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Subject

Comparison and hybridation of Sequential Decision Making (SDM)
algorithms

I Long-term reward

I Interdependence among decisions

I Exponential number of solutions

Application field

Decision aids for Power systems management
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Introduction

Introduction
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Introduction

Energy policies

Optimizing energy management: a crucial problem in many
respects

I economics

I political and geopolitical

I ecological and health

I societal
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Introduction

Energy policies

New technical constraints:

I intermittent: solar power plants and wind turbines

I distribution network security: more and more interconnections
increase blackout risks

To sum up

I As there are more and more constraints, decision are more and
more complex;

I Environmental, economical and political consequences of
inappropriate choices are more and more severe.
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Introduction

Context and Motivations

Need for better decision aids tools
Prospective models are very valuable decision support. They are
commonly used to forecast and optimise the short and mid term
electricity production and long term investment strategies.

Our goals

I create new decision aid tools accounting for the latest
political, economical, environmental, sociological and
technical constraints

I help electricity managers to find better exploitation and
investment strategies reflecting realistic large-scale models.
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Introduction

Unit Commitment Problems

rain

Stock3 Stock4

Stock1 Stock2

Classical
Thermal plants

Electricity
demand

I A multi-stage problem

I Energy demand (forecast)
I Energy production:

I Hydroelectricity (N water stocks)
I Thermal plants

I Water flow through stock links

Goal
Decide, for each power plant, its power
output at time t so as to satisfy the
demand with the lowest possible cost.
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Introduction

Challenges

Issues

I Limited forecast (e.g. demand and weather)

I Renewable energies increase production variability

I Transportation introduces constraints

Specifics
I Can’t assume Markovian process

I E.g. weather (influences production and demand)
I Increase the state space dimension

I Avoid simplified models to avoid model errors
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Introduction

Optimization and Model Errors

I Optimization errors
I Model errors

I Simplification errors
I Anticipativity errors
I Statistical errors
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Introduction

Optimization and Model Errors

I NEWAVE versus ODIN: comparison of stochastic and
deterministic models for the long term hydropower scheduling
of the interconnected Brazilian system. M. Zambelli et al.,
2011.

I Dynamic Programming and Suboptimal Control: A Survey
from ADP to MPC. D. Bertsekas, 2005.
(MPC = deterministic forecasts)

I Renewable energy forecasts ought to be probabilistic!
P. Pinson, 2013 (WIPFOR talk)
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Introduction

Example: POST (ADEME)

High scale investment studies
(e.g. Europe + North Africa)

I Long term (2030 - 2050)
I Huge (non-stochastic)

uncertainties
I Future technologies
I Future laws
I Future demand

I Investment problem
I Interconnections
I Storage
I Smart grids
I Power plants
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Introduction

Stochastic Control

Stochastic
Process

Agent
(Algorithm)

System
(or Environment)

Next state
+

Reward

Actions (or decisions)
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Introduction

Modelling Sequential Decision Making Problems

Notations

I st = state at time t

I at = action (decision) at time t

I s ′ = st+1

I T (s, a, s ′) = probability of s → s ′ when action a

I r(s, a) = reward when action a in s

I π(s) = action to execute in s (policy)
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State of the art in Sequential Decision Making

State of the art in Sequential Decision
Making
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State of the art in Sequential Decision Making

Bellman Methods
[Bellman57]

Bellman Values
The expected Value V π for each state s when the agent follow a
given (stationary) policy π is

V π(s) = E

[ ∞∑
t=0

γtr(st)|π, s0 = s

]

Decock I-Lab: LRI - Inria & Artelys
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State of the art in Sequential Decision Making

Bellman Methods

Bellman Values
The Bellman equation gives the best value we can expect for any
given state (assuming the optimal policy π∗ is followed).

