
Git Memento

Author: Jérémie DECOCK

Contact: jd.jdhp@gmail.com

Revision: 0.1

Date: 20/05/2016

License: Creative Commons 4.0 (CC BY-SA 4.0)

mailto:jd.jdhp@gmail.com
http://creativecommons.org/licenses/by-sa/4.0/

Table of Contents
1 Setup Git 5

1.1 Configuration files 5

1.2 Configuration example 5

1.3 List current configuration settings 5

1.4 Some advanced aliases 6

1.5 Get tab completion of branches, tags, subcommands, ... 6

1.6 Show the current branch in the shell prompt 6

2 Ignore some files 7

2.1 Exclusion patterns files 7

2.2 Syntax of exclusion patterns files 7

3 Logging 7

3.1 Show all commits 7

3.2 List the changes during the last two weeks 7

3.3 List the changes made on a given file 7

3.4 List the changes made on files contained in a given directory 7

3.5 List the changes containing a given string pattern 7

4 Viewing difference 8

4.1 Show changes in the working tree 8

4.2 Show changes between two git objects 8

4.2.1 Show changes between two commits 9

4.2.2 Show changes between two commits for a given file 9

4.2.3 Show changes between two tags 10

4.2.4 Show changes between two tags for a given file 10

4.2.5 Show changes between two branches (local or remote) 10

4.2.6 Show changes between two branches (local or remote) for a given file 11

4.3 Show changes with the first common ancestor of two objects 12

4.4 Show changes between two git objects using external tools with graphical interface 12

5 Patches 13

5.1 Create a patch of current changes 13

5.2 Create a patch of changes introduced by a commit (without commit metadata) 13

5.3 Create a patch of changes between 2 commits (without commit metadata) 14

5.4 Apply a patch (without commit metadata) 14

5.5 Create a patch of changes introduced by a commit (with commit metadata) 14

5.6 Apply a patch (with commit metadata) 14

6 Remotes 14

6.1 Clone a remote repository 14

7 Tags 15

7.1 Create a lightweight tag 15

7.2 Create an annotated tag 15

7.3 List local tags 15

7.4 List remote tags 15

7.5 Push an annotated tag to a remote repository 15

7.6 Push all tags to a remote repository 15

8 Branches 16

8.1 Create a local branch 16

8.2 Change the current branch 16

8.3 Create a local branch and switch to it 16

8.4 List local branches 16

8.5 Rename a local branch 16

8.6 Delete a local branch 17

8.7 List remote branches 17

8.8 Rename a remote branch 18

8.9 Delete a remote branch 18

8.10 Archive a branch on GitLab 18

8.11 Get a graphical representation of all branches (local + remote) 19

8.12 Push a local branche to a remote repository 19

8.13 Get a given branche from a cloned remote repository 20

8.14 Remove the upstream information for a given branch 20

9 Merge 20

9.1 Some definitions 20

9.2 When does a merge occurs ? 20

9.3 Merge a given local branch in the current branch 20

9.4 Merge a given remote branch in the current branch 21

9.5 Merge a given remote tag in the current branch 21

9.6 Cancel an uncommited merge 21

9.7 Show conflicts (if there are any) 21

9.8 Solve conflicts manually 21

9.9 Solve conflicts with graphical tools 22

9.10 Abort a merge for some files only 23

9.11 Merge using the "ours" strategy 23

9.12 Merge using the "theirs" strategy 23

10 Submodules 23

10.1 Few definitions 23

10.2 Add a submodule to a superproject 24

10.2.1 Short version 24

10.2.2 More explanations 24

10.3 Clone a repository containing submodules (additional steps after cloning) 24

10.3.1 Short version 24

10.3.2 More details 25

10.4 Update a given submodule in a superproject 25

10.5 Update all submodules in a superproject 25

11 Altering commits 25

11.1 Warning 25

11.2 Amending the most recent commit message 25

11.3 Revert HEAD to a known commit 25

11.4 Revert HEAD and index to a known commit 25

11.5 Revert HEAD, index and the working directory to a known commit 26

11.6 Rebase 26

12 Plumbing commands 26

12.1 Show the content of a commit 26

12.2 Show the content of a file in the current branch 26

12.3 Show the content of a file in a given branch 27

12.4 Show the content of a file in a given branch of a given remote 27

12.5 Extract the content of a file in a given branch of a given remote 27

12.6 Show the content of a file at a time point of the current branch 27

12.7 Extract the content of a file at a time point of the current branch 27

12.8 Show the type (blob, tree, commit or tag) of a git object 28

13 Git collaboration workflows 28

13.1 Roles 28

13.2 Workflow models 28

13.3 The Fork & Pull model 28

13.3.1 Prior step: Fork the upstream repository and clone the fork 28

13.3.2 Step 1: Synchronize with upstream 29

13.3.3 Step 2: Make your updates on a new branch 29

13.3.4 Step 3: Make a pull request 29

13.3.5 Step 4: (If requested) correct mistakes and re-push to branch 29

13.3.6 Step 5: Merge pull request 30

13.3.7 Step 6: Synchronize with upstream 30

13.3.8 Step 7: (Optional) remove the working branches 30

14 Work on Subversion repositories with Git 30

15 Work on Mediawiki with Git 31

16 License 32

1 Setup Git

1.1 Configuration files
.git/config

Repository-specific configuration settings (manipulated with the --file option of git config)

~/.gitconfig

User-specific configuration settings (manipulated with the --global option of git config)

/etc/gitconfig

System-wide configuration settings (manipulated with the --system option of git config)

