.3 load._lbm ... 88
104 oad PeX. oo 88
10.5 load_tga . ..o 88
10.6 save_bitmap ... 89
10.7 save_DID . .ot 89
108 SAVE _ PCX . v vttt et e e 89
10.9 save_tga....... ... 90
10.10 register_bitmap_file_type........... 90
10.11 set_color_conversionoeeuuneiinneennneea.. 90

11 Paletteroutines 92
T1.1 0 VSYIIC .ot 93
11.2 set_color. ..o 93
11.3 Z8et_COloT . . oo 93
11.4 set_palette. 94
11.5 set_palette_range.......... 94
11.6 get_color ... 94
11.7 get_palette.. 94
11.8 get_palette_range............ o 95
11.9 fade_interpolate....... ... i 95
11.10 fade_from_range.oouiiiiiiiiii e 95
1111 fade_in_rangecoo e 95
1112 fade_out_rangeoouiimnnneeiiiiaa... 96
11.13 fade_fromi....... ... 96
11,14 fade_in 96
1115 fade_out 97
11.16 select_palette 97
11.17 wumselect_palette....... 97
11.18 generate_332_palette 97
11.19 generate_optimized_palette.............. 98
11.20 default_palette.......o 98
11.21 black_palette....... 98
11.22 desktop_palette 98

12 Truecolor pixel formats 99
12.1 makecol8 99
12.2 makeacol32 99
12.3 makecol 100
12.4 makecol_depth 100
12.5 makeacol 100
12.6 makecollb_dither......... 101
12,7 getr8 . 101
12.8 getadl . .. 102
12.9 getr. ..o 102
12.10 getr_depth. 103
12.11 palette_color. 103
12.12 MASK_COLOR_ 8. ... e 104

13 Drawing primitives 104
13.1 putpixel. 104
13.2 _putpixelo 104
13.3 getpixel . ..o 105
13.4 _getpixel 105
135 VIHNe ..o 105
13.6 hline 106
13.7 do_line ... 106
13.8 N .ot 106
13.9 triangle. 107
1310 POLygOm . ve et 107
1311 reCt .o 107
13.12 rectfill. . ..o 107
13.13 do_circle.o 108
13.14 circle. ... 108
13.15 circlefill 108
13.16 do_ellipSe. . ..o 108
1317 ellipSe ..o 109
13.18 ellipsefill.o 109
1319 dO_aArc. ..o 109
13.20 ATC. .ot 110
13.21 calc_spline.o i 110
13.22 spline 111

13.23

vii

viii Allegro Manual

14 Blitting and sprites..................... 111
14.1 clear_bitmap....... ..o 111
142 clearo 111
14.3 clear_to_color 112
14.4 bBlt ..o 112
14.5 stretch blit 113
14.6 masked_blit...... 113
14.7 masked_stretch_blit 114
14.8 draw_sprite.ot 114
14.9 stretch_sprite 115
14.10 draw_sprite_v_flip....... ... 115
14.11 draw_trans_sprite, 116
14.12 draw_lit_sprite ... 116
14.13 draw_gouraud_sprite i 117
14.14 draw_character.......... i 117
14.15 rotate_sprite. 117
14.16 rotate_sprite_v_flip...... 118
14.17 rotate_scaled_sprite 118
14.18 rotate_scaled_sprite_v_flip................, 118
14.19 pivobt_sprite.o 119
14.20 pivot_sprite_v_flip........ .. 119
14.21 pivot_scaled_sprite 119
14.22 pivot_scaled_sprite_v_flip 120

15 RLEsprites............ccooiiiiinnn... 120
15.1 get_rle_sprite ... 120
15.2 destroy_rle_sprite 121
15.3 draw_rle_sprite........... 121
15.4 draw_trans_rle_sprite............ 121
15.5 draw_lit_rle_sprite......... 122

16 Compiled sprites 122
16.1 get_compiled_sprite......... 122
16.2 destroy_compiled_sprite............ 123
16.3 draw_compiled_sprite........... 123

