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Notations.

We use the standard (Bourbaki) notations:

ND f0;1;2; : : :g;
ZD ring of integers,

RD field of real numbers,

CD field of complex numbers,

Fp D Z=pZD field with p elements, p a prime number.

Given an equivalence relation, Œ�� denotes the equivalence class containing �. The cardinality
of a set S is denoted by jS j (so jS j is the number of elements in S when S is finite). Let I
and A be sets. A family of elements of A indexed by I , denoted by .ai /i2I , is a function
i 7! ai WI ! A. Throughout the notes, p is a prime number: p D 2;3;5;7;11; : : :.

X � Y X is a subset of Y (not necessarily proper).
X

def
D Y X is defined to be Y , or equals Y by definition.

X � Y X is isomorphic to Y .
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism).
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Group theory (for example, GT), basic linear algebra, and some elementary theory of rings.
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CHAPTER 1
Basic Definitions and Results

Rings

A ring is a set R with two composition lawsC and � such that

(a) .R;C/ is a commutative group;
(b) � is associative, and there exists1 an element 1R such that a �1R D aD 1R �a for all

a 2RI
(c) the distributive law holds: for all a;b;c 2R,

.aCb/ � c D a � cCb � c

a � .bC c/D a �bCa � c.

We usually omit “�” and write 1 for 1R when this causes no confusion. If 1R D 0, then
RD f0g.

A subring S of a ringR is a subset that contains 1R and is closed under addition, passage
to the negative, and multiplication. It inherits the structure of a ring from that on R.

A homomorphism of rings ˛WR!R0 is a map with the properties

˛.aCb/D ˛.a/C˛.b/; ˛.ab/D ˛.a/˛.b/; ˛.1R/D 1R0 ; all a;b 2R:

A ring R is said to be commutative if multiplication is commutative:

ab D ba for all a;b 2R:

A commutative ring is said to be an integral domain if 1R ¤ 0 and the cancellation law
holds for multiplication:

ab D ac, a¤ 0, implies b D c:

An ideal I in a commutative ringR is a subgroup of .R;C/ that is closed under multiplication
by elements of R:

r 2R, a 2 I , implies ra 2 I:

The ideal generated by elements a1; : : : ;an is denoted by .a1; : : : ;an/. For example, .a/ is
the principal ideal aR.

We assume that the reader has some familiarity with the elementary theory of rings.
For example, in Z (more generally, any Euclidean domain) an ideal I is generated by any
“smallest” nonzero element of I .

1We follow Bourbaki in requiring that rings have a 1, which entails that we require homomorphisms to
preserve it.
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8 1. BASIC DEFINITIONS AND RESULTS

Fields

DEFINITION 1.1 A field is a set F with two composition lawsC and � such that

(a) .F;C/ is a commutative group;
(b) .F �; �/, where F � D F Xf0g, is a commutative group;
(c) the distributive law holds.

Thus, a field is a nonzero commutative ring such that every nonzero element has an inverse.
In particular, it is an integral domain. A field contains at least two distinct elements, 0 and 1.
The smallest, and one of the most important, fields is F2 D Z=2ZD f0;1g.

A subfield S of a field F is a subring that is closed under passage to the inverse. It
inherits the structure of a field from that on F .

LEMMA 1.2 A nonzero commutative ring R is a field if and only if it has no ideals other
than .0/ and R.
PROOF. Suppose R is a field, and let I be a nonzero ideal in R. If a is a nonzero element
of I , then 1D a�1a 2 I , and so I DR. Conversely, suppose R is a commutative ring with
no proper nonzero ideals. If a ¤ 0, then .a/D R, and so there exists a b in R such that
ab D 1. 2

EXAMPLE 1.3 The following are fields: Q, R, C, Fp D Z=pZ (p prime):

A homomorphism of fields ˛WF ! F 0 is simply a homomorphism of rings. Such a
homomorphism is always injective, because its kernel is a proper ideal (it doesn’t contain 1),
which must therefore be zero.

The characteristic of a field

One checks easily that the map

Z! F; n 7! 1F C1F C�� �C1F .n copies/;

is a homomorphism of rings, and so its kernel is an ideal in Z.
CASE 1: The kernel of the map is .0/, so that

n �1F D 0 H) nD 0 (in Z).

Nonzero integers map to invertible elements of F under n 7! n �1F WZ! F , and so this map
extends to a homomorphism

m

n
7! .m �1F /.n �1F /

�1
WQ ,! F:

Thus, in this case, F contains a copy of Q, and we say that it has characteristic zero.
CASE 2: The kernel of the map is¤ .0/, so that n �1F D 0 for some n¤ 0. The smallest

positive such n will be a prime p (otherwise there will be two nonzero elements in F whose
product is zero), and p generates the kernel. Thus, the map n 7! n �1F WZ! F defines an
isomorphism from Z=pZ onto the subring

fm �1F jm 2 Zg

of F . In this case, F contains a copy of Fp, and we say that it has characteristic p.
The fields F2;F3;F5; : : : ;Q are called the prime fields. Every field contains a copy of

exactly one of them.
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REMARK 1.4 The binomial theorem

.aCb/m D amC
�
m
1

�
am�1bC

�
m
2

�
am�2b2C�� �Cbm

holds in every commutative ring. If p is prime, then p divides
�
pn

r

�
for all r with 1� r �

pn�1. Therefore, when F has characteristic p,

.aCb/p
n

D ap
n

Cbp
n

all n� 1;

and so the map a 7! apWF ! F is a homomorphism. It is called the Frobenius endomor-
phism of F . When F is finite, the Frobenius endomorphism is an automorphism.

Review of polynomial rings

For more on the following, see Dummit and Foote 1991, Chapter 9. Let F be a field.

1.5 The ring F ŒX� of polynomials in the symbol (or “indeterminate” or “variable”) X
with coefficients in F is an F -vector space with basis 1, X , . . . , Xn, . . . , and with the
multiplication defined by�X

i
aiX

i
��X

j
bjX

j
�
D

X
k

�X
iCjDk

aibj

�
Xk :

For any ring R containing F as a subring and element r of R, there is a unique homomor-
phism ˛WF ŒX�!R such that ˛.X/D r and ˛.a/D a for all a 2 F .

1.6 Division algorithm: given f .X/ and g.X/ 2 F ŒX� with g ¤ 0, there exist q.X/,
r.X/ 2 F ŒX� with r D 0 or deg.r/ < deg.g/ such that

f D gqC r I

moreover, q.X/ and r.X/ are uniquely determined. Thus F ŒX� is a Euclidean domain with
deg as norm, and so is a unique factorization domain.

1.7 From the division algorithm, it follows that an element a of F is a root of f (that is,
f .a/D 0) if and only if X �a divides f . From unique factorization, it now follows that f
has at most deg.f / roots (see also Exercise 1-3).

1.8 Euclid’s algorithm: Let f and g 2F ŒX� have gcd d.X/. Euclid’s algorithm constructs
polynomials a.X/ and b.X/ such that

a.X/ �f .X/Cb.X/ �g.X/D d.X/; deg.a/ < deg.g/; deg.b/ < deg.f /:

Recall how it goes. We may assume that deg.f /� deg.g/ since the argument is the same in
the opposite case. Using the division algorithm, we construct a sequence of quotients and
remainders

f D q0gC r0

g D q1r0C r1

r0 D q2r1C r2

� � �

rn�2 D qnrn�1C rn

rn�1 D qnC1rn
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with rn the last nonzero remainder. Then, rn divides rn�1, hence rn�2,. . . , hence g, and
hence f . Moreover,

rn D rn�2�qnrn�1 D rn�2�qn.rn�3�qn�1rn�2/D �� � D af Cbg

and so every common divisor of f and g divides rn: we have shown rn D gcd.f;g/.
Let af Cbg D d . If deg.a/� deg.g/, write aD gqC r with deg.r/ < deg.g/; then

rf C .bCqf /g D d;

and bCqf automatically has degree < deg.f /.
PARI knows Euclidean division: typing divrem(13,5) in PARI returns Œ2;3�, meaning

that 13D 2�5C3, and gcd(m,n) returns the greatest common divisor of m and n.

1.9 Let I be a nonzero ideal in F ŒX�, and let f be a nonzero polynomial of least degree in
I ; then I D .f / (because F ŒX� is a Euclidean domain). When we choose f to be monic, i.e.,
to have leading coefficient one, it is uniquely determined by I . Thus, there is a one-to-one
correspondence between the nonzero ideals of F ŒX� and the monic polynomials in F ŒX�.
The prime ideals correspond to the irreducible monic polynomials.

1.10 Since F ŒX� is an integral domain, we can form its field of fractions F.X/. Its
elements are quotients f=g, f and g polynomials, g ¤ 0:

Factoring polynomials

The following results help in deciding whether a polynomial is reducible, and in finding its
factors.

PROPOSITION 1.11 Suppose r 2Q is a root of a polynomial

amX
m
Cam�1X

m�1
C�� �Ca0; ai 2 Z;

and let r D c=d , c;d 2 Z, gcd.c;d/D 1. Then cja0 and d jam:

PROOF. It is clear from the equation

amc
m
Cam�1c

m�1d C�� �Ca0d
m
D 0

that d jamcm, and therefore, d jam: Similarly, cja0. 2

EXAMPLE 1.12 The polynomial f .X/DX3�3X �1 is irreducible in QŒX� because its
only possible roots are˙1, and f .1/¤ 0¤ f .�1/.

PROPOSITION 1.13 (GAUSS’S LEMMA) Let f .X/ 2 ZŒX�. If f .X/ factors nontrivially
in QŒX�, then it factors nontrivially in ZŒX�.

PROOF. Let f D gh in QŒX� with g;h …Q. For suitable integers m and n, g1
def
Dmg and

h1
def
D nh have coefficients in Z, and so we have a factorization

mnf D g1 �h1 in ZŒX�.
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If a prime p divides mn, then, looking modulo p, we obtain an equation

0D g1 �h1 in FpŒX�.

Since FpŒX� is an integral domain, this implies that p divides all the coefficients of at least
one of the polynomials g1;h1, say g1, so that g1 D pg2 for some g2 2 ZŒX�. Thus, we have
a factorization

.mn=p/f D g2 �h1 in ZŒX�.
Continuing in this fashion, we can remove all the prime factors of mn, and so obtain a
nontrivial factorization of f in ZŒX�. 2

PROPOSITION 1.14 If f 2 ZŒX� is monic, then every monic factor of f in QŒX� lies in
ZŒX�.
PROOF. Let g be a monic factor of f in QŒX�, so that f D gh with h 2QŒX� also monic.
Let m;n be the positive integers with the fewest prime factors such that mg;nh 2 ZŒX�. As
in the proof of Gauss’s Lemma, if a prime p divides mn, then it divides all the coefficients
of at least one of the polynomials mg;nh, say mg, in which case it divides m because g is
monic. Now m

p
g 2 ZŒX�, which contradicts the definition of m. 2

REMARK 1.15 We sketch an alternative proof of Proposition 1.14. A complex number ˛ is
said to be an algebraic integer if it is a root of a monic polynomial in ZŒX�. Proposition 1.11
shows that every algebraic integer in Q lies in Z. The algebraic integers form a subring of
C — for an elementary proof of this, using nothing but the symmetric polynomials theorem
(5.35), see Chapter 1 of my notes on algebraic geometry. Now let ˛1; : : : ;˛m be the roots of
f in C. By definition, they are algebraic integers, and the coefficients of any monic factor of
f are polynomials in (certain of) the ˛i , and therefore are algebraic integers. If they lie in Q,
then they lie in Z.

PROPOSITION 1.16 (EISENSTEIN’S CRITERION) Let

f D amX
m
Cam�1X

m�1
C�� �Ca0; ai 2 ZI

suppose that there is a prime p such that:

˘ p does not divide am,
˘ p divides am�1; :::;a0,
˘ p2 does not divide a0.

Then f is irreducible in QŒX�.

PROOF. If f .X/ factors in QŒX�, then it factors in ZŒX�, say,

amX
m
Cam�1X

m�1
C�� �Ca0 D .brX

r
C�� �Cb0/.csX

s
C�� �C c0/

with bi ; ci 2 Z and r;s < m. Since p, but not p2, divides a0 D b0c0, p must divide exactly
one of b0, c0, say, b0. Now from the equation

a1 D b0c1Cb1c0;

we see that pjb1; and from the equation

a2 D b0c2Cb1c1Cb2c0;

that pjb2. By continuing in this way, we find that p divides b0;b1; : : : ;br , which contradicts
the condition that p does not divide am. 2
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The last three propositions hold with Z replaced by any unique factorization domain.

REMARK 1.17 There is an algorithm for factoring a polynomial in QŒX�. To see this,
consider f 2 QŒX�. Multiply f .X/ by a rational number so that it is monic, and then
replace it by Ddeg.f /f .X

D
/, with D equal to a common denominator for the coefficients

of f , to obtain a monic polynomial with integer coefficients. Thus we need consider only
polynomials

f .X/DXmCa1X
m�1
C�� �Cam; ai 2 Z:

From the fundamental theorem of algebra (see 5.6 below), we know that f splits
completely in CŒX�:

f .X/D

mY
iD1

.X �˛i /; ˛i 2 C:

From the equation
0D f .˛i /D ˛

m
i Ca1˛

m�1
i C�� �Cam,

it follows that j˛i j is less than some bound depending only on the degree and coefficients of
f ; in fact,

j˛i j �maxf1;mBg, B Dmax jai j.

Now if g.X/ is a monic factor of f .X/, then its roots in C are certain of the ˛i , and its
coefficients are symmetric polynomials in its roots. Therefore, the absolute values of the
coefficients of g.X/ are bounded in terms of the degree and coefficients of f . Since they are
also integers (by 1.14), we see that there are only finitely many possibilities for g.X/. Thus,
to find the factors of f .X/ we (better PARI) have to do only a finite amount of checking.2

Therefore, we need not concern ourselves with the problem of factoring polynomi-
als in the rings QŒX� or FpŒX� since PARI knows how to do it. For example, typing
content(6*X^2+18*X-24) in PARI returns 6, and factor(6*X^2+18*X-24) returns
X �1 and XC4, showing that

6X2C18X �24D 6.X �1/.XC4/

in QŒX�. Typing factormod(X^2+3*X+3,7) returns XC4 and XC6, showing that

X2C3XC3D .XC4/.XC6/

in F7ŒX�.

REMARK 1.18 One other observation is useful. Let f 2 ZŒX�. If the leading coefficient of
f is not divisible by a prime p, then a nontrivial factorization f D gh in ZŒX� will give a
nontrivial factorization xf D xgxh in FpŒX�. Thus, if f .X/ is irreducible in FpŒX� for some
prime p not dividing its leading coefficient, then it is irreducible in ZŒX�. This test is very
useful, but it is not always effective: for example, X4�10X2C1 is irreducible in ZŒX� but
it is reducible3 modulo every prime p.

2Of course, there are faster methods than this. The Berlekamp–Zassenhaus algorithm factors the polynomial
over certain suitable finite fields Fp , lifts the factorizations to rings Z=pmZ for some m, and then searches for
factorizations in ZŒX� with the correct form modulo pm.

3Here is a proof using only that the product of two nonsquares in F�p is a square, which follows from the
fact that F�p is cyclic (see Exercise 1-3). If 2 is a square in Fp , then

X4�10X2C1D .X2�2
p
2X �1/.X2C2

p
2X �1/:
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Extension fields

A field E containing a field F is called an extension field of F (or simply an extension of
F ). Such an E can be regarded as an F -vector space, and we write ŒEWF � for the dimension,
possibly infinite, of E as an F -vector space. This dimension is called the degree of E over
F . We say that E is finite over F when it has finite degree over F:

EXAMPLE 1.19 (a) The field of complex numbers C has degree 2 over R (basis f1; ig/:
(b) The field of real numbers R has infinite degree over Q: the field Q is countable,

and so every finite-dimensional Q-vector space is also countable, but a famous argument of
Cantor shows that R is not countable.

(c) The field of Gaussian numbers

Q.i/ def
D faCbi 2 C j a;b 2Qg

has degree 2 over Q (basis f1; ig).
(d) The field F.X/ has infinite degree over F ; in fact, even its subspace F ŒX� has

infinite dimension over F (basis 1;X;X2; : : :).

PROPOSITION 1.20 (MULTIPLICATIVITY OF DEGREES) Let L � E � F (all fields and
subfields). Then L=F is of finite degree if and only if L=E and E=F are both of finite
degree, in which case

ŒLWF �D ŒLWE�ŒEWF �:

PROOF. If L is of finite degree over F , then it is certainly of finite degree over E. Moreover,
E, being a subspace of a finite dimensional F -vector space, is also finite dimensional.

Thus, assume that L=E and E=F are of finite degree, and let .ei /1�i�m be a basis for E
as an F -vector space and let .lj /1�j�n be a basis for L as an E-vector space. To complete
the proof, it suffices to show that .ei lj /1�i�m;1�j�n is a basis for L over F , because then
L will be finite over F of the predicted degree.

First, .ei lj /i;j spans L. Let  2 L. Then, because .lj /j spans L as an E-vector space,

 D
P
j˛j lj ; some ˛j 2E;

and because .ei /i spans E as an F -vector space,

˛j D
P
iaij ei ; some aij 2 F :

On putting these together, we find that

 D
P
i;jaij ei lj :

Second, .ei lj /i;j is linearly independent. A linear relation
P
aij ei lj D 0, aij 2 F ,

can be rewritten
P
j .
P
i aij ei /lj D 0. The linear independence of the lj ’s now shows thatP

i aij ei D 0 for each j , and the linear independence of the ei ’s shows that each aij D 0.2

If 3 is a square in Fp , then

X4�10X2C1D .X2�2
p
3XC1/.X2C2

p
3XC1/:

If neither 2 nor 3 are squares, 6 will be a square in Fp , and

X4�10X2C1D .X2� .5C2
p
6//.X2� .5�2

p
6//:

The general study of such polynomials requires nonelementary methods. See, for example, the paper
Brandl, R., Amer. Math. Monthly, 93 (1986), pp286–288, which proves that every nonprime integer n � 1
occurs as the degree of a polynomial in ZŒX� that is irreducible over Z but reducible modulo all primes:
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Construction of some extension fields

Let f .X/ 2 F ŒX� be a monic polynomial of degree m, and let .f / be the ideal gener-
ated by f . Consider the quotient ring F ŒX�=.f .X//, and write x for the image of X in
F ŒX�=.f .X//, i.e., x is the coset XC .f .X//. Then:

(a) The map
P.X/ 7! P.x/WF ŒX�! F Œx�

is a surjective homomorphism in which f .X/ maps to 0. Therefore, f .x/D 0.
(b) From the division algorithm, we know that each element g of F ŒX�=.f / is rep-

resented by a unique polynomial r of degree < m. Hence each element of F Œx� can be
expressed uniquely as a sum

a0Ca1xC�� �Cam�1x
m�1; ai 2 F: (*)

(c) To add two elements, expressed in the form (*), simply add the corresponding
coefficients.

(d) To multiply two elements expressed in the form (*), multiply in the usual way, and
use the relation f .x/D 0 to express the monomials of degree �m in x in terms of lower
degree monomials.

(e) Now assume f .X/ is irreducible. To find the inverse of an element ˛ 2 F Œx�, use (b)
to write ˛ D g.x/ with g.X/ is a polynomial of degree �m�1, and use Euclid’s algorithm
in F ŒX� to obtain polynomials a.X/ and b.X/ such that

a.X/f .X/Cb.X/g.X/D d.X/

with d.X/ the gcd of f and g. In our case, d.X/ is 1 because f .X/ is irreducible and
degg.X/ < degf .X/. When we replace X with x, the equality becomes

b.x/g.x/D 1:

Hence b.x/ is the inverse of g.x/.
From these observations, we can conclude:

1.21 For a monic irreducible polynomial f .X/ of degree m in F ŒX�,

F Œx�D F ŒX�=.f .X//

is a field of degree m over F . Moreover, computations in F Œx� reduce to computations in F .

EXAMPLE 1.22 Let f .X/DX2C1 2 RŒX�. Then RŒx� has:
elements: aCbx, a;b 2 RI
addition: .aCbx/C .a0Cb0x/D .aCa0/C .bCb0/xI
multiplication: .aCbx/.a0Cb0x/D .aa0�bb0/C .ab0Ca0b/x:

We usually write i for x and C for RŒx�:

EXAMPLE 1.23 Let f .X/ D X3 � 3X � 1 2 QŒX�. We observed in (1.12) that this is
irreducible over Q, and so QŒx� is a field. It has basis f1;x;x2g as a Q-vector space. Let

ˇ D x4C2x3C3 2QŒx�:
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Then using that x3�3x�1D 0, we find that ˇ D 3x2C7xC5. Because X3�3X �1 is
irreducible,

gcd.X3�3X �1;3X2C7XC5/D 1:

In fact, Euclid’s algorithm gives

.X3�3X �1/
�
�7
37
XC 29

111

�
C .3X2C7XC5/

�
7
111
X2� 26

111
XC 28

111

�
D 1:

Hence
.3x2C7xC5/

�
7
111
x2� 26

111
xC 28

111

�
D 1;

and we have found the inverse of ˇ:
We can also do this in PARI: beta=Mod(X^4+2*X^3+3,X^3-3*X-1) reveals that ˇ D

3x2C7xC5 in QŒx�, and beta^(-1) reveals that ˇ�1 D 7
111
x2� 26

111
xC 28

111
.

Stem fields

Let f be a monic irreducible polynomial in F ŒX�. We say that F Œ˛� is a stem field4 for f if
f .˛/D 0. Then

˛$ xWF Œ˛�' F Œx�
def
D F ŒX�=.f /:

Therefore, stem fields always exist, and each element of a stem field F Œ˛� for f has a unique
expression

a0Ca1˛C�� �Cam�1˛
m�1; ai 2 F; mD deg.f /,

i.e., 1;˛; : : : ;˛m�1 is a basis for F Œ˛� over F . Arithmetic in F Œ˛� can be performed using
the same rules as in F Œx�. If F Œ˛0� is a second stem field for f , then there is a unique
F -isomorphism F Œ˛�! F Œ˛0� sending ˛ to ˛0.

The subring generated by a subset

An intersection of subrings of a ring is again a ring. Let F be a subfield of a field E, and let
S be a subset of E. The intersection of all the subrings of E containing F and S is evidently
the smallest subring of E containing F and S . We call it the subring of E generated by F
and S (or generated over F by S ), and we denote it F ŒS�. When S D f˛1; :::;˛ng, we write
F Œ˛1; :::;˛n� for F ŒS�. For example, CD RŒ

p
�1�.

LEMMA 1.24 The ring F ŒS� consists of the elements of E that can be expressed as finite
sums of the form X

ai1���in˛
i1
1 � � �˛

in
n ; ai1���in 2 F; ˛i 2 S: (*)

PROOF. Let R be the set of all such elements. Evidently, R is a subring containing F and S
and contained in every other such subring. Therefore R equals F ŒS�. 2

EXAMPLE 1.25 The ring QŒ��, � D 3:14159:::, consists of the complex numbers that can
be expressed as a finite sum

a0Ca1�Ca2�
2
C�� �Can�

n; ai 2Q:

The ring QŒi � consists of the complex numbers of the form aCbi , a;b 2Q.
4Following A. Albert, Modern Higher Algebra, 1937, who calls the splitting field of a polynomial its root

field. More formally, a stem field for f is a pair .E;˛/ consisting of a field E containing F and a generator ˛
for E over F such that f .˛/D 0.
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Note that the expression of an element in the form (*) will not be unique in general. This
is so already in RŒi �.

LEMMA 1.26 Let R be an integral domain containing a subfield F (as a subring). If R is
finite dimensional when regarded as an F -vector space, then it is a field.

PROOF. Let ˛ be a nonzero element of R — we have to show that ˛ has an inverse in R.
The map x 7! ˛xWR!R is an injective linear map of finite dimensional F -vector spaces,
and is therefore surjective. In particular, there is an element ˇ 2R such that ˛ˇ D 1. 2

Note that the lemma applies to subrings (containing F ) of an extension field E of F of
finite degree.

The subfield generated by a subset

An intersection of subfields of a field is again a field. Let F be a subfield of a field E, and let
S be a subset of E. The intersection of all the subfields of E containing F and S is evidently
the smallest subfield of E containing F and S . We call it the subfield of E generated by
F and S (or generated over F by S), and we denote it F.S/. It is the field of fractions of
F ŒS� in E, since this is a subfield of E containing F and S and contained in every other
such field. When S D f˛1; :::;˛ng, we write F.˛1; :::;˛n/ for F.S/. Thus, F Œ˛1; : : : ;˛n�
consists of all elements of E that can be expressed as polynomials in the ˛i with coefficients
in F , and F.˛1; : : : ;˛n/ consists of all elements of E that can be expressed as the quotient
of two such polynomials.

Lemma 1.26 shows that F ŒS� is already a field if it is finite dimensional over F , in which
case F.S/D F ŒS�.

EXAMPLE 1.27 The field Q.�/, � D 3:14: : :, consists of the complex numbers that can be
expressed as a quotient

g.�/=h.�/; g.X/;h.X/ 2QŒX�; h.X/¤ 0:

The ring QŒi � is already a field.

An extension E of F is said to be simple if E D F.˛/ some ˛ 2E. For example, Q.�/
and QŒi � are simple extensions of Q:

Let F and F 0 be subfields of a field E. The intersection of the subfields of E containing
F and F 0 is evidently the smallest subfield of E containing both F and F 0. We call it the
composite of F and F 0 in E, and we denote it F �F 0. It can also be described as the subfield
of E generated over F by F 0, or the subfield generated over F 0 by F :

F.F 0/D F �F 0 D F 0.F /.

Algebraic and transcendental elements

For a field F and an element ˛ of an extension field E, we have a homomorphism

f .X/ 7! f .˛/WF ŒX�!E:

There are two possibilities.
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CASE 1: The kernel of the map is .0/, so that, for f 2 F ŒX�,

f .˛/D 0 H) f D 0 (in F ŒX�).

In this case, we say that ˛ transcendental over F . The homomorphism F ŒX�! F Œ˛� is an
isomorphism, and it extends to an isomorphism F.X/! F.˛/.

CASE 2: The kernel is¤ .0/, so that g.˛/D 0 for some nonzero g 2 F ŒX�. In this case,
we say that ˛ is algebraic over F . The polynomials g such that g.˛/D 0 form a nonzero
ideal in F ŒX�, which is generated by the monic polynomial f of least degree such f .˛/D 0.
We call f the minimum polynomial of ˛ over F . It is irreducible, because otherwise there
would be two nonzero elements of E whose product is zero. The minimum polynomial is
characterized as an element of F ŒX� by each of the following sets of conditions:

f is monic; f .˛/D 0 and divides every other polynomial g in F ŒX� with g.˛/D 0.
f is the monic polynomial of least degree such that f .˛/D 0I
f is monic, irreducible, and f .˛/D 0.

Note that g.X/ 7! g.˛/ defines an isomorphism F ŒX�=.f /! F Œ˛�. Since the first is a
field, so also is the second:

F.˛/D F Œ˛�:

Thus, F Œ˛� is a stem field for f .

EXAMPLE 1.28 Let ˛ 2 C be such that ˛3 � 3˛� 1 D 0. Then X3 � 3X � 1 is monic,
irreducible, and has ˛ as a root, and so it is the minimum polynomial of ˛ over Q. The set
f1;˛;˛2g is a basis for QŒ˛� over Q. The calculations in Example 1.23 show that if ˇ is the
element ˛4C2˛3C3 of QŒ˛�, then ˇ D 3˛2C7˛C5, and

ˇ�1 D 7
111
˛2� 26

111
˛C 28

111
:

REMARK 1.29 PARI knows how to compute in QŒ˛�. For example, factor(X^4+4) re-
turns the factorization

X4C4D .X2�2XC2/.X2C2XC2/

in QŒX�. Now type nf=nfinit(a^2+2*a+2) to define a number field “nf” generated over
Q by a root a of X2C2XC1. Then nffactor(nf,x^4+4) returns the factorization

X4C4D .X �a�2/.X �a/.XCa//.XCaC2/;

in QŒa�.

A field extension E=F is said to be algebraic, and E is said to be algebraic over F , if
all elements of E are algebraic over F ; otherwise it is said to be transcendental (or E is
said to be transcendental over F ). Thus, E=F is transcendental if at least one element of
E is transcendental over F .

PROPOSITION 1.30 A field extension E=F is finite if and only if E is algebraic and finitely
generated (as a field) over F .

PROOF. H): To say that ˛ is transcendental over F amounts to saying that its powers
1;˛;˛2; : : : are linearly independent over F . Therefore, if E is finite over F , then it is
algebraic over F . It remains to show that E is finitely generated over F . If E D F , then it
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is generated by the empty set. Otherwise, there exists an ˛1 2EXF . If E ¤ F Œ˛1�, there
exists an ˛2 2EXF Œ˛1�, and so on. Since

ŒF Œ˛1�WF � < ŒF Œ˛1;˛2�WF � < � � �< ŒEWF �

this process terminates.
(H: LetEDF.˛1; :::;˛n/with ˛1;˛2; : : :˛n algebraic overF . The extensionF.˛1/=F

is finite because ˛1 is algebraic over F , and the extension F.˛1;˛2/=F.˛1/ is finite because
˛2 is algebraic over F and hence over F.˛1/. Thus, by ( 1.20), F.˛1;˛2/ is finite over F .
Now repeat the argument. 2

COROLLARY 1.31 (a) If E is algebraic over F , then every subring R of E containing F is
a field.

(b) If inL�E �F , L is algebraic overE andE is algebraic over F , thenL is algebraic
over F:

PROOF. (a) We observed above (p. 17), that if ˛ is algebraic over F , then F Œ˛� is a field. If
˛ 2R, then F Œ˛��R, and so ˛ has an inverse in R.

(b) Every ˛ 2 L is a root of a monic polynomial f D XmCam�1Xm�1C�� �Ca0 2
EŒX�. Now each of the extensions F Œa0; : : : ;am�1;˛� � F Œa0; : : : ;am�1� � F is finite
(1.20), and so F Œa0; : : : ;am�1;˛� is finite (hence algebraic) over F . 2

Transcendental numbers

A complex number is said to be algebraic or transcendental according as it is algebraic or
transcendental over Q. First some history:

1844: Liouville showed that certain numbers, now called Liouville numbers, are tran-
scendental.

1873: Hermite showed that e is transcendental.
1874: Cantor showed that the set of algebraic numbers is countable, but that R is not

countable. Thus most numbers are transcendental (but it is usually very difficult to prove
that any particular number is transcendental).5

1882: Lindemann showed that � is transcendental.
1934: Gel’fond and Schneider independently showed that ˛ˇ is transcendental if ˛ and

ˇ are algebraic, ˛ ¤ 0;1, and ˇ …Q. (This was the seventh of Hilbert’s famous problems.)
2004: Euler’s constant

 D lim
n!1

 
nX
kD1

1=k� logn

!

has not yet been proven to be transcendental or even irrational.
2004: The numbers eC� and e�� are surely transcendental, but again they have not

even been proved to be irrational!

PROPOSITION 1.32 The set of algebraic numbers is countable.

5In 1873 Cantor proved the rational numbers countable. . . . He also showed that the algebraic numbers. . .
were countable. However his attempts to decide whether the real numbers were countable proved harder. He
had proved that the real numbers were not countable by December 1873 and published this in a paper in 1874
(MacTutor).

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Cantor.html
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PROOF. Define the height h.r/ of a rational number to be max.jmj; jnj/, where r Dm=n
is the expression of r in its lowest terms. There are only finitely many rational numbers
with height less than a fixed number N . Let A.N/ be the set of algebraic numbers whose
minimum equation over Q has degree �N and has coefficients of height <N . Then A.N/
is finite for each N . Count the elements of A.10/; then count the elements of A.100/; then
count the elements of A.1000/, and so on.6 2

A typical Liouville number is
P1
nD0

1
10nŠ

— in its decimal expansion there are in-
creasingly long strings of zeros. We prove that the analogue of this number in base 2 is
transcendental.

THEOREM 1.33 The number ˛ D
P 1

2nŠ
is transcendental.

PROOF. 7Suppose not, and let

f .X/DXd Ca1X
d�1
C�� �Cad ; ai 2Q;

be the minimum polynomial of ˛ over Q. Thus ŒQŒ˛�WQ�D d . Choose a nonzero integer D
such that D �f .X/ 2 ZŒX�.

Let ˙N D
PN
nD0

1
2nŠ

, so that ˙N ! ˛ as N !1, and let xN D f .˙N /. If ˛ is
rational,8 f .X/DX �˛; otherwise, f .X/; being irreducible of degree > 1, has no rational
root. Since ˙N ¤ ˛, it can’t be a root of f .X/, and so xN ¤ 0. Evidently, xN 2Q; in fact
.2NŠ/dDxN 2 Z, and so

j.2NŠ/dDxN j � 1. (*)

From the fundamental theorem of algebra (see 5.6 below), we know that f splits in
CŒX�, say,

f .X/D

dY
iD1

.X �˛i /; ˛i 2 C; ˛1 D ˛;

and so

jxN j D

dY
iD1

j˙N �˛i j � j˙N �˛1j.˙N CM/d�1; where M Dmax
i¤1
f1; j˛i jg.

