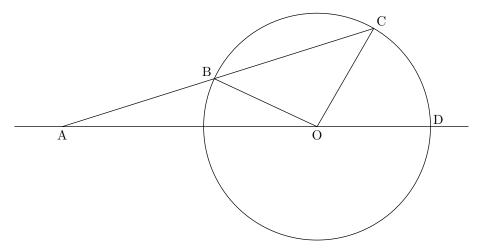
Exercice 1

Sur la figure ci-dessous, B, C et D sont trois points distincts d'un cercle de centre O. A est un point extérieur à ce cercle.

De plus,

- A, B et C sont alignés;
- A, O et D sont alignés;
- AB = OB;
- \widehat{COD} mesure α radians.



Dans ces conditions, la mesure de l'angle \widehat{ABO} , en radians, est :

- **1)** $\pi \frac{\alpha}{4}$
- $2) \ \pi \frac{\alpha}{2}$
- **3)** $\pi \frac{2\alpha}{3}$
- **4)** $\pi \frac{3\alpha}{4}$
- **5)** $\pi \frac{3\alpha}{2}$

Les longueurs des côtés d'un triangle ABC forment une progression arithmétique. On sait de plus que le périmètre de ce triangle vaut 15 et que son angle \widehat{A} mesure 120° .

Alors, le produit des longueurs de côtés est égal à :

- **1)** 25
- **2)** 45
- **3)** 75
- **4)** 105
- **5)** 125

D. LE FUR 2/ 24

Un angle θ formé par deux plans α et β est tel que $\tan\theta=\frac{\sqrt{5}}{5}$. Le point P appartient au plan α et est à une distance 1 du plan β .

Alors, la distance de P à la droite d'intersection de α et β est égale à :

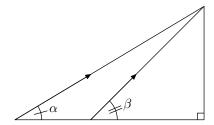
- 1) $\sqrt{3}$
- **2)** $\sqrt{5}$
- **3)** $\sqrt{6}$
- **4)** $\sqrt{7}$
- **5)** $\sqrt{8}$

Exercice 1

Pour calculer la hauteur d'une tour, on utilise le procédé suivant : un appareil de hauteur négligeable est placé au sol à une certaine distance de la tour, et émet un rayon en direction du sommet de la tour. L'angle lu entre le sol et le rayon est de $\alpha=\frac{\pi}{3}$ radians. Ensuite, on déplace l'appareil de 4m vers la tour. L'angle ainsi obtenu est de β radians, avec $\tan\beta=3\sqrt{3}$.

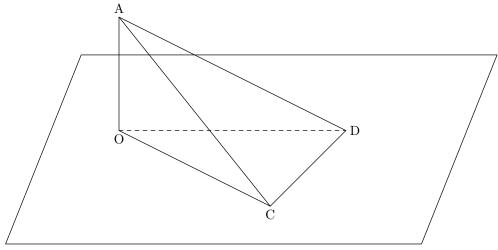
On peut affirmer que la hauteur de la tour est :

- 1) $4\sqrt{3}$
- **2)** $5\sqrt{3}$
- **3)** $6\sqrt{3}$
- **4)** $7\sqrt{3}$
- **5)** $8\sqrt{3}$



Le triangle ACD est isocèle de sommet principal A.

Le segment [OA] est perpendiculaire au plan contenant le triangle OCD, comme le montre la figure suivante :

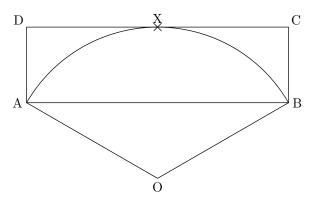


Sachant que $OA=3,\,AC=5$ et $\widehat{sin\,OCD}=\frac{1}{3},$ alors, l'aire du triangle OCD est :

- 1) $\frac{16\sqrt{2}}{9}$
- **2)** $\frac{32\sqrt{2}}{9}$
- **3)** $\frac{48\sqrt{2}}{9}$
- **4)** $\frac{64\sqrt{2}}{9}$
- **5)** $\frac{80\sqrt{2}}{9}$

Exercice 1

Sur la figure suivante, OAB est un secteur angulaire ayant pour centre O. ABCD est un rectangle et le segment [CD] est tangent en X à l'arc du secteur angulaire d'extrêmités A et B.