17 Textoutput.................... ..., 123
170 fONb . oo 123
17.2 allegro_404_char........ 124
173 textomode..... ... 124
174 textout...... ... 124
17.5 textout_centre 125
17.6 textout_right 125
17.7 textout_justify 125
17.8 textprintf. 125
17.9 textprintf_centre 126

17.10 textprintf_right 126

1711 textprintf_justify 126
1712 text_length 126
17.13 text_height o . 127
17.14 destroy_font 127
18 Polygon rendering 127
18.1 polygondd 127
18.2 triangledd 130
183 quad3d 131
18.4 clip3d_f ..o o 131
185 clip3d .o 131
18.6 zbuffered rendering............, 132
18.7 create_zbuffer......... 132
18.8 create_sub_zbuffer.......... 133
18.9 set_zbuffer........ 133
18.10 clear_zbuffer....... 133
18.11 destroy_zbuffer......... 134
18.12 scene renderingo.iiii i 134
18.13 create_Scenet 135
18.14 clear_SCene 135
18.15 destroy_Scenet 136
18.16 scene_polygondd 136
18.17 render_SCene...........c..iei i 137
1818 scemne_gapiiiii i 137

19 Transparency and patterned drawing 138

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14
19.15
19.16
19.17
19.18
19.19
19.20
19.21
19.22

drawing_-mode 138
D) N 1010 Y L 139
solid_mode 139
256 color transSparencyot 140
COlOT_MNAD . ..o 140
create_trans_table......... 140
create_light _table 141
create_color_table 141
create_blender_table............ 142
truecolor tranSparencCyvovu et 143
set_trans_blender........... 143
set_alpha_blender 144
set_write_alpha_blender.................. 144
set_add_blender........ 145
set_burn_blender......... 145
set_color_blender........ 145
set_difference_blender......... 145
set_dissolve_blender 146
set_dodge_blender.......... 146
set_hue_blender 146
set_invert_blender 146
set_luminance_blender............ 147

ix

X Allegro Manual

19.23 set_multiply_blender........... 147
19.24 set_saturation_blender................... 147
19.25 set_screen_blender.............. 147
19.26 set_blender_mode 148
19.27 set_blender_mode_ex 148
20 Converting between color formats 148
20.1 bestfit_color 149
20.2 rgb_mAD . .. 149
20.3 create_rgb_table....... 150
20.4 hsv_to_rgb. 150
21 Direct access to video memory 150
22 FLICroutines..............ccovveuuen... 153
22.1 play fli. ... 154
22.2 playmemory_fli..... 154
223 open_fli ... 154
224 close_fli. 155
22.5 mnext_fliframe............ 155
22.6 fli_bitmap 155
22.7 fli_palette.o 155
22.8 fli_bmp_dirty_from 156
22.9 fli_pal_dirty_from 156
22.10 reset_fli_variables 156
2211 fliframe. 156
2212 i tImer. 157
23 Sound init routines 157
23.1 detect_digi-driver 157
23.2 detect_midi_driver.......... 158
23.3 TESEIVE_VOICES .« v vt vttt et e et e e e 158
23.4 set_volume_pPer_vOICevvene et 158
23.5 install_sound........... 160
23.6 1emOVe_SOUNAttt 161

23.7 Set_vOIUINEo 161

24 Digital sample routines 161
24.1 load_sample 161
24.2 10Ad_WaV .. oot 162
24.3 10ad_VOC. ..ot 162
24.4 create_sample. ... 162
24.5 destroy_sample....... 162
24.6 lock_sample...... ... 162
24.7 play_sample 163
24.8 adjust_sample............ .. 163
24.9 stop_sample 163
24.10 voice control. 164
24.11 allocate_voiCeor 164
24.12 deallocate_voice.o 165
24.13 reallocate_voice 165
24.14 1elease_VOICet 165
24.15 wvoice_start....... ... 166
2416 VOICE_SEOD o v v e e 166
24.17 wvoice_set_priority. 166
24.18 woice_check 166
24.19 wvoice_get_position......... i 167
24.20 wvoice_set_position 167
24.21 wvoice_set_playmode. 167
24.22 wvoice_get_volume. i 168
24.23 wvoice_set_volume i 168
24.24 voice_ramp_volume. 168
24.25 voice_stop_volumeramp i 168
24.26 voice_get_frequency 169
24.27 wvoice_set_frequency 169
24.28 voice_sweep_frequency 169
24.29 voice_stop_frequency_SWeep 169
24.30 vOICe_get DAl . .o\ v e 170
24.31 VOICE_SEb_PaAN . .. v e 170
24.32 VOICE_SWEED_DPAIL « o vt vt ettt e ettt e e e 170
24.33 VOICE_StOP_PAN_SWEED . .« vttt ettt 170
24.34 wvoice_set_echo 170
24.35 wvoice_set_tremolo 171
24.36 voice_set_vibrato.......... ... 171

