EXERCICE 2 (10 points)

Les parties A, B et C de cet exercice peuvent être traitées de manière indépendante. On notera U la fonction échelon unité définie pour tout nombre réel t par :

$$\begin{cases} U(t) = 0 & \text{si } t < 0 \\ U(t) = 1 & \text{si } t \geqslant 0 \end{cases}$$

Une fonction définie sur l'ensemble des nombres réels est dite causale lorsque cette fonction est nulle sur l'intervalle] $-\infty$; 0[. On considère un système entrée-sortie où les signaux d'entrée et sortie sont modélisés par des fonctions causales notées respectivement e et s. Ce système est du second ordre, c'est à dire que les fonctions e et s sont liées sur l'intervalle $[0; +\infty[$ par une équation différentielle du type

$$s''(t) + b s'(t) + c s(t) = c e(t),$$

où b et c désignent des constantes réelles.

On suppose de plus dans tout l'exercice que s(0) = 0 et s'(0) = 0.

Partie A: résolution d'une équation différentielle du second ordre

Dans cette partie, on suppose que b=1 et c=0.25. De plus, le signal d'entrée, constant, est défini pour tout nombre réel t de l'intervalle $[0; +\infty[$ par e(t)=10.

La fonction causale s est donc solution sur l'intervalle $[0; +\infty[$ de l'équation différentielle

$$(E): y'' + y' + 0.25y = 2.5.$$

- 1. Déterminer une fonction constante sur $[0; +\infty[$ solution particulière de l'équation différentielle (E).
- 2. Résoudre l'équation différentielle (E_0) : y'' + y' + 0.25y = 0.
- 3. En déduire la forme générale des solutions de l'équation différentielle (E).
- 4. Parmi les quatre expressions ci-dessous, laquelle est celle de s(t) sur l'intervalle $[0; +\infty[$? Recopier la réponse choisie sur la copie.

•
$$5te^{-0.5t}$$

• $10 - (5t + 10)e^{-0.5t}$
• $10 - (2.5t + 10)e^{-0.25t}$
• $10 - (10t + 10)e^{-0.5t}$

BTS		Session 2013
Mathématiques	code: MATGRA	Page: 4/9

Partie B: utilisation de la transformation de Laplace

Dans cette partie, on suppose que b=0 et c=9. De plus, le signal d'entrée, sinusoïdal, est défini pour tout nombre réel t par

$$e(t) = \sin(2t)U(t).$$

La fonction causale s est donc solution de l'équation différentielle

$$(E')$$
: $s''(t) + 9s(t) = 9\sin(2t)U(t)$.

On note S la transformée de Laplace de la fonction s.

1. En appliquant la transformation de Laplace aux deux membres de l'équation différentielle (E'), montrer que

$$S(p) = \frac{18}{(p^2 + 4)(p^2 + 9)}.$$

2. Déterminer les nombres réels a et b tels que, pour tout nombre réel p, on ait

$$S(p) = \frac{a}{p^2 + 4} + \frac{b}{p^2 + 9}.$$

3. En déduire l'expression de s(t) pour tout nombre réel t positif ou nul.

Partie C: détermination de l'amplitude du signal de sortie

On note f la fonction causale définie sur l'ensemble des nombres réels par :

$$f(t) = (1.8\sin(2t) - 1.2\sin(3t)) U(t).$$

Cette fonction est périodique de période 2π sur l'intervalle $[0; +\infty[$.

Sur l'annexe 2 sont tracées deux représentations graphiques de la fonction f.

Les points M_1 , M_2 , M_3 , M_4 indiqués sur le graphique correspondent aux extremums locaux de la fonction f sur l'intervalle $[0; 2\pi]$.

Le but de cette partie est de déterminer la valeur maximale A atteinte par f(t) quand t varie dans l'intervalle $[0; +\infty[$.

- 1. En utilisant la figure 1 de l'annexe 2, déterminer une valeur approchée de A à 0,1 près.
- 2. Pour tout nombre réel t positif ou nul, calculer une expression de $f^{\prime}(t)$.

BTS		Session 2013
Mathématiques	code: MATGRA	Page : 5/9

3. (a) Montrer que, pour tout nombre réel positif ou nul t, f'(t) peut se mettre sous la forme

 $f'(t) = \alpha \sin\left(\frac{5t}{2}\right) \sin\left(\frac{t}{2}\right),$

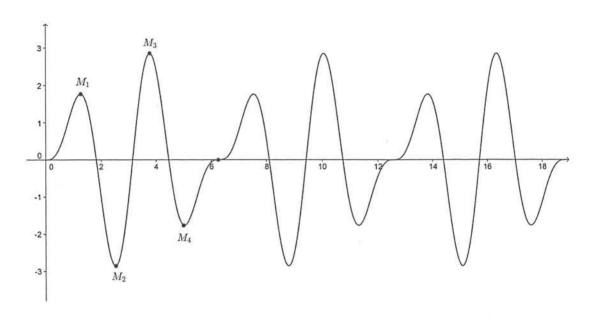
où α est un nombre réel strictement positif.

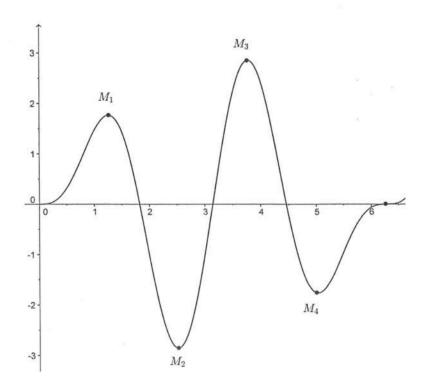
En déduire la valeur de $f'\left(\frac{2k\pi}{5}\right)$ pour tout nombre entier naturel k.

(b) Déterminer les valeurs exactes des abscisses des points M_1 , M_2 , M_3 , M_4 . En déduire une valeur approchée de A à 10^{-3} près.

BTS		Session 2013
Mathématiques	code: MATGRA	Page: 6/9

Figure 1





BTS		Session 2013
Mathématiques	code: MATGRA	Page: 9/9