But

j˙N �˛1j D

1X
nDNC1

1

2nŠ
�

1

2.NC1/Š

 
1X
nD0

1

2n

!
D

2

2.NC1/Š
:

Hence
jxN j �

2

2.NC1/Š
� .˙N CM/d�1

and

j.2NŠ/dDxN j � 2 �
2d �NŠD

2.NC1/Š
� .˙N CM/d�1

which tends to 0 as N !1 because 2d �NŠ

2.NC1/Š
D

�
2d

2NC1

�NŠ
! 0. This contradicts (*). 2

6More precisely, choose a bijection from some segment Œ0;n.1/� of N onto A.10/; extend it to a bijection
from a segment Œ0;n.2/� onto A.100/, and so on.

7This proof, which I learnt from David Masser, also works for
P 1
anŠ

for every integer a � 2.
8In fact ˛ is not rational because its expansion to base 2 is not periodic.
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Constructions with straight-edge and compass.

The Greeks understood integers and the rational numbers. They were surprised to find
that the length of the diagonal of a square of side 1, namely,

p
2, is not rational. They

thus realized that they needed to extend their number system. They then hoped that the
“constructible” numbers would suffice. Suppose we are given a length, which we call 1, a
straight-edge, and a compass (device for drawing circles). A real number (better a length) is
constructible if it can be constructed by forming successive intersections of

˘ lines drawn through two points already constructed, and
˘ circles with centre a point already constructed and radius a constructed length.

This led them to three famous questions that they were unable to answer: is it possible
to duplicate the cube, trisect an angle, or square the circle by straight-edge and compass
constructions? We’ll see that the answer to all three is negative.

Let F be a subfield of R. For a positive a 2 F ,
p
a denotes the positive square root of a

in R. The F -plane is F �F � R�R. We make the following definitions:

An F -line is a line in R�R through two points in the F -plane. These are the
lines given by equations

axCbyC c D 0; a;b;c 2 F:

An F -circle is a circle in R�R with centre an F -point and radius an element
of F . These are the circles given by equations

.x�a/2C .y�b/2 D c2; a;b;c 2 F:

LEMMA 1.34 Let L¤ L0 be F -lines, and let C ¤ C 0 be F -circles.

(a) L\L0 D ; or consists of a single F -point.
(b) L\C D ; or consists of one or two points in the F Œ

p
e�-plane, some e 2 F , e > 0.

(c) C \C 0 D ; or consists of one or two points in the F Œ
p
e�-plane, some e 2 F , e > 0.

PROOF. The points in the intersection are found by solving the simultaneous equations, and
hence by solving (at worst) a quadratic equation with coefficients in F . 2

LEMMA 1.35 (a) If c and d are constructible, then so also are cC d , �c, cd , and c
d

.d ¤ 0/.
(b) If c > 0 is constructible, then so also is

p
c.

SKETCH OF PROOF. First show that it is possible to construct a line perpendicular to a given
line through a given point, and then a line parallel to a given line through a given point.
Hence it is possible to construct a triangle similar to a given one on a side with given length.
By an astute choice of the triangles, one constructs cd and c�1. For (b), draw a circle of
radius cC1

2
and centre .cC1

2
;0/, and draw a vertical line through the point AD .1;0/ to meet

the circle at P . The length AP is
p
c. (For more details, see Artin, M., 1991, Algebra,

Prentice Hall, Chapter 13, Section 4.) 2

THEOREM 1.36 (a) The set of constructible numbers is a field.
(b) A number ˛ is constructible if and only if it is contained in a subfield of R of the form

QŒ
p
a1; : : : ;

p
ar �; ai 2QŒ

p
a1; : : : ;

p
ai�1�; ai > 0.
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PROOF. (a) Immediate from (a) of Lemma 1.35.
(b) It follows from Lemma 1.34 that every constructible number is contained in such

a field QŒpa1; : : : ;
p
ar �. Conversely, if all the elements of QŒpa1; : : : ;

p
ai�1� are con-

structible, then
p
ai is constructible (by 1.35b), and so all the elements of QŒpa1; : : : ;

p
ai �

are constructible (by (a)). Applying this for i D 0;1; : : :, we find that all the elements of
QŒpa1; : : : ;

p
ar � are constructible. 2

COROLLARY 1.37 If ˛ is constructible, then ˛ is algebraic over Q, and ŒQŒ˛�WQ� is a power
of 2.

PROOF. According to Proposition 1.20, ŒQŒ˛�WQ� divides

ŒQŒ
p
a1� � � � Œ

p
ar �WQ�

and ŒQŒpa1; : : : ;
p
ar �WQ� is a power of 2. 2

COROLLARY 1.38 It is impossible to duplicate the cube by straight-edge and compass
constructions.

PROOF. The problem is to construct a cube with volume 2. This requires constructing the
real root of the polynomial X3 � 2. But this polynomial is irreducible (by Eisenstein’s
criterion 1.16 for example), and so ŒQŒ 3

p
2�WQ�D 3. 2

COROLLARY 1.39 In general, it is impossible to trisect an angle by straight-edge and
compass constructions.

PROOF. Knowing an angle is equivalent to knowing the cosine of the angle. Therefore, to
trisect 3˛, we have to construct a solution to

cos3˛ D 4cos3˛�3cos˛:

For example, take 3˛ D 60 degrees. As cos60ı D 1
2

, to construct ˛, we have to solve
8x3�6x�1D 0, which is irreducible (apply 1.11). 2

COROLLARY 1.40 It is impossible to square the circle by straight-edge and compass con-
structions.

PROOF. A square with the same area as a circle of radius r has side
p
�r . Since � is

transcendental9, so also is
p
� . 2

We now consider another famous old problem, that of constructing a regular polygon.
Note that Xm�1 is not irreducible; in fact

Xm�1D .X �1/.Xm�1CXm�2C�� �C1/:

LEMMA 1.41 If p is prime then Xp�1C�� �C1 is irreducible; hence QŒe2�i=p� has degree
p�1 over Q:

9Proofs of this can be found in many books on number theory, for example, in 11.14 of
Hardy, G. H., and Wright, E. M., An Introduction to the Theory of Numbers, Fourth Edition, Oxford, 1960.
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PROOF. Let f .X/D .Xp�1/=.X �1/DXp�1C�� �C1; then

f .XC1/D
.XC1/p�1

X
DXp�1C�� �Ca2X

2
Ca1XCp;

with ai D
�
p
iC1

�
. Now pjai for i D 1; :::;p�2, and so f .XC1/ is irreducible by Eisenstein’s

criterion 1.16. This implies that f .X/ is irreducible. 2

In order to construct a regular p-gon, p an odd prime, we need to construct

cos 2�
p
D .e

2�i
p C .e

2�i
p /�1/=2:

But
QŒe

2�i
p ��QŒcos 2�

p
��Q;

and the degree of QŒe
2�i
p � over QŒcos 2�

p
� is 2 — the equation

˛2�2cos 2�
p
�˛C1D 0; ˛ D e

2�i
p ;

shows that it is � 2, and it is not 1 because QŒe
2�i
p � is not contained in R. Hence

ŒQŒcos 2�
p
�WQ�D

p�1

2
:

Thus, if the regular p-gon is constructible, then .p�1/=2D 2k for some k (later (5.12),
we shall see a converse), which implies p D 2kC1C1. But 2rC1 can be a prime only if r
is a power of 2, because otherwise r has an odd factor t and for t odd,

Y t C1D .Y C1/.Y t�1�Y t�2C�� �C1/I

whence
2st C1D .2sC1/..2s/t�1� .2s/t�2C�� �C1/.

Thus if the regular p-gon is constructible, then p D 22
k

C1 for some k. Fermat conjectured
that all numbers of the form 22

k

C1 are prime, and claimed to show that this is true for k � 5
— for this reason primes of this form are called Fermat primes. For 0� k � 4, the numbers
p D 3;5;17;257;65537, are prime but Euler showed that 232C 1D .641/.6700417/, and
we don’t know of any more Fermat primes.

Gauss showed that10

cos
2�

17
D�

1

16
C
1

16

p
17C

1

16

q
34�2

p
17C

1

8

r
17C3

p
17�

q
34�2

p
17�2

q
34C2

p
17

when he was 18 years old. This success encouraged him to become a mathematician.

10Or perhaps that

cos 2�17 D�
1
16 C

1
16

p
17C 1

16

p
34�2

p
17C 1

8

q
17C3

p
17�2

p
34�2

p
17�

p
170�26

p
17

— both expressions are correct.
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Algebraically closed fields

We say that a polynomial splits in F ŒX� (or, more loosely, in F ) if it is a product of
polynomials of degree 1 in F ŒX�.

PROPOSITION 1.42 For a field ˝, the following statements are equivalent:

(a) Every nonconstant polynomial in ˝ŒX� splits in ˝ŒX�.
(b) Every nonconstant polynomial in ˝ŒX� has at least one root in ˝.
(c) The irreducible polynomials in ˝ŒX� are those of degree 1.
(d) Every field of finite degree over ˝ equals ˝.

PROOF. The implications (a)H) (b)H) (c)H) (a) are obvious.
(c)H) (d). Let E be a finite extension of ˝. The minimum polynomial of any element ˛ of
E has degree 1, and so ˛ 2˝.
(d)H) (c). Let f be an irreducible polynomial in ˝ŒX�. Then ˝ŒX�=.f / is an extension
field of ˝ of degree deg.f / (see 1.30), and so deg.f /D 1. 2

DEFINITION 1.43 (a) A field˝ is said to be algebraically closed if it satisfies the equivalent
statements of Proposition 1.42.

(b) A field ˝ is said to be an algebraic closure of a subfield F when it is algebraically
closed and algebraic over F .

For example, the fundamental theorem of algebra (see 5.6 below) says that C is alge-
braically closed. It is an algebraic closure of R.

PROPOSITION 1.44 If ˝ is algebraic over F and every polynomial f 2 F ŒX� splits in
˝ŒX�, then ˝ is algebraically closed (hence an algebraic closure of F ).

PROOF. Let f be a nonconstant polynomial in ˝ŒX�. We have to show that f has a root in
˝. We know (see 1.21) that f has a root ˛ in some finite extension ˝ 0 of ˝. Set

f D anX
n
C�� �Ca0, ai 2˝;

and consider the fields

F � F Œa0; : : : ;an�� F Œa0; : : : ;an;˛�:

Each extension is algebraic and finitely generated, and hence finite (by 1.30). Therefore ˛
lies in a finite extension of F , and so is algebraic over F — it is a root of a polynomial g
with coefficients in F . By assumption, g splits in ˝ŒX�, and so the roots of g in ˝ 0 all lie in
˝. In particular, ˛ 2˝: 2

PROPOSITION 1.45 Let ˝ � F ; then

f˛ 2˝ j ˛ algebraic over F g

is a field.

PROOF. If ˛ and ˇ are algebraic over F , then F Œ˛;ˇ� is a field (by 1.31) of finite degree
over F (by 1.30). Thus, every element of F Œ˛;ˇ� is algebraic over F , including ˛˙ˇ, ˛=ˇ,
˛ˇ. 2
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The field constructed in the proposition is called the algebraic closure of F in ˝.

COROLLARY 1.46 Let ˝ be an algebraically closed field. For any subfield F of ˝, the
algebraic closure of F in ˝ is an algebraic closure of F:

PROOF. From its definition, we see that it is algebraic over F and every polynomial in F ŒX�
splits in it. Now Proposition 1.44 shows that it is an algebraic closure of F . 2

Thus, when we admit the fundamental theorem of algebra (5.6), every subfield of C has
an algebraic closure (in fact, a canonical algebraic closure). Later (Chapter 6) we shall prove
(using the axiom of choice) that every field has an algebraic closure.

Exercises

Exercises marked with an asterisk were required to be handed in.

1-1 (*) Let E D QŒ˛�, where ˛3�˛2C˛C 2 D 0. Express .˛2C˛C 1/.˛2�˛/ and
.˛�1/�1 in the form a˛2Cb˛C c with a;b;c 2Q.

1-2 (*) Determine ŒQ.
p
2;
p
3/WQ�.

1-3 (*) Let F be a field, and let f .X/ 2 F ŒX�.

(a) For every a 2 F , show that there is a polynomial q.X/ 2 F ŒX� such that

f .X/D q.X/.X �a/Cf .a/:

(b) Deduce that f .a/D 0 if and only if .X �a/jf .X/.
(c) Deduce that f .X/ can have at most degf roots.
(d) Let G be a finite abelian group. If G has at most m elements of order dividing m for

each divisor m of .GW1/, show that G is cyclic.
(e) Deduce that a finite subgroup of F �, F a field, is cyclic.

1-4 (*) Show that with straight-edge, compass, and angle-trisector, it is possible to con-
struct a regular 7-gon.



CHAPTER 2
Splitting Fields; Multiple Roots

Maps from simple extensions.

Let E and E 0 be fields containing F . An F -homomorphism is a homomorphism

'WE!E 0

such that '.a/D a for all a 2 F . Thus an F -homorphism ' maps a polynomialX
ai1���im˛

i1
1 � � �˛

im
m ; ai1���im 2 F;

to X
ai1���im'.˛1/

i1 � � �'.˛m/
im :

An F -isomorphism is a bijective F -homomorphism. Note that if E and E 0 have the same
finite degree over F , then every F -homomorphism is an F -isomorphism.

PROPOSITION 2.1 Let F.˛/ be a simple field extension of a field F , and let ˝ be a second
field containing F .

(a) Let ˛ be transcendental over F . For every F -homomorphism 'WF.˛/!˝, '.˛/ is
transcendental over F , and the map ' 7! '.˛/ defines a one-to-one correspondence

fF -homomorphisms 'WF.˛/!˝g $ felements of ˝ transcendental over F g:

(b) Let ˛ be algebraic overF with minimum polynomial f .X/. For everyF -homomorphism
'WF Œ˛�!˝, '.˛/ is a root of f .X/ in ˝, and the map ' 7! '.˛/ defines a one-to-
one correspondence

fF -homomorphisms 'WF Œ˛�!˝g $ froots of f in ˝g:

In particular, the number of such maps is the number of distinct roots of f in ˝.

PROOF. (a) To say that ˛ is transcendental over F means that F Œ˛� is isomorphic to the
polynomial ring in the symbol ˛ with coefficients in F . For every  2˝, there is a unique
F -homomorphism 'WF Œ˛�! ˝ sending ˛ to  (see 1.5). This extends to the field of
fractions F.˛/ of F Œ˛� if and only if all nonzero elements of F Œ˛� are sent to nonzero
elements of ˝, which is so if and only if  is transcendental.

(b) Let f .X/D
P
aiX

i , and consider an F -homomorphism 'WF Œ˛�!˝. On applying
' to the equation

P
ai˛

i D 0, we obtain the equation
P
ai'.˛/

i D 0, which shows that

25
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'.˛/ is a root of f .X/ in ˝. Conversely, if  2 ˝ is a root of f .X/, then the map
F ŒX�!˝, g.X/ 7! g./, factors through F ŒX�=.f .X//. When composed with the inverse
of the isomorphismXCf .X/ 7! ˛WF ŒX�=.f .X//!F Œ˛�, this becomes a homomorphism
F Œ˛�!˝ sending ˛ to  . 2

We shall need a slight generalization of this result.

PROPOSITION 2.2 Let F.˛/ be a simple field extension of a field F , and let '0WF !˝ be
a homomorphism of F into a second field ˝.

(a) If ˛ is transcendental over F , then the map ' 7! '.˛/ defines a one-to-one correspon-
dence

fextensions 'WF.˛/!˝ of '0g $ felements of ˝ transcendental over '0.F /g:

(b) If ˛ is algebraic over F , with minimum polynomial f .X/, then the map ' 7! '.˛/

defines a one-to-one correspondence

fextensions 'WF Œ˛�!˝ of '0g $ froots of '0f in ˝g:

In particular, the number of such maps is the number of distinct roots of '0f in ˝.

By '0f we mean the polynomial obtained by applying '0 to the coefficients of f :
if f D

P
aiX

i then '0f D
P
'.ai /X

i . By an extension of '0 to F.˛/ we mean a
homomorphism 'WF.˛/!˝ such that 'jF D '0.

The proof of the proposition is essentially the same as that of the preceding proposition.

Splitting fields

Let f be a polynomial with coefficients in F . A field E containing F is said to split f if f
splits in EŒX�: f .X/D

Qm
iD1.X �˛i / with ˛i 2E. If, in addition, E is generated by the

roots of f ,
E D F Œ˛1; : : : ;˛m�;

then it is called a splitting or root field for f . Note that
Q
fi .X/

mi (mi � 1) and
Q
fi .X/

have the same splitting fields. Also, that if f has deg.f /� 1 roots in E, then it splits in
EŒX�.

EXAMPLE 2.3 (a) Let f .X/D aX2CbXC c 2QŒX�, and let ˛ D
p
b2�4ac. The sub-

field QŒ˛� of C is a splitting field for f .
(b) Let f .X/ D X3CaX2C bX C c 2 QŒX� be irreducible, and let ˛1;˛2;˛3 be its

roots in C. Since the nonreal roots of f occur in conjugate pairs, either 1 or 3 of the ˛i are
real. Then QŒ˛1;˛2;˛3�DQŒ˛1;˛2� is a splitting field for f .X/. Note that ŒQŒ˛1�WQ�D 3
and that ŒQŒ˛1;˛2�WQŒ˛1��D 1 or 2, and so ŒQŒ˛1;˛2�WQ�D 3 or 6. We’ll see later (4.2) that
the degree is 3 if and only if the discriminant of f .X/ is a square in Q. For example, the
discriminant of X3CbXC c is �4b3� 27c2, and so the splitting field of X3C 10XC 1
has degree 6 over Q.

PROPOSITION 2.4 Every polynomial f 2 F ŒX� has a splitting field Ef , and

ŒEf WF �� .degf /Š .factorial degf /:
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PROOF. Let F1 D F Œ˛1� be a stem field for some monic irreducible factor of f in F ŒX�.
Then f .˛1/D 0, and we let F2 D F1Œ˛2� be a stem field for some monic irreducible factor
of f .X/=.X �˛1/ in F1ŒX�. Continuing in this fashion, we arrive at a splitting field Ef .

Let nD degf . Then ŒF1WF �D degg1 � n, ŒF2WF1�� n�1; :::, and so ŒEf WE�� nŠ.2

REMARK 2.5 For a given integer n, there may or may not exist polynomials of degree n
in F ŒX� whose splitting field has degree nŠ — this depends on F . For example, there do
not for n > 1 if F D C (see 5.6), nor for n > 2 if F D Fp (see 4.21) or F D R. However,
later (4.32) we shall see how to write down infinitely many polynomials of degree n in QŒX�
whose splitting fields have degree nŠ.

EXAMPLE 2.6 (a) Let f .X/D .Xp�1/=.X �1/ 2QŒX�, p prime. If � is one root of f ,
then the remaining roots are �2; �3; : : : ; �p�1, and so the splitting field of f is QŒ��.

(b) Suppose F is of characteristic p, and let f DXp�X �a 2 F ŒX�. If ˛ is one root
of f , then the remaining roots are ˛C1; :::;˛Cp�1, and so any field generated over F by
˛ is a splitting field for f (and F Œ˛�' F ŒX�=.f / if f is irreducible).

(c) If ˛ is one root of Xn�a, then the remaining roots are all of the form �˛, where
�n D 1. Therefore, if F contains all the nth roots of 1 (by which we mean that Xn�1 splits
in F ŒX�), then F Œ˛� is a splitting field for Xn�a. Note that if p is the characteristic of F ,
then Xp�1D .X �1/p, and so F automatically contains all the pth roots of 1.

PROPOSITION 2.7 Let f 2 F ŒX�. Let E be a field generated over F by roots of f , and let
˝ be a field containing F in which f splits.

(a) There exists an F -homomorphism 'WE!˝; the number of such homomorphisms is
at most ŒEWF �, and equals ŒEWF � if f has distinct roots in ˝.

(b) If E and ˝ are both splitting fields for f , then each F -homomorphism E!˝ is an
isomorphism. In particular, any two splitting fields for f are F -isomorphic.

PROOF. By f splitting in ˝, we mean that

f .X/D
Ydeg.f /

iD1
.X �˛i /; ˛i 2˝;

in ˝ŒX�. By f having distinct roots in ˝, we mean that ˛i ¤ ˛j if i ¤ j .
We begin with an observation: let F , f , and ˝ be as in the statement of the proposition,

let L be a subfield of ˝ containing F , and let g be a factor of f in LŒX�; then g divides
f in ˝ŒX� and so (by unique factorization in ˝ŒX�), g is product of certain number of the
factors X �˛i of f in ˝ŒX�; in particular, we see that g splits in ˝, and that its roots are
distinct if the roots of f are distinct.

(a) By assumption, E D F Œ˛1; :::;˛m� with the ˛i (some of the) roots of f .X/. The
minimum polynomial of ˛1 is an irreducible polynomial f1 dividing f , and deg.f1/ D
ŒF Œ˛1�WF �. From the initial observation with LD F , we see that f1 splits in ˝, and that
its roots are distinct if the roots of f are distinct. According to Proposition 2.1, there exists
an F -homomorphism '1WF Œ˛1�!˝, and the number of such homomorphisms is at most
ŒF Œ˛1�WF �, with equality holding when f has distinct roots in ˝.

The minimum polynomial of ˛2 over F Œ˛1� is an irreducible factor f2 of f in F Œ˛1�ŒX�.
On applying the initial observation with LD '1F Œ˛1� and gD '1f2, we see that '1f2 splits
in ˝, and that its roots are distinct if the roots of f are distinct. According to Proposition
2.2, each '1 extends to a homomorphism '2WF Œ˛1;˛2�!˝, and the number of extensions
is at most ŒF Œ˛1;˛2�WF Œ˛1��, with equality holding when f has distinct roots in ˝:
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On combining these statements we conclude that there exists an F -homomorphism

'WF Œ˛1;˛2�!˝;

and that the number of such homomorphisms is at most ŒF Œ˛1;˛2�WF �, with equality holding
if f has distinct roots in ˝:

After repeating the argument m times, we obtain (a).
(b) Every F -homomorphism E!˝ is injective, and so, if there exists such a homomor-

phisms, ŒEWF �� Œ˝WF �. If E and˝ are both splitting fields for f , then (a) shows that there
exist homomorphism F �E, and so ŒEWF �D Œ˝WF �. Therefore, every F -homomorphism
E!˝ is an isomorphism. 2

COROLLARY 2.8 Let E and L be extension fields of F , with E finite over F .

(a) The number of F -homomorphisms E! L is at most ŒEWF �.
(b) There exists a finite extension ˝=L and an F -homomorphism E!˝:

PROOF. Write E D F Œ˛1; : : : ;˛m�, and f be the product of the minimum polynomials of
the ˛i . Let ˝ be a splitting field for f regarded as an element of LŒX�. The proposition
shows that there is an F -homomorphism E!˝, and the number of such homomorphisms
is � ŒEWF �. This proves (b), and since an F -homomorphism E! L can be regarded as an
F -homomorphism E!˝, it also proves (a). 2

REMARK 2.9 (a) Let E1;E2; : : : ;Em be finite extensions of F , and let L be an extension of
F . The corollary implies that there exists a finite extension ˝/L containing an isomorphic
copy of every Ei .

(b) Let f 2 F ŒX�. If E and E 0 are both splitting fields of f , then we know there is an
F -isomorphism E!E 0, but there will in general be no preferred such isomorphism. Error
and confusion can result if you simply identify the fields. Also, it makes no sense to speak
of “the field F Œ˛� generated by a root of f ” unless f is irreducible (the fields generated
by the roots of two different factors are unrelated). Even when f is irreducible, it makes
no sense to speak of “the field F Œ˛;ˇ� generated by two roots ˛;ˇ of f ” (the extensions of
F Œ˛� generated by the roots of two different factors of f in F Œ˛�ŒX� may be very different).

Multiple roots

Let f;g 2 F ŒX�. Even when f and g have no common factor in F ŒX�, one might expect
that they could acquire a common factor in ˝ŒX� for some ˝ � F . In fact, this doesn’t
happen — greatest common divisors don’t change when the field is extended.

PROPOSITION 2.10 Let f and g be polynomials in F ŒX�, and let ˝ � F . If r.X/ is
the gcd of f and g computed in F ŒX�, then it is also the gcd of f and g in ˝ŒX�. In
particular, distinct monic irreducible polynomials in F ŒX� do not acquire a common root in
any extension field of F:
PROOF. Let rF .X/ and r˝.X/ be the greatest common divisors of f and g in F ŒX� and
˝ŒX� respectively. Certainly rF .X/jr˝.X/ in ˝ŒX�, but Euclid’s algorithm (1.8) shows
that there are polynomials a and b in F ŒX� such that

a.X/f .X/Cb.X/g.X/D rF .X/;

and so r˝.X/ divides rF .X/ in ˝ŒX�.
For the second statement, note that the hypotheses imply that gcd.f;g/D 1 (in F ŒX�),

and so f and g can’t acquire a common factor in any extension field. 2
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The proposition allows us to speak of the greatest common divisor of f and g without
reference to a field.

Let f 2 F ŒX�, and let

f .X/D a

rY
iD1

.X �˛i /
mi ; ˛i distinct, mi � 1,

rX
iD1

mi D deg.f /; (*)

be a splitting of f in some extension field ˝ of F . We say that ˛i is a root of f of
multiplicity mi . If mi > 1, ˛i is said to be a multiple root of f , and otherwise it is a simple
root.

The unordered sequence of integers m1; : : : ;mr in (*) is independent of the extension
field ˝ in which f splits. Certainly, it is unchanged when ˝ is replaced with its subfield
F Œ˛1; : : : ;˛m�, but F Œ˛1; : : : ;˛m� is a splitting field for f , and any two splitting fields are
isomorphic (2.7b).

We say that f has a multiple root when at least one of the mi > 1, and we say that f
has only simple roots when all mi D 1.

We wish to determine when a polynomial has a multiple root. If f has a multiple factor
in F ŒX�, say f D

Q
fi .X/

mi with some mi > 1, then obviously it will have a multiple root.
If f D

Q
fi with the fi distinct monic irreducible polynomials, then Proposition 2.10 shows

that f has a multiple root if and only if at least one of the fi has a multiple root. Thus, it
suffices to determine when an irreducible polynomial has a multiple root.

EXAMPLE 2.11 Let F be of characteristic p ¤ 0, and assume that F contains an element a
that is not a pth-power, for example, aD T in the field Fp.T /: Then Xp�a is irreducible

in F ŒX�, but Xp�a 1:4D .X �˛/p in its splitting field. Thus an irreducible polynomial can
have multiple roots.

Define the derivative f 0.X/ of a polynomial f .X/D
P
aiX

i to be
P
iaiX

i�1. When
f has coefficients in R, this agrees with the definition in calculus. The usual rules for
differentiating sums and products still hold, but note that in characteristic p the derivative of
Xp is zero.

PROPOSITION 2.12 For a nonconstant irreducible polynomial f in F ŒX�, the following
statements are equivalent:

(a) f has a multiple root;
(b) gcd.f;f 0/¤ 1;
(c) F has characteristic p ¤ 0 and f is a polynomial in Xp;
(d) all the roots of f are multiple.

PROOF. (a) H) (b). Let ˛ be a multiple root of f , and write f D .X �˛/mg.X/, m> 1,
in some splitting field. Then

f 0.X/Dm.X �˛/m�1g.X/C .X �˛/mg0.X/:

Hence f 0.˛/D 0, and so gcd.f;f 0/¤ 1.
(b) H) (c). Since f is irreducible and deg.f 0/ < deg.f /,

gcd.f;f 0/¤ 1 H) f 0 D 0:

But, because f is nonconstant, f 0 can be zero only if the characteristic is p ¤ 0 and f is a
polynomial in Xp.
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(c) H) (d). Suppose f .X/D g.Xp/, and let g.X/D
Q
i .X �ai /

mi in some splitting
field for f . Then

f .X/D g.Xp/D
Y

i
.Xp�ai /

mi D

Y
i
.X �˛i /

pmi

where ˛pi D ai . Hence every root of f .X/ has multiplicity at least p.
(d) H) (a). Obvious. 2

DEFINITION 2.13 A polynomial f 2 F ŒX� is said to be separable over F if none of its
irreducible factors has a multiple root (in a splitting field).1

The preceding discussion shows that f 2 F ŒX� will be separable unless

(a) the characteristic of F is p ¤ 0, and
(b) at least one of the irreducible factors of f is a polynomial in Xp.

Note that, if f 2 F ŒX� is separable, then it remains separable over every field ˝ containing
F (condition (b) of 2.12 continues to hold — see 2.10).

DEFINITION 2.14 A field F is said to be perfect if all polynomials in F ŒX� are separable
(equivalently, all irreducible polynomials in F ŒX� are separable).

PROPOSITION 2.15 A field of characteristic zero is always perfect, and a field F of charac-
teristic p ¤ 0 is perfect if and only if every element of F is a pth power.

PROOF. A field of characteristic zero is obviously perfect, and so we may suppose F to be of
characteristic p¤ 0. If F contains an element a that is not a pth power, thenXp�a 2F ŒX�
is not separable (see 2.11). Conversely, if every element of F is a pth power, then every
polynomial in Xp with coefficients in F is a pth power in F ŒX�,X

aiX
p
D .

X
biX/

p if ai D b
p
i ,

and so is not irreducible. 2

EXAMPLE 2.16 (a) A finite field F is perfect, because the Frobenius endomorphism
a 7! apWF ! F is injective and therefore surjective (by counting).

(b) A field that can be written as a union of perfect fields is perfect. Therefore, every field
algebraic over Fp is perfect.

(c) Every algebraically closed field is perfect.
(d) If F0 has characteristic p ¤ 0, then F D F0.X/ is not perfect, because X is not a pth

power.

1This is the standard definition, although some authors, for example, Dummit and Foote 1991, 13.5, give a
different definition.
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Exercises

2-1 (*) Let F be a field of characteristic¤ 2.

(a) Let E be quadratic extension of F (i.e., ŒEWF �D 2); show that

S.E/D fa 2 F � j a is a square in Eg

is a subgroup of F � containing F �2.
(b) Let E and E 0 be quadratic extensions of F ; show that there is an F -isomorphism

'WE!E 0 if and only if S.E/D S.E 0/.
(c) Show that there is an infinite sequence of fields E1;E2; : : : with Ei a quadratic

extension of Q such that Ei is not isomorphic to Ej for i ¤ j .
(d) Let p be an odd prime. Show that, up to isomorphism, there is exactly one field with

p2 elements.

2-2 (*) (a) Let F be a field of characteristic p. Show that if Xp �X �a is reducible in
F ŒX�, then it splits into distinct factors in F ŒX�.

(b) For every prime p, show that Xp�X �1 is irreducible in QŒX�.

2-3 (*) Construct a splitting field for X5�2 over Q. What is its degree over Q?

2-4 (*) Find a splitting field of Xp
m

�1 2 FpŒX�. What is its degree over Fp?

2-5 Let f 2 F ŒX�, where F is a field of characteristic 0. Let d.X/D gcd.f;f 0/. Show
that g.X/D f .X/d.X/�1 has the same roots as f .X/, and these are all simple roots of
g.X/.

2-6 (*) Let f .X/ be an irreducible polynomial in F ŒX�, where F has characteristic p.
Show that f .X/ can be written f .X/D g.Xp

e

/ where g.X/ is irreducible and separable.
Deduce that every root of f .X/ has the same multiplicity pe in any splitting field.





CHAPTER 3
The Fundamental Theorem of Galois

Theory

In this chapter, we prove the fundamental theorem of Galois theory, which gives a one-to-one
correspondence between the subfields of the splitting field of a separable polynomial and the
subgroups of the Galois group of f .

Groups of automorphisms of fields

Consider fields E � F . An F -isomorphism E ! E is called an F -automorphism of E.
The F -automorphisms of E form a group, which we denote Aut.E=F /.

EXAMPLE 3.1 (a) There are two obvious automorphisms of C, namely, the identity map
and complex conjugation. We’ll see later (8.18) that by using the Axiom of Choice one can
construct uncountably many more.

(b) Let E D C.X/. An automorphism of E sends X to another generator of E over
C. It follows from (8.24) below that these are exactly the elements aXCb

cXCd
, ad � bc ¤ 0.