25 MIDI music routines.................... 171
25.1 load_midi...........cooiii 171
25.2 destroy_midi........ 171
25.3 lock_midi....... 171
254 play_midi...... ... 172
25.5 play_looped-midi......... 172
25.6 stop-midi...... ... 172
257 MIdi_PalUSE . . oot 173
25.8 midi_Tesume 173
25.9 midi_seek. 173

xi

xii Allegro Manual

2510 miIdi_out . oo 173
25.11 load_midi_patches........... 174
2512 midi_PoS . oo 174
25.13 midi_loop_start 174
25.14 midi_msg_callback.......... 175
25.15 load_ibk.o 175
26 Audio stream routines 175
26.1 play_audio_stream........... ... 176
26.2 stop_audio_stream..............coiiiiiii 176
26.3 get_audio_stream_buffer 176
26.4 free_audio_stream_buffer................, 177
27 Recording routines 177
27.1 install_sound_input.......... 177
27.2 remove_sound_input............... 178
27.3 get_sound_input_cap_bits........ L 178
27.4 get_sound_input_cap_stereo 178
27.5 get_sound_input_cap_rate.......... L. 178
27.6 get_sound_input_cap_parm.............. 179
27.7 set_sound_input_sOUrcecouuiinerinernnenn. . 179
27.8 start_sound_input 179
27.9 stop_sound_input 180
27.10 read_sound_input 180
27.11 digi_recorder.o 180
27.12 midi_recorder 181
28 File and compression routines 181
28.1 get_executablename 182
28.2 fix_filename_case i 182
28.3 fix_filename_slashes................ ... i, 182
28.4 fix_filename_path...... 182
28.5 replace_filename........ 182
28.6 replace_extension. i 183
28.7 append_filename 183
28.8 get_filename 183
28.9 get_extension 183
28.10 put_backslash...... 184
2811 file_existS . ..o 184
28.12 eXISES ot 184
28.13 file SiZe. ..ot 184
2814 file_time. 185
28.15 delete_fileo 185
28.16 for_each_file 185
28.17 alfindfirst....... 185
28.18 alfindnext 186

28.19 al_findclose ... 186

28.20 find_allegro_resource., 186
28.21 packfile_password 187
28.22 pack_fopen 187
28.23 packfile functions 188
28.24 pack_fopen_chunk............ 190
28.25 pack_fclose_chunk 191
29 Datafile routines........................ 191
29.1 load_datafile........... i 191
29.2 load_datafile_callback.............. 191
29.3 unload_datafile......... 192
29.4 load_datafile_object 192
29.5 unload_datafile_object 192
29.6 find_datafile_object....... 193
29.7 get_datafile_property 193
29.8 register_datafile_object 193
29.9 fixup_datafile 193
29.10 wusing datafiles ... 194
30 Fixed point math routines 195
30,1 T0OMX . .o 195
30,2 AXEOL. ..t 195
30.3 fXHOOr . .ot 195
30.4 fixcell 196
30.5 fHOfIX. .o 196
30.6 AxXtOf. ... 196
30.7 fixmul. 196
30.8 XAIV oot 197
30.9 fixadd 197
30.10 fixsub 197
30.11 fixed point trig. ... 197
30,12 AXSIN. ..ot 198
B0.13 fIXCOS + ottt 198
30.14 fXBan ... 198
30.15 fXASIN . ..ot 198
30,16 BXACOS . o vt e et e 198
30.17 fxatan o 199
30.18 fixatan2t 199
3019 ARSIt . oot 199
30.20 FXAYPOL -+« o e e e ee e e e e e 199
30.21 X Class ..ot 199
30.22 fixed point aliaseso i 199