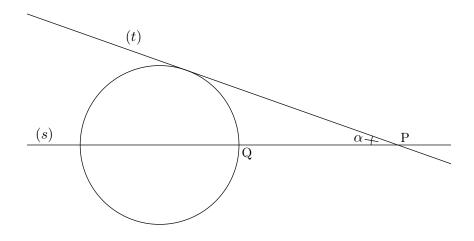
Si $AB = 2\sqrt{3}$ et AD = 1, alors l'aire du secteur angulaire OAB est égal à :

- 1) $\frac{\pi}{3}$
- **2)** $\frac{2\pi}{3}$
- 3) $\frac{4\pi}{3}$
- 4) $\frac{5\pi}{3}$
- 5) $\frac{7\pi}{3}$

Exercice 1

Sur la figure ci-dessous, la droite (s) passe par le point P et par le centre du cercle de rayon R, le coupant en Q, entre P et le centre du cercle.

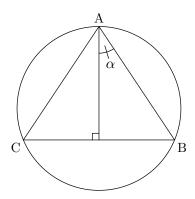
De plus, la droite (t) passe par P, est tangente au centre et forme un angle α avec la droite (s).



Si PQ=2R, alors, $\cos \alpha$ vaut :

- 1) $\frac{\sqrt{2}}{6}$
- **2)** $\frac{\sqrt{2}}{3}$
- 3) $\frac{\sqrt{2}}{2}$
- **4)** $\frac{2\sqrt{2}}{3}$
- **5)** $\frac{3\sqrt{2}}{5}$

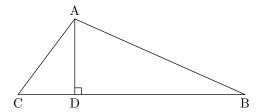
Sur la figure ci-dessous, le triangle inscrit ABC est tel que AB = AC. L'angle entre le côté [AB] et la hauteur du triangle ABC relative au côté [BC] est α .



Dans ces conditions, le quotient entre l'aire du triangle ABC et l'aire du cercle de la figure est donné, en fonction de α par l'expression :

- $1) \ \frac{2}{\pi} \cos^2 \alpha$
- **2)** $\frac{2}{\pi} \sin^2(2\alpha)$
- 3) $\frac{2}{\pi}\sin^2(2\alpha)\cos\alpha$
- 4) $\frac{2}{\pi}\sin\alpha\cos(2\alpha)$
- $5) \ \frac{2}{\pi} \sin(2\alpha) \cos^2 \alpha$

Sur la figure ci-contre, on a : AC = 3, AB = 4 et CB = 6.

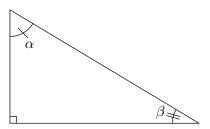


La valeur de CD est :

- 1) $\frac{17}{12}$
- **2)** $\frac{19}{12}$
- 3) $\frac{23}{12}$
- 4) $\frac{25}{12}$
- **5)** $\frac{29}{12}$

Exercice 1

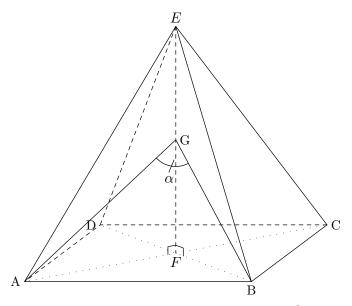
On sait que x=1 est une racine de l'équation $(\cos^2\alpha)x^2-(4\cos\alpha\sin\beta)x+\frac{3}{2}\sin\beta=0$, étant donné que α et β sont les angles aigus du triangle rectangle de la figure ci-dessous.



On peut alors affirmer que les mesures de α et β sont respectivement :

- 1) $\frac{\pi}{8}$ et $\frac{3\pi}{8}$
- $2) \ \frac{\pi}{6} \ \text{et} \ \frac{\pi}{3}$
- 3) $\frac{\pi}{4}$ et $\frac{\pi}{4}$
- 4) $\frac{\pi}{3}$ et $\frac{\pi}{6}$
- **5)** $\frac{3\pi}{8}$ et $\frac{\pi}{8}$

La figure ci-dessous représente une pyramide régulière à base carrée ABCD de côté 1 et de hauteur 1.