Therefore Aut.E=C/ consists of the maps f .X/ 7! f
�
aXCb
cXCd

�
, ad �bc ¤ 0, and so

Aut.E=C/' PGL2.C/;

the group of invertible 2�2 matrices with complex coefficients modulo its centre. Analysts
will note that this is the same as the automorphism group of the Riemann sphere. This is not a
coincidence: the field of meromorphic functions on the Riemann sphere P1C is C.z/'C.X/,
and so there is certainly a map Aut.P1C/! Aut.C.z/=C/, which one can show to be an
isomorphism.

(c) The group Aut.C.X1;X2/=C/ is quite complicated — there is a map

PGL3.C/D Aut.P2C/ ,! Aut.C.X1;X2/=C/;

but this is very far from being surjective. When there are more X ’s, the group is not known.
The group Aut.C.X1; : : : ;Xn/=C/ is the group of birational automorphisms of PnC, and is
called the Cremona group. Its study is part of algebraic geometry. See the Wikipedia.

In this section, we shall be concerned with the groups Aut.E=F / when E is a finite
extension of F .
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PROPOSITION 3.2 If E is a splitting field of a separable polynomial f 2 F ŒX�, then
Aut.E=F / has order ŒEWF �:
PROOF. Let f D

Q
f
mi
i , with the fi irreducible and distinct. The splitting field of f is

the same as the splitting field of
Q
fi . Hence we may assume f is a product of distinct

separable irreducible polynomials, and so has degf distinct roots in E. Now Proposition
2.7 shows that there are ŒEWF � distinct F -homomorphisms E!E. Because E has finite
degree over F , they are automatically isomorphisms. 2

EXAMPLE 3.3 (a) Consider a simple extension E D F Œ˛�, and let f be a polynomial with
coefficients in F having ˛ as a root. If f has no root in E other than ˛, then Aut.E=F /D 1:
For example, if 3

p
2 denotes the real cube root of 2, then Aut.QŒ 3

p
2�=Q/D 1. Thus, in the

proposition, it is essential that E be a splitting field.
(b) Let F be a field of characteristic p¤ 0, and let a be an element of F that is not a pth

power. Then f D Xp �a has only one root in a splitting field E, and so Aut.E=F /D 1.
Thus, in the proposition, it is essential that E be a splitting field of a separable polynomial.

When G is a group of automorphisms of a field E, we set

EG D Inv.G/D f˛ 2E j �˛ D ˛, all � 2Gg:

It is a subfield of E, called the subfield of G-invariants of E or the fixed field of G.
In this section, we shall show that, when E is the splitting field of a separable polynomial

in F ŒX� and G D Aut.E=F /, then the maps

M 7! Aut.E=M/; H 7! Inv.H/

give a one-to-one correspondence between the set of intermediate fields M , F �M �E,
and the set of subgroups H of G.

THEOREM 3.4 (E. ARTIN) Let G be a finite group of automorphisms of a field E, and let
F DEG ; then ŒEWF �� .GW1/:
PROOF. Let G D f�1 D 1; : : : ;�mg, and let ˛1; : : : ;˛n be n > m elements of E. We shall
show that the ˛i are linearly dependent over F . In the system of linear equations

�1.˛1/X1C�� �C�1.˛n/Xn D 0

� � � � � �

�m.˛1/X1C�� �C�m.˛n/Xn D 0

there are m equations and n > m unknowns, and hence there are nontrivial solutions in E —
choose one .c1; : : : ; cn/ having the fewest possible nonzero elements. After renumbering the
˛i ’s, we may suppose that c1 ¤ 0, and then (after multiplying by a scalar) that c1 2 F . With
these normalizations, we’ll show that all ci 2 F . Then the first equation

˛1c1C�� �C˛ncn D 0

(recall that �1 D 1) will be a linear relation on the ˛i .
If not all ci are in F , then �k.ci /¤ ci for some k and i , k ¤ 1¤ i . On applying �k to

the equations

�1.˛1/c1C�� �C�1.˛n/cn D 0

� � � � � � (*)

�m.˛1/c1C�� �C�m.˛n/cn D 0
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and using that f�k�1; : : : ;�k�mg is a permutation of f�1; : : : ;�mg, we find that

.c1;�k.c2/; : : : ;�k.ci /; : : :/

is also a solution to the system of equations (*). On subtracting it from the first, we obtain a
solution .0; : : : ; ci ��k.ci /; : : :/, which is nonzero (look at the i th coordinate), but has more
zeros than the first solution (look at the first coordinate) — contradiction. 2

COROLLARY 3.5 For any finite group G of automorphisms of a field E, G D Aut.E=EG/.

PROOF. As G � Aut.E=EG/, we have inequalities

ŒEWEG �
3.4
� .GW1/� .Aut.E=EG/W1/

2.8a
� ŒEWEG �:

These must be equalities, and so G D Aut.E=EG/: 2

Separable, normal, and Galois extensions

DEFINITION 3.6 An algebraic extension E=F is said to be separable if the minimum
polynomial of every element of E is separable; otherwise, it is inseparable.

Thus, an algebraic extension E=F is separable if every irreducible polynomial in F ŒX�
having a root in E is separable, and it is inseparable if

˘ F is nonperfect, and in particular has characteristic p ¤ 0, and
˘ there is an element ˛ ofE whose minimal polynomial is of the form g.Xp/, g 2F ŒX�.

For example, E D Fp.T / is an inseparable extension of Fp.T p/:

DEFINITION 3.7 An algebraic extension E=F is normal if the minimum polynomial of
every element of E splits in EŒX�.

In other words, an algebraic extension E=F is normal if every irreducible polynomial
f 2 F ŒX� having a root in E splits in E.

Let f be an irreducible polynomial of degree m in F ŒX�. If f has a root in E, then

E=F separable H) roots of f distinct
E=F normal H) f splits in E

�
H) f has m distinct roots in E:

Therefore, E=F is normal and separable if and only if, for each ˛ 2 E, the minimum
polynomial of ˛ has ŒF Œ˛�WF � distinct roots in E.

EXAMPLE 3.8 (a) The field QŒ 3
p
2�, where 3

p
2 is the real cube root of 2, is separable but

not normal over Q (X3�2 doesn’t split in QŒ˛�).
(b) The field Fp.T / is normal but not separable over Fp.T p/ — the minimum polyno-

mial of T is the inseparable polynomial Xp�T p.

DEFINITION 3.9 Let F be a field. A finite extension E of F is said to be Galois if F is
the fixed field of the group of F -automorphisms of E. This group is then called the Galois
group of E over F , and it is denoted by Gal.E=F /.

THEOREM 3.10 For an extension E=F , the following statements are equivalent:
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(a) E is the splitting field of a separable polynomial f 2 F ŒX�.
(b) F DEG for some finite group G of automorphisms of E.
(c) E is normal and separable, and of finite degree, over F .
(d) E is Galois over F .

PROOF. (a) H) (d). Let G D Aut.E=F /, and let F 0 D EG � F . Then E is also the
splitting field of f regarded as a polynomial with coefficients in F 0, and f is still separable
when it is regarded in this way. Hence Proposition 3.2 shows that

ŒEWF 0�D
ˇ̌
Aut.E=F 0/

ˇ̌
ŒEWF �D jAut.E=F /j :

Since Aut.E=F 0/
(3.5)
D G D Aut.E=F / , we conclude that F D F 0, and so F DEG .

(d) H) (b). According to (2.8a) , Gal.E=F / is finite, and so this is obvious.
(b) H) (c). By Proposition 3.4, we know that ŒEWF �� .GW1/; in particular, it is finite.

Let ˛ 2E and let f be the minimum polynomial of ˛; we have to prove that f splits into
distinct factors in EŒX�. Let f˛1 D ˛; :::;˛mg be the orbit of ˛ under the action of G on E,
and let

g.X/D
Y
.X �˛i /DX

m
Ca1X

m�1
C�� �Cam:

Every � 2 G merely permutes the ˛i . Since the ai are symmetric polynomials in the ˛i ,
we find that �ai D ai for all i , and so g.X/ 2 F ŒX�. It is monic, and g.˛/ D 0, and so
f .X/jg.X/ (see the definition of the minimum polynomial p. 17). But also g.X/jf .X/,
because each ˛i is a root of f .X/ (if ˛i D �˛, then applying � to the equation f .˛/D 0
gives f .˛i /D 0). We conclude that f .X/D g.X/, and so f .X/ splits into distinct factors
in E.

(c) H) (a). Because E has finite degree over F , it is generated over F by a finite
number of elements, say, E D F Œ˛1; :::;˛m�, ˛i 2 E, ˛i algebraic over F . Let fi be the
minimum polynomial of ˛i over F . Because E is normal over F , each fi splits in E, and
so E is the splitting field of f D

Q
fi : Because E is separable over F , f is separable. 2

REMARK 3.11 (a) Let E be Galois over F with Galois group G, and let ˛ 2 E. The
elements ˛1 D ˛, ˛2; :::;˛m of the orbit of ˛ are called the conjugates of ˛. In the course of
the proof of (b) H) (c) of the above theorem we showed that the minimum polynomial of
˛ is

Q
.X �˛i /:

(b) Note that if F D EG for some finite group G, then, because E is the splitting
field of a separable polynomial, Proposition 2.7 shows that Gal.E=F / has ŒEWF � elements.
Combined with Artin’s theorem (3.4), this shows that G D Gal.E=F / and .GW1/D ŒEWF ].

COROLLARY 3.12 Every finite separable extension E of F is contained in a finite Galois
extension.

PROOF. Let E D F Œ˛1; :::;˛m�. Let fi be the minimum polynomial of ˛i over F , and take
E 0 to be the splitting field of

Q
fi over F . 2

COROLLARY 3.13 Let E �M � F ; if E is Galois over F , then it is Galois over M:

PROOF. We know E is the splitting field of some separable f 2 F ŒX�; it is also the splitting
field of f regarded as an element of MŒX�: 2
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REMARK 3.14 When we drop the assumption that E is separable over F , we can still say
something. An element ˛ of an algebraic extension of F is said to be separable over F if
its minimum polynomial over F is separable. The proof of Corollary 3.12 shows that every
finite extension generated by separable elements is separable. Therefore, the elements of a
finite extension E of F that are separable over F form a subfield Esep of E that is separable
over F ; write ŒEWF �sepD ŒEsepWF � (separable degree ofE over F /. If˝ is an algebraically
closed field containing F , then every F -homomorphism Esep!˝ extends uniquely to E,
and so the number of F -homomorphisms E!˝ is ŒEWF �sep. When E �M � F (finite
extensions),

ŒEWF �sep D ŒEWM�sepŒM WF �sep:

In particular,

E is separable over F ” E is separable over M and M is separable over F:

See Jacobson 1964, I 10, for more details.

DEFINITION 3.15 A finite extension E � F is called a cyclic, abelian, ..., solvable exten-
sion if it is Galois with cyclic, abelian, ..., solvable Galois group.

The fundamental theorem of Galois theory

THEOREM 3.16 (FUNDAMENTAL THEOREM OF GALOIS THEORY) Let E be a Galois ex-
tension of F , and letGDGal.E=F /. The mapsH 7!EH andM 7!Gal.E=M/ are inverse
bijections between the set of subgroups of G and the set of intermediate fields between E
and F :

fsubgroups of Gg $ fintermediate fields F �M �Eg:

Moreover,

(a) the correspondence is inclusion-reversing: H1 �H2 ” EH1 �EH2 I

(b) indexes equal degrees: .H1WH2/D ŒEH2 WEH1 �;
(c) �H��1$ �M , i.e., E�H�

�1

D �.EH /; Gal.E=�M/D �Gal.E=M/��1:

(d) H is normal in G ” EH is normal (hence Galois) over F , in which case

Gal.EH=F /'G=H:

PROOF. For the first statement, we have to show that H 7!EH and M 7! Gal.E=M/ are
inverse maps.

Let H be a subgroup of G. Then, as we observed in (3.11b), Gal.E=EH /DH:
Let M be an intermediate field. Then E is Galois over M by (3.13), which means that

EGal.E=M/ DM .
(a) We have the obvious implications:

H1 �H2 H) EH1 �EH2 H) Gal.E=EH1/� Gal.E=EH2/:

But Gal.E=EHi /DHi .
(b) As we observed in (3.11b), for every subgroupH ofG, ŒEWEH �D .Gal.E=EH /W1/.

This proves (b) in the case H2 D 1, and the general case follows, using that

.H1W1/D .H1WH2/.H2W1/ and ŒEWEH1 �D ŒEWEH2 �ŒEH2 WEH1 �:
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(c) For � 2G and ˛ 2E, �˛ D ˛ ” ����1.�˛/D �˛. Therefore, Gal.E=�M/D

�Gal.E=M/��1 , and so �Gal.E=M/��1$ �M:

(d) Let H be a normal subgroup of G. Because �H��1 DH for all � 2 G, we must
have �EH DEH for all � 2G, i.e., the action of G on E stabilizes EH . We therefore have
a homomorphism

� 7! � jEH WG! Aut.EH=F /

whose kernel isH . As .EH /G=H D F , we see that EH is Galois over F (by Theorem 3.10)
and that G=H ' Gal.EH=F / (by 3.11b).

Conversely, assume that M is normal over F , and write M D F Œ˛1; :::;˛m�. For � 2G,
�˛i is a root of the minimum polynomial of ˛i over F , and so lies in M . Hence �M DM ,
and this implies that �H��1 DH (by (c)). 2

REMARK 3.17 The theorem shows that there is an order reversing bijection between the
intermediate fields of E=F and the subgroups of G. Using this we can read off more results.

(a) LetM1;M2; : : : ;Mr be intermediate fields, and letHi be the subgroup corresponding
to Mi (i.e., Hi D Gal.E=Mi /). Then (by definition) M1M2 � � �Mr is the smallest field
containing all Mi ; hence it must correspond to the largest subgroup contained in all Hi ,
which is

T
Hi . Therefore

Gal.E=M1 � � �Mr/DH1\ :::\Hr :

(b) Let H be a subgroup of G and let M DEH . The largest normal subgroup contained
in H is N D

T
�2G �H�

�1 (see GT 4.10), and so EN , which is the composite of the fields
�M , is the smallest normal extension of F containing M . It is called the normal, or Galois,
closure of M in E.

PROPOSITION 3.18 Let E and L be field extensions of F contained in some common field.
If E=F is Galois, then EL=L and E=E\L are Galois, and the map

� 7! � jEWGal.EL=L/! Gal.E=E\L/

is an isomorphism.

PROOF. Because E is Galois over F , it is the splitting field of a separable polynomial
f 2 F ŒX�. Then EL is the splitting field of f over L, and E is the splitting
field of f over E \L. Hence EL=L and E=E \L are Galois. Every
automorphism � of EL fixing the elements of L maps roots of f to roots
of f , and so �E DE. There is therefore a homomorphism

� 7! � jEWGal.EL=L/! Gal.E=E\L/.

If � 2 Gal.EL=L/ fixes the elements of E, then it fixes the elements of
EL, and hence is 1. Thus, � 7! � jE is injective. If ˛ 2 E is fixed by all
� 2 Gal.EL=L/, then ˛ 2 L\E. By the fundamental theorem,

EL

E L

E\L

F

D

D

this implies that the image of � 7! � jE is Gal.E=E\L/. 2

COROLLARY 3.19 Suppose, in the proposition, that L is finite over F . Then

ŒELWF �D
ŒEWF �ŒLWF �

ŒE\LWF �
.
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PROOF. According to Proposition 1.20,

ŒELWF �D ŒELWL�ŒLWF �;

but

ŒELWL�
3:18
D ŒEWE\L�

1:20
D

ŒEWF �

ŒE\LWF �
.

2

PROPOSITION 3.20 Let E1 and E2 be field extensions of F contained in some common
field. If E1 and E2 are Galois over F , then E1E2 and E1\E2 are Galois over F , and

� 7! .� jE1;� jE2/WGal.E1E2=F /! Gal.E1=F /�Gal.E2=F /

is an isomorphism of Gal.E1E2=F / onto the subgroup

H D f.�1;�2/ j �1jE1\E2 D �2jE1\E2g

of Gal.E1=F /�Gal.E2=F /.

PROOF: Let a 2E1\E2, and let f be its minimum polynomial over F . Then f has
degf distinct roots in E1 and degf distinct roots in E2. Since f
can have at most degf roots in E1E2, it follows that it has degf
distinct roots in E1\E2. This shows that E1\E2 is normal and
separable over F , and hence Galois (3.10). As E1 and E2 are
Galois over F , they are splitting fields of separable polynomials
f1;f2 2 F ŒX�. Now E1E2 is a splitting field for f1f2, and hence
it also is Galois over F . The map � 7! .� jE1;� jE2/ is clearly
an injective homomorphism, and its image is contained in H . We
prove that the image is the whole of H by counting.

E1E2

E1 E2

E1\E2

F

From the fundamental theorem,

Gal.E2=F /=Gal.E2=E1\E2/' Gal.E1\E2=F /,

and so, for each �1 2 Gal.E1=F /, �1jE1\E2 has exactly ŒE2WE1\E2� extensions to an
element of Gal.E2=F /. Therefore,

.H W1/D ŒE1WF �ŒE2WE1\E2�D
ŒE1WF � � ŒE2WF �

ŒE1\E2WF �
;

which equals ŒE1E2WF � by (3.19): �

Examples

EXAMPLE 3.21 We analyse the extension QŒ��=Q, where � is a primitive 7th root of 1, say
� D e2�i=7.
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Note that QŒ�� is the splitting field of the polyno-
mial X7�1, and that � has minimum polynomial

X6CX5CX4CX3CX2CXC1

(see 1.41). Therefore, QŒ�� is Galois of degree
6 over Q. For any � 2 Gal.QŒ��=Q/, �� D �i ,
some i , 1� i � 6, and the map � 7! i defines an
isomorphism Gal.QŒ��=Q/! .Z=7Z/�. Let � be
the element of Gal.QŒ��=Q/ such that �� D �3.
Then � generates Gal.QŒ��=Q/ because the class
of 3 in .Z=7Z/� generates it (the powers of 3 mod
7 are 3;2;6;4;5;1). We investigate the subfields
of QŒ�� corresponding to the subgroups h�3i and
h�2i.

QŒ��

QŒ�Cx�� QŒ
p
�7�

Q

h�3i h�2i

h�i=h�3i h�i=h�2i

Note that �3� D �6D x� (complex conjugate of �/. The subfield of QŒ�� corresponding to
h�3i is QŒ�Cx��, and �Cx� D 2cos 2�

7
. Since h�3i is a normal subgroup of h�i, QŒ�Cx�� is

Galois over Q, with Galois group h�i=h�3i: The conjugates of ˛1
def
D �Cx� are ˛3D �3C��3,

˛2 D �
2C ��2. Direct calculation shows that

˛1C˛2C˛3 D
X6

iD1
�i D�1;

˛1˛2C˛1˛3C˛2˛3 D�2;

˛1˛2˛3 D .�C �
6/.�2C �5/.�3C �4/

D .�C �3C �4C �6/.�3C �4/

D .�4C �6C1C �2C �5C1C �C �3/

D 1:

Hence the minimum polynomial1 of �Cx� is

g.X/DX3CX2�2X �1:

The minimum polynomial of cos 2�
7
D

˛1
2

is therefore

g.2X/

8
DX3CX2=2�X=2�1=8:

The subfield of QŒ�� corresponding to h�2i is generated by ˇD �C�2C�4. Let ˇ0D �ˇ.
Then .ˇ�ˇ0/2 D�7. Hence the field fixed by h�2i is QŒ

p
�7�:

EXAMPLE 3.22 We compute the Galois group of a splitting field E of X5�2 2QŒX�.
1More directly, on setting X D �Cx� in

.X3�3X/C .X2�2/CXC1

one obtains 1C �C �2C�� �C �6 D 0.
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Recall from Exercise 2-3 that E D QŒ�;˛� where � is a primitive
5th root of 1, and ˛ is a root of X5�2. For example, we could take
E to be the splitting field of X5�2 in C, with � D e2�i=5 and ˛
equal to the real 5th root of 2. We have the picture at right, and

ŒQŒ�� WQ�D 4; ŒQŒ˛� WQ�D 5:

Because 4 and 5 are relatively prime,

ŒQŒ�;˛� WQ�D 20:

QŒ�;˛�

QŒ�� QŒ˛�

Q

N H

G=N

Hence G DGal.QŒ�;˛�=Q/ has order 20, and the subgroups N and H fixing QŒ�� and QŒ˛�
have orders 5 and 4 respectively. Because QŒ�� is normal over Q (it is the splitting field
of X5�1), N is normal in G. Because QŒ�� �QŒ˛�DQŒ�;˛�, we have H \N D 1, and so
G DN Ì� H . Moreover, H 'G=N ' .Z=5Z/�, which is cyclic, being generated by the
class of 2. Let � be the generator of H corresponding to 2 under this isomorphism, and let �
be a generator of N . Thus �.˛/ is another root of X5�2, which we can take to be �˛ (after
possibly replacing � by a power). Hence:�

�� D �2

�˛ D ˛

�
�� D �

�˛ D �˛:

Note that ����1.˛/D ��˛ D �.�˛/D �2˛ and it fixes �; therefore ����1 D �2. Thus G
has generators � and � and defining relations

�5 D 1; �4 D 1; ����1 D �2:

The subgroup H has five conjugates, which correspond to the five fields QŒ�i˛�,

� iH��i $ � iQŒ˛�DQŒ�i˛�; 1� i � 5:

Constructible numbers revisited

Earlier, we showed (1.36) that a real number ˛ is constructible if and only if it is con-
tained in a subfield of R of the form QŒpa1; : : : ;

p
ar � with each ai a positive element of

QŒpa1; : : : ;
p
ai�1�. In particular

˛ constructible H) ŒQŒ˛�WQ�D 2s some s: (1)

Now we can prove a partial converse to this last statement.

THEOREM 3.23 If ˛ is contained in a subfield of R that is Galois of degree 2r over Q, then
it is constructible.
PROOF. Suppose ˛ 2E �R whereE is Galois of degree 2r over Q, and letGDGal.E=Q/.
Because finite p-groups are solvable (GT 6.7), there exists a sequence of groups

f1g DG0 �G1 �G2 � �� � �Gr DG

with Gi=Gi�1 of order 2. Correspondingly, there will be a sequence of fields,

E DE0 �E1 �E2 � �� � �Er DQ

with Ei�1 of degree 2 over Ei . The next lemma shows that Ei D Ei�1Œ
p
ai � for some

ai 2Ei�1, and ai > 0 because otherwise Ei would not be real. This proves the theorem. 2
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LEMMA 3.24 Let E=F be a quadratic extension of fields of characteristic ¤ 2. Then
E D F Œ

p
d� for some d 2 F .

PROOF. Let ˛ 2 E, ˛ … F , and let X2CbXC c be the minimum polynomial of ˛. Then
˛ D �b˙

p
b2�4c
2

, and so E D F Œ
p
b2�4c�. 2

COROLLARY 3.25 If p is a prime of the form 2kC1, then cos 2�
p

is constructible.

PROOF. The field QŒe2�i=p� is Galois over Q with Galois group G ' .Z=pZ/�, which has
order p�1D 2k . The field QŒcos 2�

p
� is contained in QŒe2�i=p�, and therefore is Galois of

degree dividing 2k (fundamental theorem 3.16 and 1.20). As QŒcos 2�
p
� is a subfield of R,

we can apply the theorem. 2

Thus a regular p-gon, p prime, is constructible if and only if p is a Fermat prime,
i.e., of the form 22

r

C1. For example, we have proved that the regular 65537-polygon is
constructible, without (happily) having to exhibit an explicit formula for cos 2�

65537
.

REMARK 3.26 The converse to (1) is false. We’ll show below (4.9) that the Galois group
of the splitting field E over Q of the polynomial f .X/D X4�4XC2 is S4. If the four
roots of f .X/ were constructible, then all the elements of E would be constructible (1.36a).
Let H be a Sylow subgroup of S4. Then EH has odd degree over Q, and so the elements of
EH XQ can’t be constructible. 2

The Galois group of a polynomial

If the polynomial f 2 F ŒX� is separable, then its splitting field Ff is Galois over F , and
we call Gal.Ff =F / the Galois group Gf of f:

Let f D
Qn
iD1.X�˛i / in a splitting fieldFf . We know that the elements of Gal.Ff =F /

map roots of f to roots of f , i.e., they map the set f˛1;˛2; : : : ;˛ng into itself. Being
automorphisms, they define permutations of f˛1;˛2; : : : ;˛ng, and as the ˛i generated Ff ,
an element of Gal.Ff =F / is uniquely determined by the permutation it defines. Thus
Gf can be identified with a subset of Sym.f˛1;˛2; : : : ;˛ng/� Sn (symmetric group on n
symbols). In fact, Gf consists exactly of the permutations � of f˛1;˛2; : : : ;˛ng such that,
for P 2 F ŒX1; : : : ;Xn�,

P.˛1; : : : ;˛n/D 0 H) P.�˛1; : : : ;�˛n/D 0:

This gives a description ofGf without mentioning fields or abstract groups (neither of which
were available to Galois).

Note that this shows again that .Gf W1/, hence ŒFf WF �, divides deg.f /Š:

2As Shuichi Otsuka has pointed out to me, it is possible to prove this without appealing to the Sylow
theorems. If a root ˛ of f .X/ were constructible, then there would exist a tower of quadratic extensions
QŒ˛��M � Q. By Galois theory, the groups Gal.E=M/� Gal.E=QŒ˛�/ have orders 12 and 6 respectively.
As Gal.E=Q/D S4, Gal.E=M/ would be A4. But A4 has no subgroup of order 6, a contradiction. Thus no
root of f .X/ is constructible. (Actually Gal.E=QŒ˛�/D S3, but that does not matter here.)
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Solvability of equations

For a polynomial f 2 F ŒX�, we say that f .X/D 0 is solvable in radicals if its solutions
can be obtained by the algebraic operations of addition, subtraction, multiplication, division,
and the extraction of mth roots, or, more precisely, if there exists a tower of fields

F D F0 � F1 � F2 � �� � � Fm

such that

(a) Fi D Fi�1Œ˛i �, ˛
mi
i 2 Fi�1;

(b) Fm contains a splitting field for f:

THEOREM 3.27 (GALOIS, 1832) Let F be a field of characteristic zero. The equation
f D 0 is solvable in radicals if and only if the Galois group of f is solvable.

We shall prove this later (5.33). Also we shall exhibit polynomials f .X/ 2QŒX� with
Galois group Sn, which are therefore not solvable when n� 5 by GT 4.37.

REMARK 3.28 If F has characteristic p, then the theorem fails for two reasons:

(a) f may not be separable, and so not have a Galois group;
(b) Xp�X �aD 0 is not solvable by radicals even though it is separable with abelian

Galois group (cf. Exercise 2-2).

If the definition of solvable is changed to allow extensions of the type in (b) in the chain, and
f is required to be separable, then the theorem becomes true in characteristic p.

Exercises

3-1 (*) Let F be a field of characteristic 0. Show that F.X2/\F.X2�X/D F (inter-
section inside F.X/). [Hint: Find automorphisms � and � of F.X/, each of order 2, fixing
F.X2/ and F.X2�X/ respectively, and show that �� has infinite order.]

3-2 (*) 3 Let p be an odd prime, and let � be a primitive pth root of 1 in C. Let E DQŒ��,
and let G D Gal.E=Q/; thus G D .Z=.p//�. Let H be the subgroup of index 2 in G. Put
˛ D

P
i2H �

i and ˇ D
P
i2GnH �

i . Show:

(a) ˛ and ˇ are fixed by H ;
(b) if � 2G nH , then �˛ D ˇ, �ˇ D ˛.

Thus ˛ and ˇ are roots of the polynomial X2CX C˛ˇ 2 QŒX�. Compute ˛ˇ and show
that the fixed field of H is QŒpp� when p � 1 mod 4 and QŒp�p� when p � 3 mod 4.

3-3 (*) Let M DQŒ
p
2;
p
3� and E DMŒ

q
.
p
2C2/.

p
3C3/� (subfields of R).

(a) Show that M is Galois over Q with Galois group the 4-group C2�C2.
(b) Show that E is Galois over Q with Galois group the quaternion group.

3-4 Let E be a Galois extension of F with Galois group G, and let L be the fixed field of a
subgroup H of G. Show that the automomorphism group of L=F is N=H where N is the
normalizer of H in G.

3This problem shows that every quadratic extension of Q is contained in a cyclotomic extension of Q. The
Kronecker-Weber theorem says that every abelian extension of Q is contained in a cyclotomic extension.





CHAPTER 4
Computing Galois Groups

In this chapter, we investigate general methods for computing Galois groups.

When is Gf � An?

Let � be a permutation of the set f1;2; : : : ;ng. The pairs .i;j / with i < j but �.i/ > �.j /
are called the inversions of � , and � is said to be even or odd according as the number of
inversions is even or odd. The signature of � , sign.�/, isC1 or �1 according as � is even or
odd. We can define the signature of a permutation � of any set S of n elements by choosing
a numbering of the set and identifying � with a permutation of f1; : : : ;ng. Then sign is the
unique homomorphism Sym.S/! f˙1g such that sign.�/D�1 for every transposition. In
particular, it is independent of the choice of the numbering. See GT, 4.25.

Now consider a polynomial

f .X/DXnCa1X
n�1
C�� �Can

and let f .X/D
Qn
iD1.X �˛i / in some splitting field. Set

�.f /D
Y

1�i<j�n

.˛i �˛j /; D.f /D�.f /2 D
Y

1�i<j�n

.˛i �˛j /
2:

The discriminant of f is defined to be D.f /. Note that D.f / is nonzero if and only if f
has only simple roots, i.e., if f is separable with no multiple factors. Let Gf be the Galois
group of f , and identify it with a subgroup of Sym.f˛1; : : : ;˛ng/ (as on p. 42).

PROPOSITION 4.1 Assume f is separable, and let � 2Gf .

(a) ��.f /D sign.�/�.f /, where sign.�/ is the signature of �:
(b) �D.f /DD.f /:

PROOF. Each inversion of � introduces a negative sign into ��.f /, and so (a) follows from
the definition of sign.�/. The equation in (b) is obtained by squaring that in (a). 2

While �.f / depends on the choice of the numbering of the roots of f , D.f / does not.

COROLLARY 4.2 Let f .X/ 2 F ŒX� be of degree n and have only simple roots. Let Ff be
a splitting field for f , so that Gf D Gal.Ff =F /.

(a) The discriminant D.f / 2 F .

45
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(b) The subfield of Ff corresponding to An\Gf is F Œ�.f /�. Hence

Gf � An ” �.f / 2 F ” D.f / is a square in F:

PROOF. (a) The discriminant of f is an element of Ff fixed by Gf
def
D Gal.Ff =F /, and

hence lies in F (by the fundamental theorem of Galois theory).
(b) Because f has simple roots, �.f /¤ 0, and so the formula ��.f /D sign.�/�.f /

shows that an element of Gf fixes �.f / if and only if it lies in An. Thus, under the Galois
correspondence,

Gf \An$ F Œ�.f /�.

Hence,
Gf \An DGf ” F Œ�.f /�D F: 2

The roots of aX2CbXC c are �b˙
p
b2�4ac
2a

and so

�.aX2CbXC c/D

p
b2�4ac

a
(or �

p
b2�4ac

a
),

D.aX2CbXC c/D
b2�4ac

a2
:

Although there is a not a universal formula for the roots of f in terms its coefficients when
the degree of f is >4 , there is for its discriminant. For example,

D.X3CbXC c/D�4b3�27c2:

By completing the cube, one can put any cubic polynomial in this form (in characteristic
¤ 3).

The formulas for the discriminant rapidly become very complicated, for example, that
for X5CaX4CbX3C cX2CdXC e has 59 terms. Fortunately, PARI knows them. For
example, typing poldisc(X^3+a*X^2+b*X+c,X) returns the discriminant of X3CaX2C
bXC c, namely,

�4ca3Cb2a2C18cbaC .�4b3�27c2/:

REMARK 4.3 Suppose F �R. ThenD.f / will not be a square if it is negative. It is known
that the sign of D.f / is .�1/s where 2s is the number of nonreal roots of f in C (see ANT
2.39). Thus if s is odd, then Gf is not contained in An. This can be proved more directly by
noting that complex conjugation acts on the roots as the product of s disjoint transpositions.

Of course the converse is not true: when s is even, Gf is not necessarily contained in
An.

When is Gf transitive?

PROPOSITION 4.4 Let f .X/ 2 F ŒX� have only simple roots. Then f .X/ is irreducible if
and only if Gf permutes the roots of f transitively.