V π∗(s) = r(s) + γmax
a∈A

[∑
s′∈S

T (s, a, s′)V (s′)

]

The optimal (stationary) policy π∗ is defined using the best
expected value V π∗ and using the principle of Maximum Expected
Utility as follow

π∗(s) = arg max
a∈A

[∑
s′∈S

T (s, a, s′)V π∗(s′)

]

Decock I-Lab: LRI - Inria & Artelys

Hybridization of dynamic optimization methodologies



18

Introduction State of the art Contributions Conclusion References

State of the art in Sequential Decision Making

Bellman Methods

Computing Bellman Values

V π∗(s) = r(s) + γmax
a∈A

[∑
s′∈S

T (s, a, s′)V (s′)

]
There are |S| Bellman equations, one for each state. This system
of equations cannot be solved analytically because Bellman
equations contains non-linear terms (due to the ”max” operator).
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State of the art in Sequential Decision Making

Bellman Methods
[Bellman57]

Backward Induction: the non-stationary case

Value V ∗ for each state s at the latest time step T is

V ∗T (s) = 0 (or some valorization)

Best expected value V ∗ at time t < T computed backwards:

V ∗t (s) = max
a∈A

r(s, a) +

[∑
s′∈S

T (s, a, s′)V ∗t+1(s′)

]

Optimal action (or decision) π∗t (s):

π∗t (s) = arg max
a∈A

[
r(s, a) +

∑
s′∈S

T (s, a, s′)V ∗t+1(s′)

]
Decock I-Lab: LRI - Inria & Artelys
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State of the art in Sequential Decision Making

Bellman Methods
[Bellman57]

Value Iteration: the stationary case

Bellman update is used in Value Iteration to update V at each
iteration.

Vi+1(s)← r(s) + γmax
a∈A

[∑
s′∈S

T (s, a, s′)Vi (s′)

]
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State of the art in Sequential Decision Making

Direct Policy Search

Goal
Finds “good” parameters for a given parametric policy
πθ : states → actions.

Requires a parametric controller (e.g. neural network)

Principle

Optimize the parameters on simulations (Noisy Black-Box
Optimization).
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State of the art in Sequential Decision Making

Parametric policies πθ
Neural Networks: θ =
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State of the art in Power Systems

State of the art in Power Systems
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State of the art in Power Systems

State of the art in Power Systems
Stochastic Dual Dynamic Programming (SDDP) [Pereira91]

Decompose the problem in instant
reward + future reward as:

max
a

r(s, a)︸ ︷︷ ︸
instant reward

+ V (s)︸︷︷︸
Bellman Value

Approximate V (.) with Bender cuts

Issues
requires convexity of V (.), small
state space and Markovian process

s

V(s)

V=min cuts
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State of the art in Power Systems

State of the art in Power Systems
Model-Predictive Control (MPC) [Bertsekas05]

strategic horizontime step

tactical horizon

operational horizon

global problem

problem 1

solution 1

kept solution 1

problem 2

solution 2

kept solution 2

problem 3

solution 3

kept solution 3

problem 4

solution 4

kept solution 4

global solution

+ + +

I Rolling planning (closed-loop)

I Replacing the stochastic parts
by a pessimistic deterministic
forecast

⇒ simple but indeed better than SDDP (Zambelli’11): less
assumptions

Decock I-Lab: LRI - Inria & Artelys
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State of the art in Power Systems

Summary

Pros Cons

S(D)DP large constrained A not anytime

polynomial time decision making convex problems only (SDDP)

asymptotically find the optimum small S

Markovian random process

DPS anytime slow on large A

large S hardly handles decision constraints

works with non linear functions

no random process constraint

Contribution
Merge both approaches !

Decock I-Lab: LRI - Inria & Artelys
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Direct Value Search

Direct Value Search
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Direct Value Search

Direct Value Search

Coupling Bellman Methods with Direct Policy Search

I Optimization of Energy Policies
I with Direct Value Search (DVS)

I Linear Programming (poly-time decision making)
I Direct Policy Search (on real simulations)
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Direct Value Search

Direct Value Search

Combine instantaneous reward and valorization:

Π(st) = arg max
at

r(st , at) + V (st+1)

V (st+1) = αt .st+1︸ ︷︷ ︸
linear

αt = πθ(st)︸ ︷︷ ︸
non linear

I Given θ, decision making solved as a LP

I Non-linear mapping for choosing the parameters of the LP from the
current state

Requires the optimization of θ (noisy black-box optimization problem)

Decock I-Lab: LRI - Inria & Artelys
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Direct Value Search

Direct Value Search
Recourse planning

strategic horizontime step

tactical horizon

operational horizon

global problem

problem 1

solution 1

kept solution 1

problem 2

solution 2

kept solution 2

problem 3

solution 3

kept solution 3

problem 4

solution 4

kept solution 4

global solution

+ + +

We assume we know ιt...k the random realizations from current
stage to tactical horizon.
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Direct Value Search

Direct Value Search
Step 1 (offline): compute πθ(.)