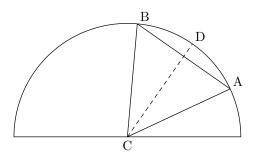


Sachant que G est le milieu de la hauteur [EF] et α la mesure de l'angle \widehat{AGB} , alors $\cos \alpha$ vaut :

- 1) $\frac{1}{2}$
- **2)** $\frac{1}{3}$
- 3) $\frac{1}{4}$
- **4)** $\frac{1}{5}$
- 5) $\frac{1}{6}$

Exercice 1

Dans un demi-cercle de centre C et de rayon R, on inscrit un triangle ABC équilatéral. Soit D le point où la bissectrice de l'angle \widehat{BCA} coupe le demi-cercle.



La longueur de la corde AD est :

1)
$$R\sqrt{2-\sqrt{3}}$$

2)
$$R\sqrt{\sqrt{3}-\sqrt{2}}$$

3)
$$R\sqrt{\sqrt{2}-1}$$

4)
$$R\sqrt{\sqrt{3}-1}$$

5)
$$R\sqrt{3-\sqrt{2}}$$

Exercice 1

La somme des racines de l'équation $\sin^2 x - 2\cos^4 x = 0$, qui appartiennent à l'intervalle $[0\ ;\ 2\pi]$ est :

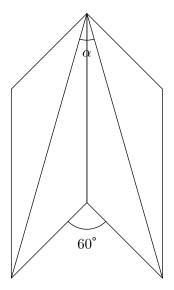
- **1)** 2π
- **2)** 3π
- **3)** 4π
- **4)** 6π
- **5)** 7π

D. LE FUR 13/ 24

Si α est dans l'intervalle $\left[0\;;\;\frac{\pi}{2}\right]$ et est solution de l'équation $\sin^4\alpha-\cos^4\alpha=\frac{1}{4}$, alors la valeur de la tangente de α vaut :

- 1) $\sqrt{\frac{3}{5}}$
- **2)** $\sqrt{\frac{5}{3}}$
- **3)** $\sqrt{\frac{3}{7}}$
- **4)** $\sqrt{\frac{7}{3}}$
- **5)** $\sqrt{\frac{5}{7}}$

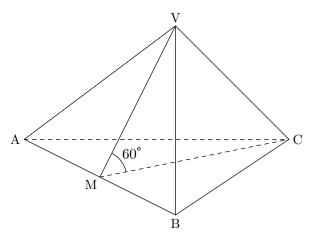
Les pages d'un livre mesure $1\ dm$ de base et $\sqrt{1+\sqrt{3}}\ dm$ de hauteur.



Si ce livre est partellement ouvert d'un angle de $60^{\rm o}$, la mesure de l'angle α formé par les diagonales des pages sera de :

- **1)** 15°
- **2)** 30°
- **3)** 45°
- **4)** 60°
- **5)** 75°

La figure ci-dessous représente une pyramide à base triangulaire ABC et de sommet V. On sait que ABC et ABV sont des triangles équilatéraux de côté l et que M est le milieu du segment [AB].



Si la mesure de l'angle \widehat{VMC} est de $60^{\rm o}$, alors le volume de la pyramide est :

- 1) $\frac{\sqrt{3}}{4} l^3$
- **2)** $\frac{\sqrt{3}}{8} l^3$
- 3) $\frac{\sqrt{3}}{12} l^3$
- **4)** $\frac{\sqrt{3}}{16} l^3$
- **5)** $\frac{\sqrt{3}}{18} l^3$

Exercice 1

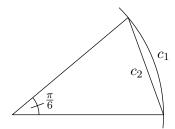
Dans un repère orthonormé $(O\;;\;\overrightarrow{i}\;,\;\overrightarrow{j}\;)$, les sommets d'un triangle ABC ont pour coordonnées : $A(1\;;\;0),\,B(0\;;\;1)$ et $C(0\;;\;\sqrt{3}).$

Alors, l'angle \widehat{BAC} mesure :

- **1)** 60°
- **2)** 45°
- **3)** 30°
- **4)** 18°
- **5)** 15°

D. LE FUR 17/ 24

Dans un cercle, c_1 est la longueur d'un arc de $\frac{\pi}{6}$ radians et c_2 est la longueur de la corde correspondant à cet arc, comme le montre la figure ci-dessous.