PROOF. H) W If ˛ and ˇ are two roots of f .X/ in a splitting field Ff for f , then they both
have f .X/ as their minimum polynomial, and so F Œ˛� and F Œˇ� are both stem fields for f .
Hence, there is an F -isomorphism

F Œ˛�' F Œˇ�; ˛$ ˇ:
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Write Ff D F Œ˛1;˛2; :::� with ˛1 D ˛ and ˛2;˛3; : : : the other roots of f .X/. Then the
F -homomorphism ˛ 7! ˇWF Œ˛�! Ff extends (step by step) to an F -homomorphism
Ff ! Ff (use 2.2b), which is an F -isomorphism sending ˛ to ˇ.
(H W Let g.X/ 2 F ŒX� be an irreducible factor of f , and let ˛ be one of its roots. If ˇ

is a second root of f , then (by assumption) ˇ D �˛ for some � 2Gf . Now, because g has
coefficients in F ,

g.�˛/D �g.˛/D 0;

and so ˇ is also a root of g. Therefore, every root of f is also a root of g, and so f .X/D
g.X/: 2

Note that when f .X/ is irreducible of degree n, nj.Gf W1/ because ŒF Œ˛�WF �D n and
ŒF Œ˛�WF � divides ŒFf WF �D .Gf W1/. Thus Gf is a transitive subgroup of Sn whose order
is divisible by n.

Polynomials of degree at most three

EXAMPLE 4.5 Let f .X/ 2 F ŒX� be a polynomial of degree 2. Then f is inseparable ”
F has characteristic 2 and f .X/D X2�a for some a 2 F XF 2. If f is separable, then
Gf D 1.D A2/ or S2 according as D.f / is a square in F or not.

EXAMPLE 4.6 Let f .X/ 2 F ŒX� be a polynomial of degree 3. We can assume f to be
irreducible, for otherwise we are essentially back in the previous case. Then f is inseparable
if and only if F has characteristic 3 and f .X/ D X3� a for some a 2 F nF 3. If f is
separable, then Gf is a transitive subgroup of S3 whose order is divisible by 3. There are
only two possibilities: Gf D A3 or S3 according as D.f / is a square in F or not. Note that
A3 is generated by the cycle .123/.

For example,X3�3XC12QŒX� is irreducible (see 1.12), its discriminant is�4.�3/3�
27D 81D 92, and so its Galois group is A3.

On the other hand, X3C3XC1 2QŒX� is also irreducible (apply 1.11), but its discrim-
inant is �135 which is not a square in Q, and so its Galois group is S3.

Quartic polynomials

Let f .X/ be a quartic polynomial without multiple roots. In order to determine Gf we shall
exploit the fact that S4 has

V D f1;.12/.34/; .13/.24/; .14/.23/g

as a normal subgroup — it is normal because it contains all elements of type 2C2 (GT 4.29).
Let E be a splitting field of f , and let f .X/D

Q
.X �˛i / in E. We identify the Galois

group Gf of f with a subgroup of the symmetric group Sym.f˛1;˛2;˛3;˛4g/. Consider
the partially symmetric elements

˛ D ˛1˛2C˛3˛4

ˇ D ˛1˛3C˛2˛4

 D ˛1˛4C˛2˛3:
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They are distinct because the ˛i are distinct; for example,

˛�ˇ D ˛1.˛2�˛3/C˛4.˛3�˛2/D .˛1�˛4/.˛2�˛3/:

The group Sym.f˛1;˛2;˛3;˛4g/ permutes f˛;ˇ;g transitively. The stabilizer of each of
˛;ˇ; must therefore be a subgroup of index 3 in S4, and hence has order 8. For example,
the stabilizer of ˇ is h.1234/; .13/i. Groups of order 8 in S4 are Sylow 2-subgroups. There
are three of them, all isomorphic to D4. By the Sylow theorems, V is contained in a Sylow
2-subgroup; in fact, because the Sylow 2-subgroups are conjugate and V is normal, it is
contained in all three. It follows that V is the intersection of the three Sylow 2-subgroups.
Each Sylow 2-subgroup fixes exactly one of ˛;ˇ; or  , and therefore their intersection V is
the subgroup of Sym.f˛1;˛2;˛3;˛4g/ fixing ˛, ˇ, and  .

LEMMA 4.7 The fixed field of Gf \ V is F Œ˛;ˇ;�. Hence
F Œ˛;ˇ;� is Galois over F with Galois group Gf =Gf \V .

PROOF. The above discussion shows that the subgroup of Gf of
elements fixing F Œ˛;ˇ;� is Gf \V , and so EGf \V D F Œ˛;ˇ;�
by the fundamental theorem of Galois theory. The remaining state-
ments follow from the fundamental theorem using that V is nor-
mal. 2

E

F Œ˛;ˇ;�

F

Gf \V

Gf =Gf \V

Let M D F Œ˛;ˇ;�, and let g.X/D .X �˛/.X �ˇ/.X �/ 2MŒX� — it is called the
resolvent cubic of f . Every permutation of the ˛i (a fortiori, every element of Gf ) merely
permutes ˛;ˇ; , and so fixes g.X/. Therefore (by the fundamental theorem) g.X/ has
coefficients in F . More explicitly, we have:

LEMMA 4.8 The resolvent cubic of f DX4CbX3C cX2CdXC e is

g DX3� cX2C .bd �4e/X �b2eC4ce�d2:

The discriminants of f and g are equal.

SKETCH OF PROOF. Expand f D .X �˛1/.X �˛2/.X �˛3/.X �˛4/ to express b;c;d;e
in terms of ˛1;˛2;˛3;˛4. Expand g D .X �˛/.X �ˇ/.X �/ to express the coefficients
of g in terms of ˛1;˛2;˛3;˛4, and substitute to express them in terms of b;c;d;e. 2

Now let f be an irreducible separable quartic. Then G DGf is a transitive subgroup of
S4 whose order is divisible by 4. There are the following possibilities for G:

G .G\V W1/ .GWV \G/

S4 4 6

A4 4 3

V 4 1

D4 4 2

C4 2 2

.G\V W1/D ŒEWM�

.GWV \G/D ŒM WF �

The groups of type D4 are the Sylow 2-subgroups discussed above, and the groups of type
C4 are those generated by cycles of length 4.
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We can compute .GWV \G/ from the resolvent cubic g, becauseG=V \GDGal.M=F /
and M is the splitting field of g. Once we know .GWV \G/, we can deduce G except in the
case that it is 2. If ŒM WF �D 2, then G\V D V or C2. Only the first group acts transitively
on the roots of f , and so (from 4.4) we see that in this case G DD4 or C4 according as f
is irreducible or not in MŒX�.

EXAMPLE 4.9 Consider f .X/ D X4� 4X C 2 2 QŒX�. It is irreducible by Eisenstein’s
criterion (1.16), and its resolvent cubic is g.X/ D X3 � 8X C 16, which is irreducible
because it has no roots in F5. The discriminant of g.X/ is �4864, which is not a square, and
so the Galois group of g.X/ is S3. From the table, we see that the Galois group of f .X/ is
S4.

EXAMPLE 4.10 Consider f .X/DX4C4X2C2 2QŒX�. It is irreducible by Eisenstein’s
criterion (1.16), and its resolvent cubic is .X � 4/.X2� 8/; thus M D QŒ

p
2�. From the

table we see that Gf is of type D4 or C4, but f factors over M (even as a polynomial in
X2), and hence Gf is of type C4.

EXAMPLE 4.11 Consider f .X/D X4� 10X2C 4 2 QŒX�. It is irreducible in QŒX� be-
cause (by inspection) it is irreducible in ZŒX�. Its resolvent cubic is .XC10/.XC4/.X�4/,
and so Gf is of type V .

EXAMPLE 4.12 Consider f .X/DX4�2 2QŒX�. It is irreducible by Eisenstein’s criterion
(1.16), and its resolvent cubic is g.X/D X3C8X . Hence M DQŒi

p
2�. One can check

that f is irreducible over M , and Gf is of type D4.
Alternatively, analyse the equation as in (3.22).

As we explained in (1.29), PARI knows how to factor polynomials with coefficients in
QŒ˛�.

EXAMPLE 4.13 (From the web, sci.math.research, search for “final analysis”.) Consider
f .X/ D X4� 2cX3� dX2C 2cdX � dc2 2 ZŒX� with a > 0, b > 0, c > 0, a > b and
d D a2� b2. Let r D d=c2 and let w be the unique positive real number such that r D
w3=.w2C4/. Let m be the number of roots of f .X/ in Z (counted with multiplicities). The
Galois group of f is as follows:

˘ If mD 0 and w not rational, then G is S4.
˘ If mD 1 and w not rational then G is S3.
˘ If w is rational and w2C4 is not a square then G DD4.
˘ If w is rational and w2C4 is a square then G D V D C2�C2:

This covers all possible cases. The hard part was to establish that mD 2 could never happen.

Examples of polynomials with Sp as Galois group over Q

The next lemma gives a criterion for a subgroup of Sp to be the whole of Sp.

LEMMA 4.14 For p prime, the symmetric group Sp is generated by any transposition and
any p-cycle.
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PROOF. After renumbering, we may assume that the transposition is � D .12/, and we may
write the p-cycle � so that 1 occurs in the first position, � D .1i2 � � � ip/. Now some power
of � will map 1 to 2 and will still be a p-cycle (here is where we use that p is prime). After
replacing � with the power, we have � D .12j3 : : :jp/, and after renumbering again, we
have � D .123: : :p/: Now

.i iC1/D � i .12/��i

(see GT 4.29) and so lies in the subgroup generated by � and � . These transpositions generate
Sp. 2

PROPOSITION 4.15 Let f be an irreducible polynomial of prime degree p in QŒX�. If f
splits in C and has exactly two nonreal roots, then Gf D Sp:

PROOF. Let E be the splitting field of f in C, and let ˛ 2E be a root of f . Because f is
irreducible, ŒQŒ˛�WQ�D degf D p, and so pjŒEWQ�D .Gf W1/. Therefore Gf contains an
element of order p (Cauchy’s theorem, GT 4.13), but the only elements of order p in Sp are
p-cycles (here we use that p is prime again).

Let � be complex conjugation on C. Then � transposes the two nonreal roots of f .X/
and fixes the rest. Therefore Gf � Sp and contains a transposition and a p-cycle, and so is
the whole of Sp. 2

It remains to construct polynomials satisfying the conditions of the Proposition.

EXAMPLE 4.16 Let p� 5 be a prime number. Choose a positive even integer m and even
integers

n1 < n2 < � � �< np�2;

and let
g.X/D .X2Cm/.X �n1/:::.X �np�2/:

The graph of g crosses the x-axis exactly at the points n1; : : : ;np�2, and it doesn’t have a
local maximum or minimum at any of those points (because the ni are simple roots). Thus
e Dming 0.x/D0 jg.x/j> 0, and we can choose an odd positive integer n such that 2

n
< e.

Consider
f .X/D g.X/�

2

n
.

As 2
n
< e, the graph of f also crosses the x-axis at exactly p�2 points, and so f has exactly

two nonreal roots. On the other hand, when we write

nf .X/D nXpCa1X
p�1
C�� �Cap;

the ai are all even and ap is not divisible by 22, and so Eisenstein’s criterion implies that f
is irreducible. Over R, f has p�2 linear factors and one quadratic factor, and so it certainly
splits over C (high school algebra). Therefore, the proposition applies to f .1

EXAMPLE 4.17 The reader shouldn’t think that, in order to have Galois group Sp , a polyno-
mial must have exactly two nonreal roots. For example, the polynomial X5�5X3C4X �1
has Galois group S5 but all of its roots are real.

1If m is taken sufficiently large, then g.X/�2 will have exactly two nonreal roots, i.e., we can take nD 1,
but the proof is longer (see Jacobson 1964, p107, who credits the example to Brauer). The shorter argument in
the text was suggested to me by Martin Ward.
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Finite fields

Let FpDZ=pZ, the field of p elements. As we noted in �1, any other fieldE of characteristic
p contains a copy of Fp, namely, fm1E jm 2 Zg. No harm results if we identify Fp with
this subfield of E.

LetE be a field of degree n over Fp . ThenE has qD pn elements, and soE� is a group
of order q�1. Hence the nonzero elements of E are roots of Xq�1�1, and all elements of
E (including 0) are roots of Xq �X . Hence E is a splitting field for Xq �X , and so any
two fields with q elements are isomorphic.

PROPOSITION 4.18 Every extension of finite fields is simple.

PROOF. Consider E � F . Then E� is a finite subgroup of the multiplicative group of a
field, and hence is cyclic (see Exercise 1-3). If � generates E� as a multiplicative group,
then certainly E D F Œ��. 2

Now letE be the splitting field of f .X/DXq�X , qDpn. The derivative f 0.X/D�1,
which is relatively prime to f .X/ (in fact, to every polynomial), and so f .X/ has q distinct
roots in E. Let S be the set of its roots. Then S is obviously closed under multiplication and
the formation of inverses, but it is also closed under subtraction: if aq D a and bq D b, then

.a�b/q D aq �bq D a�b:

Hence S is a field, and so S DE. In particular, E has pn elements.

PROPOSITION 4.19 For each power q D pn there is a field Fq with q elements. It is the
splitting field of Xq �X , and hence any two such fields are isomorphic. Moreover, Fq
is Galois over Fp with cyclic Galois group generated by the Frobenius automorphism
�.a/D ap.

PROOF. Only the final statement remains to be proved. The field Fq is Galois over Fp
because it is the splitting field of a separable polynomial. We noted in (1.4) that x

�
7! xp

is an automorphism of Fq . An element a of Fq is fixed by � if and only if ap D a, but Fp
consists exactly of such elements, and so the fixed field of h�i is Fp . This proves that Fq is
Galois over Fp and that h�i D Gal.Fq=Fp/ (see 3.11b). 2

COROLLARY 4.20 Let E be a field with pn elements. For each divisor m of n, m� 0, E
contains exactly one field with pm elements.

PROOF. We know that E is Galois over Fp and that Gal.E=Fp/ is the cyclic group of order
n generated by � . The group h�i has one subgroup of order n=m for each m dividing n,
namely, h�mi, and so E has exactly one subfield of degree m over Fp for each m dividing n,
namely, Eh�

mi. Because it has degree m over Fp, Eh�
mi has pm elements. 2

COROLLARY 4.21 Each monic irreducible polynomial f of degree d jn in FpŒX� occurs
exactly once as a factor of Xp

n

�X ; hence, the degree of the splitting field of f is � d .

PROOF. First, the factors of Xp
n

�X are distinct because it has no common factor with
its derivative. If f .X/ is irreducible of degree d , then f .X/ has a root in a field of degree
d over Fp. But the splitting field of Xp

n

�X contains a copy of every field of degree
d over Fp with d jn. Hence some root of Xp

n

�X is also a root of f .X/, and therefore
f .X/jXp

n

�X . In particular, f divides Xp
d

�X , and therefore it splits in its splitting
field, which has degree d over Fp. 2
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PROPOSITION 4.22 Let F be an algebraic closure of Fp . Then F contains exactly one field
Fpn for each integer n� 1, and Fpn consists of the roots of Xp

n

�X . Moreover,

Fpm � Fpn ” mjn:

The partially ordered set of finite subfields of F is isomorphic to the set of integers n � 1
partially ordered by divisibility.

PROOF. Obvious from what we have proved. 2

PROPOSITION 4.23 The field Fp has an algebraic closure F.

PROOF. Choose a sequence of integers 1D n1 < n2 < n3 < � � � such that ni jniC1 for all
i , and every integer n divides some ni . For example, let ni D i Š. Define the fields Fpni
inductively as follows: Fpn1 D Fp; Fpni is the splitting field of Xp

ni
�X over Fpni�1 .

Then, Fpn1 � Fpn2 � Fpn3 � �� � , and we define F D
S

Fpni . As a union of a chain of
fields algebraic over Fp , it is again a field algebraic over Fp . Moreover, every polynomial in
FpŒX� splits in F, and so it is an algebraic closure of F (by 1.44). 2

REMARK 4.24 Since the Fpn’s are not subsets of a fixed set, forming the union requires
explanation. Define S to be the disjoint union of the Fpn . For a;b 2 S , set a � b if aD b in
one of the Fpn . Then � is an equivalence relation, and we let FD S=�.

PARI factors polynomials modulo p very quickly. Recall that the syntax is
factormod(f(X),p). For example, to obtain a list of all monic polynomials of degree 1;2;
or 4 over F5, ask PARI to factor X625�X modulo 5 (note that 625D 54).

ASIDE 4.25 In one of the few papers published during his lifetime, Galois defined finite fields of
arbitrary prime power order and established their basic properties, for example, the existence of a
primitive element (Notices AMS, Feb. 2003, p. 198). For this reason finite fields are often called
Galois fields and the field with q elements is often denoted by GF.q/.

Computing Galois groups over Q

In the remainder of this chapter, I sketch a practical method for computing Galois groups
over Q and similar fields. Recall that for a separable polynomial f 2 F ŒX�, Ff denotes a
splitting field for F , and Gf D Gal.Ff =F / denotes the Galois group of F . Moreover, Gf
permutes the roots ˛1;˛2; : : : of f in Ff :

G � Symf˛1;˛2; : : :g.

The first result generalizes Proposition 4.4.

PROPOSITION 4.26 Let f .X/ be a polynomial in F ŒX�with only simple roots, and suppose
that the orbits of Gf acting on the roots of f have m1; : : : ;mr elements respectively. Then
f factors as f D f1 � � �fr with fi irreducible of degree mi .

PROOF. We may assume that f is monic. Let ˛1; : : : ;˛m, mD degf , be the roots of f .X/
in Ff . The monic factors of f .X/ in Ff ŒX� correspond to subsets S of f˛1; : : : ;˛mg,

S $ fS D
Y
˛2S

.X �˛/,
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and fS is fixed under the action of Gf (and hence has coefficients in F ) if and only if S
is stable under Gf . Therefore the irreducible factors of f in F ŒX� are the polynomials fS
corresponding to minimal subsets S of f˛1; : : : ;˛mg stable under Gf , but these subsets S
are precisely the orbits of Gf in f˛1; : : : ;˛mg. 2

REMARK 4.27 Note that the proof shows the following: let f˛1; : : : ;˛mg D
S
Oi be the

decomposition of f˛1; : : : ;˛mg into a disjoint union of orbits for the group Gf ; then

f D
Y
fi ; fi D

Y
˛i2Oi

.X �˛i /

is the decomposition of f into a product of irreducible polynomials in F ŒX�.

Now suppose F is finite, with pn elements say. Then Gf is a cyclic group generated by
the Frobenius automorphism � Wx 7! xp . When we regard � as a permutation of the roots of
f , then distinct orbits of � correspond to the factors in its cycle decomposition (GT 4.26).
Hence, if the degrees of the distinct irreducible factors of f are m1;m2; : : : ;mr , then � has
a cycle decomposition of type

m1C�� �Cmr D degf:

LEMMA 4.28 Let R be a unique factorization domain with field of fractions F , and let
f be a monic polynomial in RŒX�. Let P be a prime ideal in R, and let xf be the image
of f in .R=P /ŒX�. Assume that neither f nor xf has a multiple root. Then the roots
˛1; : : : ;˛m of f lie in some finite extension R0 of R, and their reductions x̨i modulo
PR0 are the roots of xf . Moreover G xf � Gf when both are identified with subgroups of
Symf˛1; : : : ;˛mg D Symfx̨1; : : : ; x̨mg.

PROOF. Omitted — see van der Waerden, Modern Algebra, I, �61 (second edition) or ANT
3.41. 2

On combining these results, we obtain the following theorem.

THEOREM 4.29 (DEDEKIND) Let f .X/ 2 ZŒX� be a monic polynomial of degree m, and
let p be a prime such that f mod p has simple roots (equivalently, D.f / is not divisible by
p). Suppose that xf D

Q
fi with fi irreducible of degree mi in FpŒX�. Then Gf contains

an element whose cycle decomposition is of type

mDm1C�� �Cmr :

EXAMPLE 4.30 ConsiderX5�X�1. Modulo 2, this factors as .X2CXC1/.X3CX2C
1/, and modulo 3 it is irreducible. Hence Gf contains .ik/.lmn/ and .12345/, and so also
..ik/.lmn//3 D .ik/. Therefore Gf D S5 by (4.14).

LEMMA 4.31 A transitive subgroup of H � Sn containing a transposition and an .n�1/-
cycle is equal to Sn.

PROOF. After possibly renumbering, we may suppose the .n�1/-cycle is .123: : :n�1/.
Because of the transitivity, the transposition can be transformed into .in/, some 1� i � n�1.
Conjugating .in/ by .123: : :n�1/ and its powers will transform it into .1n/; .2n/; : : : ; .n�
1n/, and these elements obviously generate Sn: 2
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EXAMPLE 4.32 Select monic polynomials of degree n, f1;f2;f3 with coefficients in Z
such that:

(a) f1 is irreducible modulo 2;
(b) f2 D .degree 1/.irreducible of degree n�1/ mod 3;
(c) f3 D .irreducible of degree 2)(product of 1 or 2 irreducible polys of odd degree) mod

5.

We also choose f1, f2, f3 to have only simple roots. Take

f D�15f1C10f2C6f3:

Then

(i) Gf is transitive (it contains an n-cycle because f � f1 mod 2);
(ii) Gf contains a cycle of length n�1 (because f � f2 mod 3);

(iii) Gf contains a transposition (because f � f3 mod 5, and so it contains the product of a
transposition with a commuting element of odd order; on raising this to an appropriate
odd power, we are left with the transposition). Hence Gf is Sn:

The above results give the following strategy for computing the Galois group of an
irreducible polynomial f 2QŒX�. Factor f modulo a sequence of primes p not dividing
D.f / to determine the cycle types of the elements in Gf — a difficult theorem in number
theory, the effective Chebotarev density theorem, says that if a cycle type occurs in Gf , then
this will be seen by looking modulo a set of prime numbers of positive density, and will
occur for a prime less than some bound. Now look up a table of transitive subgroups of Sn
with order divisible by n and their cycle types. If this doesn’t suffice to determine the group,
then look at its action on the set of subsets of r roots for some r .

See, Butler and McKay, The transitive groups of degree up to eleven, Comm. Algebra 11
(1983), 863–911. This lists all transitive subgroups of Sn, n� 11, and gives the cycle types
of their elements and the orbit lengths of the subgroup acting on the r-sets of roots. With
few exceptions, these invariants are sufficient to determine the subgroup up to isomorphism.

PARI can compute Galois groups for polynomials of degree � 11 over Q. The syntax is
polgalois(f) where f is an irreducible polynomial of degree � 11 (or � 7 depending on
your setup), and the output is .n;s;k;name/ where n is the order of the group, s is C1 or
�1 according as the group is a subgroup of the alternating group or not, and “name” is the
name of the group. For example, polgalois(X^5-5*X^3+4*X-1) (see 4.17) returns the
symmetric group S5, which has order 120, polgalois(X^11-5*X^3+4*X-1) returns the
symmetric group S11, which has order 39916800, and
polgalois(X^12-5*X^3+4*X-1) returns an apology. The reader should use PARI to
check the examples 4.9–4.12.

See also, Soicher and McKay, Computing Galois groups over the rationals, J. Number
Theory, 20 (1985) 273–281.

Exercises

4-1 (*) Find the splitting field of Xm�1 2 FpŒX�.

4-2 (*) Find the Galois group of X4�2X3�8X �3 over Q.

4-3 (*) Find the degree of the splitting field of X8�2 over Q.
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4-4 (*) Give an example of a field extension E=F of degree 4 such that there does not
exist a field M with F �M �E, ŒM WF �D 2.

4-5 List all irreducible polynomials of degree 3 over F7 in 10 seconds or less (there are
112).

4-6 “It is a thought-provoking question that few graduate students would know how to
approach the question of determining the Galois group of, say,

X6C2X5C3X4C4X3C5X2C6XC7:”

[over Q].

(a) Can you find it?
(b) Can you find it without using the “polgalois” command in PARI?

4-7 (*) Let f .X/DX5CaXCb, a;b 2Q. Show that Gf �D5 (dihedral group) if and
only if

(a) f .X/ is irreducible in QŒX�, and
(b) the discriminant D.f /D 44a5C55b4 of f .X/ is a square, and
(c) the equation f .X/D 0 is solvable by radicals.

4-8 Show that a polynomial f of degree nD
Qk
iD1p

ri
i is irreducible over Fq if and only

if gcd.f .x/;xq
n=pi
�x/D 1 for all i .

4-9 Let f .X/ be an irreducible polynomial in QŒX� with both real and nonreal roots. Show
that its Galois group is nonabelian. Can the condition that f is irreducible be dropped?





CHAPTER 5
Applications of Galois Theory

In this chapter, we apply the fundamental theorem of Galois theory to obtain other results
about polynomials and extensions of fields.

Primitive element theorem.

Recall that a finite extension of fields E=F is simple if E D F Œ˛� for some element ˛ of
E. Such an ˛ is called a primitive element of E. We shall show that (at least) all separable
extensions have primitive elements.

Consider for example QŒ
p
2;
p
3�=Q. We know (see Exercise 3-3) that its Galois group

over Q is a 4-group h�;�i; where�
�
p
2 D �

p
2

�
p
3 D

p
3
;

�
�
p
2 D

p
2

�
p
3 D �

p
3
:

Note that
�.
p
2C
p
3/ D �

p
2C
p
3;

�.
p
2C
p
3/ D

p
2�
p
3;

.��/.
p
2C
p
3/ D �

p
2�
p
3:

These all differ from
p
2C
p
3, and so only the identity element of Gal.QŒ

p
2;
p
3�=Q/

fixes the elements of QŒ
p
2C
p
3�. According to the fundamental theorem, this implies that

p
2C
p
3 is a primitive element:

QŒ
p
2;
p
3�DQŒ

p
2C
p
3�:

It is clear that this argument should work much more generally.
Recall that an element ˛ algebraic over a field F is separable over F if its minimum

polynomial over F has no multiple roots.

THEOREM 5.1 Let E D F Œ˛1; :::;˛r � be a finite extension of F , and assume that ˛2; :::;˛r
are separable over F (but not necessarily ˛1). Then there is an element  2 E such that
E D F Œ�.

PROOF. For finite fields, we proved this in (4.18). Hence we may assume F to be infinite.
It suffices to prove the statement for r D 2, for then

F Œ˛1;˛2; : : : ;˛r �D F Œ˛
0
1;˛3; : : : ;˛r �D F Œ˛

00
1 ;˛4; : : : ;˛r �D �� � :

57
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Thus let E D F Œ˛;ˇ� with ˇ separable over F . Let f and g be the minimum polynomials
of ˛ and ˇ over F , and let L be a splitting field for fg containing E. Let ˛1 D ˛; : : : ;˛s be
the roots of f in L, and let ˇ1 D ˇ, ˇ2; : : : ;ˇt be the roots of g. For j ¤ 1, ˇj ¤ ˇ, and so
the the equation

˛i CXˇj D ˛CXˇ;

has exactly one solution, namely, X D ˛i�˛
ˇ�ˇj

. If we choose a c 2 F different from any of
these solutions (using that F is infinite), then

˛i C cˇj ¤ ˛C cˇ unless i D 1D j:

Let  D ˛C cˇ. I claim that
F Œ˛;ˇ�D F Œ�.

The polynomials g.X/ and f . � cX/ have coefficients in F Œ�, and have ˇ as a root:

g.ˇ/D 0; f . � cˇ/D f .˛/D 0:

In fact, ˇ is their only common root, because we chose c so that  � cˇj ¤ ˛i unless
i D 1D j . Therefore

gcd.g.X/;f . � cX//DX �ˇ.

Here we computed the gcd in LŒX�, but this is equal to the gcd computed in F Œ�ŒX�
(Proposition 2.10). Hence ˇ 2 F Œ�, and this implies that ˛ D  � cˇ also lies in F Œ�. This
proves the claim. 2

REMARK 5.2 When F is infinite, the proof shows that  can be chosen to be of the form

 D ˛1C c2˛2C�� �C cr˛r ; ci 2 F:

If F Œ˛1; : : : ;˛r � is Galois over F , then an element of this form will be a primitive element
provided it is moved by every nontrivial element of the Galois group. This remark makes it
very easy to write down primitive elements.

Our hypotheses are minimal: if two of the ˛’s are not separable, then the extension need
not be simple. Before giving an example to illustrate this, we need another result.

PROPOSITION 5.3 Let E D F Œ� be a simple algebraic extension of F . Then there are only
finitely many intermediate fields M ,

F �M �E:

PROOF. Let M be such a field, and let g.X/ be the minimum polynomial of  over M . Let
M 0 be the subfield of E generated over F by the coefficients of g.X/. Clearly M 0 �M ,
but (equally clearly) g.X/ is the minimum polynomial of  over M 0. Hence

ŒEWM 0�D deg.g/D ŒEWM�;

and so M DM 0; we have shown that M is generated by the coefficients of g.X/.
Let f .X/ be the minimum polynomial of  over F . Then g.X/ divides f .X/ in

MŒX�, and hence also in EŒX�. Therefore, there are only finitely many possible g’s, and
consequently only finitely many possible M ’s. 2
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REMARK 5.4 (a) Note that the proof in fact gives a description of all the intermediate
fields: each is generated over F by the coefficients of a factor g.X/ of f .X/ in EŒX�. The
coefficients of such a g.X/ are partially symmetric polynomials in the roots of f .X/ (that
is, fixed by some, but not necessarily all, of the permutations of the roots).

(b) The proposition has a converse: if E is a finite extension of F and there are only
finitely many intermediate fields M , F �M �E, then E is a simple extension of F (see
Dummit and Foote 1991, p508). This gives another proof of Theorem 5.1 in the case thatE is
separable over F , because Galois theory shows that there are only finitely many intermediate
fields in this case (even the Galois closure of E over F has only finitely many intermediate
fields).

EXAMPLE 5.5 The simplest nonsimple algebraic extension is k.X;Y /� k.Xp;Y p/, where
k is an algebraically closed field of characteristic p. Let F D k.Xp;Y p/. For all c 2 k, we
have

k.X;Y /D F ŒX;Y �� F ŒXC cY �� F

with the degree of each extension equal to p. If

F ŒXC cY �D F ŒXC c0Y �; c ¤ c0;

then F ŒXC cY � would contain both X and Y , which is impossible because Œk.X;Y /WF �D
p2. Hence there are infinitely many distinct intermediate fields.1

Fundamental Theorem of Algebra

We finally prove the misnamed2 fundamental theorem of algebra.

THEOREM 5.6 The field C of complex numbers is algebraically closed.

PROOF. We define C to be the splitting field of X2C1 over R, and we let i denote a root
of X2C1 in C. Thus CD RŒi �. We have to show (see 1.44) that every f .X/ 2 RŒX� has a
root in C.

The two facts we need to assume about R are:

˘ Positive real numbers have square roots.
˘ Every polynomial of odd degree with real coefficients has a real root.

Both are immediate consequences of the Intermediate Value Theorem, which says that
a continuous function on a closed interval takes every value between its maximum and
minimum values (inclusive). (Intuitively, this says that, unlike the rationals, the real line has
no “holes”.)

1Zariski showed that there is even an intermediate field M that is not isomorphic to F.X;Y /, and Piotr
Blass showed in his thesis (University of Michigan 1977), using the methods of algebraic geometry, that there is
an infinite sequence of intermediate fields, no two of which are isomorphic.

2Because it is not strictly a theorem in algebra: it is a statement about R whose construction is part of
analysis (or maybe topology). In fact, I prefer the proof based on Liouville’s theorem in complex analysis to
the more algebraic proof given in the text: if f .z/ is a polynomial without a root in C, then f .z/�1 will be
bounded and holomorphic on the whole complex plane, and hence (by Liouville) constant. The Fundamental
Theorem was quite a difficult theorem to prove. Gauss gave a proof in his doctoral dissertation in 1798 in which
he used some geometric arguments which he didn’t justify. He gave the first rigorous proof in 1816. The elegant
argument given here is a simplification by Emil Artin of earlier proofs (see Artin, E., Algebraische Konstruction
reeller Körper, Hamb. Abh., Bd. 5 (1926), 85-90; translation available in Artin, Emil. Exposition by Emil Artin:
a selection. AMS; LMS 2007).
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We first show that every element of C has a square root. Write ˛D aCbi , with a;b 2R,
and choose c;d to be real numbers such that

c2 D
.aC
p
a2Cb2/

2
; d2 D

.�aC
p
a2Cb2/

2
:

Then c2�d2 D a and .2cd/2 D b2. If we choose the signs of c and d so that cd has the
same sign as b, then .cCdi/2 D ˛ and so cCdi is a square root of ˛.

Let f .X/ 2 RŒX�, and let E be a splitting field for f .X/.X2C1/ — we have to show
that E D C. Since R has characteristic zero, the polynomial is separable, and so E is Galois
over R. Let G be its Galois group, and let H be a Sylow 2-subgroup of G.

Let M D EH . Then M has of degree .GWH/ over R, which is odd. Therefore, the
minimum polynomial over R of any ˛ 2M has odd degree, and so has a real root. Therefore
the minimum polynomial has degree 1, and ˛ 2 R. It follows that M D R and G DH .