Build parametric policy πθ

Require:
a parametric policy πθ(.) where πθ is a mapping from S to A,
a Stochastic Decision Process SDP,
an initial state s

Ensure:
a parameter θ̂∗ leading to a policy πθ̂∗ (.)

Find a parameter θ̂∗ maximizing the expectation of the following fitness function
θ 7→ Simulate(s, SDP, πθ)
with a given non-linear noisy optimization algorithm (e.g. SA-ES, CMA-ES)

return θ̂∗

Decock I-Lab: LRI - Inria & Artelys
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Direct Value Search

Direct Value Search
Step 1 (offline): compute πθ(.)

Simulate(s0, SDP, πθ)

r ← 0
for t ← t0, t0 + h, t0 + 2h, ..., T do
ιt...k ← get forecast(.)

α← πθ(s+
t )

at...k ← arg maxa r (at...k , ιt...k , st) + α>s . st+k−1

r ← r + SDP reward(st , at...h, ιt...h) ← not necessarily linear
st+h ← SDP transition(st , at...h, ιt...h) ← not necessarily linear

end for

return r

Decock I-Lab: LRI - Inria & Artelys
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Direct Value Search

Direct Value Search
Step 2 (online): use πθ(.) to solve the actual problem

The offline optimisation of πθ can be stopped at any time.

Then

I we have πθ, an approximation of state’s marginal value

I we can use it to solve the actual problem, the same manner as
in Simulate

Decock I-Lab: LRI - Inria & Artelys
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Direct Value Search

DVS: A proof of concept

96000 kw
(96h)

Battery

≤1000 kw

≤1000 kw

Output efficiency: 80%
(1kw in -> 0.8kw out)

Buy

Sell

Energy market price

Goal: find a policy which maximises gains

Buy (and store) when the market price is low, sell when the market
price is high.

I The market price is stochastic.
I 10 constrained batteries.

Decock I-Lab: LRI - Inria & Artelys
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Direct Value Search

DVS: A proof of concept

I State vector s+ = stock level of the 10 batteries +
handcrafted inputs

I 10 decision variables at each time step = the quantity of
energy to buy/sell for each battery

Decock I-Lab: LRI - Inria & Artelys
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Direct Value Search

Baselines

Recourse planning without final valorization

Bellman values → null (α = 0)

Π(s, t) = arg max
at

max
at+1,...,at+k−1

E [rt + · · ·+ rt+k−1]

Recourse planning with constant marginal valorization

Bellman values → linear function of total stock (α = constant)

Π(s, t) = arg max
at

max
at+1,...,at+k−1

E [rt + · · ·+ rt+k−1 + α.st+k−1]

with optimized constant marginal valorization α.

Decock I-Lab: LRI - Inria & Artelys
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Direct Value Search

DVS: experimental setting

I Parametric policy πθ = a neural network with N neurons in a
single hidden layer and weights vector θ;

I θ is optimized by maximizing θ 7→ Simulate(θ) with a
Self-Adaptive Evolution Strategy (SA-ES).
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Direct Value Search

Results
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Evolution of the performance during the DPS policy build

Best constant marginal cost

Null valorization at tactical horizon

DVS (1 neuron)

DVS (2 neurons)
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Noisy Optimization: Lower Bounds on Runtimes

Noisy Optimization: Lower Bounds on
Runtimes
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Noisy Optimization: Lower Bounds on Runtimes

Introduction

The aim of this 2nd contribution

I Study convergence rate for numerical optimization with noisy
objective function

I Reduce the gap between upper and lower bounds
I for a given family of noisy objective functions
I under some assumptions

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

Considered family F of objective functions

fx∗,β,γ : [0, 1]d → {0, 1}

x 7→ B

γ
(
‖x− x∗‖√

d

)β
+ (1− γ)︸ ︷︷ ︸

p


I fx∗,β,γ ∈ F : a stochastic objective function (a random variable)

I B(p) : the Bernoulli distribution with parameter p

I d ∈ N∗ : the dimension of the domain of fx∗,β,γ

I x∗ ∈ [0, 1]d : the optimum

I β ∈ R∗+ : the ”flatness” of the expectation Ef around x∗

I γ ∈ [0, 1] : a noise parameter (variance at x∗)