1.2 Configuration example
User information:

git config --global user.name "Jeremie DECOCK"
git config --global user.email "jd.jdhp@gmail.com"

Setup push.default (see http://stackoverflow.com/questions/23918062/simple-vs-current-push-default-in-git-f
or-decentralized-workflow):

git config --global push.default simple

Setup colors:

git config --global color.branch auto
git config --global color.diff auto
git config --global color.grep auto
git config --global color.interactive auto
git config --global color.status auto

Some useful aliases:

git config --global alias.ci commit
git config --global alias.co checkout
git config --global alias.st status
git config --global alias.br branch
git config --global alias.unstage "reset HEAD --"
git config --global alias.graph "log --oneline --decorate --graph --all"

Add a GPG key (see https://help.github.com/articles/telling-git-about-your-gpg-key/ and
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work ; for GitHub users see
https://github.com/blog/2144-gpg-signature-verification):

git config --global user.signingkey PUBLIC_KEY_ID

1.3 List current configuration settings

git config -l

http://stackoverflow.com/questions/23918062/simple-vs-current-push-default-in-git-for-decentralized-workflow
http://stackoverflow.com/questions/23918062/simple-vs-current-push-default-in-git-for-decentralized-workflow
https://help.github.com/articles/telling-git-about-your-gpg-key/
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://github.com/blog/2144-gpg-signature-verification

1.4 Some advanced aliases
Some advanced aliases are available at https://git.wiki.kernel.org/index.php/Aliases).

Use graphviz for display (https://git.wiki.kernel.org/index.php/Aliases#Use_graphviz_for_display):

[alias]
 graphviz = "!f() { \
 echo 'digraph git {' ; \
 git log --pretty='format: %h -> { %p }' \"$@\" | \
 sed 's/[0-9a-f][0-9a-f]*/\"&\"/g' ; \
 echo '}'; \
 }; f"

1.5 Get tab completion of branches, tags, subcommands, ...
Git contains a set of completion scripts for bash (git-completion.bash), tcsh (git-completion.tcsh)
and zsh (git-completion.zsh). Usually these files are already installed in the "git-core" directory of your
git installation. In case, you can find them with the following command:

find / -type f -name "git-completion.*" 2> /dev/null

or you can download them at https://github.com/git/git/tree/master/contrib/completion

Let's say you use Bash and your completion script is in /usr/share/git-core/ (adapt the following lines
to your case), then to activate git completion, simply add the following lines to your shell startup file (e.g.
~/.bashrc):

Define completion for Git
git_completion_path=/usr/share/git-core/git-completion.bash
[-r ${git_completion_path}] && source ${git_completion_path}

1.6 Show the current branch in the shell prompt
Git contains a script to show the current branch in the shell prompt (git-prompt.sh). Usually this file is
already installed in the "git-core" directory of your git installation. In case, you can find it with the following
command:

find / -type f -name "git-prompt.sh" 2> /dev/null

or you can download it at https://github.com/git/git/blob/master/contrib/completion/git-prompt.sh (note for
Debian8 users: the script is provided by the git package in /usr/lib/git-core/ and has been renamed
git-sh-prompt).

Let's say you use Bash (otherwise adapt the following lines to your case). To activate git information in
prompt, simply add the following lines at the end of your shell startup file (e.g. ~/.bashrc):

Define prompt for Git
git_prompt_path=/usr/share/git-core/git-prompt.sh
[-r ${git_prompt_path}] && source ${git_prompt_path}

Define the prompt shell
PS1='\u@\h:\w`__git_ps1 " (%s)"`\$ '

or if you want a bit of color, replace the last line by:

https://git.wiki.kernel.org/index.php/Aliases
https://git.wiki.kernel.org/index.php/Aliases#Use_graphviz_for_display
https://github.com/git/git/tree/master/contrib/completion
https://github.com/git/git/blob/master/contrib/completion/git-prompt.sh

PS1='\u@\h:\w\[\033[31;1m\]`__git_ps1 " (%s)"`\[\033[0m\]\$ '

2 Ignore some files

2.1 Exclusion patterns files

• Project specific exclusion patterns should be shared in .gitignore files

• User specific exclusion patterns should be retained in the .git/info/exclude file

2.2 Syntax of exclusion patterns files

• Blank lines are ignored

• Lines starting with # are ignored (used for comments)

• Directory names are ended with / (doesn't work with symbolic links)

• Globbing characters work like in Unix shells (*, ...)

• When a ! starts a line, the meaning of its pattern is inverted (i.e. files are explicitly kept instead of being
explicitly ignored)

3 Logging

3.1 Show all commits

git log

3.2 List the changes during the last two weeks

git log --since="2 weeks ago"

3.3 List the changes made on a given file

git log FILE_PATH

3.4 List the changes made on files contained in a given directory

git log DIRECTORY_PATH

3.5 List the changes containing a given string pattern
List the commits where the "foo()" string has been added or deleted:

git log -S'foo()'

4 Viewing difference

4.1 Show changes in the working tree
Show changes in the working tree that haven't been staged or committed yet:

git diff

Show changes in the working tree that have been staged:

git diff --cached

Show changes between the working tree (staged or not) and the repository:

git diff HEAD

4.2 Show changes between two git objects
Show changes between two given commits, tags, branches, trees or blobs:

git diff A B

or:

git diff A..B

where A and B can be commits, tags, branches, trees or blobs.

Note that A is supposed to be older than B as what is shown is the modification applied to go from A to B. If
you reverse the order of A and B, addition lines (+) will become deletion lines (-) and vice versa.