We now know that Gal.E=C/ is a 2-group. If it is ¤ 1, then it has a subgroup N of
index 2 (GT 4.17). The field EN has degree 2 over C, and so it is generated by the square
root of an element of C (see 3.24), but we have seen that such square roots lie in C. Hence
EN D C, which is a contradiction. Thus Gal.E=C/D 1 and E D C. 2

COROLLARY 5.7 (a) The field C is the algebraic closure of R.
(b) The set of all algebraic numbers is an algebraic closure of Q:

PROOF. Part (a) is obvious from the definition of “algebraic closure” (1.43), and (b) follows
from Corollary 1.46. 2

Cyclotomic extensions

A primitive nth root of 1 in F is an element of order n in F �. Such an element can exist
only if F has characteristic 0 or characteristic p not dividing n.

PROPOSITION 5.8 Let F be a field of characteristic 0 or characteristic p not dividing n.
Let E be the splitting field of Xn�1.

(a) There exists a primitive nth root of 1 in E.
(b) If � is a primitive nth root of 1 in E, then E D F Œ��.
(c) The field E is Galois over F ; for each � 2 Gal.E=F /, there is an i 2 .Z=nZ/� such

that �� D �i for all � with �n D 1; the map � 7! Œi � is an injective homomorphism

Gal.E=F /! .Z=nZ/�.

PROOF. (a) The roots of Xn�1 are distinct, because its derivative nXn�1 has only zero
as a root (here we use the condition on the characteristic), and so E contains n distinct nth
roots of 1. The nth roots of 1 form a finite subgroup of E�, and so (see Exercise 3) they
form a cyclic group. Every generator has order n, and hence will be a primitive nth root of 1.

(b) The roots of Xn�1 are the powers of �, and F Œ�� contains them all.
(c) The extensionE=F is Galois becauseE is the splitting field of a separable polynomial.

If �0 is one primitive nth root of 1, then the remaining primitive nth roots of 1 are the elements
�i0 with i relatively prime to n. Since, for any automorphism � of E, ��0 is again a primitive
nth root of 1, it equals �i0 for some i relatively prime to n, and the map � 7! i mod n is
injective because �0 generates E over F . It obviously is a homomorphism. Moreover, for
any other nth root of 1, � D �m0 ,

�� D .��0/
m
D �im0 D �

i : 2
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The map � 7! Œi �WGal.F Œ��=F /! .Z=nZ/� need not be surjective. For example, if
F DC, then its image is f1g, and if F DR, it is either fŒ1�g or fŒ�1�; Œ1�g. On the other hand,
when nD p is prime, we saw in (1.41) that ŒQŒ��WQ�D p�1, and so the map is surjective.
We now prove that the map is surjective for all n when F DQ.

The polynomial Xn� 1 has some obvious factors in QŒX�, namely, the polynomials
Xd �1 for any d jn. The quotient of Xn�1 by all these factors for d < n is called the nth
cyclotomic polynomial ˚n. Thus

˚n D
Y
.X � �/ (product over the primitive nth roots of 1/:

It has degree '.n/, the order of .Z=nZ/�. Since every nth root of 1 is a primitive d th root
of 1 for exactly one d dividing n, we see that

Xn�1D
Y
d jn

˚d .X/:

For example, ˚1.X/DX �1, ˚2.X/DXC1, ˚3.X/DX2CXC1, and

˚6.X/D
X6�1

.X �1/.XC1/.X2CXC1/
DX2�XC1:

This gives an easy inductive method of computing the cyclotomic polynomials. Alternatively
type polcyclo(n,X) in PARI.

Because Xn�1 has coefficients in Z and is monic, every monic factor of it in QŒX� has
coefficients in Z (see 1.14). In particular, the cyclotomic polynomials lie in ZŒX�.

LEMMA 5.9 Let F be a field of characteristic 0 or p not dividing n, and let � be a primitive
nth root of 1 in some extension field. The following are equivalent:

(a) the nth cyclotomic polynomial ˚n is irreducible;
(b) the degree ŒF Œ��WF �D '.n/;
(c) the homomorphism

Gal.F Œ��=F /! .Z=nZ/�

is an isomorphism.

PROOF. Because � is a root of ˚n, the minimum polynomial of � divides ˚n. It is equal to
it if and only if ŒF Œ��WF �D '.n/, which is true if and only if the injection Gal.F Œ��=F / ,!
.Z=nZ/� is onto. 2

THEOREM 5.10 The nth cyclotomic polynomial ˚n is irreducible in QŒX�.
PROOF. Let f .X/ be a monic irreducible factor of ˚n in QŒX�. Its roots will be primitive
nth roots of 1, and we have to show they include all primitive nth roots of 1. For this it
suffices to show that

� a root of f .X/ H) �i a root of f .X/ for all i such that gcd.i;n/D 1:

Such an i is a product of primes not dividing n, and so it suffices to show that

� a root of f .X/ H) �p a root of f .X/ for all primes p not dividing n:

Write
˚n.X/D f .X/g.X/.
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Proposition 1.14 shows that f .X/ and g.X/ lie in ZŒX�. Suppose � is a root of f but
that, for some prime p not dividing n, �p is not a root of f . Then �p is a root of g.X/,
g.�p/D 0, and so � is a root of g.Xp/. As f .X/ and g.Xp/ have a common root, they
have a nontrivial common factor in QŒX� (2.10), which automatically lies in ZŒX� (1.14).

Write h.X/ 7! xh.X/ for the quotient map ZŒX�! FpŒX�, and note that, because f .X/
and g.Xp/ have a common factor of degree � 1 in ZŒX�, so also do xf .X/ and xg.Xp/ in
FpŒX�. The mod p binomial theorem shows that

xg.X/p D xg.Xp/

(recall that ap D a for all a 2 Fp), and so xf .X/ and xg.X/ have a common factor of degree
� 1 in FpŒX�. Hence Xn�1, when regarded as an element of FpŒX�, has multiple roots,
but we saw in the proof of Proposition 5.8 that it doesn’t. Contradiction. 2

REMARK 5.11 This proof is very old — in essence it goes back to Dedekind in 1857 —
but its general scheme has recently become popular: take a statement in characteristic zero,
reduce modulo p (where the statement may no longer be true), and exploit the existence
of the Frobenius automorphism a 7! ap to obtain a proof of the original statement. For
example, commutative algebraists use this method to prove results about commutative rings,
and there are theorems about complex manifolds that were first proved by reducing things to
characteristic p:

There are some beautiful and mysterious relations between what happens in characteristic
0 and in characteristic p. For example, let f .X1; :::;Xn/ 2 ZŒX1; :::;Xn�. We can

(a) look at the solutions of f D 0 in C, and so get a topological space;
(b) reduce mod p, and look at the solutions of xf D 0 in Fpn .

The Weil conjectures (Weil 1949; proved in part by Grothendieck in the 1960’s and com-
pletely by Deligne in 1973) assert that the Betti numbers of the space in (a) control the
cardinalities of the sets in (b).

THEOREM 5.12 The regular n-gon is constructible if and only if nD 2kp1 � � �ps where the
pi are distinct Fermat primes.
PROOF. The regular n-gon is constructible if and only if cos 2�

n
(or � D e2�i=n) is con-

structible. We know that QŒ�� is Galois over Q, and so (according to 1.37 and 3.23) � is
constructible if and only if ŒQŒ��WQ� is a power of 2. But (see GT 3.5)

'.n/D
Y
pjn

.p�1/pn.p/�1; nD
Y
pn.p/;

and this is a power of 2 if and only if n has the required form. 2

REMARK 5.13 (a) As mentioned earlier, the Fermat primes are those of the form 22
k

C1.
It is known that these numbers are prime when k D 0;1;2;3;4, but it is not known whether
or not there are more Fermat primes. Thus the problem of listing the n for which the regular
n-gon is constructible is not yet solved. See the Wikipedia.

(b) The final section of Gauss’s, Disquisitiones Arithmeticae (1801) is titled “Equations
defining sections of a Circle”. In it Gauss proves that the nth roots of 1 form a cyclic group,
that Xn�1 is solvable (this was before the theory of abelian groups had been developed,
and before Galois), and that the regular n-gon is constructible when n is as in the Theorem.
He also claimed to have proved the converse statement. This leads some people to credit
him with the above proof of the irreducibility of ˚n, but in the absence of further evidence,
I’m sticking with Dedekind.

http://en.wikipedia.org/wiki/Fermat_numbers
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Dedekind’s theorem on the independence of characters

THEOREM 5.14 (DEDEKIND) Let F be a field, and let G be a group. Then every finite set
f�1; : : : ;�mg of homomorphisms G! F � is linearly independent over F , i.e.,X

ai�i D 0 (as a function G! F / H) a1 D 0; : : : ;am D 0:

PROOF. We use induction on m. For mD 1, the statement is obvious. Assume it for m�1,
and suppose that, for some set f�1; : : : ;�mg of homomorphisms G! F � and ai 2 F ,

a1�1.x/Ca2�2.x/C�� �Cam�m.x/D 0 for all x 2G:

We have to show that the ai are zero. As �1 and �2 are distinct, they will take distinct values
on some g 2G. On replacing x with gx in the equation, we find that

a1�1.g/�1.x/Ca2�2.g/�2.x/C�� �Cam�m.g/�m.x/D 0 for all x 2G:

On multiplying the first equation by �1.g/ and subtracting it from the second, we obtain the
equation

a02�2C�� �Ca
0
m�m D 0; a0i D ai .�i .g/��1.g//:

The induction hypothesis shows that a0i D 0 for i D 2;3; : : :. As �2.g/��1.g/¤ 0, this
implies that a2 D 0, and so

a1�1Ca3�3C�� �Cam�m D 0:

The induction hypothesis now shows that the remaining ai ’s are also zero. 2

COROLLARY 5.15 Let F and E be fields, and let �1; :::;�m be distinct homomorphisms
F !E. Then �1; :::;�m are linearly independent over E:

PROOF. Apply the theorem to �i D �i jF �. 2

COROLLARY 5.16 Let E be a finite separable extension of F of degree m. Let ˛1; : : : ;˛m
be a basis for E over F , and let �1; : : : ;�m be distinct F -homomorphisms from E into a
field ˝. Then the matrix whose .i;j /th-entry is �i˛j is invertible.

PROOF. If not, there exist ci 2 ˝ such that
Pm
iD1 ci�i .˛j / D 0 for all j . But the mapPm

iD1 ci�i WE !˝ is F -linear, and so this implies that
Pm
iD1 ci�i .˛/D 0 for all ˛ 2 E,

which contradicts Corollary 5.15. 2

The normal basis theorem

DEFINITION 5.17 Let E be a finite Galois extension of F with Galois group G. A basis for
E as an F -vector space is called a normal basis if it consists of the conjugates of a single
element of E.

In other words, a normal basis is one of the form

f�˛ j � 2Gg

for some ˛ 2E.
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THEOREM 5.18 (NORMAL BASIS THEOREM) Every Galois extension has a normal basis.

The group algebra FG of a group G is the F -vector space with basis the elements of
G endowed with the multiplication extending that of G. Thus an element of FG is a sumP
�2G a�� , a� 2 F , and�P

� a��
��P

� b��
�
D
P
�

�P
�1�2D�

a�1b�2
�
�:

Any F -linear action of G on an F -vector space V extends uniquely to an action of FG on
V .

Let E=F be a Galois extension with Galois group G. Then E is an FG-module, and
Theorem 5.18 says that there exists an element ˛ 2E such that the mapP

� a�� 7!
P
� a��˛WFG!E

is an isomorphism of FG-modules, i.e., that E is a free FG-module of rank 1:
We give three proofs of Theorem 5.18. The first assumes that F is infinite and the second

that G is cyclic. Since every Galois extension of a finite field is cyclic (4.19), this covers all
cases. The third proof applies to both finite and infinite fields, but uses the Krull-Schmidt
theorem.

PROOF FOR INFINITE FIELDS

LEMMA 5.19 Let f 2F ŒX1; : : : ;Xm�, and let S be an infinite subset ofF . If f .a1; : : : ;am/D
0 for all a1; : : : ;am 2 S , then f .X1; : : : ;Xm/D 0.

PROOF. We prove this by induction on m. For mD 1 it follows from the fact that a nonzero
polynomial in one symbol has only finitely many roots. For m> 1, write

f D
X

ci .X1; : : : ;Xm�1/X
i
m:

For any m�1-tuple, a1; : : : ;am�1 of elements of S ,

f .a1; : : : ;am�1;Xm/

is a polynomial inXm having every element of S as a root. Therefore, each of its coefficients
is zero: ci .a1; : : : ;am�1/D 0 for all i . Since this holds for all .a1; : : : ;am�1/, the induction
hypothesis shows that ci .X1; : : : ;Xm�1/ is zero. 2

We now prove 5.18 in the case that F is infinite. Number the elements ofG as �1; : : : ;�m
(with �1 D 1).

Let f .X1; : : : ;Xm/ 2 F ŒX1; : : : ;Xm� have the property that

f .�1˛; : : : ;�m˛/D 0

for all ˛ 2E. For a basis ˛1; : : : ;˛m of E over F , let

g.Y1; : : : ;Ym/D f .
Pm
iD1Yi�1˛i ;

Pm
iD1Yi�2˛i ; : : :/ 2EŒY1; : : : ;Ym�.

The hypothesis on f implies that g.a1; : : : ;am/D 0 for all ai 2 F , and so g D 0 (because
F is infinite). But the matrix .�i˛j / is invertible (5.16). Since g is obtained from f by an
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invertible linear change of variables, f can be obtained from g by the inverse linear change
of variables. Therefore it also is zero.

Write Xi D X.�i /, and let A D .X.�i�j //, i.e., A is the m�m matrix having Xk in
the .i;j /th place if �i�j D �k . Then det.A/ is a polynomial in X1; : : : ;Xm, say, det.A/D
h.X1; : : : ;Xm/. Clearly, h.1;0; : : : ;0/ is the determinant of a matrix having exactly one 1
in each row and each column and its remaining entries 0. Hence the rows of the matrix
are a permutation of the rows of the identity matrix, and so its determinant is ˙1. In
particular, h is not identically zero, and so there exists an ˛ 2E� such that h.�1˛; : : : ;�m˛/
.D det.�i�j˛/) is nonzero. We shall show that f�i˛g is a normal basis. For this, it suffices
to show that �i˛ are linearly independent over F . SupposeXm

jD1
aj�j˛ D 0

for some aj 2 F . On applying �1; : : : ;�m successively, we obtain a system of m-equationsX
aj�i�j˛ D 0

in the m “unknowns” aj . Because this system of equations is nonsingular, the aj ’s are zero.
This completes the proof of the lemma in the case that F is infinite.

PROOF WHEN G IS CYCLIC.

Assume that G is generated by an element �0 of order n. Then ŒEWF �D n. The minimum
polynomial of �0 regarded as an endomorphism of the F -vector space E is the monic
polynomial in F ŒX� of least degree such that P.�0/D 0 (as an endomorphism of E). It
has the property that it divides every polynomial Q.X/ 2 F ŒX� such that Q.�0/D 0. Since
�n0 D 1, P.X/ divides Xn�1. On the other hand, Dedekind’s theorem on the independence
of characters (5.14) implies that 1;�0; : : : ;�n�10 are linearly independent over F , and so
degP.X/ > n� 1. We conclude that P.X/ D Xn � 1. Therefore, as an F ŒX�-module
with X acting as �0, E is isomorphic to F ŒX�=.Xn� 1/. For any generator ˛ of E as a
F ŒX�-module, ˛;�0˛; : : : ;�0˛n�1 is a F -basis for E.

UNIFORM PROOF

The Krull-Schmidt theorem says that every module M of finite length over a ring can be
written as a direct sum of indecomposable modules and that the indecomposable modules
occurring in a decomposition are unique up to order and isomorphism. ThusM D

L
imiMi

where Mi is indecomposable and miMi denotes the direct sum of mi copies of Mi ; the set
of isomorphism classes of the Mi is uniquely determined and, when we choose the Mi to
be pairwise nonisomorphic, each mi is uniquely determined. From this it follows that two
modules M and M 0 of finite length over a ring are isomorphic if mM � mM 0 for some
m� 1.

Consider the F -vector space E˝F E. We let E act on the first factor, and G act on the
second factor (so a.x˝y/D ax˝y, a 2 E, and �.x˝y/D x˝�y, � 2 G). We shall
prove Theorem 5.18 by showing that

FG˚�� �˚FG„ ƒ‚ …
n

�E˝F E �E˚�� �˚E„ ƒ‚ …
n

as FG-modules (nD ŒEWF �).
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For � 2G, let �� WE˝F E!E denote the map x˝y 7! x ��y. Then �� is obviously
E-linear, and �� .�z/D ��� .z/ for all � 2G and z 2E˝F E. I claim that f�� j � 2Gg is
an E-basis for HomE -linear.E˝F E;E/. As this space has dimension n, it suffices to show
that the set is linearly independent. But if

P
� c��� D 0, c� 2E, then

0D
X

�
c� .�� .1˝y//D

X
�
c� ��y

for all y 2E, which implies that all c� D 0 by Dedekind’s theorem 5.14.
Consider the map

�WE˝F E!EG; z 7!
X

�
�� .z/ ��

�1:

Then � is E-linear. If �.z/D 0, then �� .z/D 0 for all � 2 G, and so z D 0 in E˝F E
(because the �� ’s span the dual space). Therefore � is injective, and as E˝F E and EG
both have dimension n over E, it is an isomorphism. For � 2G,

�.�z/D
X

�
�� .�z/ ��

�1

D

X
�
��� .z/ � �.��/

�1

D ��.z/;

and so � is an isomorphism of EG-modules. Thus

E˝K E 'EG � FG˚�� �˚FG

as an FG-module.
On the other hand, for any basis fe1; : : : ; eng for E as an F -vector space,

E˝F E D .e1˝E/˚�� �˚ .en˝E/'E˚�� �˚E

as FG-modules. This completes the proof.

NOTES The normal basis theorem was stated for finite fields by Eisenstein in 1850, and proved for
finite fields by Hensel in 1888. It was proved for infinite fields by Noether and Artin in the 1930s,
and Deuring gave a uniform proof about the same time. The above proof simplifies that of Deuring
— see Blessenohl, Dieter. On the normal basis theorem. Note Mat. 27 (2007), 5–10. According to
the Wikipedia, normal bases are frequently used in cryptographic applications that are based on the
discrete logarithm problem such as elliptic curve cryptography.

Hilbert’s Theorem 90

Let G be a group. A G-module is an abelian group M together with an action of G, i.e., a
map G�M !M such that

(a) �.mCm0/D �mC�m0 for all � 2G, m;m0 2M ;
(b) .��/.m/D �.�m/ for all �;� 2G, m 2M ;
(c) 1mDm for all m 2M .

Thus, to give an action of G on M is the same as to give a homomorphism G! Aut.M/

(automorphisms of M as an abelian group).

EXAMPLE 5.20 Let E be a Galois extension of F with Galois group G. Then .E;C/ and
.E�; �/ are G-modules.
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Let M be a G-module. A crossed homomorphism is a map f WG!M such that

f .��/D f .�/C�f .�/ for all �;� 2G.

Note that the condition implies that f .1/D f .1 �1/D f .1/Cf .1/, and so f .1/D 0:

EXAMPLE 5.21 (a) Let f WG!M be a crossed homomorphism. For any � 2G,

f .�2/D f .�/C�f .�/;

f .�3/D f .� ��2/D f .�/C�f .�/C�2f .�/

� � �

f .�n/D f .�/C�f .�/C�� �C�n�1f .�/:

Thus, if G is a cyclic group of order n generated by � , then a crossed homomorphism
f WG!M is determined by its value, x say, on � , and x satisfies the equation

xC�xC�� �C�n�1x D 0; (*)

Conversely, if x 2M satisfies (*), then the formulas f .� i /D xC�xC�� �C� i�1x define a
crossed homomorphism f WG!M . Thus, for a finite group G D h�i, there is a one-to-one
correspondence

fcrossed homs f WG!M g
f$f .�/
 ! fx 2M satisfying (*)g:

(b) For every x 2M , we obtain a crossed homomorphism by putting

f .�/D �x�x; all � 2G:

A crossed homomorphism of this form is called a principal crossed homomorphism.
(c) If G acts trivially on M , i.e., �m D m for all � 2 G and m 2M , then a crossed

homomorphism is simply a homomorphism, and there are no nonzero principal crossed
homomorphisms.

The sum and difference of two crossed homomorphisms is again a crossed homo-
morphism, and the sum and difference of two principal crossed homomorphisms is again
principal. Thus we can define

H 1.G;M/D
fcrossed homomorphismsg

fprincipal crossed homomorphismsg

(quotient abelian group). The cohomology groups Hn.G;M/ have been defined for all
n 2 N, but since this was not done until the twentieth century, it will not be discussed in this
course. An exact sequence of G-modules

0!M 0!M !M 00! 0

gives rise to an exact sequence

0 �!M 0G �!MG
�!M 00G

d
�!H 1.G;M 0/ �!H 1.G;M/ �!H 1.G;M 00/:

Let m00 2M 00G , and let m 2M map to m00. For all � 2 G, �m�m lies in the submodule
M 0 of M , and the crossed homomorphism � 7! �m�mWG!M 0 represents d.m00/. We
leave as an exercise to the reader to check the exactness.
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EXAMPLE 5.22 Let � W zX ! X be the universal covering space of a topological space X ,
and let � be the group of covering transformations. Under some fairly general hypotheses,
a � -module M will define a sheaf M on X , and H 1.X;M/'H 1.�;M/. For example,
when M D Z with the trivial action of � , this becomes the isomorphism H 1.X;Z/ '
H 1.�;Z/D Hom.�;Z/.

THEOREM 5.23 Let E be a Galois extension of F with group G; thenH 1.G;E�/D 0, i.e.,
every crossed homomorphism G!E� is principal.

PROOF. Let f be a crossed homomorphism G ! E�. In multiplicative notation, this
means,

f .��/D f .�/ ��.f .�//; �;� 2G;

and we have to find a  2 E� such that f .�/D �


for all � 2 G. Because the f .�/ are
nonzero, Corollary 5.15 implies thatX

�2G
f .�/� WE!E

is not the zero map, i.e., there exists an ˛ 2E such that

ˇ
def
D

X
�2G

f .�/�˛ ¤ 0:

But then, for � 2G,

�ˇ D
X

�2G
�.f .�// ���.˛/

D

X
�2G

f .�/�1 f .��/ ���.˛/

D f .�/�1
X

�2G
f .��/��.˛/;

which equals f .�/�1ˇ because, as � runs over G, so also does �� . Therefore, f .�/D ˇ
�.ˇ/

and we can take ˇ D �1. 2

Let E be a Galois extension of F with Galois group G. We define the norm of an
element ˛ 2E to be

Nm˛ D
Y

�2G
�˛:

For � 2G,
�.Nm˛/D

Y
�2G

��˛ D Nm˛;

and so Nm˛ 2 F . The map
˛ 7! Nm˛WE�! F �

is a obviously a homomorphism.

EXAMPLE 5.24 The norm map C�! R� is ˛ 7! j˛j2 and the norm map QŒ
p
d��!Q�

is aCb
p
d 7! a2�db2.

We are interested in determining the kernel of the norm map. Clearly an element of the
form ˇ

�ˇ
has norm 1, and our next result show that, for cyclic extensions, all elements with

norm 1 are of this form.
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COROLLARY 5.25 (HILBERT’S THEOREM 90) 3Let E be a finite cyclic extension of F
with Galois group h�iI if NmE=F ˛ D 1, then ˛ D ˇ=�ˇ for some ˇ 2E.

PROOF. LetmD ŒEWF �. The condition on ˛ is that ˛ ��˛ � � ��m�1˛D 1, and so (see 5.21a)
there is a crossed homomorphism f W h�i !E� with f .�/D ˛. Theorem 5.23 now shows
that f is principal, which means that there is a ˇ with f .�/D ˇ=�ˇ: 2

Cyclic extensions

Let F be a field containing a primitive nth root of 1, some n� 2, and write �n for the group
of nth roots of 1 in F . Then �n is a cyclic subgroup of F � of order n with generator �. In
this section, we classify the cyclic extensions of degree n of F .

Consider a field E D F Œ˛� generated by an element ˛ whose nth power is in F . Then ˛
is a root of Xn�a, and the remaining roots are the elements �i˛, 1� i � n�1. Since these
are all in E, E is a Galois extension of F , with Galois group G say. For every � 2G, �˛ is
also a root of Xn�a, and so �˛ D �i˛ for some i . Hence �˛=˛ 2 �n. The map

� 7! �˛=˛WG! �n

doesn’t change when ˛ is replaced by a conjugate, and it follows that the map is a homo-
morphism: ��˛

˛
D

�.�˛/
�˛

�˛
˛

. Because ˛ generates E over F , the map is injective. If it
is not surjective, then G maps into a subgroup �d of �n, some d jn, d < n. In this case,
.�˛=˛/d D 1, i.e., �˛d D ˛d , for all � 2 G, and so ˛d 2 F . Thus the map is surjective
if n is the smallest positive integer such that ˛n 2 F . We have proved the first part of the
following statement.

PROPOSITION 5.26 Let F be a field containing a primitive nth root of 1. Let E D F Œ˛�
where ˛n 2 F and no smaller power of ˛ is in F . Then E is a Galois extension of F with
cyclic Galois group of order n. Conversely, if E is a cyclic extension of F of degree n, then
E D F Œ˛� for some ˛ with ˛n 2 F .

PROOF. It remains to prove the last statement. Let � generate G and let � generate �n. It
suffices to find an element ˛ 2 E� such that �˛ D ��1˛, for then ˛n 2 F , and ˛n is the
smallest power of ˛ that lies in F . As 1;�; : : : ;�n�1 are distinct homomorphisms F �!F �,
Dedekind’s Theorem 5.14 shows that

Pn�1
iD0 �

i� i is not the zero function, and so there exists
a  such that ˛ def

D
P
�i� i ¤ 0. Now �˛ D ��1˛. 2

REMARK 5.27 (a) It is not difficult to show that the polynomial Xn�a is irreducible in
F ŒX� if a is not a pth power for any prime p dividing n. When we drop the condition that
F contains a primitive nth root of 1, this is still true except that, if 4jn, we need to add the
condition that a 2 �4F 4. See Lang, Algebra, Springer, 2002, VI, �9, Theorem 9.1.

(b) If F has characteristic p (hence has no pth roots of 1 other than 1), then Xp�X �a
is irreducible in F ŒX� unless a D bp � b for some b 2 F , and when it is irreducible, its
Galois group is cyclic of order p (generated by ˛ 7! ˛C1 where ˛ is a root). Moreover,
every extension of F which is cyclic of degree p is the splitting field of such a polynomial.

3This is Satz 90 in Hilbert’s book, Theorie der Algebraischen Zahlkörper, 1897. The theorem was discovered
by Kummer in the special case of QŒ�p �=Q, and generalized to Theorem 5.23 by E. Noether. Theorem 5.23, as
well as various vast generalizations of it, are also referred to as Hilbert’s Theorem 90.

For an illuminating discussion of Hilbert’s book, see the introduction to the English translation (Springer
1998) written by F. Lemmermeyer and N. Schappacher.
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PROPOSITION 5.28 Two cyclic extensions F Œa
1
n � and F Œb

1
n � of F of degree n are equal if

and only if aD brcn for some r 2 Z relatively prime to n and some c 2 F �, i.e., if and only
if a and b generate the same subgroup of F �=F �n.

PROOF. Only the “only if” part requires proof. We are given that F Œ˛�D F Œˇ� with ˛n D a
and ˇn D b. Let � be the generator of the Galois group with �˛ D �˛, and let �ˇ D �iˇ,
.i;n/D 1. We can write

ˇ D

n�1X
jD0

cj˛
j ; cj 2 F;

and then

�ˇ D

n�1X
jD0

cj �
j˛j :

On comparing this with �ˇ D �iˇ, we find that �icj D �j cj for all j . Hence cj D 0 for
j ¤ i , and therefore ˇ D ci˛i . 2

Kummer theory

Throughout this section, F is a field containing a primitive nth root of 1, �. In particular, F
either has characteristic 0 or characteristic p not dividing n.

The last two results give us a complete classification of the cyclic extensions of F
of degree n. We now extend this to a classification of all abelian extensions of exponent
n. (Recall that a group G has exponent n if �n D 1 for all � 2 G and n is the smallest
positive integer for which this is true. A finite abelian group of exponent n is isomorphic to
a subgroup of .Z=nZ/r for some r .)

Let E=F be a finite Galois extension with Galois group G. From the exact sequence

1! �n ����!E�
x 7!xn

����!E�n! 1

we obtain a cohomology sequence

1! �n! F �
x 7!xn

����! F �\E�n!H 1.G;�n/! 1:

The 1 at the right is because of Hilbert’s Theorem 90. Thus we obtain an isomorphism

F �\E�n=F �n! Hom.G;�n/:

This map can be described as follows: let a be an element of F � that becomes an nth power
in E, say aD ˛n; then a maps to the homomorphism � 7! �˛

˛
. If G is abelian of exponent

n, then
jHom.G;�n/j D .GW1/:

THEOREM 5.29 The map
E 7! F �\E�n

defines a one-to-one correspondence between the finite abelian extensions of F of exponent
n contained in some fixed algebraic closure ˝ of F and the subgroups B of F � containing
F �n as a subgroup of finite index. The extension corresponding to B is F ŒB

1
n �, the

smallest subfield of ˝ containing F and an nth root of each element of B . If E$ B , then
ŒEWF �D .BWF �n/.
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PROOF. For any finite Galois extension E of F , define B.E/ D F �\E�n. Then E �
F ŒB.E/

1
n �, and for any group B containing F �n as a subgroup of finite index, B.F ŒB

1
n �/�

B . Therefore,

ŒEWF �� ŒF ŒB.E/
1
n �WF �D .B.F ŒB.E/

1
n �/WF �n/� .B.E/WF �n/:

IfE=F is abelian of exponent n, then ŒEWF �D .B.E/WF �n/, and so equalities hold through-
out: E D F ŒB.E/

1
n �.

Next consider a group B containing F �n as a subgroup of finite index, and let E D
F ŒB

1
n �. Then E is a composite of the extensions F Œa

1
n � for a running through a set of

generators for B=F �n, and so it is a finite abelian extension of exponent n. Therefore

a 7!

 
� 7!

�a
1
n

a
1
n

!
WB.E/=F �n! Hom.G;�n/; G D Gal.E=F /;

is an isomorphism. This map sendsB=F �n isomorphically onto the subgroup Hom.G=H;�n/
of Hom.G;�n/ where H consists of the � 2 G such that �a

1
n =a

1
n D 1 for all a 2 B . But

such a � fixes all a
1
n for a 2 B , and therefore is the identity automorphism on E D F ŒB

1
n �.

This shows that B.E/DB , and hence E 7!B.E/ and B 7! F ŒB
1
n � are inverse bijections.2

EXAMPLE 5.30 (a) The quadratic extensions of R are (certainly) in one-to-one correspon-
dence with the subgroups of R�=R�2 D f˙1g.

(b) The finite abelian extensions of Q of exponent 2 are in one-to-one correspondence
with the finite subgroups of Q�=Q�2, which is a direct sum of cyclic groups of order 2
indexed by the prime numbers plus1 (modulo squares, every nonzero rational number has
a unique representative of the form˙p1 � � �pr with the pi prime numbers).

REMARK 5.31 Let E be an abelian extension of F of exponent n, and let

B.E/D fa 2 F � j a becomes an nth power in Eg:

There is a perfect pairing

.a;�/ 7!
�a

1
n

a
1
n

W
B.E/

F �n
�Gal.E=F /! �n:

Cf. Exercise 2-1 for the case nD 2.

Proof of Galois’s solvability theorem

LEMMA 5.32 Let f 2 F ŒX� be separable, and let F 0 be an extension field of F . Then the
Galois group of f as an element of F 0ŒX� is a subgroup of that of f as an element of F ŒX�:

PROOF. Let E 0 be a splitting field for f over F 0, and let ˛1; : : : ;˛m be the roots of f .X/ in
E 0. Then E D F Œ˛1; :::;˛m� is a splitting field of f over F . Every element of Gal.E 0=F 0/
permutes the ˛i and so maps E into itself. The map � 7! � jE is an injection Gal.E 0=F 0/!
Gal.E=F /: 2

THEOREM 5.33 Let F be a field of characteristic 0. A polynomial in F ŒX� is solvable if
and only if its Galois group is solvable.
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PROOF. (H: Let f 2 F ŒX� have solvable Galois group Gf . Let F 0 D F Œ�� where � is a
primitive nth root of 1 for some large n — for example, nD .degf /Š will do. The lemma
shows that the Galois group G of f as an element of F 0ŒX� is a subgroup of Gf , and hence
is also solvable (GT 6.6a). This means that there is a sequence of subgroups

G DG0 �G1 � �� � �Gm�1 �Gm D f1g

such that each Gi is normal in Gi�1 and Gi�1=Gi is cyclic. Let E be a splitting field of
f .X/ over F 0, and let Fi DEGi . We have a sequence of fields

F � F Œ��D F 0 D F0 � F1 � F2 � �� � � Fm DE

with Fi cyclic over Fi�1. Theorem 5.26 shows that Fi D Fi�1Œ˛i � with ˛ŒFi WFi�1�i 2 Fi�1,
each i , and this shows that f is solvable.
H): It suffices to show that Gf is a quotient of a solvable group (GT 6.6a). Hence it

suffices to find a solvable extension zE of F such that f .X/ splits in zEŒX�.
We are given that there exists a tower of fields

F D F0 � F1 � F2 � �� � � Fm

such that

(a) Fi D Fi�1Œ˛i �, ˛
ri
i 2 Fi�1;

(b) Fm contains a splitting field for f:

Let nD r1 � � �rm, and let˝ be a field Galois over F and containing (a copy of) Fm and a
primitive nth root � of 1: For example, choose a primitive element  for Fm over F (see 5.1),
and take ˝ to be a splitting field of g.X/.Xn�1/ where g.X/ is the minimum polynomial
of  over F .