Alors, la rapport $\frac{c_1}{c_2}$ est égal à $\frac{\pi}{6}$ multiplié par :

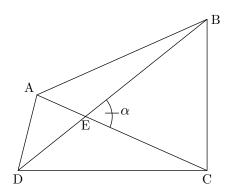
- **1)** 2
- **2)** $\sqrt{1+2\sqrt{3}}$
- **3)** $\sqrt{2+\sqrt{3}}$
- **4)** $\sqrt{2+2\sqrt{3}}$
- **5)** $\sqrt{3+\sqrt{3}}$

Si $\tan(2\theta)=2$, alors la valeur de $\frac{\cos(2\theta)}{1+\sin(2\theta)}$ est :

- **1)** −3
- **2)** $-\frac{1}{3}$
- **3)** $\frac{1}{3}$
- **4)** $\frac{2}{3}$
- **5)** $\frac{3}{4}$

Exercice 1

Sur la figure ci-dessous, E est le point d'intersection des diagonales du quadrilatère ABCD et α est l'angle aigu \widehat{BEC} .



Si $EA=1,\,EB=4,\,EC=3$ et $ED=2,\,$ alors l'aire du quadrilatère ABCD sera :

- 1) $12\sin\alpha$
- **2)** $8\sin\alpha$
- 3) $6\sin\alpha$
- 4) $10\cos\alpha$
- **5)** $8\cos\alpha$

D. LE FUR 20/ 24

Le double du sinus d'un angle θ tel que $0<\theta<\frac{\pi}{2}$ est égal au triple du carré de sa tangente.

Alors, la valeur de son cosinus est :

- 1) $\frac{2}{3}$
- **2)** $\frac{\sqrt{3}}{2}$
- 3) $\frac{\sqrt{2}}{2}$
- 4) $\frac{1}{2}$
- **5)** $\frac{\sqrt{3}}{3}$

22/24

Fuvest 1999

Exercice 1

Si α est un angle tel que $0 < \alpha < \frac{\pi}{2}$, et $\sin \alpha = a$,

alors $tan(\pi - \alpha)$ est égal à :

1)
$$-\frac{a}{\sqrt{1-a^2}}$$

2)
$$\frac{a}{\sqrt{1-a^2}}$$

3)
$$\frac{\sqrt{1-a^2}}{a}$$

4)
$$-\frac{\sqrt{1-a^2}}{a}$$

5)
$$-\frac{1+a^2}{a}$$

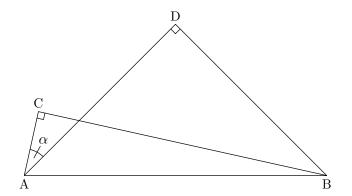
Exercice 2

Quelle affirmation suivante est vraie?

- 1) $\sin(210^{\circ}) < \cos(210^{\circ}) < \tan(210^{\circ})$
- **2)** $\cos(210^{\circ}) < \sin(210^{\circ}) < \tan(210^{\circ})$
- **3)** $\tan(210^{\circ}) < \sin(210^{\circ}) < \cos(210^{\circ})$
- **4)** $\tan(210^{\circ}) < \cos(210^{\circ}) < \sin(210^{\circ})$
- **5)** $\sin(210^{\circ}) < \tan(210^{\circ}) < \cos(210^{\circ})$

D. LE FUR 23/ 24

Sur la figure ci-dessous, dans les triangles rectangles, on a : AC = 1 cm, BC = 7 cm et AD = BD.



Quel est la valeur de $\sin \alpha$?

- 1) $\frac{\sqrt{2}}{2}$
- **2)** $\frac{7}{\sqrt{50}}$
- **3)** $\frac{3}{5}$
- 4) $\frac{4}{5}$
- **5)** $\frac{1}{\sqrt{50}}$