You can also use:

git diff A B FILENAME1 [FILENAME2 ...]

or:

git diff A..B FILENAME1 [FILENAME2 ...]

or:

git diff A B -- FILENAME1 [FILENAME2 ...]

or:

git diff A..B -- FILENAME1 [FILENAME2 ...]

to get differences from A to B for specific files or directories FILENAME1, FILENAME2, ...

The -- notation is only required the files you want to compare have contentious name (like "-f").

Also note that FILENAME1, FILENAME2, ... have to be paths relative to the current working directory. Paths
relative to the root of the repository won't work.

To compare a git object A to HEAD, simply use:

git diff A

Examples:

git diff ff20b ea76d ./src/main.c
git diff ff20b ea76d
git diff ff20b..ea76d
git diff v1 v2
git diff v1 v2 ./src/
git diff v1..v2 ./src/
git diff master expermiental
git diff master expermiental ./src/main.c ./Makefile
git diff master..expermiental ./src/main.c ./Makefile

4.2.1 Show changes between two commits

git diff COMMIT1 COMMIT2

or:

git diff COMMIT1..COMMIT2

Examples:

git diff a80b0d8 04079b1
git diff a80b0d8..04079b1

4.2.2 Show changes between two commits for a given file

git diff COMMIT1 COMMIT2 FILENAME1 [FILENAME2 ...]

or:

git diff COMMIT1 COMMIT2 -- FILENAME1 [FILENAME2 ...]

or:

git diff COMMIT1..COMMIT2 FILENAME1 [FILENAME2 ...]

or:

git diff COMMIT1..COMMIT2 -- FILENAME1 [FILENAME2 ...]

where FILENAME1, FILENAME2, ... are file paths or directory paths relative to the current working directory.

Examples:

git diff a80b0d8 04079b1 ./src/main.c
git diff a80b0d8 04079b1 ./src/main.c ./Makefile
git diff a80b0d8 04079b1 ./src/
git diff a80b0d8..04079b1 ./src/main.c
git diff a80b0d8..04079b1 -- ./src/main.c

4.2.3 Show changes between two tags

git diff TAGNAME1 TAGNAME2

or:

git diff TAGNAME1..TAGNAME2

Examples:

git diff v1.0 v2.0
git diff v1.0..v2.0

4.2.4 Show changes between two tags for a given file

git diff TAGNAME1 TAGNAME2 FILENAME1 [FILENAME2 ...]

or:

git diff TAGNAME1 TAGNAME2 -- FILENAME1 [FILENAME2 ...]

or:

git diff TAGNAME1..TAGNAME2 FILENAME1 [FILENAME2 ...]

or:

git diff TAGNAME1..TAGNAME2 -- FILENAME1 [FILENAME2 ...]

where FILENAME1, FILENAME2, ... are file paths or directory paths relative to the current working directory.

Examples:

git diff a80b0d8 04079b1 ./src/main.c
git diff a80b0d8 04079b1 ./src/main.c ./Makefile
git diff a80b0d8 04079b1 ./src/
git diff a80b0d8..04079b1 ./src/main.c
git diff a80b0d8..04079b1 -- ./src/main.c

4.2.5 Show changes between two branches (local or remote)

git diff BRANCH1 BRANCH2

or:

git diff BRANCH1..BRANCH2

or with remote branches:

git diff [REMOTENAME1/]BRANCH1 [REMOTENAME2/]BRANCH2

or:

git diff [REMOTENAME1/]BRANCH1..[REMOTENAME2/]BRANCH2

Examples:

git diff bugfix
git diff master bugfix
git diff master..bugfix
git diff upstream/master bugfix
git diff upstream/master..origin/master

4.2.6 Show changes between two branches (local or remote) for a given file

git diff BRANCH1 BRANCH2 FILENAME1 [FILENAME2 ...]

or:

git diff BRANCH1 BRANCH2 -- FILENAME1 [FILENAME2 ...]

or:

git diff BRANCH1..BRANCH2 FILENAME1 [FILENAME2 ...]

or:

git diff BRANCH1..BRANCH2 -- FILENAME1 [FILENAME2 ...]

or with remote branches:

git diff [REMOTENAME1/]BRANCH1 [REMOTENAME2/]BRANCH2 FILENAME1 [FILENAME2 ...]

or:

git diff [REMOTENAME1/]BRANCH1 [REMOTENAME2/]BRANCH2 -- FILENAME1 [FILENAME2 ...]

or:

git diff [REMOTENAME1/]BRANCH1..[REMOTENAME2/]BRANCH2 FILENAME1 [FILENAME2 ...]

or:

git diff [REMOTENAME1/]BRANCH1..[REMOTENAME2/]BRANCH2 -- FILENAME1 [FILENAME2 ...]

where FILENAME1, FILENAME2, ... are file paths or directory paths relative to the current working directory.

Examples:

git diff bugfix
git diff master bugfix
git diff master..bugfix
git diff upstream/master bugfix
git diff upstream/master..origin/master

git diff bugfix ./src/main.c

git diff master bugfix ./src/main.c ./Makefile
git diff master..bugfix ./src/
git diff upstream/master bugfix ./src/main.c
git diff upstream/master..origin/master -- ./src/main.c

4.3 Show changes with the first common ancestor of two objects
Show changes between B and the first common ancestor of A and B:

git diff A...B

4.4 Show changes between two git objects using external tools with graphical
interface
Git support many external diff tools out of the box to show differences between two git objects, including
opendiff, kdiff3, tkdiff, xxdiff, meld, kompare, gvimdiff, diffuse, diffmerge, ecmerge, p4merge, araxis, bc,
codecompare, vimdiff and emerge (the default one is opendiff).