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

Considered objective functions

=1

=2

=3
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Noisy Optimization: Lower Bounds on Runtimes

Considered objective functions

I we assume that the optimum is unique

I we consider noisy optimization in the case of local convergence

Lower bound → concerns all families including F

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

The experimental setting for our noisy optimization setting
Require: ω, ω′, x∗, β, γ and (unknown).

for all n = 1, 2, 3, . . . do
xx∗,n,ω,ω′ = Optimize(xx∗,1,ω,ω′ , . . . , xx∗,n−1,ω,ω′ , y1, . . . , yn−1, ω′)
if ωn ≤ Efx∗,β,γ(xx∗,n,ω,ω′) then

yn = 1
else

yn = 0
end if

end for
return xx∗,n,ω,ω′

The framework requires:

I ω uniform random variable for simulating the Bernoulli in f

I ω′ a random seed of the algorithm (optimizer’s internal randomness)

I x∗ the optimum (that minimizes Eωfx∗,β,γ(x, ω))

I β and γ two fixed parameters of f

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

The experimental setting for our noisy optimization setting
Require: ω, ω′, x∗, β, γ and (unknown).

for all n = 1, 2, 3, . . . do
xx∗,n,ω,ω′ = Optimize(xx∗,1,ω,ω′ , . . . , xx∗,n−1,ω,ω′ , y1, . . . , yn−1, ω′)
if ωn ≤ Efx∗,β,γ(xx∗,n,ω,ω′) then

yn = 1
else

yn = 0
end if

end for
return xx∗,n,ω,ω′

It’s an iterative process. For each iteration:

I Optimize (the optimization algorithm) returns the next point to visit

I looking for x∗

I according to some inputs

I This point is evaluated by the fitness function (if-then-else statement)

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

The experimental setting for our noisy optimization setting
Require: ω, ω′, x∗, β, γ and (unknown).

for all n = 1, 2, 3, . . . do
xx∗,n,ω,ω′ = Optimize(xx∗,1,ω,ω′ , . . . , xx∗,n−1,ω,ω′ , y1, . . . , yn−1, ω′)
if ωn ≤ Efx∗,β,γ(xx∗,n,ω,ω′) then

yn = 1
else

yn = 0
end if

end for
return xx∗,n,ω,ω′

Optimize makes its recommendation according to:

I the sequence of former visited points xn

I their binary noisy fitness values yn

I the optimizer’s internal randomness ω′

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

The experimental setting for our noisy optimization setting
Require: ω, ω′, x∗, β, γ and (unknown).

for all n = 1, 2, 3, . . . do
xx∗,n,ω,ω′ = Optimize(xx∗,1,ω,ω′ , . . . , xx∗,n−1,ω,ω′ , y1, . . . , yn−1, ω′)
if ωn ≤ Efx∗,β,γ(xx∗,n,ω,ω′) then

yn = 1
else

yn = 0
end if

end for
return xx∗,n,ω,ω′

The fitness function fx∗,β,γ outputs

I 1 if random (= ωn) is less than Efx∗,β,γ(xx∗,n,ω,ω′)

I 0 otherwise

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

The experimental setting for our noisy optimization setting
Require: ω, ω′, x∗, β, γ and (unknown).

for all n = 1, 2, 3, . . . do
xx∗,n,ω,ω′ = Optimize(xx∗,1,ω,ω′ , . . . , xx∗,n−1,ω,ω′ , y1, . . . , yn−1, ω′)
if ωn ≤ Efx∗,β,γ(xx∗,n,ω,ω′) then

yn = 1
else

yn = 0
end if

end for
return xx∗,n,ω,ω′

Eventually, the estimation of the optimum is returned

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

Sampling strategies

Sampling close to the current estimation of the optimum

I most evolution strategies do that

Sampling far from the current estimation of the optimum

I when f is learnable

I the optimizer can use a model of f to sample far from x∗

I optimize’s outputs can have different meanings
I be the most informative points to sample (exploration)
I provide an estimate of arg minEf (recommendation)

These strategies lead to different convergence rates.