xiii

xiv Allegro Manual

31 3D mathroutines....................... 200
31.1 identity_matrix 201
31.2 get_translation_matrix.......... 201
31.3 get_scaling matrix.......... ... 201
31.4 get_x_rotate_matrix i 202
31.5 get_y_rotate_matrix il 202
31.6 get_z_rotate_matrix 202
31.7 get_rotation_-matrix 203
31.8 get_alignmatrixc 203
31.9 get_align-matrix_f..... 203
31.10 get_vector_rotation_matrix............... 203
31.11 get_transformation_matrix................... 204
31.12 get_transformation_matrix_f............ 204
31.13 get_camera_matrix i 204
31.14 get_camera_matrix_f.......... 205
31.15 qtranslate_matrix 205
3116 gscale_matrixXneine 205
3117 matrixomul ... 206
31.18 wector_length 206
31.19 mnormalize_vector 206
31.20 dot_product 206
31.21 cross_productt 207
31.22 polygon_z.normal 207
31.23 applymatrix 207
31.24 set_projection_viewport.......... 207
31.25 Persp_projecto 208

32 Quaternion math routines............... 208
32.1 identity_quat 209
32.2 get_x_rotate_quat 209
32.3 get_rotation_quabt 209
32.4 get_vector_rotation_quat............ L. 209
32.5 quat_to_matrixX............ . 209
32.6 matrix_to_quat. ... 209
32.7 quat_mul 209
32.8 apply_quat 210
32.9 quat_interpolate......... 210

3210 quat_slerp 210

33 GUlroutines.............coovvvinn... 210
33.1 diclear_procCo 214
33.2 d_bOX_PrOC ..ot 214
33.3 d_bitmap_procoii i 214
334 dtexXt_proC. . ..o 214
33.5 d_button_proc 214
33.6 d_check_proc......... 215
33.7 doradio—procC.o 215
33.8 dLiCON_PIOC. ..ottt et e 215
33.9 d_keyboard_proc............... .. 215
33.10 deedit_proc...... ..o 215
3311 d_list_proc. ... 216
33.12 dotext list_proc....... ... 216
33.13 d_textbox_proc 216
33.14 dslider_proc ... 216
33.15 dimMEenU_PIOC . ..ottt 217
33.16 d_yield_proc ... 217
33.17 guimouse_focus 217
33.18 guifg_color..... ... 217
33.19 guimg color. ... 218
33.20 gui_font_baseline........... 218
33.21 GUILINOUSE X « . o vttt e e e e 218
33.22 guifont 218
33.23 gUI_teXtOUb . .ot 218
33.24 guisstrlen. 219
33.25 position_dialog.............. 219
33.26 centre_dialog 219
33.27 set_dialog_color....... 219
33.28 find_dialog_focus.......... 220
33.29 offer_focus........ .. 220
33.30 object_message 220
33.31 dialog_message.t 220
33.32 broadcast_dialog_message............ ... 221
33.33 do_dialog...... ... 221
33.34 popup_dialog 221
33.35 init_dialog...... ... 221
33.36 update_dialog......... 222
33.37 shutdown_dialog 222
33.38 active_dialog..........c. 222
33.39 gUIMENUS 223
33.40 dO_MENU . ..ot 223
3341 actiVe_IeNUooiiit it 224
33.42 gui_menu_draw_TeNUoeeuunmeeunnneennnnenn... 224
33.43 alert 224
33.44 alertd ... 225
33.45 file_selecto 225
33.46 file_select_exo 225
33.47 gfx_mode_select 226