To select which tool to use, type:

git config [--global] diff.tool TOOL_NAME

For instance:

git config --global diff.tool meld

To show changes between two given commits, tags, branches, trees or blobs with the selected external tool:

git difftool [-d] A B

or:

git difftool [-d] A..B

where A and B can be commits, tags, branches, trees or blobs.

Use the -d (or --dir-diff) option to perform a directory diff i.e. to examine all files with changes at the
same time (otherwise files with changes are opened one by one in the diff tool).

You can also use:

git difftool [-d] A B FILENAME1 [FILENAME2 ...]

or:

git difftool [-d] A B -- FILENAME1 [FILENAME2 ...]

or:

git difftool [-d] A..B FILENAME1 [FILENAME2 ...]

or:

git difftool [-d] A..B -- FILENAME1 [FILENAME2 ...]

to get differences from A to B for specific files or directories FILENAME1, FILENAME2, ...

The -- notation is only required the files you want to compare have contentious name (like "-f").

Also note that FILENAME1, FILENAME2, ... have to be paths relative to the current working directory. Paths
relative to the root of the repository won't work.

To compare a git object A to HEAD, simply use:

git difftool [-d] A

You can make changes and save them from your external diff tool but only changes concerning the current
working directory (HEAD) will be actually saved.

Examples:

git difftool -d ff20b ea76d ./src/main.c
git difftool -d ff20b ea76d
git difftool -d v1 v2
git difftool -d v1 v2 ./src/
git difftool -d master expermiental
git difftool -d master expermiental ./src/main.c ./Makefile
git difftool -d upstream/master bugfix ./src/main.c

See section Show changes between two git objects for more usage examples specific to commits, tags and
branches: simply replace git diff by git difftool or git difftool -d.

See also https://git-scm.com/docs/git-difftool for more information.

5 Patches

5.1 Create a patch of current changes

git diff > FILE_NAME

Example:

git diff > foo.patch

5.2 Create a patch of changes introduced by a commit (without commit
metadata)

git diff COMMIT_ID~ COMMIT_ID > FILE_NAME

or

git show COMMIT_ID > FILE_NAME

Example:

git diff ff6876ef~ ff6876ef > foo.patch

https://git-scm.com/docs/git-difftool

5.3 Create a patch of changes between 2 commits (without commit metadata)

git diff COMMIT_ID1 COMMIT_ID2 > FILE_NAME

Example:

git diff ff6876ef efe57652a > foo.patch

5.4 Apply a patch (without commit metadata)

git apply FILE_NAME

This command applies the patch but does not create a commit.

Example:

git apply foo.patch

5.5 Create a patch of changes introduced by a commit (with commit metadata)

git format-patch ... TODO

Example:

TODO

5.6 Apply a patch (with commit metadata)

git am ... TODO

This command applies the patch and make commits.

Example:

TODO

6 Remotes

6.1 Clone a remote repository

git clone REMOTE [LOCAL_DIRECTORY]

Example:

git clone https://github.com/jdhp-docs/git-memento.git

Only the master branch is available in the local repository. To get other branches from the remote repository
see get_remote_branch.

7 Tags

7.1 Create a lightweight tag

git tag TAG_NAME [SHA1]

Example:

git tag v1.4

7.2 Create an annotated tag

git tag -a TAG_NAME -m "MESSAGE" [SHA1]

where -a means annotated.

Example:

git tag -a v1.4 -m "My version 1.4"

7.3 List local tags

git tag

or

git tag -l

7.4 List remote tags

git ls-remote --tags REMOTE

Example:

git ls-remote --tags origin

7.5 Push an annotated tag to a remote repository

git push REMOTE TAG_NAME

Example:

git push origin v1.4

7.6 Push all tags to a remote repository

git push --tags

or

git push --follow-tags

The latter is safer but anyway, it's generally considered a bad practice to push all tags automatically with
these two commands. Be sure you're not pushing unwanded tags.

8 Branches

8.1 Create a local branch

git branch BRANCH_NAME

Example:

git branch experimental

8.2 Change the current branch

git checkout BRANCH_NAME

Example:

git checkout experimental

8.3 Create a local branch and switch to it

git checkout -b BRANCH_NAME

This is shorthand for:

git branch BRANCH_NAME
git checkout BRANCH_NAME

Example:

git checkout -b experimental

8.4 List local branches

git branch

The current branch is the starred one.

8.5 Rename a local branch
To rename any local branch:

git branch -m OLD_NAME NEW_NAME

Example:

git branch -m experimental testing

To rename the current branch:

git branch -m NEW_NAME

Example:

git branch testing

8.6 Delete a local branch
For branches merged with the current branch:

git branch -d BRANCH_NAME

Example:

git branch -d experimental

For branches not merged with the current branch (dangerous):

git branch -D BRANCH_NAME

Example:

git branch -D experimental

8.7 List remote branches

git branch -a REMOTE

Example:

git branch -a origin

8.8 Rename a remote branch

Rename the local branch to the new name
git branch -m <OLD_NAME> <NEW_NAME>

Delete the old branch on remote - where <REMOTE> is, for example, origin
git push <REMOTE> --delete <OLD_NAME>

Prevent git from using the old name when pushing in the next step.
Otherwise, git will use the old upstream name instead of <NEW_NAME>.
git branch --unset-upstream <NEW_NAME>

Push the new branch to remote
git push <REMOTE> <NEW_NAME>

Reset the upstream branch for the NEW_NAME local branch
git push <REMOTE> -u <NEW_NAME>

Source: https://stackoverflow.com/a/30590238

8.9 Delete a remote branch
For branches merged with the current branch:

git push REMOTE --delete BRANCH_NAME

or:

git push REMOTE :<BRANCH_NAME>

Example:

git push origin --delete experimental

8.10 Archive a branch on GitLab
With the following procedure, the branch is archived as a tag and no longer clutters the 'branches' page on
GitLab. It's still possible to access or reopen the branch from the tag at a later time.