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

Our assumptions

We assume that the optimization algorithm

I does not require a model of the objective function

I samples close to the optimum (first strategy)

The locality assumption

∀f ∈ F , P

(
∀i ≤ n, ‖xi − x∗‖ ≤ C (d)

iα

)
≥ 1− δ

2

I for some 0 < δ < 1/2

I C (d) > 0: a constant depending on d only

I α > 0: convergence speed (large α implies a fast convergence)

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

Noisy optimization complexity

What is the best theoretical convergence rate of an optimization
algorithm on f ∈ F assuming this locality assumption ?

∀f ∈ F , P

(
∀i ≤ n, ‖xi − x∗‖ ≤ C (d)

iα

)
≥ 1− δ

2

Question
What is the supremum of possible α ?

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

State of the art: upper and lower bounds
[Roley2010,Shamir,Chen88

Consider α such that

∀f ∈ F , P

(
∀i ≤ n, ‖xi − x∗‖ ≤ C (d)

iα

)
≥ 1− δ

2

γ = 1 (small noise) γ < 1 (large noise)

Proved rate for R-EDA 1
β ≤ α

1
2β ≤ α

Former lower bounds α ≤ 1 α ≤ 1
2

R-EDA experimental rates α = 1
β α = 1

2β

Rate by active learning α = 1
2 α = 1

2
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Noisy Optimization: Lower Bounds on Runtimes

What we prove

Consider α such that

∀f ∈ F , P

(
∀i ≤ n, ‖xi − x∗‖ ≤ C (d)

iα

)
≥ 1− δ

2

γ = 1 (small noise) γ < 1 (large noise)

Proved rate for R-EDA 1
β ≤ α

1
2β ≤ α

Former lower bounds α ≤ 1 α ≤ 1
2

This proof α ≤ 1
β α ≤ 1

β

(lower bounds) (recently: 1/4 for β = 2)

Decock I-Lab: LRI - Inria & Artelys
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Noisy Optimization: Lower Bounds on Runtimes

Key ideas

Key point

if ωi < Ef (x∗) or ωi > Ef (xi ), the function evaluation is the same
for all x∗ ⇒ let us show that this happens for most i .

Definitions

I N = number of ωi between Ef (x∗) and Ef (xi ) for i ≤ n.

I Xn,Ω the set of points which can be chosen as nth sampled
point if the random sequence is Ω = (ω1, . . . ,ωn, . . . ).

Card Xn,Ω ≤ 2N We will show that locality ⇒ N small. (intuition:
N (depends on n) is the number of i which bring information; the
locality assumption implies that N is small, i.e. we receive little
information)
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Noisy Optimization: Lower Bounds on Runtimes

Lemma
N is probably upper bounded by O(

∑n
i=1 1/iαβ).

(i.e. for most evaluations, the result does not depend on x∗!)

Proof
probability of ωi ∈ (Ef (x∗),Ef (xi )) is O(1/iαβ) by locality
assumption.
⇒ hence the result by summation (for expectations).
⇒ hence the result by Chebyshev (with large probability).
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Noisy Optimization: Lower Bounds on Runtimes

Theorem

Theorem
Assume the objective function f ∈ F

Assume the locality assumption

∀f ∈ F , P

(
∀i ≤ n, ‖xi − x∗‖ ≤ C (d)

iα

)
≥ 1− δ

2

Then α ≤ 1/β.
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Noisy Optimization: Lower Bounds on Runtimes

Proof of the theorem (1)

Let us show that αβ ≤ 1

In order to do so, let us assume, in order to get a contradiction,
that αβ > 1
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Noisy Optimization: Lower Bounds on Runtimes

Proof of the theorem (2)

Definition
Consider R a set of points with
lower bounded distance to each
other:

I two distinct elements of R
are at distance greater than
2ε from each other with

ε =
C (d)

iα

ε
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Noisy Optimization: Lower Bounds on Runtimes

Proof of the theorem (3)

If x∗ is uniformly drawn in R ...

I optimize should have the
opportunity to choose points
which at distance ≤ ε of
(almost) each possible x∗

That is to say:

I Xn,Ω has points at distance ≤ ε
of a certain percentage
(1− δ/2) of elements in R

ε
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Noisy Optimization: Lower Bounds on Runtimes

Proof of the theorem (4)

But...

I if ε decreases (xi approach x∗)
then |R| increases

I and Xn,Ω is finite (with great
probability, by Lemma)

Up to a certain timestep, the locality
assumption can’t be respected.