Let G be the Galois group of ˝=F , and let zE be the Galois closure of FmŒ�� in ˝.
According to (3.17a), zE is the composite of the fields �FmŒ��, � 2G, and so it is generated
over F by the elements

�;˛1;˛2; : : : ;˛m;�˛1; : : : ;�˛m;�
0˛1; : : : :

We adjoin these elements to F one by one to get a sequence of fields

F � F Œ��� F Œ�;˛1�� �� � � F
0
� F 00 � �� � � zE

in which each field F 00 is obtained from its predecessor F 0 by adjoining an r th root of an
element of F 0 (r D r1; : : : ; rm; or n). According to (5.8) and (5.26), each of these extensions
is abelian (and even cyclic after for the first), and so zE=F is a solvable extension. 2

ASIDE 5.34 One of Galois’s major achievements was to show that an irreducible polynomial of
prime degree in QŒX� is solvable by radicals if and only if its splitting field is generated by any two
roots of the polynomial.4 See mo24081, mo110727.

4Pour qu’une équation de degré premier soit résoluble par radicaux, il faut et il suffit que deux quelconques
de ces racines étant connues, les autres s’en déduisent rationnellement (Évariste Galois, Bulletin de M. Férussac,
XIII (avril 1830), p. 271).
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Symmetric polynomials

Let R be a commutative ring (with 1). A polynomial P.X1; :::;Xn/ 2RŒX1; : : : ;Xn� is said
to be symmetric if it is unchanged when its variables are permuted, i.e., if

P.X�.1/; : : : ;X�.n//D P.X1; : : : ;Xn/; all � 2 Sn:

For example

p1 D
P
i Xi DX1CX2C�� �CXn;

p2 D
P
i<j XiXj DX1X2CX1X3C�� �CX1XnCX2X3C�� �CXn�1Xn;

p3 D
P
i<j<kXiXjXk; DX1X2X3C�� �

� � �

pr D
P
i1<���<ir

Xi1 :::Xir
� � �

pn D X1X2 � � �Xn

are each symmetric because pr is the sum of all monomials of degree r made up out of dis-
tinct Xi ’s. These particular polynomials are called the elementary symmetric polynomials.

THEOREM 5.35 (SYMMETRIC POLYNOMIALS THEOREM) Every symmetric polynomial
P.X1; :::;Xn/ in RŒX1; :::;Xn� is equal to a polynomial in the elementary symmetric poly-
nomials with coefficients in R, i.e., P 2RŒp1; :::;pn�:

PROOF. We define an ordering on the monomials in the Xi by requiring that

X
i1
1 X

i2
2 � � �X

in
n >X

j1
1 X

j2
2 � � �X

jn
n

if either
i1C i2C�� �C in > j1Cj2C�� �Cjn

or equality holds and, for some s,

i1 D j1; : : : ; is D js; but isC1 > jsC1:

For example,
X1X2X

3
3 >X1X

2
2X3 >X1X2X

2
3 :

Let P.X1; : : : ;Xn/ be a symmetric polynomial, and let X i11 � � �X
in
n be the highest mono-

mial occurring in P with a nonzero coefficient, so

P D cX
i1
1 � � �X

in
n C lower terms, c ¤ 0:

Because P is symmetric, it contains all monomials obtained from X
i1
1 � � �X

in
n by permuting

the X ’s. Hence i1 � i2 � � � � � in.
The highest monomial in pi is X1 � � �Xi , and it follows that the highest monomial in

p
d1
1 � � �p

dn
n is

X
d1Cd2C���Cdn
1 X

d2C���Cdn
2 � � �Xdnn : (2)

Therefore the highest monomial of

P.X1; : : : ;Xn/� cp
i1�i2
1 p

i2�i3
2 � � �pinn (3)

is strictly less than the highest monomial in P.X1; : : : ;Xn/. We can repeat this argument
with the polynomial (3), and after a finite number of steps, we will arrive at a representation
of P as a polynomial in p1; : : : ;pn. 2



74 5. APPLICATIONS OF GALOIS THEORY

REMARK 5.36 (a) The proof is algorithmic. Consider, for example,5

P.X1;X2/D .X1C7X1X2CX2/
2

DX21 C2X1X2C14X
2
1X2CX

2
2 C14X1X

2
2 C49X

2
1X

2
2 :

The highest monomial is 49X21X
2
2 , and so we subtract 49p22 , getting

P �49p22 DX
2
1 C2X1X2C14X

2
1X2CX

2
2 C14X1X

2
2 :

Continuing, we get

P �49p22 �14p1p2 DX
2
1 C2X1X2CX

2
2

and finally,
P �49p22 �14p1p2�p

2
1 D 0.

(b) The expression of P as a polynomial in the pi in (5.35) is unique. Otherwise, by
subtracting, we would get a nontrivial polynomial Q.p1; : : : ;pn/ in the pi which is zero
when expressed as a polynomial in the Xi . But the highest monomials (2) in the polynomials
p
d1
1 � � �p

dn
n are distinct (the map .d1; : : : ;dn/ 7! .d1C�� �Cdn; : : : ;dn/ is injective), and so

they can’t cancel.

Let
f .X/DXnCa1X

n�1
C�� �Can 2RŒX�;

and suppose that f splits over some ring S containing R:

f .X/D
Qn
iD1.X �˛i /; ˛i 2 S .

Then

a1 D�p1.˛1; : : : ;˛n/; a2 D p2.˛1; : : : ;˛n/; : : : ; an D .�1/
npn.˛1; : : : ;˛n/:

Thus the elementary symmetric polynomials in the roots of f .X/ lie inR, and so the theorem
implies that every symmetric polynomial in the roots of f .X/ lies in R. For example, the
discriminant

D.f /D
Y
i<j

.˛i �˛j /
2

of f lies in R.

THEOREM 5.37 (SYMMETRIC FUNCTIONS THEOREM) Let F be a field. When Sn acts on
F.X1; :::;Xn/ by permuting the Xi , the field of invariants is F.p1; :::;pn/:

PROOF. Let f 2 F.X1; : : : ;Xn/ be symmetric (i.e., fixed by Sn/. Set f D g=h, g;h 2
F ŒX1; : : : ;Xn�. The polynomials H D

Q
�2Sn

�h and Hf are symmetric, and therefore lie
in F Œp1; : : : ;pn� by (5.35). Hence their quotient f DHf=H lies in F.p1; : : : ;pn/. 2

COROLLARY 5.38 The field F.X1; :::;Xn/ is Galois over F.p1; :::;pn/ with Galois group
Sn (acting by permuting the Xi ).

5From the Wikipedia.

http://en.wikipedia.org/wiki/Elementary_symmetric_polynomials
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PROOF. We have shown that F.p1; : : : ;pn/D F.X1; : : : ;Xn/Sn , and so this follows from
(3.10). 2

The field F.X1; : : : ;Xn/ is the splitting field over F.p1; : : : ;pn/ of

g.T /D .T �X1/ � � �.T �Xn/DX
n
�p1X

n�1
C�� �C .�1/npn:

Therefore, the Galois group of g.T / 2 F.p1; : : : ;pn/ŒT � is Sn.

ASIDE 5.39 Symmetric polynomials played an important role in the work of Galois. In his Mémoire
sur les conditions de résolubilité des équations par radicaux, he prove the following proposition:

Let f be a polynomial with coefficients �1; : : : ;�n. Let x1; : : : ;xn be its roots, and let
U;V; : : : be certain numbers that are rational functions in the xi . Then there exists a
group G of permutations of the xi such that the rational functions in the xi that are
fixed under all permutations in G are exactly those that are rationally expressible in
terms of �1; : : : ;�n and U;V; : : :

When we take U;V; : : : to be the elements of a field E intermediate between the field of coefficients
of f and the splitting field of f , this says that the exists a group G of permutations of the xi whose
fixed field (when G acts on the splitting field) is exactly E.

The general polynomial of degree n

When we say that the roots of
aX2CbXC c

are
�b˙

p
b2�4ac

2a

we are thinking of a;b;c as symbols: for any particular values of a;b;c, the formula gives
the roots of the particular equation. We shall prove in this section that there is no similar
formula for the roots of the “general polynomial” of degree � 5.

We define the general polynomial of degree n to be

f .X/DXn� t1X
n�1
C�� �C .�1/ntn 2 F Œt1; :::; tn�ŒX�

where the ti are symbols. We shall show that, when we regard f as a polynomial in X with
coefficients in the field F.t1; : : : ; tn/, its Galois group is Sn. Then Theorem 5.33 proves the
above remark (at least in characteristic zero).

THEOREM 5.40 The Galois group of the general polynomial of degree n is Sn.

PROOF. Let f .X/ be the general polynomial of degree n,

f .X/DXn� t1X
n�1
C�� �C .�1/ntn 2 F Œt1; :::; tn�ŒX�:

If we can show that the map

ti 7! pi WF Œt1; : : : ; tn�! F Œp1; : : : ;pn�

is injective (i.e., the pi are algebraically independent over F , see p. 101), then it will extend
to an isomorphism

F.t1; : : : ; tn/! F.p1; : : : ;pn/
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sending f .X/ to

g.X/DXn�p1X
n�1
C�� �C .�1/npn 2 F.p1; : : : ;pn/ŒX�:

Therefore the statement will follow from Corollary 5.38.
We now prove that the pi are algebraically independent6. Suppose on the contrary

that there exists a P.t1; : : : ; tn/ such that P.p1; : : : ;pn/ D 0. Equation (2), p. 73, shows
that if m1.t1; : : : ; tn/ and m2.t1; : : : ; tn/ are distinct monomials, then m1.p1; : : : ;pn/ and
m2.p1; : : : ;pn/ have distinct highest monomials. Therefore, cancellation can’t occur, and so
P.t1; : : : ; tn/ must be the zero polynomial. 2

REMARK 5.41 Since Sn occurs as a Galois group over Q, and every finite group occurs
as a subgroup of some Sn, it follows that every finite group occurs as a Galois group over
some finite extension of Q, but does every finite Galois group occur as a Galois group over
Q itself? This is known as the inverse Galois problem.

The Hilbert-Noether program for proving this was the following. Hilbert proved that
if G occurs as the Galois group of an extension E �Q.t1; :::; tn/ (the ti are symbols), then
it occurs infinitely often as a Galois group over Q. For the proof, realize E as the splitting
field of a polynomial f .X/ 2 kŒt1; : : : ; tn�ŒX� and prove that for infinitely many values of
the ti , the polynomial you obtain in QŒX� has Galois group G. (This is quite a difficult
theorem — see Serre, J.-P., Lectures on the Mordell-Weil Theorem, 1989, Chapter 9.) Noether
conjectured the following: Let G � Sn act on F.X1; :::;Xn/ by permuting the Xi ; then
F.X1; : : : ;Xn/

G � F.t1; :::; tn/ (for symbols ti ). However, Swan proved in 1969 that the
conjecture is false for G the cyclic group of order 47. Hence this approach can not lead to
a proof that all finite groups occur as Galois groups over Q, but it doesn’t exclude other
approaches. For more information on the problem, see Serre, ibid., Chapter 10; Serre, J.-P.,
Topics in Galois Theory, 1992; and the Wikipedia.

REMARK 5.42 Take F D C, and consider the subset of CnC1 defined by the equation

Xn�T1X
n�1
C�� �C .�1/nTn D 0:

It is a beautiful complex manifold S of dimension n. Consider the projection

� WS ! Cn; .x; t1; : : : ; tn/ 7! .t1; : : : ; tn/:

Its fibre over a point .a1; : : : ;an/ is the set of roots of the polynomial

Xn�a1X
n�1
C�� �C .�1/nan:

The discriminant D.f / of f .X/ D Xn � T1X
n�1C �� � C .�1/nTn is a polynomial in

CŒT1; : : : ;Tn�. Let � be the zero set of D.f / in Cn. Then over each point of Cn X�,
there are exactly n points of S , and S X��1.�/ is a covering space over CnX�.

A BRIEF HISTORY

As far back as 1500 BC, the Babylonians (at least) knew a general formula for the roots
of a quadratic polynomial. Cardan (about 1515 AD) found a general formula for the roots
of a cubic polynomial. Ferrari (about 1545 AD) found a general formula for the roots of
a quartic polynomial (he introduced the resolvent cubic, and used Cardan’s result). Over
the next 275 years there were many fruitless attempts to obtain similar formulas for higher
degree polynomials, until, in about 1820, Ruffini and Abel proved that there are none.

6This can also be proved by noting that, because F.X1; : : : ;Xn/ is algebraic over F.p1; : : : ;pn/, the latter
must have transcendence degree n (see �8).

http://en.wikipedia.org/wiki/Inverse_Galois_problem
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Norms and traces

Recall that, for an n�n matrix AD .aij /

Tr.A/ D
P
i ai i (trace of A)

det.A/ D
P
�2Sn

sign.�/a1�.1/ � � �an�.n/; (determinant of A)
cA.X/ D det.XIn�A/ (characteristic polynomial of A).

Moreover,
cA.X/DX

n
�Tr.A/Xn�1C�� �C .�1/n det.A/.

None of these is changed when A is replaced by its conjugate UAU�1 by an invertible
matrix U . Therefore, for any endomorphism ˛ of a finite dimensional vector space V , we
can define7

Tr.˛/D Tr.A/, det.˛/D det.A/, c˛.X/D cA.X/

where A is the matrix of ˛ with respect to any basis of V . If ˇ is a second endomorphism of
V ,

Tr.˛Cˇ/D Tr.˛/CTr.ˇ/I

det.˛ˇ/D det.˛/det.ˇ/:

Now let E be a finite field extension of F of degree n: An element ˛ of E defines an
F -linear map

˛LWE!E; x 7! ˛x;

and we define

TrE=F .˛/ D Tr.˛L/ (trace of ˛)
NmE=F .˛/ D det.˛L/ (norm of ˛)
c˛;E=F .X/ D c˛L.X/ (characteristic polynomial of ˛):

Thus, TrE=F is a homomorphism .E;C/! .F;C/, and NmE=F is a homomorphism
.E�; �/! .F �; �/.

EXAMPLE 5.43 (a) Consider the field extension C� R. For ˛ D aCbi , the matrix of ˛L
with respect to the basis f1; ig is

�
a �b
b a

�
, and so

TrC=R.˛/D 2<.˛/, NmC=R.˛/D j˛j
2:

(b) For a 2 F , aL is multiplication by the scalar a. Therefore

TrE=F .a/D na , NmE=F .a/D a
n, ca;E=F .X/D .X �a/

n

where nD ŒEWF �:

7The coefficients of the characteristic polynomial

c˛.X/DX
n
C c1X

n�1
C�� �C cn;

of ˛ have the following description

ci D .�1/
i Tr.˛j

^i
V /

— see Bourbaki, N., Algebra, Chapter 3, 8.11.
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Let E DQŒ˛; i � be the splitting field of X8�2. To compute the trace and norm of ˛ in
E, the definition requires us to compute the trace and norm of a 16�16 matrix. The next
proposition gives us a quicker method.

PROPOSITION 5.44 Let E=F be a finite extension of fields, and let f .X/ be the minimum
polynomial of ˛ 2E. Then

c˛;E=F .X/D f .X/
ŒE WF Œ˛��:

PROOF. Suppose first that E D F Œ˛�. In this case, we have to show that c˛.X/D f .X/.
Note that ˛ 7! ˛L is an injective homomorphism from E into the ring of endomorphisms
of E as a vector space over F . The Cayley-Hamilton theorem shows that c˛.˛L/D 0, and
therefore c˛.˛/D 0. Hence f jc˛, but they are monic of the same degree, and so they are
equal.

For the general case, let ˇ1; :::;ˇn be a basis for F Œ˛� over F , and let 1; :::;m be a basis
for E over F Œ˛�. As we saw in the proof of (1.20), fˇikg is a basis for E over F . Write
˛ˇi D

P
aj iˇj . Then, according to the first case proved, ADdef .aij / has characteristic

polynomial f .X/. But ˛ˇik D
P
aj iˇj k , and so the matrix of ˛L with respect to fˇikg

breaks up into n�n blocks with A’s down the diagonal and zero matrices elsewhere, from
which it follows that c˛L.X/D cA.X/

m D f .X/m: 2

COROLLARY 5.45 Suppose that the roots of the minimum polynomial of ˛ are ˛1; : : : ;˛n
(in some splitting field containing E), and that ŒEWF Œ˛��Dm. Then

Tr.˛/Dm
Pn
iD1˛i ; NmE=F ˛ D

�Qn
iD1˛i

�m
:

PROOF. Write the minimum polynomial of ˛ as

f .X/DXnCa1X
n�1
C�� �Can D

Q
.X �˛i /;

so that

a1 D�
P
˛i , and

an D .�1/
nQ˛i .

Then
c˛.X/D .f .X//

m
DXmnCma1X

mn�1
C�� �Camn ;

so that

TrE=F .˛/D�ma1 Dm
P
˛i , and

NmE=F .˛/D .�1/
mnamn D .

Q
˛i /

m. 2

EXAMPLE 5.46 (a) Consider the extension C� R. If ˛ 2 CnR, then

c˛.X/D f .X/DX
2
�2<.˛/XCj˛j2:

If ˛ 2 R, then c˛.X/D .X �a/2.
(b) Let E be the splitting field of X8�2. Then E has degree 16 over Q and is generated

by ˛ D 8
p
2 and i D

p
�1 (see Exercise 16). The minimum polynomial of ˛ is X8�2, and

so
c˛;QŒ˛�=Q.X/ D X8�2; c˛;E=Q.X/ D .X8�2/2

TrQŒ˛�=Q˛ D 0; TrE=Q˛ D 0

NmQŒ˛�=Q˛ D �2; NmE=Q˛ D 4
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REMARK 5.47 LetE be a separable extension ofF , and let˙ be the set ofF -homomorphisms
of E into an algebraic closure ˝ of F . Then

TrE=F ˛ D
P
�2˙�˛

NmE=F ˛ D
Q
�2˙�˛:

When E D F Œ˛�, this follows from 5.45 and the observation (cf. 2.1b) that the �˛ are
the roots of the minimum polynomial f .X/ of ˛ over F . In the general case, the �˛ are
still roots of f .X/ in ˝, but now each root of f .X/ occurs ŒEWF Œ˛�� times (because each
F -homomorphism F Œ˛�!˝ has ŒEWF Œ˛�� extensions to E). For example, if E is Galois
over F with Galois group G, then

TrE=F ˛ D
P
�2G�˛

NmE=F ˛ D
Q
�2G�˛:

PROPOSITION 5.48 For finite extensions E �M � F , we have

TrM=F ıTrE=M D TrE=F ;

NmM=F ıNmE=M D NmE=F :

PROOF. If E is separable over F , then this can be proved fairly easily using the descriptions
in the above remark. We omit the proof in the general case. 2

PROPOSITION 5.49 Let f .X/ be a monic irreducible polynomial with coefficients in F ,
and let ˛ be a root of f in some splitting field of f . Then

discf .X/D .�1/m.m�1/=2NmF Œ˛�=F f
0.˛/

where f 0 is the formal derivative df
dX

of f .

PROOF. Let f .X/D
Qm
iD1.X �˛i / be the factorization of f in the given splitting field,

and number the roots so that ˛ D ˛1. Compute that

discf .X/ def
D

Y
i<j

.˛i �˛j /
2

D .�1/m.m�1/=2 �
Y
i

.
Y
j¤i

.˛i �˛j //

D .�1/m.m�1/=2 �
Y
i

f 0.˛i /

D .�1/m.m�1/=2NmF Œ˛�=F .f
0.˛// (by 5.47): 2

EXAMPLE 5.50 We compute the discriminant of

f .X/DXnCaXCb; a;b 2 F;

assumed to be irreducible and separable, by computing the norm of


def
D f 0.˛/D n˛n�1Ca; f .˛/D 0.



80 5. APPLICATIONS OF GALOIS THEORY

On multiplying the equation
˛nCa˛Cb D 0

by n˛�1 and rearranging, we obtain the equation

n˛n�1 D�na�nb˛�1:

Hence
 D n˛n�1CaD�.n�1/a�nb˛�1:

Solving for ˛ gives

˛ D
�nb

C .n�1/a
:

From the last two equations, it is clear that F Œ˛�D F Œ�, and so the minimum polynomial
of  over F has degree n also. If we write

f

�
�nb

XC .n�1/a

�
D
P.X/

Q.X/

P.X/D .XC .n�1/a/n�na.XC .n�1/a/n�1C .�1/nnnbn�1

Q.X/D .XC .n�1/a/n=b;

then
P./D f .˛/ �Q./D 0:

As

Q./D
.C .n�1/a/n

b
D
.�nb/n

˛nb
¤ 0

and P.X/ is monic of degree n, it must be the minimum polynomial of  . Therefore Nm
is .�1/n times the constant term of P.X/, namely,

Nm D nnbn�1C .�1/n�1.n�1/n�1an:

Therefore,

disc.XnCaXCb/D .�1/n.n�1/=2.nnbn�1C .�1/n�1.n�1/n�1an/;

which is something PARI doesn’t know (because it doesn’t understand symbols as exponents).
For example,

disc.X5CaXCb/D 55b4C44a5:

Étale algebras

Galois theory classifies the intermediate fields of a Galois extension ˝=F . In this section,
we explain that, more generally, it classifies the étale F -algebras split by ˝.

DEFINITION 5.51 An F -algebra is a commutative ring A containing F as a subring. An
F -algebra A is étale if it is isomorphic to a finite product of finite separable field extensions
of F . The degree ŒAWF � of an F -algebra A is its dimension as an F -vector space.
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EXAMPLE 5.52 Let f 2 F ŒX�, and let A D F ŒX�=.f /. Let f D
Q
f
mi
i with the fi

irreducible and distinct. According to the Chinese remainder theorem (CA 2.12)

A'
Y

i
F ŒX�=.f

mi
i /:

The F -algebra F ŒX�=.f mii / is a field if and only if mi D 1, in which case it is a separable
extension of F if and only if fi is separable. Therefore A is an étale F -algebra if and only if
f is a separable polynomial without multiple factors.

DEFINITION 5.53 An étale F -algebra A is split by an extension field ˝ if ˝˝F A is
isomorphic to a product of copies of ˝.

EXAMPLE 5.54 Let AD F ŒX�=.f /, where f is a separable polynomial without multiple
factors. Then f factors in˝ŒX� as f D f1 � � �fn with the fi distinct irreducible polynomials,
and

˝˝F A'˝ŒX�=.f /'
Y

i
˝ŒX�=.fi /:

(Chinese remainder theorem). Therefore ˝ splits A if and only if each fi has degree 1, i.e.,
if and only if ˝ splits f .

REMARK 5.55 When ˝ is Galois over F , an étale F -algebra
Q
i Fi is split by ˝ if and

only if, for each i , there exists an F -homomorphism Fi !˝. Every étale F -algebra is split
by some finite Galois extension.

Fix a Galois extension ˝ of F , and let G D Gal.˝=F /. For an F -algebra A, let F.A/
denote the set of F -algebra homomorphisms A!˝. The group G acts on F.A/ according
to the rule

.�˛/.a/D �.˛.a//; � 2G, ˛ 2 F.A/, a 2 A;

i.e., �˛ D � ı˛. Now A F.A/ is a contravariant functor from the category of F -algebras
to the category of left G-sets.

Suppose AD A1� � � ��An. Because ˝ has no nonzero zero divisors, every homomor-
phism ˛WA!˝ is zero on all but one Ai , and so, to give a homomorphism A!˝ amounts
to giving a homomorphism Ai !˝ for some i . In other words,

F.
Q
i Ai /'

F
i F.Ai /:

In particular, for an étale F -algebra A'
Q
i Fi ,

F.A/'
G

i
HomF -algebra.Fi ;˝/:

From Proposition 2.7, we deduce that F.A/ is finite, and has order ŒAWF � if ˝ splits A.

THEOREM 5.56 The functor F is a contravariant equivalence from the category of étale
F -algebras split by ˝ to the category of finite G-sets.

PROOF. We have to prove the following two statements.

(a) The functor F is fully faithful, i.e., for all étale F -algebras A and B split by ˝, the
map

HomF -algebras.A;B/! HomG-sets.F.B/;F.A//

is a bijection.
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(b) The functor F is essentially surjective, i.e., every G-set is isomorphic to F.A/ for
some étale F -algebra A split by ˝.

Let V be a vector space over F , and let V˝ D˝˝F V . Then G acts on V˝ through its
action on ˝, and

V ' .V˝/
G def
D fv 2 V˝ j �v D v for all � 2Gg:

To see this, choose an F -basis e D fe1; : : : ; eng for V . Then e is an ˝-basis forV˝ , and

�.a1e1C�� �Canen/D .�a1/e1C�� �C .�an/en; ai 2˝:

Therefore a1e1C�� �Canen is fixed by all � 2G if and only if a1; : : : ;an 2 F .
Similarly, if W is a second vector space over F , then G acts on Hom˝-linear.V˝ ;W˝/

by �˛ D � ı˛ ı��1, and

HomF -linear.V;W /' Hom˝-linear.V˝ ;W˝/
G : (4)

Indeed, a choice of bases for V and W determines isomorphisms HomF -linear.V;W / '

Mm;n.F / and Hom˝-linear.V˝ ;W˝/'Mm;n.˝/, and G acts on Mm;n.˝/ in the obvious
way. Now (4) follows from the obvious statement: Mm;n.F /DMm;n.˝/

G .
Let A and B be étale F -algebras split by ˝. Under the isomorphism

HomF -linear.A;B/' Hom˝-linear.A˝ ;B˝/
G ;

F -algebra homomorphisms correspond to ˝-algebra homomorphisms, and so

HomF -algebra.A;B/' Hom˝-algebra.A˝ ;B˝/
G .

Because A (resp. B) is split by ˝, A˝ (resp. B˝) is a product of copies of ˝ indexed by
the elements of F.A/ (resp. F.B/). Let t be a map of sets F.B/! F.A/. Then

.ai /i2F.A/ 7! .bj /j2F.B/; bj D at.j /;

is a homomorphism of ˝-algebras A˝ ! B˝ , and every homomorphism A˝ ! B˝ is of
this form for a unique t . Thus

Hom˝-algebra.A˝ ;B˝/' HomSets.F.B/;F.A//:

This isomorphism is compatible with the actions of G, and so

HomF -algebra.A;B/' Hom˝-algebra.A˝ ;B˝/
G

' HomSets.F.B/;F.A//G

D HomG-sets.F.B/;F.A//:

This proves (a). For (b), let S be a finite G-set, and let S D
F
i2I Si be the decomposition

of S into a union of G-orbits. For each i , choose an si 2 Si , and let Fi be the subfield of ˝
fixed by the stabilizer of si . Then

F
�Q

i2I Fi
�
' S: 2
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Exercises

5-1 (*) For a 2Q, let Ga be the Galois group of X4CX3CX2CXCa. Find integers
a1;a2;a3;a4 such that i ¤ j H) Gai is not isomorphic to Gaj .

5-2 (*) Prove that the rational solutions a;b 2Q of Pythagoras’s equation a2Cb2 D 1 are
of the form

aD
s2� t2

s2C t2
; b D

2st

s2C t2
; s; t 2Q;

and deduce that every right triangle with integer sides has sides of length

d.m2�n2;2mn;m2Cn2/

for some integers d , m, and n (Hint: Apply Hilbert’s Theorem 90 to the extension QŒi �=Q.)

5-3 (*) Prove that a finite extension of Q can contain only finitely many roots of 1.





CHAPTER 6
Algebraic Closures

In this section, we prove that Zorn’s lemma implies that every field F has an algebraic
closure ˝. Recall that if F is a subfield C, then the algebraic closure of F in C is an
algebraic closure of F (1.46). If F is countable, then the existence of ˝ can be proved as
in the finite field case (4.23), namely, the set of monic irreducible polynomials in F ŒX� is
countable, and so we can list them f1;f2; : : :; define Ei inductively by, E0 D F , Ei D a
splitting field of fi over Ei�1; then ˝ D

S
Ei is an algebraic closure of F .

The difficulty in showing the existence of an algebraic closure of an arbitrary field F is
in the set theory. Roughly speaking, we would like to take a union of a family of splitting
fields indexed by the monic irreducible polynomials in F ŒX�, but we need to find a way
of doing this that is allowed by the axioms of set theory. After reviewing the statement of
Zorn’s lemma, we sketch three solutions1 to the problem.

Zorn’s lemma

DEFINITION 6.1 (a) A relation � on a set S is a partial ordering if it reflexive, transitive,
and anti-symmetric (a � b and b � a H) aD b).

(b) A partial ordering is a total ordering if, for all s; t 2 T , either s � t or t � s.
(c) An upper bound for a subset T of a partially ordered set .S;�/ is an element s 2 S

such that t � s for all t 2 T .
(d) A maximal element of a partially ordered set S is an element s such that s � s0 H)

s D s0.

A partially ordered set need not have any maximal elements, for example, the set of finite
subsets of an infinite set is partially ordered by inclusion, but it has no maximal elements.

LEMMA 6.2 (ZORN) Let .S;�/ be a nonempty partially ordered set for which every totally
ordered subset has an upper bound in S . Then S has a maximal element.

Zorn’s lemma2 is equivalent to the Axiom of Choice, and hence independent of the
axioms of set theory.

1There do exist naturally occurring fields, not contained in C, that are uncountable. For example, for any
field F there is a ring F ŒŒT �� of formal power series

P
i�0 aiT

i , ai 2 F , and its field of fractions is uncountable
even if F is finite.

2The following is quoted from A.J. Berrick and M.E. Keating, An Introduction to Rings and Modules,
2000: The name of the statement, although widely used (allegedly first by Lefschetz), has attracted the attention
of historians (Campbell 1978). As a ‘maximum principle’, it was first brought to prominence, and used for

85
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REMARK 6.3 The set S of finite subsets of an infinite set doesn’t contradict Zorn’s lemma,
because it contains totally ordered subsets with no upper bound in S .

The following proposition is a typical application of Zorn’s lemma — we shall use a * to
signal results that depend on Zorn’s lemma (equivalently, the Axiom of Choice).

PROPOSITION 6.4 (*) Every nonzero commutative ring A has a maximal ideal (meaning,
maximal among proper ideals).

PROOF. Let S be the set of all proper ideals in A, partially ordered by inclusion. If T is a
totally ordered set of ideals, then J D

S
I2T I is again an ideal, and it is proper because if

1 2 J then 1 2 I for some I in T , and I would not be proper. Thus J is an upper bound for
T . Now Zorn’s lemma implies that S has a maximal element, which is a maximal ideal in
A. 2

First proof of the existence of algebraic closures

(Bourbaki, Algèbre, Chap. V, �4.) An F -algebra is a ring containing F as a subring. Let
.Ai /i2I be a family of commutative F -algebras, and define

N
F Ai to be the quotient of the

F -vector space with basis
Q
i2I Ai by the subspace generated by elements of the form:

.xi /C .yi /� .zi / with xj Cyj D zj for one j 2 I and xi D yi D zi for all i ¤ j ;

.xi /�a.yi / with xj D ayj for one j 2 I and xi D yi for all i ¤ j ,
(ibid., Chap. II, 3.9). It can be made into a commutative F -algebra in an obvious fashion,
and there are canonical homomorphisms Ai !

N
F Ai of F -algebras.

For each polynomial f 2 F ŒX�, choose a splitting field Ef , and let ˝ D .
N
F Ef /=M

where M is a maximal ideal in
N
F Ef (whose existence is ensured by Zorn’s lemma).

Note that F �
N
F Ef and M \F D 0. As ˝ has no ideals other than .0/ and ˝, and it is

a field (see 1.2). The composite of the F -homomorphisms Ef !
N
F Ef !˝, being a

homomorphism of fields, is injective. Since f splits in Ef , it must also split in the larger
field ˝. The algebraic closure of F in ˝ is therefore an algebraic closure of F (by 1.44).