To archive the branch:

Switch to the main branch
git checkout master

Create a *tag* to keep all the commits of the branch you want to archive
git tag -a archive/<BRANCH_NAME> -m "Archiving the branch <BRANCH_NAME>" <BRANCH_NAME>

Push the tag to GitLab
git push --tags

Delete the branch to be archived (locally)
git branch -D <BRANCH_NAME>

Delete the branch to be archived (on GitLab)
git push origin --delete <BRANCH_NAME>

https://stackoverflow.com/a/30590238

Verify the result
git branch -a

The branch is no longer on the GitLab branches page but remains visible on the GitLab tags page

To restore the branch:

Create a new branch from the "archive/<BRANCH_NAME>" tag
git checkout -b <BRANCH_NAME> archive/<BRANCH_NAME>

Push the branch to GitLab
git push origin <BRANCH_NAME>

The branch is now available again on the GitLab branches page

8.11 Get a graphical representation of all branches (local + remote)
Get a graphical representation of all branches (local and remote):

git log --oneline --decorate --graph --all

or:

gitk --all

8.12 Push a local branche to a remote repository

git checkout LOCAL_BRANCH_NAME
git push REMOTE REMOTE_BRANCH_NAME

Example:

git checkout experimental
git push origin experimental

To automatically set REMOTE REMOTE_BRANCH_NAME as upstream for the current local branch (check the
difference with git branch -vva):

git checkout LOCAL_BRANCH_NAME
git push -u REMOTE REMOTE_BRANCH_NAME

Once upstream is set for the current local branch, there is no need to specify REMOTE_BRANCH_NAME for a
git push/git push:

git push REMOTE

Example:

git checkout experimental
git push -u origin experimental
...
git push origin

8.13 Get a given branche from a cloned remote repository

git checkout -b LOCAL_BRANCH_NAME REMOTE/REMOTE_BRANCH_NAME

Example:

git checkout -b experimental origin/experimental

8.14 Remove the upstream information for a given branch
To remove the upstream information for LOCAL_BRANCH_NAME (i.e. the default remote to use with
git pull and git push):

git branch --unset-upstream LOCAL_BRANCH_NAME

If no branch is specified it defaults to the current branch.

Check the result with:

git branch -vv

9 Merge

9.1 Some definitions
Merge commit

A commit having more than one parent.

Octopus merge

A merge where more than two branches are involved (rarely used in practice).

9.2 When does a merge occurs ?
Either:

• explicitly with the git merge command;

• or implicitly with the git pull command.

9.3 Merge a given local branch in the current branch

git merge LOCAL_BRANCH_NAME

Example:

git checkout master
git merge experimental

9.4 Merge a given remote branch in the current branch

git merge REMOTE/REMOTE_BRANCH_NAME

Example:

git merge upstream/master

9.5 Merge a given remote tag in the current branch

git fetch REMOTE
git merge TAG_NAME

Example:

git fetch upstream
git merge v0.1

9.6 Cancel an uncommited merge
To reset the working tree to the state it was before an uncommitted merge (e.g. when there are conflicts):

git merge --abort

9.7 Show conflicts (if there are any)
Get the list of files with unresolved conflicts after a git merge or git pull:

git status

Get the details of unresolved conflicts:

git diff

9.8 Solve conflicts manually
Get the list of files with unresolved conflicts after a git merge or git pull:

git status

Edit these files to solve conflicts.

Once you have solve conflicts, stage edited files:

git add FILE_NAME1 [FILE_NAME2 ...]

Staged files are considered resolved.

Then check that all conflicts are solved:

git status

Finally make the merge commit:

git commit

It's recommended to keep the default commit message.

9.9 Solve conflicts with graphical tools
Git support many external diff tools out of the box to resolve merge conflicts, including opendiff, kdiff3, tkdiff,
xxdiff, meld, kompare, gvimdiff, diffuse, diffmerge, ecmerge, p4merge, araxis, bc, codecompare, vimdiff and
emerge (the default one is opendiff).

To select which tool to use:

git config [--global] merge.tool TOOL_NAME

For instance:

git config --global merge.tool meld

To resolve conflicts with the selected graphical tool after a git merge or git pull:

git mergetool [FILE_NAME1, ...]

Specifying a directory will include all unresolved files in that path. If no FILE_NAME is specified,
git mergetool will run the merge tool program on every file with merge conflicts.

If you use meld as merge.tool (probably the most popular mergetool), then update and save the middle
pane only (the one called either BASE or MERGED). With meld, the left pane (named LOCAL) shows the
contents of the file on the current branch (e.g. master in section Merge a given local branch in the current
branch) and the right pane (named REMOTE) show the contents of the file on the branch being merged (e.g.
experimental in section Merge a given local branch in the current branch). See this page for more
information.

If, while you are editing the merge conflicts in your selected mergetool, you wish to cancel changes, then quit
your graphical tool without saving anything.

A .orig file is created for each edited file. These are safe to remove once a file has been merged. Setting
the mergetool.keepBackup configuration variable to false causes git mergetool to automatically
remove the backup as files are successfully merged.

Once you have solve conflicts, edited files are automatically staged. Check that all conflicts are solved with:

git status

Check the differences with the former "LOCAL" branch:

git diff --cached

Finally make the merge commit:

git commit

It's recommended to keep the default commit message.