We have a contradiction on our
assumption.

αβ > 1 is wrong QED

ε
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Noisy Optimization: Variance Reduction

Noisy Optimization: Variance Reduction
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Noisy Optimization: Variance Reduction

Variance Reduction

Aim
Improve convergence rate in Noisy optimization problems (e.g.
DVS) using traditional variance reduction techniques

Framework
Grey-box: manipulate random seeds
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Noisy Optimization: Variance Reduction

Common Random Numbers (CRN)

Relevant for population-based noisy optimization:

I we want to know Ef (x,ω) for several x,

I we approximate Ef (x,ω) ' 1
n

∑n
i=1 f (x ,ωi )

⇒ CRN = use the same samples ω1, . . . ,ωn for all x in a same
optimization iteration
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Noisy Optimization: Variance Reduction

Stratified Sampling

Each ωi is randomly drawn conditionally to a stratum.
The domain of ω is partitioned into disjoint strata S1, . . . ,SN .
The stratification function i 7→ s(i) is chosen by the noisy
optimization algorithm.
ωi is randomly drawn conditionally to ωi ∈ Ss(i).

Êf (x,ω) =
∑

i∈{1,...,n}

P(ω ∈ s(i))f (x,ωi )

Card {j ∈ {1, . . . , n};ωj ∈ s(i)}
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Noisy Optimization: Variance Reduction

Experiments

I Known:
I CRN can be detrimental
I Stratification rarely (never ?) detrimental

I Here: experimental test
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Noisy Optimization: Variance Reduction

Experiments
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Conclusions and perspectives

Conclusions and perspectives

Decock I-Lab: LRI - Inria & Artelys

Hybridization of dynamic optimization methodologies



68

Introduction State of the art Contributions Conclusion References

Conclusions and perspectives

Conclusions

I DVS: combining DPS and SDP for
I fast decision making (polynomial)
I anytime optimization
I initialized at MPC (which is great)
I no need for tree representation

I CRN:
I no proof of good properties
I but empirically really good
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Conclusions and perspectives

Future work

I Mathematical analysis of DVS

I More intensive testing of DVS

I Optimization at the level of investments

I Non-stochastic uncertainties
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Conclusions and perspectives
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Conclusions and perspectives

Thank you for your attention

Questions ?
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Parametric policies

Σ

Σ

x0=1

x1

x2

xn

Σ

...

Σ

z1

z2

x0=1
output layerinput layer hidden layer

tanh

tanh
W2

W3 W0

W1

z = W0 + W1 tanh(W2 x + W3)
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Parametric policies

x =


x1

x2

...

xn

 , z =


z1

z2

...

zk

 , W3 =


w

(1)
10

w
(1)
20

...

w
(1)
m0

 , W0 =


w

(2)
10

w
(2)
20

...

w
(2)
k0

 ,

W2 =


w

(1)
11 w

(1)
12 · · · w

(1)
1n

w
(1)
21 w

(1)
22 · · · w

(1)
2n

...
...

. . .
...

w
(1)
m1 w

(1)
m2 · · · w

(1)
mn

 , W1 =


w

(2)
11 w

(2)
12 · · · w

(2)
1m

w
(2)
21 w

(2)
22 · · · w

(2)
2m

...
...

. . .
...

w
(2)
k1 w

(2)
k2 · · · w

(2)
km

 .

z = W0 + W1 tanh(W2 x + W3)
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Self-adaptive Evolution Strategy (SA-ES) with revaluations

Require:
K > 0, λ > µ > 0, a dimension d > 0, τ (usually τ = 1√

2d
).

Initialize parent population Pµ = {(x1, σ1), (x2, σ2), . . . , (xµ, σµ)}
with ∀i ∈ {1, . . . , µ}, xi ∈ IRd and σi = 1.

while stop condition do
Generate the offspring population Pλ = {(x′1, σ

′
1), (x′2, σ

′
2), . . . , (x′λ, σ

′
λ)}

where each individual is generated by:

1. Select (randomly) ρ parents from Pµ.

2. Recombine the ρ selected parents to form a recombinant individual (x′, σ′).

3. Mutate the strategy parameter: σ′ ← σ′eτN (0,1).

4. Mutate the objective parameter: x′ ← x′ + σ′N (0, 1).

Select the new parent population Pµ taking the µ best form Pλ ∪ Pµ.
end while
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Fabian
1: Input: an initial x1 = 0 ∈ IRd , 1