ASIDE 6.5 In fact, it suffices to take ˝ D .
N
F Ef /=M where f runs over the monic irreducible

polynomials in F ŒX� and Ef is the stem field F ŒX�=.f / of f (apply the statement in 6.7 below).

Second proof of the existence of algebraic closures

(Jacobson 1964, p144.) After (4.23) we may assume F to be infinite. This implies that the
cardinality of every field algebraic over F is the same as that of F (ibid. p143). Choose
an uncountable set � of cardinality greater than that of F , and identify F with a subset
of � . Let S be the set triples .E;C; �/ with E � � and .C; �/ a field structure on E such
that .E;C; �/ contains F as a subfield and is algebraic over it. Write .E;C; �/� .E 0;C0; �0/
if the first is a subfield of the second. Apply Zorn’s lemma to show that S has maximal
elements, and then show that a maximal element is algebraically closed. (See ibid. p144 for
the details.)

algebraic purposes in Zorn 1935, apparently in ignorance of its previous usage in topology, most notably in
Kuratowski 1922. Zorn attributed to Artin the realization that the ‘lemma’ is in fact equivalent to the Axiom of
Choice (see Jech 1973). Zorn’s contribution was to observe that it is more suited to algebraic applications like
ours.
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Third proof of the existence of algebraic closures

(Emil Artin.) Consider the polynomial ring F Œ: : : ;xf ; : : :� in a family of symbols xf indexed
by the nonconstant monic polynomials f 2 F ŒX�. If 1 lies in the ideal I of F Œ: : : ;xf ; : : :�
generated by the polynomials f .xf /, then

g1f1.xf1/C�� �Cgnfn.xfn/D 1 .in F Œ: : : ;xf ; : : :�/

for some gi 2 F Œ: : : ;xf ; : : :� and some nonconstant monic fi 2 F ŒX�. LetE be an extension
of F such that each fi , i D 1; : : : ;n, has a root ˛i in E. Under the F -homomorphism
F Œ: : : ;xf ; : : :�!E sending �

xfi 7! ˛i
xf 7! 0; f … ff1; : : : ;fng

the above relation becomes 0D 1. From this contradiction, we deduce that 1 does not lie in
I , and so Proposition 6.4 applied to F Œ: : : ;xf ; : : :�=I shows that I is contained in a maximal
ideal M of F Œ: : : ;xf ; : : :�. Let ˝ D F Œ: : : ;xf ; : : :�=M . Then ˝ is a field containing (a copy
of) F in which every nonconstant polynomial in F ŒX� has at least one root. Repeat the
process starting with E1 instead of F to obtain a field E2. Continue in this fashion to obtain
a sequence of fields

F DE0 �E1 �E2 � �� � ;

and let E D
S
i Ei . Then E is algebraically closed because the coefficients of any noncon-

stant polynomial g in EŒX� lie in Ei for some i , and so g has a root in EiC1. Therefore, the
algebraic closure of F in E is an algebraic closure of F (1.46).

ASIDE 6.6 In fact,E is algebraic over F . To see this, note thatE1 is generated by algebraic elements
over F , and so is algebraic over F (apply 1.45). Similarly, E2 is algebraic over E1, and hence over F
(apply 1.31b). Continuing in this fashion, we find that every element of every Ei is algebraic over F .

ASIDE 6.7 In fact, E1 is already algebraically closed (hence the algebraic closure of F ). This
follows from the statement:

Let ˝ be a field. If ˝ is algebraic over a subfield F and every nonconstant polynomial
in F ŒX� has a root in ˝, then ˝ is algebraically closed.

In order to prove this, it suffices to show that every irreducible polynomial f in F ŒX� splits in ˝ŒX�
(see 1.44). Suppose first that f is separable, and let E be a splitting field for f . According to
Theorem 5.1, E D F Œ� for some  2E. Let g.X/ be the minimum polynomial of  over F . Then
g.X/ has coefficients in F , and so it has a root ˇ in ˝. Both of F Œ� and F Œˇ� are stem fields for g,
and so there is an F -isomorphism F Œ�! F Œˇ��˝. As f splits over F Œ�, it must split over ˝.

This completes the proof when F is perfect. Otherwise, F has characteristic p ¤ 0, and we
let F 0 be the set of elements x of ˝ such that xp

m
2 F for some m. It is easy to see that F 0 is a

field, and we shall complete the proof of the lemma by showing that (a) F 0 is perfect, and (b) every
polynomial in F 0ŒX� has a root in ˝.

PROOF OF (a). Let a 2 F 0, so that b def
D ap

m
2 F for some m. The polynomial Xp

mC1
�b has

coefficients in F , and so it has a root ˛ 2˝, which automatically lies in F 0. Now ˛p
mC1
D ap

m
,

which implies that ˛p D a, because the pth power map is injective on fields of characteristic p.
Before continuing, we note that, because ˝ is algebraic over a perfect field F 0, it is itself perfect:

let a 2˝, and let g be the minimum polynomial of a over F 0; if Xp�a is irreducible in ˝ŒX�, then
g.Xp/ is irreducible in F 0ŒX�, but it is not separable, which is a contradiction.
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PROOF OF (b). Let f .X/ 2 F 0ŒX�, say, f .X/D
P
i aiX

i , ai 2 F 0. For somem, the polynomialP
i a
pm

i X i has coefficients in F , and therefore has a root ˛ 2 ˝. As ˝ is perfect, we can write
˛ D ˇp

m
with ˇ 2˝. Now

.f .ˇ//p
m

D

�X
i
aiˇ

i
�pm
D

X
i
a
pm

i ˛i D 0;

and so ˇ is a root of f .

(Non)uniqueness of algebraic closures

THEOREM 6.8 (*) Let ˝ be an algebraic closure of F , and let E be an algebraic extension
of F . There exists an F -homomorphism E!˝, and, if E is also an algebraic closure of
F , then every such homomorphism is an isomorphism.

PROOF. Suppose first that E is countably generated over F , i.e., E D F Œ˛1; :::;˛n; : : :�.
Then we can extend the inclusion map F !˝ to F Œ˛1� (map ˛1 to any root of its minimal
polynomial in ˝/, then to F Œ˛1;˛2�; and so on (see 2.2).

In the uncountable case, we use Zorn’s lemma. Let S be the set of pairs .M;'M / with
M a field F �M �E and 'M an F -homomorphism M !˝. Write .M;'M /� .N;'N /
if M � N and 'N jM D 'M . This makes S into a partially ordered set. Let T be a
totally ordered subset of S . Then M 0 D

S
M2T M is a subfield of E, and we can define a

homomorphism '0WM 0!˝ by requiring that '0.x/D 'M .x/ if x 2M . The pair .M 0;'0/
is an upper bound for T in S . Hence Zorn’s lemma gives us a maximal element .M;'/ in
S . Suppose that M ¤E. Then there exists an element ˛ 2E, ˛ …M . Since ˛ is algebraic
over M , we can apply (2.2) to extend ' to MŒ˛�, contradicting the maximality of M . Hence
M DE, and the proof of the first statement is complete.

If E is algebraically closed, then every polynomial f 2 F ŒX� splits in EŒX� and hence
in '.E/ŒX�. Let ˛ 2 ˝, and let f .X/ be the minimum polynomial of ˛. Then X �˛ is
a factor of f .X/ in ˝ŒX�, but, as we just observed, f .X/ splits in '.E/ŒX�. Because of
unique factorization, this implies that ˛ 2 '.E/. 2

The above proof is a typical application of Zorn’s lemma: once we know how to do
something in a finite (or countable) situation, Zorn’s lemma allows us to do it in general.

REMARK 6.9 Even for a finite field F , there will exist uncountably many isomorphisms
from one algebraic closure to a second, none of which is to be preferred over any other. Thus
it is (uncountably) sloppy to say that the algebraic closure of F is unique. All one can say is
that, given two algebraic closures ˝, ˝ 0 of F , then, thanks to Zorn’s lemma, there exists an
F -isomorphism ˝!˝ 0.

Separable closures

Let ˝ be a field containing F , and let E be a set of intermediate fields F �E �˝ with the
following property:

(*) for all E1;E2 2 E , there exists an E 2 E such that E1;E2 �E.

Then E.E/D
S
E2EE is a subfield of ˝ (and we call

S
E2EE a directed union), because

(*) implies that every finite set of elements of E.E/ is contained in a common E 2 E , and
therefore their product, sum, etc., also lie in E.E/.
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We apply this remark to the set of subfields E of ˝ that are finite and separable over F .
As the composite of any two such subfields is again finite and separable over F (cf. 3.14),
we see that the union L of all such E is a subfield of ˝. We call L the separable closure of
F in ˝ — clearly, it is separable over F and every element of ˝ separable over F lies in L.
Moreover, because a separable extension of a separable extension is separable, ˝ is purely
inseparable over L.

DEFINITION 6.10 (a) A field ˝ is said to be separably closed if every nonconstant separa-
ble polynomial in ˝ŒX� splits in ˝.

(b) A field ˝ is said to be a separable closure of a subfield F if it is separable and
algebraic over F and it is separably closed.

THEOREM 6.11 (*) (a) Every field has a separable closure.
(b) Let E be a separable algebraic extension of F , and let ˝ be a separable algebraic

closure of F . There exists an F -homomorphism E ! ˝, and, if E is also a separable
closure of F , then every such homomorphism is an isomorphism.

PROOF. Replace “polynomial” with “separable polynomial” in the proofs of the correspond-
ing theorems for algebraic closures. Alternatively, define ˝ to be the separable closure of F
in an algebraic closure, and apply the preceding theorems. 2





CHAPTER 7
Infinite Galois Extensions

In this chapter, we make free use of Zorn’s lemma.

Topological groups

DEFINITION 7.1 A set G together with a group structure and a topology is a topological
group if the maps

.g;h/ 7! ghWG�G!G;

g 7! g�1WG!G

are both continuous.

Let a be an element of a topological group G. Then aLWG
g 7!ag
����! G is continuous

because it is the composite of

G
g 7!.a;g/
������!G�G

.g;h/7!gh
�������!G:

In fact, it is a homeomorphism with inverse .a�1/L. Similarly aRWg 7! ga and g 7! g�1

are both homeomorphisms. In particular, for any subgroup H of G, the coset aH of H is
open or closed if H is open or closed. As the complement of H in G is a union of such
cosets, this shows that H is closed if it is open, and it is open if it is closed and of finite
index.

Recall that a neighbourhood base for a point x of a topological space X is a set of
neighbourhoods N such that every open subset U of X containing x contains an N from N .

PROPOSITION 7.2 Let G be a topological group, and let N be a neighbourhood base for
the identity element e of G. Then1

(a) for all N1;N2 2N , there exists an N 0 2N such that e 2N 0 �N1\N2;
(b) for all N 2N , there exists an N 0 2N such that N 0N 0 �N ;
(c) for all N 2N , there exists an N 0 2N such that N 0 �N�1;
(d) for all N 2N and all g 2G, there exists an N 0 2N such that N 0 � gNg�1I
(e) for all g 2G, fgN jN 2N g is a neighbourhood base for g.

1For subsets S and S 0 of G, we set SS 0 D fss0 j s 2 S , s0 2 S 0g, and S�1 D fs�1 j s 2 Sg.
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Conversely, if G is a group and N is a nonempty set of subsets of G satisfying (a,b,c,d), then
there is a (unique) topology on G for which (e) holds.
PROOF. If N is a neighbourhood base at e in a topological group G, then (b), (c), and
(d) are consequences of the continuity of .g;h/ 7! gh, g 7! g�1, and h 7! ghg�1 respec-
tively. Moreover, (a) is a consequence of the definitions and (e) of the fact that gL is a
homeomorphism.

Conversely, let N be a nonempty collection of subsets of a group G satisfying the
conditions (a)–(d). Note that (a) implies that e lies in all the N in N . Define U to be the
collection of subsets U ofG such that, for every g 2U , there exists anN 2N with gN �U .
Clearly, the empty set and G are in U , and unions of sets in U are in U . Let U1;U2 2 U , and
let g 2 U1\U2; by definition there exist N1;N2 2N with gN1;gN2 � U ; on applying (a)
we obtain an N 0 2N such that gN 0 � U1\U2, which shows that U1\U2 2 U . It follows
that the elements of U are the open sets of a topology on G. In fact, one sees easily that it is
the unique topology for which (e) holds.

We next use (b) and (d) to show that .g;g0/ 7! gg0 is continuous. Note that the sets
g1N1 � g2N2 form a neighbourhood base for .g1;g2/ in G �G. Therefore, given an
open U � G and a pair .g1;g2/ such that g1g2 2 U , we have to find N1;N2 2 N such
that g1N1g2N2 � U . As U is open, there exists an N 2 N such that g1g2N � U . Ap-
ply (b) to obtain an N 0 such that N 0N 0 � N ; then g1g2N 0N 0 � U . But g1g2N 0N 0 D
g1.g2N

0g�12 /g2N
0, and it remains to apply (d) to obtain an N1 2 N such that N1 �

g2N
0g�12 .

Finally, we use (c) and (d) to show that g 7! g�1 is continuous. Given an open U �G
and a g 2 G such that g�1 2 U , we have to find an N 2 N such that gN � U�1. By
definition, there exists an N 2N such that g�1N � U . Now N�1g � U�1, and we use
(c) to obtain an N 0 2 N such that N 0g � U�1, and (d) to obtain an N 00 2 N such that
gN 00 � g.g�1N 0g/� U�1. 2

The Krull topology on the Galois group

Recall (3.9) that a finite extension ˝ of F is Galois over F if it is normal and separable, i.e.,
if every irreducible polynomial f 2 F ŒX� having a root in ˝ has degf distinct roots in ˝.
Similarly, we define an algebraic extension ˝ of F to be Galois over F if it is normal and
separable. Clearly, ˝ is Galois over F if and only if it is a union of finite Galois extensions.

PROPOSITION 7.3 If ˝ is Galois over F , then it is Galois over every intermediate field M .
PROOF. Let f .X/ be an irreducible polynomial in MŒX� having a root a in ˝. The
minimum polynomial g.X/ of a over F splits into distinct degree-one factors in ˝ŒX�. As
f divides g (in MŒX�), it also must split into distinct degree-one factors in ˝ŒX�. 2

PROPOSITION 7.4 Let˝ be a Galois extension of F and letE be a subfield of˝ containing
F . Then every F -homomorphism E!˝ extends to an F -isomorphism ˝!˝.
PROOF. The same Zorn’s lemma argument as in the proof of Theorem 6.8 shows that every
F -homomorphism E!˝ extends to an F -homomorphism ˛W˝!˝. Let a 2˝, and let
f be its minimum polynomial over F . Then ˝ contains exactly deg.f / roots of f , and so
therefore does ˛.˝/. Hence a 2 ˛.˝/, which shows that ˛ is surjective. 2

Let ˝ be a Galois extension of F , and let G D Aut.˝=F /. For any finite subset S of
˝, let

G.S/D f� 2G j �s D s for all s 2 Sg:
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PROPOSITION 7.5 There is a unique structure of a topological group on G for which the
sets G.S/ form an open neighbourhood base of 1. For this topology, the sets G.S/ with S
G-stable form a neighbourhood base of 1 consisting of open normal subgroups.

PROOF. We show that the collection of sets G.S/ satisfies (a,b,c,d) of (7.2). It satisfies (a)
because G.S1/\G.S2/D G.S1[S2/. It satisfies (b) and (c) because each set G.S/ is a
group. Let S be a finite subset of ˝. Then F.S/ is a finite extension of F , and so there are
only finitely many F -homomorphisms F.S/!˝. Since �S D �S if � jF.S/D � jF.S/,
this shows that xS D

S
�2G �S is finite. Now � xS D xS for all � 2G, and it follows thatG. xS/

is normal in G. Therefore, �G. xS/��1 D G. xS/ � G.S/, which proves (d). It also proves
the second statement. 2

The topology on Aut.˝=F / defined in the proposition is called the Krull topology. We
write Gal.˝=F / for Aut.˝=F / endowed with the Krull topology, and call it the Galois
group of ˝=F .

PROPOSITION 7.6 Let˝ be Galois over F . For every intermediate fieldE finite and Galois
over F , the map

� 7! � jEWGal.˝=F /! Gal.E=F /

is a continuous surjection (discrete topology on Gal.E=F /).

PROOF. Let � 2Gal.E=F /, and regard it as an F -homomorphism E!˝. Then � extends
to an F -isomorphism ˝!˝ (see 7.4), which shows that the map is surjective. For every
finite set S of generators of E over F , Gal.˝=E/D G.S/, which shows that the inverse
image of 1Gal.E=F / is open in G. By homogeneity, the same is true for every element of
Gal.E=F /. 2

PROPOSITION 7.7 All Galois groups are compact and totally disconnected.2

PROOF. LetG DGal.˝=F /. We first show thatG is Hausdorff. If � ¤ � , then ��1� ¤ 1G ,
and so it moves some element of ˝, i.e., there exists an a 2˝ such that �.a/¤ �.a/. For
any S containing a, �G.S/ and �G.S/ are disjoint because their elements act differently on
a. Hence they are disjoint open subsets of G containing � and � respectively.

We next show that G is compact. As we noted above, if S is a finite set stable under G,
then G.S/ is a normal subgroup of G, and it has finite index because it is the kernel of

G! Sym.S/:

Since every finite set is contained in a stable finite set, the argument in the last paragraph
shows that the map

G!
Y

S finite stable underG

G=G.S/

is injective. When we endow
Q
G=G.S/ with the product topology, the induced topology

on G is that for which the G.S/ form an open neighbourhood base of e, i.e., it is the
Krull topology. According to the Tychonoff theorem,

Q
G=G.S/ is compact, and so it

remains to show that G is closed in the product. For each S1 � S2, there are two continuous
maps

Q
G=G.S/! G=G.S1/, namely, the projection onto G=G.S1/ and the projection

onto G=G.S2/ followed by the quotient map G=G.S2/! G=G.S1/. Let E.S1;S2/ be

2Following Bourbaki, we require compact spaces to be Hausdorff. A topological space is totally discon-
nected if its connected components are the one-point sets.
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the closed subset of
Q
G=G.S/ on which the two maps agree. Then

T
S1�S2

E.S1;S2/ is
closed, and equals the image of G.

Finally, for each finite set S stable under G, G.S/ is a subgroup that is open and hence
closed. Since

T
G.S/D f1Gg, this shows that the connected component of G containing

1G is just f1Gg. By homogeneity, a similar statement is true for every element of G. 2

PROPOSITION 7.8 For any Galois extension ˝=F , ˝Gal.˝=F / D F .

PROOF. Every element of ˝XF lies in a finite Galois extension of F , and so this follows
from the surjectivity in Proposition 7.6. 2

ASIDE 7.9 There is a converse to the proposition: every compact totally disconnected group arises as
the Galois group of some Galois extension of fields of characteristic zero (Douady, A., Cohomologie
des groupes compact totalement discontinus (d’après J. Tate), Séminaire Bourbaki 1959/60, no. 189).
However, not all such groups arise as the absolute Galois group3 of a field. For example, a theorem
of Artin and Schreier says that if F is not algebraically closed but its algebraic closure is a finite
extension, then F has an ordering for which it is real closed and F al D F Œ

p
�1� (so ŒF alWF �D 2).

The fundamental theorem of infinite Galois theory

PROPOSITION 7.10 Let ˝ be Galois over F , with Galois group G.

(a) The field ˝ is Galois over every subfield M containing F ; moreover, Gal.˝=M/ is
closed in G, and ˝Gal.˝=M/ DM .

(b) For every subgroup H of G, Gal.˝=˝H / is the closure of H .

PROOF. (a) The first assertion was proved in (7.3). For each finite subset S �M , G.S/ is
an open subgroup of G, and hence it is closed. But Gal.˝=M/D

T
S�M G.S/, and so it

also is closed. The final statement follows from (7.8).
(b) Since Gal.˝=˝H / contains H and is closed, it certainly contains the closure xH of

H . On the other hand, let � 2 GX xH . Then �G.S/\H D ; for some finite subset S of
˝ which we may assume to be stable under G. Now �G.S/\H D ; implies � …HG.S/,
and so there exists an ˛ 2 F.S/ that is fixed by H but moved by � . This shows that
� … Gal.˝=˝H /, as required. 2

THEOREM 7.11 Let ˝ be Galois over F with Galois group G. The maps

H 7!˝H ; M 7! Gal.˝=M/

are inverse bijections between the set of closed subgroups of G and the set of intermediate
fields between ˝ and F :

fclosed subgroups of Gg $ fintermediate fields F �M �˝g:

Moreover,

(a) the correspondence is inclusion-reversing: H1 �H2 ” ˝H1 �˝H2 ;
(b) a closed subgroup H of G is open if and only if ˝H has finite degree over F , in

which case .GWH/D Œ˝H WF �;
(c) �H��1$ �M , i.e., ˝�H�

�1

D �.˝H /; Gal.˝=�M/D �Gal.˝=M/��1;

3The absolute Galois group of a field F is Gal.F sep=F /.
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(d) a closed subgroup H of G is normal if and only if ˝H is Galois over F , in which
case Gal.˝H=F /'G=H .

PROOF. For the first statement, we have to show that H 7!˝H and M 7! Gal.˝=M/ are
inverse maps.

Let H be a closed subgroup of G. Then ˝ is Galois over ˝H and Gal.˝=˝H /DH
(see 7.10).

Let M be an intermediate field. Then Gal.˝=M/ is a closed subgroup of G and
˝Gal.˝=M/ DM (see 7.10).

(a) We have the obvious implications:

H1 �H2 H) ˝H1 �˝H2 H) Gal.˝=˝H1/� Gal.˝=˝H2/:

But Gal.˝=˝Hi /DHi (see 7.10).
(b) As we noted earlier, a closed subgroup of finite index in a topological group is always

open. Because G is compact, conversely an open subgroup of G is always of finite index.
Let H be such a subgroup. The map � 7! � j˝H defines a bijection

G=H ! HomF .˝H ;˝/

(apply 7.4) from which the statement follows.
(c) For � 2G and ˛ 2˝, �˛ D ˛ ” ����1.�˛/D �˛. Therefore, Gal.˝=�M/D

�Gal.˝=M/��1 , and so �Gal.˝=M/��1$ �M:

(d) Let H $M . It follows from (c) that H is normal if and only if M is stable under
the action of G. But M is stable under the action of G if and only it is a union of finite
extensions of F stable under G, i.e., of finite Galois extensions of G. We have already
observed that an extension is Galois if and only if it is a union of finite Galois extensions.2

REMARK 7.12 As in the finite case (3.17), we can deduce the following statements.
(a) Let .Mi /i2I be a (possibly infinite) family of intermediate fields, and let Hi $Mi .

Let
Q
Mi be the smallest field containing all the Mi ; then because

T
i2I Hi is the largest

(closed) subgroup contained in all the Hi ,

Gal.˝=
Q
Mi /D

\
i2I

Hi :

(b) Let M $ H . The largest (closed) normal subgroup contained in H is N DT
� �H�

�1 (cf. GT 4.10), and so ˝N , which is the composite of the fields �M , is the
smallest normal extension of F containing M .

PROPOSITION 7.13 Let E and L be field extensions of F con-
tained in some common field. If E=F is Galois, then EL=L and
E=E\L are Galois, and the map

� 7! � jEWGal.EL=L/! Gal.E=E\L/

is an isomorphism of topological groups.

EL

E L

E\L

F

D

D



96 7. INFINITE GALOIS EXTENSIONS

PROOF. We first prove that the map is continuous. Let G1 D Gal.EL=L/ and let G2 D
Gal.E=E\L/. For any finite set S of elements of E, the inverse image of G2.S/ in G1 is
G1.S/.

We next show that the map is an isomorphism of groups (neglecting the topology). As
in the finite case, it is an injective homomorphism (3.18). Let H be the image of the map.
Then the fixed field of H is E\L, which implies that H is dense in Gal.E=E\L/. But H
is closed because it is the continuous image of a compact space in a Hausdorff space, and so
H D Gal.E=E\L/.

Finally, we prove that it is open. An open subgroup of Gal.EL=L/ is closed (hence
compact) of finite index; therefore its image in Gal.E=E\L/ is compact (hence closed) of
finite index, and hence open. 2

COROLLARY 7.14 Let ˝ be an algebraically closed field containing F , and let E and L
be as in the proposition. If �WE ! ˝ and � WL! ˝ are F -homomorphisms such that
�jE\LD � jE\L, then there exists an F -homomorphism � WEL!˝ such that � jE D �
and � jLD � .

PROOF. According to (7.4), � extends to an F -homomorphism sWEL!˝. As sjE\LD
�jE\L, we can write sjED �ı" for some "2Gal.E=E\L/. According to the proposition,
there exists a unique e 2 Gal.EL=L/ such that ejE D ". Define � D s ı e�1. 2

EXAMPLE 7.15 Let ˝ be an algebraic closure of a finite field Fp. Then G D Gal.˝=Fp/
contains a canonical Frobenius element, � D .a 7! ap/, and it is generated by it as a
topological group, i.e., G is the closure of h�i. Endow Z with the topology for which the
groups nZ, n� 1, form a fundamental system of neighbourhoods of 0. Thus two integers
are close if their difference is divisible by a large integer.

As for any topological group, we can complete Z for this topology. A Cauchy sequence
in Z is a sequence .ai /i�1, ai 2 Z, satisfying the following condition: for all n � 1, there
exists an N such that ai � aj mod n for i;j > N . Call a Cauchy sequence in Z trivial if
ai ! 0 as i !1, i.e., if for all n � 1, there exists an N such that ai � 0 mod n for all
i > N . The Cauchy sequences form a commutative group, and the trivial Cauchy sequences
form a subgroup. We define yZ to be the quotient of the first group by the second. It has a
ring structure, and the map sending m 2 Z to the constant sequence m;m;m; : : : identifies Z
with a subgroup of yZ.

Let ˛ 2 yZ be represented by the Cauchy sequence .ai /. The restriction of � to Fpn
has order n. Therefore .� jFpn/ai is independent of i provided it is sufficiently large, and
we can define �˛ 2 Gal.˝=Fp/ to be such that, for each n, �˛jFpn D .� jFpn/ai for all i
sufficiently large (depending on n). The map ˛ 7! �˛W yZ! Gal.˝=Fp/ is an isomorphism.

The group yZ is uncountable. To most analysts, it is a little weird—its connected
components are one-point sets. To number theorists it will seem quite natural — the
Chinese remainder theorem implies that it is isomorphic to

Q
p primeZp where Zp is the ring

of p-adic integers.

EXAMPLE 7.16 Let ˝ be the algebraic closure of Q in C; then Gal.˝=Q/ is one of the
most basic, and intractable, objects in mathematics. It is expected that every finite group
occurs as a quotient of it, and it certainly has Sn as a quotient group for every n (and every
sporadic simple group, and every...) — cf. (5.41). We do understand Gal.F ab=F / where
F � C is a finite extension of Q and F ab is the union of all finite abelian extensions of F
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contained in C. For example, Gal.Qab=Q/� yZ�. (This is abelian class field theory — see
my notes Class Field Theory.)

ASIDE 7.17 A simple Galois correspondence is a system consisting of two partially ordered sets
P and Q and order reversing maps f WP !Q and gWQ! P such that gf .p/ � p for all p 2 P
and fg.q/ � q for all q 2 Q. Then fgf D f , because fg.fp/ � fp and gf .p/ � p implies
f .gfp/� f .p/ for all p 2 P . Similarly, gfg D g, and it follows that f and g define a one-to-one
correspondence between the sets g.Q/ and f .P /.

From a Galois extension ˝ of F we get a simple Galois correspondence by taking P to be the
set of subgroups of Gal.˝=F / and Q to be the set of subsets of ˝, and by setting f .H/D˝H and
g.S/DG.S/. Thus, to prove the one-to-one correspondence in the fundamental theorem, it suffices
to identify the closed subgroups as exactly those in the image of g and the intermediate fields as
exactly those in the image of f . This is accomplished by (7.10).

Galois groups as inverse limits

DEFINITION 7.18 A partial ordering � on a set I is said to be directed, and the pair .I;�/
is called a directed set, if for all i;j 2 I there exists a k 2 I such that i;j � k.

DEFINITION 7.19 Let .I;�/ be a directed set, and let C be a category (for example, the cat-
egory of groups and homomorphisms, or the category of topological groups and continuous
homomorphisms).

(a) An inverse system in C indexed by .I;�/ is a family .Ai /i2I of objects of C together
with a family .pji WAj !Ai /i�j of morphisms such that pii D idAi and pji ıp

k
j D p

k
i

all i � j � k.
(b) An object A of C together with a family .pj WA! Aj /j2I of morphisms satisfying

p
j
i ıpj D pi all i � j is said to be an inverse limit of the system in (a) if it has the

following universal property: for any other object B and family .qj WB ! Aj / of
morphisms such pji ı qj D qi all i � j , there exists a unique morphism r WB ! A

such that pj ı r D qj for j ,

B A

Aj

Ai

q
j

qi pi

pj

p
j

i

r

Clearly, the inverse limit (if it exists), is uniquely determined by this condition up to a unique
isomorphism. We denote it lim

 �
.Ai ;p

j
i /, or just lim

 �
Ai .

EXAMPLE 7.20 Let .Gi ;p
j
i WGj !Gi / be an inverse system of groups. Let

G D f.gi / 2
Y
Gi j p

j
i .gj /D gi all i � j g;
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and let pi WG!Gi be the projection map. Then pji ıpj D pi is just the equation pji .gj /D
gi . Let .H;qi / be a second family such that pji ıqj D qi . The image of the homomorphism

h 7! .qi .h//WH !
Y
Gi

is contained in G, and this is the unique homomorphism H !G carrying qi to pi . Hence
.G;pi /D lim

 �
.Gi ;p

j
i /.

EXAMPLE 7.21 Let .Gi ;p
j
i WGj ! Gi / be an inverse system of topological groups and

continuous homomorphisms. When endowed with the product topology,
Q
Gi becomes a

topological group
G D f.gi / 2

Y
Gi j p

j
i .gj /D gi all i � j g;

and G becomes a topological subgroup with the subspace topology. The projection maps
pi are continuous. Let H be .H;qi / be a second family such that pji ı qj D qi . The
homomorphism

h 7! .qi .h//WH !
Y
Gi

is continuous because its composites with projection maps are continuous (universal property
of the product). ThereforeH !G is continuous, and this shows that .G;pi /D lim

 �
.Gi ;p

j
i /.

EXAMPLE 7.22 Let .Gi ;p
j
i WGj !Gi / be an inverse system of finite groups, and regard

it as an inverse system of topological groups by giving each Gi the discrete topology. A
topological group G arising as an inverse limit of such a system is said to be profinite4:

If .xi / …G, say pj0i0 .xj0/¤ xi0 , then

G\f.gj / j gj0 D xj0 ; gi0 D xi0g D ;.

As the second set is an open neighbourhood of .xi /, this shows that G is closed in
Q
Gi . By

Tychonoff’s theorem,
Q
Gi is compact, and so G is also compact. The map pi WG!Gi is

continuous, and its kernel Ui is an open subgroup of finite index in G (hence also closed).
As

T
Ui D feg, the connected component of G containing e is just feg. By homogeneity,

the same is true for every point of G: the connected components of G are the one-point sets
— G is totally disconnected.

We have shown that a profinite group is compact and totally disconnected, and it is an
exercise to prove the converse.5

EXAMPLE 7.23 Let ˝ be a Galois extension of F . The composite of two finite Galois
extensions of in ˝ is again a finite Galois extension, and so the finite Galois subextensions
of ˝ form a directed set I . For each E in I we have a finite group Gal.E=F /, and for each
E �E 0 we have a restriction homomorphism pE

0

E WGal.E 0=F /! Gal.E=F /. In this way,
we get an inverse system of finite groups .Gal.E=F /;pE

0

E / indexed by I .
For each E, there is a restriction homomorphism pE WGal.˝=F /! Gal.E=F / and,

because of the universal property of inverse limits, these maps define a homomorphism

Gal.˝=F /! lim
 �

Gal.E=F /.

This map is an isomorphism of topological groups. This is a restatement of what we showed
in the proof of (7.7).

4An inverse limit is also called a projective limit. Thus a profinite group is a projective limit of finite groups.
5More precisely, it is Exercise 3 of �7 of Chapter 3 of Bourbaki’s General Topology.
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Nonopen subgroups of finite index

We apply Zorn’s lemma6 to construct a nonopen subgroup of finite index in Gal.Qal=Q/.7

LEMMA 7.24 Let V be an infinite dimensional vector space. For all n � 1, there exists a
subspace Vn of V such that V=Vn has dimension n.

PROOF. Zorn’s lemma shows that V contains maximal linearly independent subsets, and
then the usual argument shows that such a subset spans V , i.e., is a basis. Choose a basis,
and take Vn to be the subspace spanned by the set obtained by omitting n elements from the
basis. 2

PROPOSITION 7.25 The group Gal.Qal=Q/ has nonopen normal subgroups of index 2n for
all n > 1.