Good to know: git mergetool has no equivalant option to git difftool --dif-diff (i.e. it cannot
open all conflicted files simultaneously and perform a directory diff).

http://stackoverflow.com/questions/34119866/setting-up-and-using-meld-as-your-git-difftool-and-mergetool

See https://git-scm.com/docs/git-mergetool for more information.

9.10 Abort a merge for some files only
Typing:

git merge --abort

in the middle of a merge conflict resolution would reset all files. To reset only one given file, use this
command instead:

git checkout -m FILENAME

If FILENAME has been migrated into the index by error, then it can be solved again with:

git mergetool FILE_NAME

See: http://stackoverflow.com/questions/6857082/redo-merge-of-just-a-single-file

9.11 Merge using the "ours" strategy

git merge -s ours BRANCH_NAME

Example:

git merge -s ours experimental

The ours strategy means that when you merge another branch into your current branch, the merge will
always resolve any conflicts by keeping the content of the current branch (ours) and ignoring the content from
the other branch (BRANCH_NAME).

9.12 Merge using the "theirs" strategy

git merge -s recursive -X theirs BRANCH_NAME

Example:

git merge -s recursive -X theirs experimental

The command is typically used in scenarios where you want to merge changes from another branch but
resolve all conflicts by preferring the changes from the other branch. This can be particularly useful in
situations where you know that the other branch has the most up-to-date or correct versions of conflicting
files.

However, it's important to use this command with caution, as it can overwrite changes in your current branch
with changes from BRANCH_NAME without manual intervention, which might not always be desirable.

10 Submodules

10.1 Few definitions
A submodule allows you to keep another Git repository in a subdirectory of your repository. The other
repository has its own history, which stays completely independent and does not interfere with the history of
the current repository. This can be used to have external dependencies such as third party libraries.

https://git-scm.com/docs/git-mergetool
http://stackoverflow.com/questions/6857082/redo-merge-of-just-a-single-file

A repository that contains subprojects (called submodules in the git terminology) is here called superproject.

See https://git-scm.com/book/en/v2/Git-Tools-Submodules for more explanations about submodules.

10.2 Add a submodule to a superproject

10.2.1 Short version

From superproject (i.e. from the repository where you want to insert the submodule):

git submodule add SUBMODULE_REPOSITORY_URL [SUBMODULE_PATH]
git commit -m "Add a submodule"

where the optional argument SUBMODULE_PATH is the relative location for the cloned submodule to exist in
the superproject. SUBMODULE_PATH is also used as the submodule's logical name in its configuration entries
(unless --name is used to specify a logical name). For GitHub users, SUBMODULE_REPOSITORY_URL should
be an HTTPS URL (i.e. not an SSH one) to grant everyone access to submodule within superproject.

10.2.2 More explanations

The git submodule add command creates the following objects in the working tree (and the git index):

.gitmodules
SUBMODULE_PATH

Where:

• .gitmodules (see gitmodules(5)) is a text file that assigns a logical name to the submodules and
describes the default URL the submodules shall be cloned from;

• SUBMODULE_PATH has a special mode 160000 (see git diff, git ls-tree HEAD or
git cat-file -p master^{tree} outputs) that indicates it's not a tree object but a git link that
refer to a commit in the submodule repository. The content pointed by this link is not tracked in
superproject repository.

The git commit command is used to add these two files to the superproject repository. Indeed they should
be version-controlled (i.e. pushed and pulled with the rest of your project) so that users who clone the
superproject can easily fetch the submodule (see the next subsection).

The git submodule add command doesn't write anything into the .git/ repository, it only create the two
objects previously described.

10.3 Clone a repository containing submodules (additional steps after cloning)

10.3.1 Short version

When cloning or pulling a repository containing submodules, these will not be checked out by default (i.e. the
submodule directory is there but empty). The init and update subcommands are required to maintain
submodules checked out and at appropriate revision in your working tree:

git submodule init
git submodule update

There is simpler way to clone a project and init/update all its submodules:

git clone --recursive SUPERPROJECT_REPOSITORY_URL

The --recursive option in git clone command automatically initializes and updates each submodule.

https://git-scm.com/book/en/v2/Git-Tools-Submodules

10.3.2 More details

The git submodule init command only update the .git/config file (adding a [submodule] entry).

The git submodule update actually fill the submodule directory with the content attached to the
submodule commit pointed by the current gitlink in superproject.

10.4 Update a given submodule in a superproject
When a submodule repository is updated, the superproject doesn't automatically follow these changes ; the
reason is you may want to stick to a particular approved version of the submodule. Thus updates have to be
made explicitly.

From the superproject:

cd SUBMODULE_DIRECTORY
git fetch
git merge origin/master

or simply:

git submodule update --remote SUBMODULE_DIRECTORY

10.5 Update all submodules in a superproject
From the superproject:

git submodule update --remote

11 Altering commits

11.1 Warning
Do not alter commits that have been shared with other users (e.g. pushed, pulled or cloned) !

11.2 Amending the most recent commit message

git commit --amend -m "New commit message"