2
> γ > 0, a > 0, c > 0, m ∈ N, weights

w1 > · · · > wm summing to 1, scales 1 ≥ u1 > · · · > um > 0.
2: n← 1
3: while (true) do
4: Compute σn = c/nγ .
5: Evaluate the gradient g at xn by finite differences, averaging over 2m samples

per axis:

∀i , j ∈ {1, . . . , d} × {1 . . .m}, x
(i,j)+
n = xn + ujei ,

∀i , j ∈ {1, . . . , d} × {1 . . .m}, x
(i,j)−
n = xn − ujei ,

∀i ∈ {1, . . . , d}, g (i) =
1

2σn

m∑
j=1

wj

(
f (x

(i,j)+
n )− f (x

(i,j)−
n )

)
.

6: Apply xn+1 ← xn − a
n
g

7: n← n + 1
8: end while

Fabian’s stochastic gradient algorithm with finite differences. Several variants have

been defined, in particular versions in which only one point (or a constant number of

points, independently of the dimension) is evaluated at each iteration.
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Lemmas - Introduction (1)
The objective function

fx∗,β,γ(x) = B

(
γ

(
‖x− x∗‖√

d

)β
+ (1− γ)

)
and the locality assumption

∀f ∈ F , P

∀i ≤ n, ‖xi − x∗‖ ≤ C(d)

iα︸ ︷︷ ︸
 ≥ 1− δ

2

imply

Ef (x∗)︸ ︷︷ ︸
1−γ

≤

︷ ︸︸ ︷
Ef (xn) ≤ Ef (x∗)︸ ︷︷ ︸

1−γ

+
γ

dβ/2

C(d)β

nαβ

with probability at least 1− δ/2

(f and Ef (x) are short notations for fx∗,β,γ and Eωf (x,ω))
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Lemmas - Introduction (2)

‖xi − x∗‖ ≤ C (d)

iα
(the locality assumption)

⇔ γ

(
‖xi − x∗‖√

d

)β
+ (1− γ)︸ ︷︷ ︸ ≤ (1− γ)︸ ︷︷ ︸+γ

(
C (d)

iα
√

d

)β

⇔ Ef (xi ) ≤ Ef (x∗) + γ

(
C (d)

iα
√

d

)β
⇔ Ef (xi ) ≤ Ef (x∗) +

γC (d)β

iαβ
√

d
β
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Proof
Consider fx∗ = fx∗,β,γ with x∗ uniformly distributed in R. Then:

P(‖xn − x∗‖ ≤ ε)
≤ EΩPx∗ (x∗ ∈ Enl(Xn,Ω, ε))

≤ P(#Xn,Ω ≤ C)Px∗ (x∗ ∈ Enl(Xn,Ω, ε)|#Xn,Ω ≤ C)

+P(#Xn,Ω > C)

≤ (1−
δ

2
)
C

C ′
+
δ

2

< 1−
δ

2

where Enl(U, ε) is the ε-enlargement of U defined as:

Enl(U, ε) =
{

x; ∃x′ ∈ U, ‖x− x′‖ ≤ ε
}
.

This contradicts the locality assumption.

This concludes the proof of αβ ≤ 1.

Decock I-Lab: LRI - Inria & Artelys

Hybridization of dynamic optimization methodologies



87

Appendix

R-EDA (1)
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R-EDA (2)
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R-EDA (3)
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Theorem’s proof
Step 2

(??) ⇐⇒ ln

(
f (x)

f (x′)

)
≥ max

(
ln

(
1

η

)
, ln

(
K ′

K ′′

)
+ ln

(
||x||
||x′||

))

f (x′) ≤ ηf (x) ⇐⇒
1

η
f (x′) ≤ f (x)

⇐⇒
1

η
≤

f (x)

f (x′)

⇐⇒ ln

(
f (x)

f (x′)

)
≥ ln

(
1

η

)

f (x′) ≤
K ′′

K ′
||x′||
||x||

f (x) ⇐⇒ f (x′)
K ′

K ′′
||x||
||x′||

≤ f (x)

⇐⇒
K ′

K ′′
||x||
||x′||

≤
f (x)

f (x′)