XV

xvi Allegro Manual

33.48 gfx_mode_select_ex...... ... 226
33.49 gui_shadow_box_proc.......... i 226
34 DOSspecificscovviiiiiniinnen.. 227
34.1 JOY_TYPE_*/DOSo 227
34.2 GEX_*/DOS ... 230
34.3 DIGI*/DOS .. o 232
34.4 MIDI*/DOS ..o 233
34.5 split_modex_SCreen 233
34.6 ilove bill....... 234
35 Windows specifics 234
35.1 GFX_*/WIndowsooiiii i 235
35.2 DIGI*/WIndowsveiiinii e 237
35.3 MIDI*/Windowsoouuiiieii e 237
354 win_get_window 238
35.5 win_set_window 238
35.6 win_set_-wnd_create_proc........... 238
357 win_get_dc. 239
35.8 win_release_dc 239
35.9 GDIroutineso 239
35.10 set_gdi_color_format............... 239
35.11 set_palette_to_hdc......... 239
35.12 convert_palette_to_hpalette 239
35.13 convert_hpalette_to_palette 240
35.14 convert_bitmap_to_hbitmap................., 240
35.15 convert_hbitmap_to_bitmap.............................. 240
35.16 draw_to_hdc........ 240
35.17 blit_to_hde ... 241
35.18 stretch_blit_to_hdc........ 241
35.19 Dblit_from_hdc........ 241
35.20 stretch_blit_from_hdc............. 241
36 Unix specificscoviiiia... 242
36.1 GEX_HF/LINUX. ...ttt 242
36.2 GEX _*/X 243
36.3 DIGI*/UNIX ..o 244
36.4 MIDI*/UNIX .o oottt et e 244
37 BeOS specifics............... ..., 245
371 GEX_*/BeOS. ... 245
372 DIGI*/BeOS ... 246

37.3 MIDI*/BeOS ... o 246

38 QNX specifics............cvviiien.... 246
38.1 GFX_¥/QNX ..ot 246
38.2 DIGIL*/QNX ..o 247
38.3 MIDI*/QNX .. 247
384 qnx_get_wWindow............ ... 248

39 Differences between platforms........... 248

40 Reducing your executable size........... 250

41 Debuggingcoviiiiiiiiiinn... 253
411 allassert....ooo 253
41.2 Al trace ... 253
41.3 ASSERT 253
41.4 TRACGE ... 254
41.5 register_assert_handler............ L 254
41.6 register_trace_handler L. 254

42 Makefile targets 255

43 ConcluSiono v ittt et it it 257

xvii

xviii Allegro Manual

	Using Allegro
	install_allegro
	allegro_init
	allegro_exit
	END_OF_MAIN
	allegro_id
	allegro_error
	os_type
	os_version
	os_multitasking
	allegro_message
	set_window_title
	set_window_close_button
	set_window_close_hook
	desktop_color_depth
	get_desktop_resolution
	yield_timeslice
	check_cpu
	cpu_vendor
	cpu_family
	cpu_model
	cpu_capabilities

	Unicode routines
	set_uformat
	get_uformat
	register_uformat
	set_ucodepage
	need_uconvert
	uconvert_size
	do_uconvert
	uconvert
	uconvert_ascii
	uconvert_toascii
	empty_string
	ugetc
	ugetx
	usetc
	uwidth
	ucwidth
	uisok
	uoffset
	ugetat
	usetat
	uinsert
	uremove
	ustrsize
	ustrsizez
	uwidth_max
	utolower
	utoupper
	uisspace
	uisdigit
	ustrdup
	_ustrdup
	ustrcpy
	ustrzcpy
	ustrcat
	ustrzcat
	ustrlen
	ustrcmp
	ustrncpy
	ustrzncpy
	ustrncat
	ustrzncat
	ustrncmp
	ustricmp
	ustrlwr
	ustrupr
	ustrchr
	ustrrchr
	ustrstr
	ustrpbrk
	ustrtok
	ustrtok_r
	uatof
	ustrtol
	ustrtod
	ustrerror
	usprintf
	uszprintf
	uvsprintf
	uvszprintf

	Configuration routines
	set_config_file
	set_config_data
	override_config_file
	override_config_data
	push_config_state
	pop_config_state
	flush_config_file
	reload_config_texts
	hook_config_section
	config_is_hooked
	get_config_string
	get_config_int
	get_config_hex
	get_config_float
	get_config_id
	get_config_argv
	get_config_text
	set_config_string
	set_config_int
	set_config_hex
	set_config_float
	set_config_id
	standard config variables