11.3 Revert HEAD to a known commit

git reset --soft COMMIT_ID

11.4 Revert HEAD and index to a known commit

git reset --mixed COMMIT_ID

or simply:

git reset COMMIT_ID

11.5 Revert HEAD, index and the working directory to a known commit

git reset --hard COMMIT_ID

11.6 Rebase
Take all the changes that were committed on one branch and replay them on another one:

git checkout SOURCE_BRANCH_NAME
git rebase DESTINATION_BRANCH_NAME

Then you can go back to the DESTINATION_BRANCH_NAME branch and do a fast-forward merge:

git checkout DESTINATION_BRANCH_NAME
git merge SOURCE_BRANCH_NAME

Example:

git checkout experimental
git rebase master

git checkout master
git merge experimental

12 Plumbing commands

12.1 Show the content of a commit

git show COMMIT_ID

12.2 Show the content of a file in the current branch

git show :FILE_PATH

Examples:

git show :README.rst
git show :content/introduction.rst

12.3 Show the content of a file in a given branch
Show the content of the FILE_PATH file in the BRANCH_NAME branch:

git show BRANCH_NAME:FILE_PATH

Examples:

git show experimental:README.rst
git show experimental:content/introduction.rst

12.4 Show the content of a file in a given branch of a given remote
Show the content of the FILE_PATH file in the BRANCH_NAME branch of REMOTE_NAME remote:

git show REMOTE_NAME/BRANCH_NAME:FILE_PATH

Examples:

git show origin/experimental:README.rst
git show origin/experimental:content/introduction.rst

12.5 Extract the content of a file in a given branch of a given remote

git show REMOTE_NAME/BRANCH_NAME:FILE_PATH > OUTPUT_FILE

Examples:

git show origin/experimental:README.rst > /tmp/README.rst
git show origin/experimental:content/introduction.rst > introcution.old.rst

12.6 Show the content of a file at a time point of the current branch

git show COMMIT_ID:FILE_PATH

Examples:

git show HEAD^:README.rst
git show HEAD^:content/introduction.rst

12.7 Extract the content of a file at a time point of the current branch

git show COMMIT_ID:FILE_PATH > OUTPUT_FILE

Examples:

git show HEAD^:README.rst > /tmp/README.rst
git show HEAD^:content/introduction.rst > introcution.old.rst

12.8 Show the type (blob, tree, commit or tag) of a git object

git cat-file -t OBJECT_ID

Examples:

git cat-file -t 33f4ea63
git cat-file -t HEAD

13 Git collaboration workflows
See
https://slides-jdhp-revealjs-jdhp-docs-0f24c7e5d58e66591a1f3f45db0b5606.gitlab.io/jdhp/git_workflows.html

13.1 Roles
Source: https://guides.github.com/activities/contributing-to-open-source/

Owner

The user or organization that created the project.

Maintainers and Collaborators

The users primarily doing the work on a project and driving the direction. Oftentimes the owner and the
maintainer are the same. They have write access to the repository.

Contributors

Everyone who has had a pull request merged into a project.

Community Members

The users who often use and care deeply about the project and are active in discussions for features
and pull requests.

13.2 Workflow models
Shared Repository Model

When contributors have write access to the project (i.e. they are either maintainers or collaborators).
Then, they can directly push their commits to the project repository.

Fork & Pull Model

When contributors don't have write access to the project (i.e. they are neither maintainers or
collaborators). To contribute, they have to fork the project, clone this fork and then suggest their patches
using GitHub Pull requests. Contributors who have write access to the project can also use the Fork &
Pull Model to be sure the rest of the team agrees with the changes.

See also https://guides.github.com/introduction/flow/

13.3 The Fork & Pull model

13.3.1 Prior step: Fork the upstream repository and clone the fork

Fork the upstream repository on the GitHub website: see
https://help.github.com/articles/fork-a-repo/#fork-an-example-repository.

Clone the fork repository (where git@github.com:YOUR_USER_NAME/REPOSITORY_NAME.git is the URL
of your fork):

git clone git@github.com:YOUR_USER_NAME/REPOSITORY_NAME.git
cd REPOSITORY_NAME

https://slides-jdhp-revealjs-jdhp-docs-0f24c7e5d58e66591a1f3f45db0b5606.gitlab.io/jdhp/git_workflows.html
https://guides.github.com/activities/contributing-to-open-source/
https://guides.github.com/introduction/flow/
https://help.github.com/articles/fork-a-repo/#fork-an-example-repository

Define the upstream remote repository (where
https://github.com/UPSTREAM_USER_NAME/REPOSITORY_NAME.git is the URL of the original
repository):

git remote add upstream https://github.com/UPSTREAM_USER_NAME/REPOSITORY_NAME.git

13.3.2 Step 1: Synchronize with upstream

Synchronize your work directory with upstream:

git fetch upstream
git checkout master
git merge upstream/master

Synchronize your fork with upstream:

git push origin master

or simply:

git push

13.3.3 Step 2: Make your updates on a new branch

Create a new branch:

git checkout master
git checkout -b experimental

Update files...

Push your new local branch on your fork:

git push -u origin experimental

13.3.4 Step 3: Make a pull request

Make a pull request for your changes on the upstream repository on the GitHub website.

See https://help.github.com/articles/creating-a-pull-request/

GitHub uses some special words to describe the from and to branches:

• The base branch is where you think changes should be applied.

• The head branch is what you would like to be applied.

On the pull request creation page, base should be set to "master" (we want to merge our changes to
upsteam/master) and head should be the name of our working branch ("experimental" here).

13.3.5 Step 4: (If requested) correct mistakes and re-push to branch

If maintainers or collaborators request some correction on your updates prior to validate them, here is the
procedure to follow.

Be sure you are still in your updates dedicated branch:

git checkout experimental

https://help.github.com/articles/creating-a-pull-request/

Then correct mistakes in your changes then commit them and push them to your fork:

git commit -m 'YOUR MESSAGE'
git push origin experimental

or simply:

git commit -m 'YOUR MESSAGE'
git push

Then your new changes are automatically signaled to the maintainers or collaborators and your pull request
page on github is automatically updated to reflect your last changes.