⇐⇒ ln

(
K ′

K ′′
||x||
||x′||

)
≤ ln

(
f (x)

f (x′)

)

⇐⇒ ln

(
f (x)

f (x′)

)
≥ ln

(
K ′

K ′′

)
+ ln

(
||x||
||x′||

)
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Theorem’s proof
Step 2

if l′ ≥ ln(c′) then

I l < ln(c) (otherwise it couldn’t be a “win”)

l′ − ln(c′) ≤ ln(c + max
i
||δi ||)− ln(c′)

≤ ln(c) + ln(1 + max
i
||δi ||/c)− ln(c′)

≤ ln(c/c′) + max
i
||δi ||/c

≤ max
i
||δi ||/c

l′ − ln(c′) = ln(
||x + σδi ||

σ
)− ln(c′) ≤ ln(

||x||
σ

+ δi )− ln(c′)

≤ ln(c ∗ (1 +
δi

c
))− ln(c′)

≤ ln(c) + ln(1 + max
i
||δi ||/c)− ln(c′)

≤ ln(c/c′) + max
i
||δi ||/c

≤ max
i
||δi ||/c
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Theorem’s Proof
Step 3

Summing iterations
Hence if t > n0,

ln(f (Xt )) ≤ ln(f (X1))− (t − n0)×
∑
i

max
(

ln
(

1
η

)
, ln

(
K′
K′′
)

+ ∆
)

min

(
1 + ln( c

b
) ∆

ln(2)
, 1 + ln( c

b
)

maxj ln(||δj ||)
ln(2)

)
⇐⇒ ln(f (Xt ))− ln(f (X1)) ≤ −(t − n0)× C

⇐⇒
ln
(

f (Xt )
f (X1)

)
t − n0

≤ −C

⇒
ln(||Xt ||)

t
≤ K < 0 (theorem)

with C a positive constant.
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Corollary’s proof
Step 2 (1/4)

Step 2: showing that σ small leads to high acceptance rate and σ high
leads to small acceptance rate.
Thanks to the bounded conditioning, there exists ε > 0 s.t.

s ′ <
1

2
s (1)

with s = sup

{
σ

||x||
;σ, x, f s.t. p ≥ ε

2

}
and s ′ = inf

{
σ

||x||
;σ, x, f s.t. p <

1

2
− ε

2

}
because s ′ → 0 and s →∞ as ε→ 0.
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Corollary’s proof
Step 2 (2/4)

Notes

ŝ = sup

{
σ

||x||
;σ, x, f s.t. p̂ ≥ ε

}
ŝ ′ = inf

{
σ

||x||
;σ, x, f s.t. p̂ <

1

2
− ε
}

Then
sup

x,f ,σ>0
|p̂ − p| ≤ ε/2

implies
1

2
ŝ ≥ 1

2
s and s ′ ≥ ŝ ′

Decock I-Lab: LRI - Inria & Artelys

Hybridization of dynamic optimization methodologies



95

Appendix

Corollary’s proof
Step 2 (3/4)

So

ŝ ′ ≤ s ′ <
1

2
s ≤ 1

2
ŝ

and

ŝ ′ ≤ 1

2
ŝ
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Appendix

Corollary’s proof
Step 2 (4/4)

This provides k1, k2, c ′ and b′ as follows for Eqs. ?? and ??:

1

b′
= ŝ = sup

{
σ

||x||
;σ, x, f s.t. p̂ ≥ ε

}
1

c ′
= ŝ ′ = inf

{
σ

||x||
;σ, x, f s.t. p̂ <

1

2
− ε
}

k1 = bεkc

k2 =

⌈
(

1

2
− ε)k

⌉
Eqs. above imply c ′ ≥ 2b′
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Appendix

Corollary’s proof
Step 3

k large enough yield

b−1 = sup

{
σ

||x||
;σ, x, f s.t. p̂ > k1/k

}
,

c−1 = inf

{
σ

||x||
;σ, x, f s.t. p̂ < k2/k

}
,

which provide assumptions 2 and 5 with b < c

Assumptions 2 and 5 then imply b < b′ and c ′ < c

Decock I-Lab: LRI - Inria & Artelys

Hybridization of dynamic optimization methodologies



98

Appendix

Non quasi-convex functions
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