	Mouse routines
	install_mouse
	remove_mouse
	poll_mouse
	mouse_needs_poll
	mouse_x
	mouse_sprite
	show_mouse
	scare_mouse
	scare_mouse_area
	unscare_mouse
	freeze_mouse_flag
	position_mouse
	position_mouse_z
	set_mouse_range
	set_mouse_speed
	set_mouse_sprite
	set_mouse_sprite_focus
	get_mouse_mickeys
	mouse_callback

	Timer routines
	install_timer
	remove_timer
	install_int
	install_int_ex
	remove_int
	install_param_int
	install_param_int_ex
	remove_param_int
	timer_can_simulate_retrace
	timer_simulate_retrace
	timer_is_using_retrace
	retrace_count
	retrace_proc
	rest
	rest_callback

	Keyboard routines
	install_keyboard
	remove_keyboard
	install_keyboard_hooks
	poll_keyboard
	keyboard_needs_poll
	key
	key_shifts
	keypressed
	readkey
	ureadkey
	scancode_to_ascii
	simulate_keypress
	simulate_ukeypress
	keyboard_callback
	keyboard_ucallback
	keyboard_lowlevel_callback
	set_leds
	set_keyboard_rate
	clear_keybuf
	three_finger_flag
	key_led_flag

	Joystick routines
	install_joystick
	remove_joystick
	poll_joystick
	num_joysticks
	joy
	calibrate_joystick_name
	calibrate_joystick
	save_joystick_data
	load_joystick_data
	initialise_joystick

	Graphics modes
	set_color_depth
	request_refresh_rate
	get_refresh_rate
	get_gfx_mode_list
	destroy_gfx_mode_list
	set_gfx_mode
	set_display_switch_mode
	set_display_switch_callback
	remove_display_switch_callback
	get_display_switch_mode
	gfx_capabilities
	enable_triple_buffer
	scroll_screen
	request_scroll
	poll_scroll
	show_video_bitmap
	request_video_bitmap

	Bitmap objects
	screen
	create_bitmap
	create_bitmap_ex
	create_sub_bitmap
	create_video_bitmap
	create_system_bitmap
	destroy_bitmap
	lock_bitmap
	bitmap_color_depth
	bitmap_mask_color
	is_same_bitmap
	is_linear_bitmap
	is_planar_bitmap
	is_memory_bitmap
	is_screen_bitmap
	is_video_bitmap
	is_system_bitmap
	is_sub_bitmap
	acquire_bitmap
	release_bitmap
	acquire_screen
	release_screen
	set_clip

	Loading image files
	load_bitmap
	load_bmp
	load_lbm
	load_pcx
	load_tga
	save_bitmap
	save_bmp
	save_pcx
	save_tga
	register_bitmap_file_type
	set_color_conversion

	Palette routines
	vsync
	set_color
	_set_color
	set_palette
	set_palette_range
	get_color
	get_palette
	get_palette_range
	fade_interpolate
	fade_from_range
	fade_in_range
	fade_out_range
	fade_from
	fade_in
	fade_out
	select_palette
	unselect_palette
	generate_332_palette
	generate_optimized_palette
	default_palette
	black_palette
	desktop_palette

	Truecolor pixel formats
	makecol8
	makeacol32
	makecol
	makecol_depth
	makeacol
	makecol15_dither
	getr8
	geta32
	getr
	getr_depth
	palette_color
	MASK_COLOR_8

	Drawing primitives
	putpixel
	_putpixel
	getpixel
	_getpixel
	vline
	hline
	do_line
	line
	triangle
	polygon
	rect
	rectfill
	do_circle
	circle
	circlefill
	do_ellipse
	ellipse
	ellipsefill
	do_arc
	arc
	calc_spline
	spline
	floodfill

	Blitting and sprites
	clear_bitmap
	clear
	clear_to_color
	blit
	stretch_blit
	masked_blit
	masked_stretch_blit
	draw_sprite
	stretch_sprite
	draw_sprite_v_flip
	draw_trans_sprite
	draw_lit_sprite
	draw_gouraud_sprite
	draw_character
	rotate_sprite
	rotate_sprite_v_flip
	rotate_scaled_sprite
	rotate_scaled_sprite_v_flip
	pivot_sprite
	pivot_sprite_v_flip
	pivot_scaled_sprite
	pivot_scaled_sprite_v_flip