13.3.6 Step 5: Merge pull request

Once your pull request has been accepted, your update dedicated branch has been added and merged to
master in the upstream repository.

TODO: add an image

13.3.7 Step 6: Synchronize with upstream

For the last step, you need to synchronize your working directory and your fork repository with upstream.

Synchronize your work directory with upstream:

git fetch upstream
git checkout master
git merge upstream/master

Synchronize your fork with upstream:

git push origin master

or simply:

git push

TODO: add an image

13.3.8 Step 7: (Optional) remove the working branches

Remove the remote working branch of your fork on Github:

git push origin --delete experimental

or simply delete the branch from the github interface.

Then remove the local working branch:

git branch -d experimental

14 Work on Subversion repositories with Git
...

15 Work on Mediawiki with Git
...

16 License

This document is provided under the terms and conditions of the Creative Commons 4.0 (CC BY-SA 4.0)
license.

http://creativecommons.org/licenses/by-sa/4.0/

	1 Setup Git
	1.1 Configuration files
	1.2 Configuration example
	1.3 List current configuration settings
	1.4 Some advanced aliases
	1.5 Get tab completion of branches, tags, subcommands, ...
	1.6 Show the current branch in the shell prompt

	2 Ignore some files
	2.1 Exclusion patterns files
	2.2 Syntax of exclusion patterns files

	3 Logging
	3.1 Show all commits
	3.2 List the changes during the last two weeks
	3.3 List the changes made on a given file
	3.4 List the changes made on files contained in a given directory
	3.5 List the changes containing a given string pattern

	4 Viewing difference
	4.1 Show changes in the working tree
	4.2 Show changes between two git objects
	4.2.1 Show changes between two commits
	4.2.2 Show changes between two commits for a given file
	4.2.3 Show changes between two tags
	4.2.4 Show changes between two tags for a given file
	4.2.5 Show changes between two branches (local or remote)
	4.2.6 Show changes between two branches (local or remote) for a given file

	4.3 Show changes with the first common ancestor of two objects
	4.4 Show changes between two git objects using external tools with graphical interface

	5 Patches
	5.1 Create a patch of current changes
	5.2 Create a patch of changes introduced by a commit (without commit metadata)
	5.3 Create a patch of changes between 2 commits (without commit metadata)
	5.4 Apply a patch (without commit metadata)
	5.5 Create a patch of changes introduced by a commit (with commit metadata)
	5.6 Apply a patch (with commit metadata)

	6 Remotes
	6.1 Clone a remote repository

	7 Tags
	7.1 Create a lightweight tag
	7.2 Create an annotated tag
	7.3 List local tags
	7.4 List remote tags
	7.5 Push an annotated tag to a remote repository
	7.6 Push all tags to a remote repository

	8 Branches
	8.1 Create a local branch
	8.2 Change the current branch
	8.3 Create a local branch and switch to it
	8.4 List local branches
	8.5 Rename a local branch
	8.6 Delete a local branch
	8.7 List remote branches
	8.8 Rename a remote branch
	8.9 Delete a remote branch
	8.10 Archive a branch on GitLab
	8.11 Get a graphical representation of all branches (local + remote)
	8.12 Push a local branche to a remote repository
	8.13 Get a given branche from a cloned remote repository
	8.14 Remove the upstream information for a given branch

	9 Merge
	9.1 Some definitions
	9.2 When does a merge occurs ?
	9.3 Merge a given local branch in the current branch
	9.4 Merge a given remote branch in the current branch
	9.5 Merge a given remote tag in the current branch
	9.6 Cancel an uncommited merge
	9.7 Show conflicts (if there are any)
	9.8 Solve conflicts manually
	9.9 Solve conflicts with graphical tools
	9.10 Abort a merge for some files only
	9.11 Merge using the "ours" strategy
	9.12 Merge using the "theirs" strategy

	10 Submodules
	10.1 Few definitions
	10.2 Add a submodule to a superproject
	10.2.1 Short version
	10.2.2 More explanations

	10.3 Clone a repository containing submodules (additional steps after cloning)
	10.3.1 Short version
	10.3.2 More details

	10.4 Update a given submodule in a superproject
	10.5 Update all submodules in a superproject

	11 Altering commits
	11.1 Warning
	11.2 Amending the most recent commit message
	11.3 Revert HEAD to a known commit
	11.4 Revert HEAD and index to a known commit
	11.5 Revert HEAD, index and the working directory to a known commit
	11.6 Rebase

	12 Plumbing commands
	12.1 Show the content of a commit
	12.2 Show the content of a file in the current branch
	12.3 Show the content of a file in a given branch
	12.4 Show the content of a file in a given branch of a given remote
	12.5 Extract the content of a file in a given branch of a given remote
	12.6 Show the content of a file at a time point of the current branch
	12.7 Extract the content of a file at a time point of the current branch
	12.8 Show the type (blob, tree, commit or tag) of a git object

	13 Git collaboration workflows
	13.1 Roles
	13.2 Workflow models
	13.3 The Fork & Pull model
	13.3.1 Prior step: Fork the upstream repository and clone the fork
	13.3.2 Step 1: Synchronize with upstream
	13.3.3 Step 2: Make your updates on a new branch
	13.3.4 Step 3: Make a pull request
	13.3.5 Step 4: (If requested) correct mistakes and re-push to branch
	13.3.6 Step 5: Merge pull request
	13.3.7 Step 6: Synchronize with upstream
	13.3.8 Step 7: (Optional) remove the working branches

	14 Work on Subversion repositories with Git
	15 Work on Mediawiki with Git
	16 License