	RLE sprites
	get_rle_sprite
	destroy_rle_sprite
	draw_rle_sprite
	draw_trans_rle_sprite
	draw_lit_rle_sprite

	Compiled sprites
	get_compiled_sprite
	destroy_compiled_sprite
	draw_compiled_sprite

	Text output
	font
	allegro_404_char
	text_mode
	textout
	textout_centre
	textout_right
	textout_justify
	textprintf
	textprintf_centre
	textprintf_right
	textprintf_justify
	text_length
	text_height
	destroy_font

	Polygon rendering
	polygon3d
	triangle3d
	quad3d
	clip3d_f
	clip3d
	zbuffered rendering
	create_zbuffer
	create_sub_zbuffer
	set_zbuffer
	clear_zbuffer
	destroy_zbuffer
	scene rendering
	create_scene
	clear_scene
	destroy_scene
	scene_polygon3d
	render_scene
	scene_gap

	Transparency and patterned drawing
	drawing_mode
	xor_mode
	solid_mode
	256 color transparency
	color_map
	create_trans_table
	create_light_table
	create_color_table
	create_blender_table
	truecolor transparency
	set_trans_blender
	set_alpha_blender
	set_write_alpha_blender
	set_add_blender
	set_burn_blender
	set_color_blender
	set_difference_blender
	set_dissolve_blender
	set_dodge_blender
	set_hue_blender
	set_invert_blender
	set_luminance_blender
	set_multiply_blender
	set_saturation_blender
	set_screen_blender
	set_blender_mode
	set_blender_mode_ex

	Converting between color formats
	bestfit_color
	rgb_map
	create_rgb_table
	hsv_to_rgb

	Direct access to video memory
	FLIC routines
	play_fli
	play_memory_fli
	open_fli
	close_fli
	next_fli_frame
	fli_bitmap
	fli_palette
	fli_bmp_dirty_from
	fli_pal_dirty_from
	reset_fli_variables
	fli_frame
	fli_timer

	Sound init routines
	detect_digi_driver
	detect_midi_driver
	reserve_voices
	set_volume_per_voice
	install_sound
	remove_sound
	set_volume

	Digital sample routines
	load_sample
	load_wav
	load_voc
	create_sample
	destroy_sample
	lock_sample
	play_sample
	adjust_sample
	stop_sample
	voice control
	allocate_voice
	deallocate_voice
	reallocate_voice
	release_voice
	voice_start
	voice_stop
	voice_set_priority
	voice_check
	voice_get_position
	voice_set_position
	voice_set_playmode
	voice_get_volume
	voice_set_volume
	voice_ramp_volume
	voice_stop_volumeramp
	voice_get_frequency
	voice_set_frequency
	voice_sweep_frequency
	voice_stop_frequency_sweep
	voice_get_pan
	voice_set_pan
	voice_sweep_pan
	voice_stop_pan_sweep
	voice_set_echo
	voice_set_tremolo
	voice_set_vibrato

	MIDI music routines
	load_midi
	destroy_midi
	lock_midi
	play_midi
	play_looped_midi
	stop_midi
	midi_pause
	midi_resume
	midi_seek
	midi_out
	load_midi_patches
	midi_pos
	midi_loop_start
	midi_msg_callback
	load_ibk

	Audio stream routines
	play_audio_stream
	stop_audio_stream
	get_audio_stream_buffer
	free_audio_stream_buffer

	Recording routines
	install_sound_input
	remove_sound_input
	get_sound_input_cap_bits
	get_sound_input_cap_stereo
	get_sound_input_cap_rate
	get_sound_input_cap_parm
	set_sound_input_source
	start_sound_input
	stop_sound_input
	read_sound_input
	digi_recorder
	midi_recorder

	File and compression routines
	get_executable_name
	fix_filename_case
	fix_filename_slashes
	fix_filename_path
	replace_filename
	replace_extension
	append_filename
	get_filename
	get_extension
	put_backslash
	file_exists
	exists
	file_size
	file_time
	delete_file
	for_each_file
	al_findfirst
	al_findnext
	al_findclose
	find_allegro_resource
	packfile_password
	pack_fopen
	packfile functions
	pack_fopen_chunk
	pack_fclose_chunk

	Datafile routines
	load_datafile
	load_datafile_callback
	unload_datafile
	load_datafile_object
	unload_datafile_object
	find_datafile_object
	get_datafile_property
	register_datafile_object
	fixup_datafile
	using datafiles

	Fixed point math routines
	itofix
	fixtoi
	fixfloor
	fixceil
	ftofix
	fixtof
	fixmul
	fixdiv
	fixadd
	fixsub
	fixed point trig
	fixsin
	fixcos
	fixtan
	fixasin
	fixacos
	fixatan
	fixatan2
	fixsqrt
	fixhypot
	fix class
	fixed point aliases

	3D math routines
	identity_matrix
	get_translation_matrix
	get_scaling_matrix
	get_x_rotate_matrix
	get_y_rotate_matrix
	get_z_rotate_matrix
	get_rotation_matrix
	get_align_matrix
	get_align_matrix_f
	get_vector_rotation_matrix
	get_transformation_matrix
	get_transformation_matrix_f
	get_camera_matrix
	get_camera_matrix_f
	qtranslate_matrix
	qscale_matrix
	matrix_mul
	vector_length
	normalize_vector
	dot_product
	cross_product
	polygon_z_normal
	apply_matrix
	set_projection_viewport
	persp_project

	Quaternion math routines
	identity_quat
	get_x_rotate_quat
	get_rotation_quat
	get_vector_rotation_quat
	quat_to_matrix
	matrix_to_quat
	quat_mul
	apply_quat
	quat_interpolate
	quat_slerp

	GUI routines
	d_clear_proc
	d_box_proc
	d_bitmap_proc
	d_text_proc
	d_button_proc
	d_check_proc
	d_radio_proc
	d_icon_proc
	d_keyboard_proc
	d_edit_proc
	d_list_proc
	d_text_list_proc
	d_textbox_proc
	d_slider_proc
	d_menu_proc
	d_yield_proc
	gui_mouse_focus
	gui_fg_color
	gui_mg_color
	gui_font_baseline
	gui_mouse_x
	gui font
	gui_textout
	gui_strlen
	position_dialog
	centre_dialog
	set_dialog_color
	find_dialog_focus
	offer_focus
	object_message
	dialog_message
	broadcast_dialog_message
	do_dialog
	popup_dialog
	init_dialog
	update_dialog
	shutdown_dialog
	active_dialog
	gui menus
	do_menu
	active_menu
	gui_menu_draw_menu
	alert
	alert3
	file_select
	file_select_ex
	gfx_mode_select
	gfx_mode_select_ex
	gui_shadow_box_proc

	DOS specifics
	JOY_TYPE_*/DOS
	GFX_*/DOS
	DIGI_*/DOS
	MIDI_*/DOS
	split_modex_screen
	i_love_bill

	Windows specifics
	GFX_*/Windows
	DIGI_*/Windows
	MIDI_*/Windows
	win_get_window
	win_set_window
	win_set_wnd_create_proc
	win_get_dc
	win_release_dc
	GDI routines
	set_gdi_color_format
	set_palette_to_hdc
	convert_palette_to_hpalette
	convert_hpalette_to_palette
	convert_bitmap_to_hbitmap
	convert_hbitmap_to_bitmap
	draw_to_hdc
	blit_to_hdc
	stretch_blit_to_hdc
	blit_from_hdc
	stretch_blit_from_hdc

	Unix specifics
	GFX_*/Linux
	GFX_*/X
	DIGI_*/Unix
	MIDI_*/Unix

	BeOS specifics
	GFX_*/BeOS
	DIGI_*/BeOS
	MIDI_*/BeOS

	QNX specifics
	GFX_*/QNX
	DIGI_*/QNX
	MIDI_*/QNX
	qnx_get_window

	Differences between platforms
	Reducing your executable size
	Debugging
	al_assert
	al_trace
	ASSERT
	TRACE
	register_assert_handler
	register_trace_handler

	Makefile targets
	Conclusion