PROOF. Let E be the subfield QŒ
p
�1;
p
2; : : : ;

p
p; : : :�, p prime, of C. For each p,

Gal.QŒ
p
�1;
p
2; : : : ;

p
p�=Q/

is a product of copies of Z=2Z indexed by the set fprimes� pg[f1g (apply 5.31; see also
5.30b). As

Gal.E=Q/D lim
 �

Gal.QŒ
p
�1;
p
2; : : : ;

p
p�=Q/;

it is a direct product of copies of Z=2Z indexed by the primes l of Q (including l D1)
endowed with the product topology. Let G D Gal.E=Q/, and let

H D f.al/ 2G j al D 0 for all but finitely many lg:

This is a subgroup of G (in fact, it is a direct sum of copies of Z=2Z indexed by the primes
of Q), and it is dense in G because8 clearly every open subset of G contains an element of
H . We can regard G=H as vector space over F2 and apply the lemma to obtain subgroups
Gn of index 2n in G containing H . If Gn is open in G, then it is closed, which contradicts
the fact that H is dense. Therefore, Gn is not open, and its inverse image in Gal.Qal=Q/ is
the desired subgroup.9 2

ASIDE 7.26 Let G D Gal.Qal=Q/. We showed in the above proof that there is a closed normal
subgroupN DGal.Qal=E/ ofG such thatG=N is an uncountable vector space over F2. Let .G=N/_

be the dual of this vector space (also uncountable). Every nonzero f 2 .G=N/_ defines a surjective
map G! F2 whose kernel is a subgroup of index 2 in G. These subgroups are distinct, and so G
has uncountably many subgroups of index 2. Only countably many of them are open because Q has
only countably many quadratic extensions in a fixed algebraic closure.

6This is really needed — see mo106216.
7Contrast: “. . . it is not known, even when G D Gal.xQ=Q/, whether every subgroup of finite index in

G is open; this is one of a number of related unsolved problems, all of which appear to be very difficult.”
Swinnerton-Dyer, H. P. F., A brief guide to algebraic number theory. Cambridge, 2001, p133.

8Alternatively, let .al / 2G; then the sequence

.a1;0;0;0; : : :/, .a1;a2;0;0; : : :/, .a1;a2;a3;0; : : :/; : : :

in H converges to .al /.
9The inverse image is not open because every continuous homomorphism from a compact group to a

separated group is open. Alternatively, if the inverse image were open, its fixed field would be a nontrivial
extension E of Q contained in QŒ

p
�1;
p
2; : : : ;

p
p; : : :�; but then E would be fixed by Gn, which is dense.
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ASIDE 7.27 Let G be a profinite group that is finitely generated as a topological group. It is a
difficult theorem, only recently proved, that every subgroup of finite index in G is open (Nikolov,
Nikolay; Segal, Dan. On finitely generated profinite groups. I. Strong completeness and uniform
bounds. Ann. of Math. (2) 165 (2007), no. 1, 171–238.)

ASIDE 7.28 It is necessary to assume the axiom of choice in order to have a sensible Galois theory
of infinite extensions. For example, it is consistent with Zermelo-Fraenkel set theory that there be an
algebraic closure L of the Q such that Gal.L=Q/ is trivial. See: Hodges, Wilfrid, Läuchli’s algebraic
closure of Q. Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 2, 289–297.

Étale algebras

Let ˝ be a separable closure of F , and let G D Gal.˝=F /. For an F -algebra A, let F.A/
denote the set of F -algebra homomorphisms A! ˝. If A is finitely generated (as an
F -algebra), then the action of G on F.A/ is continuous for the discrete topology on F.A/.

THEOREM 7.29 The functor A F.A/ is a contravariant equivalence from the category
of étale F -algebras to the category of finite discrete G-sets.

PROOF. Immediate consequence of Theorem 5.56. 2

ASIDE 7.30 The reader should note the similarity of (7.29) with the following statement:

Let X be a connected topological manifold, and let pW˝!X be a universal covering
space for X . Let G denote the group of covering transformations (so the choice of
a point e 2 ˝ determines an isomorphism G ! �1.X;pe/). For a covering space
Y of X , let F.Y / denote the set of covering maps ˝ ! Y . Then Y  F.Y / is
an equivalence from the category of covering spaces of X with only finitely many
connected components to the category of (right) G-sets with only finitely many orbits.

For more on this, see the section on the étale fundamental group in my “Lectures on Étale Cohomol-
ogy” and Szamuely, Tamás, Galois groups and fundamental groups. CUP, 2009.

NOTES The interpretation of Galois theory provided by Theorem 7.29 is usually credited to Grot-
hendieck.



CHAPTER 8
Transcendental Extensions

In this chapter we consider fields ˝ � F with ˝ much bigger than F . For example, we
could have C�Q:

Algebraic independence

Elements ˛1; :::;˛n of ˝ give rise to an F -homomorphism

f 7! f .˛1; :::;˛n/WF ŒX1; : : : ;Xn�!˝.

If the kernel of this homomorphism is zero, then the ˛i are said to be algebraically inde-
pendent over F , and otherwise, they are algebraically dependent over F . Thus, the ˛i
are algebraically dependent over F if there exists a nonzero polynomial f .X1; :::;Xn/ 2
F ŒX1; :::;Xn� such that f .˛1; :::;˛n/D 0, and they are algebraically independent if

ai1;:::;in 2 F;
X

ai1;:::;in˛
i1
1 :::˛

in
n D 0 H) ai1;:::;in D 0 all i1; :::; in:

Note the similarity with linear independence. In fact, if f is required to be homogeneous of
degree 1, then the definition becomes that of linear independence.

EXAMPLE 8.1 (a) A single element ˛ is algebraically independent over F if and only if it
is transcendental over F:

(b) The complex numbers � and e are almost certainly algebraically independent over
Q, but this has not been proved.

An infinite set A is algebraically independent over F if every finite subset of A is
algebraically independent; otherwise, it is algebraically dependent over F .

REMARK 8.2 If ˛1; :::;˛n are algebraically independent over F , then

f .X1; :::;Xn/ 7! f .˛1; :::;˛n/WF ŒX1; :::;Xn�! F Œ˛1; :::;˛n�

is an injection, and hence an isomorphism. This isomorphism then extends to the fields of
fractions,

Xi 7! ˛i WF.X1; :::;Xn/! F.˛1; :::;˛n/

In this case, F.˛1; :::;˛n/ is called a pure transcendental extension of F . The polynomial

f .X/DXn�˛1X
n�1
C�� �C .�1/n˛n

has Galois group Sn over F.˛1; :::;˛n/ (see 5.40).

101
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LEMMA 8.3 Let  2˝ and let A�˝. The following conditions are equivalent:

(a)  is algebraic over F.A/;
(b) there exist ˇ1; : : : ;ˇn 2 F.A/ such that nCˇ1n�1C�� �Cˇn D 0;
(c) there exist ˇ0;ˇ1; : : : ;ˇn 2 F ŒA�, not all 0, such that ˇ0nCˇ1n�1C�� �Cˇn D 0;
(d) there exists an f .X1; : : : ;Xm;Y / 2 F ŒX1 : : : ;Xm;Y � and ˛1; : : : ;˛m 2 A such that

f .˛1; : : : ;˛m;Y /¤ 0 but f .˛1; : : : ;˛m;/D 0.

PROOF. (a)H) (b)H) (c)H) (a) are obvious.
(d)H) (c). Write f .X1; : : : ;Xm;Y / as a polynomial in Y with coefficients in the ring

F ŒX1; : : : ;Xm�,
f .X1; : : : ;Xm;Y /D

P
fi .X1; : : : ;Xm/Y

n�i .

Then (c) holds with ˇi D fi .˛1; : : : ;˛m/.
(c)H) (d). The ˇi in (c) can be expressed as polynomials in a finite number of elements

˛1; : : : ;˛m of A, say, ˇi D fi .˛1; : : : ;˛m/ with fi 2 F ŒX1; : : : ;Xm�. Then (d) holds with
f D

P
fi .X1; : : : ;Xm/Y

n�i . 2

DEFINITION 8.4 When  satisfies the equivalent conditions of Lemma 8.3, it is said to be
algebraically dependent on A (over F /. A set B is algebraically dependent on A if each
element of B is algebraically dependent on A.

The theory in the remainder of this chapter is logically very similar to a part of linear
algebra. It is useful to keep the following correspondences in mind:

Linear algebra Transcendence
linearly independent algebraically independent

A� span.B/ A algebraically dependent on B
basis transcendence basis

dimension transcendence degree

Transcendence bases

THEOREM 8.5 (FUNDAMENTAL RESULT) Let A D f˛1; :::;˛mg and B D fˇ1; :::;ˇng be
two subsets of ˝. Assume

(a) A is algebraically independent (over F );
(b) A is algebraically dependent on B (over F ).

Then m� n.

We first prove two lemmas.

LEMMA 8.6 (THE EXCHANGE PROPERTY) Let f˛1; :::;˛mg be a subset of ˝; if ˇ is al-
gebraically dependent on f˛1; :::;˛mg but not on f˛1; :::;˛m�1g, then ˛m is algebraically
dependent on f˛1; :::;˛m�1;ˇg:

PROOF. Because ˇ is algebraically dependent on f˛1; : : : ;˛mg, there exists a polynomial
f .X1; :::;Xm;Y / with coefficients in F such that

f .˛1; :::;˛m;Y /¤ 0; f .˛1; :::;˛m;ˇ/D 0:
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Write f as a polynomial in Xm,

f .X1; :::;Xm;Y /D
X
i

ai .X1; :::;Xm�1;Y /X
n�i
m ;

and observe that, because f .˛1; : : : ;˛m;Y /¤ 0, at least one of the polynomials

ai .˛1; :::;˛m�1;Y /;

say ai0 , is not the zero polynomial. Because ˇ is not algebraically dependent on

f˛1; :::;˛m�1g;

ai0.˛1; :::;˛m�1;ˇ/¤ 0. Therefore, f .˛1; :::;˛m�1;Xm;ˇ/¤ 0. Since f .˛1; :::;˛m;ˇ/D
0, this shows that ˛m is algebraically dependent on f˛1; :::;˛m�1;ˇg. 2

LEMMA 8.7 (TRANSITIVITY OF ALGEBRAIC DEPENDENCE) If C is algebraically depen-
dent on B , and B is algebraically dependent on A, then C is algebraically dependent on
A.

PROOF. The argument in the proof of Proposition 1.44 shows that if  is algebraic over a
field E which is algebraic over a field F , then  is algebraic over F (if a1; : : : ;an are the
coefficients of the minimum polynomial of  over E, then the field F Œa1; : : : ;an;� has
finite degree over F ). Apply this with E D F.A[B/ and F D F.A/. 2

PROOF. [of Theorem 8.5]Let k be the number of elements that A and B have in com-
mon. If k D m, then A � B , and certainly m � n. Suppose that k < m, and write B D
f˛1; :::;˛k;ˇkC1; :::;ˇng. Since ˛kC1 is algebraically dependent on f˛1; :::;˛k;ˇkC1; :::;ˇng
but not on f˛1; :::;˛kg, there will be a ˇj , kC1 � j � n, such that ˛kC1 is algebraically
dependent on f˛1; :::;˛k;ˇkC1; :::;ˇj g but not

f˛1; :::;˛k;ˇkC1; :::;ˇj�1g:

The exchange lemma then shows that ˇj is algebraically dependent on

B1
def
D B [f˛kC1gXfˇj g:

Therefore B is algebraically dependent on B1, and so A is algebraically dependent on B1
(by 8.7). If kC1 < m, repeat the argument with A and B1. Eventually we’ll achieve k Dm,
and m� n: 2

DEFINITION 8.8 A transcendence basis for ˝ over F is an algebraically independent set
A such that ˝ is algebraic over F.A/:

LEMMA 8.9 If ˝ is algebraic over F.A/, and A is minimal among subsets of ˝ with this
property, then it is a transcendence basis for ˝ over F .

PROOF. If A is not algebraically independent, then there is an ˛ 2 A that is algebraically
dependent on AXf˛g. It follows from Lemma 8.7 that ˝ is algebraic over F.AXf˛g/: 2

THEOREM 8.10 If there is a finite subset A�˝ such that ˝ is algebraic over F.A/, then
˝ has a finite transcendence basis over F . Moreover, every transcendence basis is finite,
and they all have the same number of elements.
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PROOF. In fact, every minimal subset A0 of A such that ˝ is algebraic over F.A0/ will be a
transcendence basis. The second statement follows from Theorem 8.5. 2

LEMMA 8.11 Suppose that A is algebraically independent, but that A[fˇg is algebraically
dependent. Then ˇ is algebraic over F.A/:

PROOF. The hypothesis is that there exists a nonzero polynomial

f .X1; :::;Xn;Y / 2 F ŒX1; :::;Xn;Y �

such that f .˛1; :::;˛n;ˇ/ D 0, some distinct ˛1; :::;˛n 2 A. Because A is algebraically
independent, Y does occur in f . Therefore

f D g0Y
m
Cg1Y

m�1
C�� �Cgm; gi 2 F ŒX1; :::;Xn�; g0 ¤ 0; m� 1:

As g0 ¤ 0 and the ˛i are algebraically independent, g0.˛1; :::;˛n/¤ 0. Because ˇ is a root
of

f D g0.˛1; :::;˛n/X
m
Cg1.˛1; :::;˛n/X

m�1
C�� �Cgm.˛1; :::;˛n/;

it is algebraic over F.˛1; :::;˛n/� F.A/: 2

PROPOSITION 8.12 Every maximal algebraically independent subset of ˝ is a transcen-
dence basis for ˝ over F .

PROOF. We have to prove that˝ is algebraic overF.A/ ifA is maximal among algebraically
independent subsets. But the maximality implies that, for every ˇ 2 ˝ XA, A[fˇg is
algebraically dependent, and so the lemma shows that ˇ is algebraic over F.A/. 2

Recall that (except in �7), we use an asterisk to signal a result depending on Zorn’s
lemma.

THEOREM 8.13 (*) Every algebraically independent subset of˝ is contained in a transcen-
dence basis for ˝ over F ; in particular, transcendence bases exist.

PROOF. Let S be the set of algebraically independent subsets of ˝ containing the given
set. We can partially order it by inclusion. Let T be a totally ordered subset of S , and let
B D

S
fA j A 2 T g. I claim that B 2 S , i.e., that B is algebraically independent. If not,

there exists a finite subset B 0 of B that is not algebraically independent. But such a subset
will be contained in one of the sets in T , which is a contradiction. Now Zorn’s lemma shows
that there exists a maximal algebraically independent containing S , which Proposition 8.12
shows to be a transcendence basis for ˝ over F . 2

It is possible to show that any two (possibly infinite) transcendence bases for ˝ over F
have the same cardinality. The cardinality of a transcendence basis for ˝ over F is called
the transcendence degree of ˝ over F . For example, the pure transcendental extension
F.X1; : : : ;Xn/ has transcendence degree n over F .

EXAMPLE 8.14 Let p1; : : : ;pn be the elementary symmetric polynomials in X1; : : : ;Xn.
The field F.X1; : : : ;Xn/ is algebraic over F.p1; : : : ;pn/, and so fp1;p2; : : : ;png contains a
transcendence basis for F.X1; : : : ;Xn/. Because F.X1; : : : ;Xn/ has transcendence degree
n, the pi ’s must themselves be a transcendence basis.



Lüroth’s theorem 105

EXAMPLE 8.15 Let ˝ be the field of meromorphic functions on a compact complex mani-
fold M .

(a) The only meromorphic functions on the Riemann sphere are the rational functions in
z. Hence, in this case, ˝ is a pure transcendental extension of C of transcendence degree 1.

(b) If M is a Riemann surface, then the transcendence degree of ˝ over C is 1, and ˝ is
a pure transcendental extension of C ” M is isomorphic to the Riemann sphere

(c) If M has complex dimension n, then the transcendence degree is � n, with equality
holding if M is embeddable in some projective space.

PROPOSITION 8.16 Any two algebraically closed fields with the same transcendence
degree over F are F -isomorphic.

PROOF. Choose transcendence bases A and A0 for the two fields. By assumption, there
exists a bijection A!A0, which extends uniquely to an F -isomorphism F ŒA�! F ŒA0�, and
hence to an F -isomorphism of the fields of fractions F.A/! F.A0/. Use this isomorphism
to identify F.A/ with F.A0/. Then the two fields in question are algebraic closures of the
same field, and hence are isomorphic (Theorem 6.8). 2

REMARK 8.17 Any two algebraically closed fields with the same uncountable cardinality
and the same characteristic are isomorphic. The idea of the proof is as follows. Let F and
F 0 be the prime subfields of ˝ and ˝ 0; we can identify F with F 0. Then show that when ˝
is uncountable, the cardinality of ˝ is the same as the cardinality of a transcendence basis
over F . Finally, apply the proposition.

REMARK 8.18 What are the automorphisms of C? There are only two continuous auto-
morphisms (cf. Exercise A-8 and solution). If we assume Zorn’s lemma, then it is easy to
construct many: choose any transcendence basis A for C over Q, and choose any permu-
tation ˛ of A; then ˛ defines an isomorphism Q.A/! Q.A/ that can be extended to an
automorphism of C. Without Zorn’s lemma, there are only two, because the noncontinuous
automorphisms are nonmeasurable,1 and it is known that the Zorn’s lemma is required to
construct nonmeasurable functions.2

Lüroth’s theorem

THEOREM 8.19 (LÜROTH) Let LD F.X/ with X transcendental over F . Every subfield
E of L properly containing F is of the form E D F.u/ for some u 2 L transcendental over
F .

We first sketch a geometric proof of Lüroth’s theorem. The inclusion of E into L
corresponds to a map from the projective line P1 onto a complete regular curve C . Now the
Riemann-Hurwitz formula shows that C has genus 0. Since it has an F -rational point (the
image of any F -rational point of P1), it is isomorphic to P1. Therefore E D F.u/ for some
u 2 L transcendental over F .

Before giving the elementary proof, we review Gauss’s lemma and its consequences.

1A fairly elementary theorem of G. Mackey says that measurable homomorphisms of Lie groups are
continuous (see Theorem B.3, p. 198 of Zimmer, Robert J., Ergodic theory and semisimple groups. Birkhäuser,
1984.)

2“We show that the existence of a non-Lebesgue measurable set cannot be proved in Zermelo-Frankel set
theory (ZF) if use of the axiom of choice is disallowed...” R. Solovay, Ann. of Math., 92 (1970), 1–56.
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GAUSS’S LEMMA

Let R be a unique factorization domain, and let Q be its field of fractions, for example,
RD F ŒX� and QD F.X/. A polynomial f .T /D

P
aiT

i in RŒT � is said to be primitive
if its coefficients ai have no common factor other than units. Every polynomial f in QŒX�
can be written f D c.f / �f1 with c.f / 2Q and f1 primitive (write f D af=a with a a
common denominator for the coefficients of f , and then write f D .b=a/f1 with b the
greatest common divisor of the coefficients of af ). The element c.f / is uniquely determined
up to a unit, and f 2RŒX� if and only if c.f / 2R.

8.20 If f;g 2RŒT � are primitive, so also is fg.

Let f D
P
aiT

i and g D
P
biT

i , and let p be a prime element of R. Because f is
primitive, there exists a coefficient ai not divisible by p — let ai1 be the first such coefficient.
Similarly, let bi2 be the first coefficient of g not divisible by p. Then the coefficient of
T i1Ci2 in fg is not divisible by p. This shows that fg is primitive.

8.21 For any f;g 2RŒT �, c.fg/D c.f /c.g/ and .fg/1 D f1g1.

Let f D c.f /f1 and gD c.g/g1 with f1 and g1 primitive. Then fgD c.f /c.g/f1g1 with
f1g1 primitive, and so c.fg/D c.f /c.g/ and .fg/1 D f1g1.

8.22 Let f be a polynomial in RŒT �. If f factors into the product of two nonconstant
polynomials in QŒT �, then it factors into the product of two nonconstant polynomials in
RŒT �.

Suppose f D gh in QŒT �. Then f1 D g1h1 in RŒT �, and so f D c.f / �f1 D .c.f / �g1/h1
with c.f / �g1 and h1 in RŒT �.

8.23 Let f;g 2RŒT �. If f divides g in QŒT � and f is primitive, then it divides g in RŒT �.

Let f q D g with q 2QŒT �. Then c.q/D c.g/ 2R, and so q 2RŒT �.

PROOF OF LÜROTH’S THEOREM

We define the degree deg.u/ of an element u of F.X/ to be the larger of the degrees of the
numerator and denominator of u when it is expressed in its simplest form.

LEMMA 8.24 Let u 2 F.X/XF . Then u is transcendental over F , X is algebraic over
F.u/, and ŒF .X/WF.u/�D deg.u/:

PROOF. Let u.X/D a.X/=b.X/ with a.X/ and b.X/ relatively prime polynomials. Now
a.T /�b.T /u 2 F.u/ŒT �, and it has X as a root, and so X is algebraic over F.u/. It follows
that u is transcendental over F (otherwise X would be algebraic over F ; 1.31b).

The polynomial a.T /�b.T /Z 2 F ŒZ;T � is clearly irreducible. As u is transcendental
over F ,

F ŒZ;T �' F Œu;T �; Z$ u; T $ T;

and so a.T /�b.T /u is irreducible in F Œu;T �, and hence also in F.u/ŒT � by Gauss’s lemma
(8.22). It has X as a root, and so, up to a constant, it is the minimum polynomial of X over
F.u/, and its degree is deg.u/, which proves the lemma. 2
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EXAMPLE 8.25 We have F.X/D F.u/ if and if

uD
aXCb

cXCd

with ac ¤ 0 and neither aX C b nor cX C d a constant multiple of the other. These
conditions are equivalent to ad �bc ¤ 0:

We now prove Theorem 8.19. Let u be an element of E not in F . Then

ŒF .X/WE�� ŒF .X/WF.u/�D deg.u/;

and so X is algebraic over E. Let

f .T /D T nCa1T
n�1
C�� �Can; ai 2E;

be its minimum polynomial. As X is transcendental over F , some aj … F , and we shall
show that, for any such aj , E D F.aj /.

Let d.X/ 2 F ŒX� be the polynomial of least degree such that d.X/ai .X/ 2 F ŒX� for
all i , and let

f1.X;T /D df .T /D dT
n
Cda1T

n�1
C�� �Cdan 2 F ŒX;T �:

Then f1 is primitive as a polynomial in T , i.e., gcd.d;da1; : : : ;dan/ D 1 in F ŒX�. The
degree m of f1 in X is the largest degree of one of the polynomials da1; da2; : : :, say
m D deg.dai /. Write ai D b=c with b;c relatively prime polynomials in F ŒX�. Now
b.T /� c.T /ai .X/ is a polynomial in EŒT � having X as a root, and so it is divisible by f ,
say

f .T / �q.T /D b.T /� c.T / �ai .X/; q.T / 2EŒT �.

On multiplying through by c.X/, we find that

c.X/ �f .T / �q.T /D c.X/ �b.T /� c.T / �b.X/:

Therefore f1 divides c.X/ �b.T /� c.T / �b.X/ in F.X/ŒT �. As f1 is primitive, it divides
c.X/ � b.T /� c.T / � b.X/ in F ŒX;T � (by 8.23), i.e., there exists a polynomial h.X;T / 2
F ŒX;T � such that

f1.X;T / �h.X;T /D c.X/ �b.T /� c.T / �b.X/.

The polynomial c.X/ �b.T /�c.T / �b.X/ has degree at mostm in X , andm is the degree of
f1.X;T / inX . Therefore, c.X/ �b.T /�c.T / �b.X/ has degree exactlym inX , and h.X;T /
is not divisible by a nonconstant polynomial in F ŒX�. By symmetry, c.X/ �b.T /� c.T / �
b.X/ has degree m in T , and h.X;T / not divisible by a nonconstant polynomial in F ŒT �.
Hence h.X;T / 2 F �, and so f1.X;T / is a constant multiple of c.X/ �b.T /� c.T / �b.X/.
On comparing degrees in T , we see see that nDm. Thus

ŒF .X/WF.ai /�D deg.ai /� deg.dai /DmD nD ŒF .X/WE�� ŒF .X/WF.ai /�;

and so E D F Œai �. Finally, if aj … F , then

ŒF .X/WE�� ŒF .X/WF.aj /�D deg.aj /� deg.daj /� deg.dai /DmD ŒF .X/WE�;

and so E D F.aj / as claimed.
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REMARK 8.26 Lüroth’s theorem fails when there is more than one variable — see Zariski’s
example (footnote to Remark 5.5) and Swan’s example (Remark 5.41). However, the
following is true: if ŒF .X;Y /WE� <1 and F is algebraically closed of characteristic zero,
then E is a pure transcendental extension of F (Theorem of Zariski, 1958).

NOTES Lüroth proved his theorem over C in 1876. For general fields, it was proved by Steinitz in
1910, by the above argument.

Separating transcendence bases

Let E � F be fields with E finitely generated over F . A subset fx1; : : : ;xd g of E is a
separating transcendence basis for E=F if it is algebraically independent over F and E is
a finite separable extension of F.x1; : : : ;xd /.

THEOREM 8.27 If F is perfect, then every finitely generated extension E of F admits a
separating transcendence basis over F .

PROOF. If F has characteristic zero, then every transcendence basis is separating, and so
the statement becomes that of (8.10). Thus, we may assume F has characteristic p ¤ 0.
Because F is perfect, every polynomial in Xp1 ; : : : ;X

p
n with coefficients in F is a pth power

in F ŒX1; : : : ;Xn�: X
ai1���inX

i1p
1 : : :X inpn D

�X
a
1
p

i1���in
X
i1
1 : : :X

in
n

�p
:

Let E D F.x1; : : : ;xn/, and assume n > d C1 where d is the transcendence degree of
E over F . After renumbering, we may suppose that x1; : : : ;xd are algebraically independent
(8.9). Then f .x1; : : : ;xdC1/D 0 for some nonzero irreducible polynomial f .X1; : : : ;XdC1/
with coefficients in F . Not all @f=@Xi are zero, for otherwise f would be a polynomial in
X
p
1 ; : : : ;X

p

dC1
, which implies that it is a pth power. After renumbering, we may suppose that

@f=@XdC1 ¤ 0. Then F.x1; : : : ;xdC1;xdC2/ is algebraic over F.x1; : : : ;xd / and xdC1 is
separable over F.x1; : : : ;xd /, and so, by the primitive element theorem (5.1), there is an
element y such that F.x1; : : : ;xdC2/ D F.x1; : : : ;xd ;y/. Thus E is generated by n� 1
elements (as a field containing F /. After repeating the process, possibly several times, we
will have E D F.z1; : : : ; zdC1/ with zdC1 separable over F.z1; : : : ; zd /. 2

ASIDE 8.28 In fact, we showed that E admits a separating transcendence basis with d C1 elements
where d is the transcendence degree. This has the following geometric interpretation: every irre-
ducible algebraic variety of dimension d over a perfect field F is birationally equivalent with a
hypersurface H in AdC1 for which the projection .a1; : : : ;adC1/ 7! .a1; : : : ;ad / realizes F.H/ as a
finite separable extension of F.Ad / (see my notes on Algebraic Geometry).

Transcendental Galois theory

THEOREM 8.29 (*) Let ˝ be an algebraically closed field and let F be a perfect subfield
of ˝. If ˛ 2˝ is fixed by all F -automorphisms of ˝, then ˛ 2 F , i.e., ˝Aut.˝=F / D F .

PROOF. Let ˛ 2 ˝ XF . If ˛ is algebraic over F , then there is an F -homomorphism
F Œ˛�! ˝ sending ˛ to a conjugate of ˛ in ˝ different from ˛. This homomorphism
extends to a homomorphism from the algebraic closure F al of F in ˝ to ˝ (by 6.8). Now
choose a transcendence basis A for ˝ over F al. We can extend our homomorphism to a
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homomorphism F.A/!˝ by mapping each element of A to itself. Finally, we can extend
this homomorphism to a homomorphism from the algebraic closure ˝ of F.A/ to ˝. The
F -homomorphism ˝!˝ we obtain is automatically an isomorphism (cf. 6.8).

If ˛ is transcendental over F , then it is part of a transcendence basis A for ˝ over
F (see 8.13). If A has at least two elements, then there exists an automorphism � of A
such that �.˛/¤ ˛. Now � defines an F -homomorphism F.A/!˝, which extends to an
isomorphism˝!˝ as before. IfADf˛g, then we let F.˛/!˝ be the F -homomorphism
sending ˛ to ˛C1. Again, this extends to an isomorphism ˝!˝. 2

REMARK 8.30 Theorem 8.29 holds with ˝ only separably closed. To see this, let ˝al be
an algebraic closure of ˝. Then every automorphism � of ˝=F extends uniquely to an
automorphism z� of ˝al=F : let ˛ 2˝al and let ˛p

n

2˝; then z�.˛/ is the unique root of
Xp

n

��.˛p
n

/ in ˝al. Thus, if ˛ 2˝ is fixed by all F -automorphisms of ˝, then it is fixed
by all F -automorphisms of ˝al, and so it lies in F .

Let ˝ � F be fields and let G D Aut.˝=F /. For any finite subset S of ˝, let

G.S/D f� 2G j �s D s for all s 2 Sg.

Then, as in �7, the subgroups G.S/ of G form a neighbourhood base for a unique topology
on G, which we again call the Krull topology. The same argument as in �7 shows that this
topology is Hausdorff (but it is not necessarily compact).

THEOREM 8.31 Let ˝ � F be fields such that ˝G D F , G D Aut.˝=F /.
(a) For every finite extension E of F in ˝, ˝Aut.˝=E/ DE.
(b) The maps

H 7!˝H ; M 7! Aut.˝=M/ (5)

are inverse bijections between the set of compact subgroups of G and the set of intermediate
fields over which ˝ is Galois (possibly infinite):

fcompact subgroups of Gg $ ffields M such that F �M
Galois
� ˝g:

(c) If there exists an M finitely generated over F such that ˝ is Galois over M , then G
is locally compact, and under (5):

fopen compact subgroups of Gg
1W1
$ ffields M such that F

finitely generated
� M

Galois
� ˝g:

(d) Let H be a subgroup of G, and let M D˝H . Then the algebraic closure M1 of M
is Galois over M . If moreover H D Aut.˝=M/, then Aut.˝=M1/ is a normal subgroup
of H , and � 7! � jM1 maps H=Aut.˝=M1/ isomorphically onto a dense subgroup of
Aut.M1=M/.

PROOF. See 6.3 of Shimura, Goro., Introduction to the arithmetic theory of automorphic
functions. Princeton, 1971. 2

Exercises

8-1 (*) Find the centralizer of complex conjugation in Aut.C=Q/.





APPENDIX A
Review Exercises

A-1 Let p be a prime number, and let m and n be positive integers.

(a) Give necessary and sufficient conditions on m and n for Fpn to have a subfield
isomorphic with Fpm . Prove your answer.

(b) If there is such a subfield, how many subfields isomorphic with Fpm are there, and
why?

A-2 Show that the Galois group of the splitting field F of X3�7 over Q is isomorphic
to S3, and exhibit the fields between Q and F . Which of the fields between Q and F are
normal over Q?

A-3 Prove that the two fields QŒ
p
7� and QŒ

p
11� are not isomorphic.

A-4 (a) Prove that the multiplicative group of all nonzero elements in a finite field is
cyclic.

(b) Construct explicitly a field of order 9, and exhibit a generator for its multiplicative
group.

A-5 Let X be transcendental over a field F , and let E be a subfield of F.X/ properly
containing F . Prove that X is algebraic over E.

A-6 Prove as directly as you can that if � is a primitive pth root of 1, p prime, then the
Galois group of QŒ�� over Q is cyclic of order p�1.

A-7 Let G be the Galois group of the polynomial X5�2 over Q.

(a) Determine the order of G.
(b) Determine whether G is abelian.
(c) Determine whether G is solvable.

A-8 (a) Show that every field homomorphism from R to R is bijective.
(b) Prove that C is isomorphic to infinitely many different subfields of itself.

A-9 Let F be a field with 16 elements. How many roots in F does each of the following
polynomials have? X3�1; X4�1; X15�1; X17�1.
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A-10 Find the degree of a splitting field of the polynomial .X3�5/.X3�7/ over Q.

A-11 Find the Galois group of the polynomial X6�5 over each of the fields Q and R.

A-12 The coefficients of a polynomial f .X/ are algebraic over a field F . Show that f .X/
divides some nonzero polynomial g.X/ with coefficients in F .

A-13 Let f .X/ be a polynomial in F ŒX� of degree n, and let E be a splitting field of f .
Show that ŒEWF � divides nŠ.

A-14 Find a primitive element for the field QŒ
p
3;
p
7� over Q, i.e., an element such that

QŒ
p
3;
p
7�DQŒ˛�.

A-15 Let G be the Galois group of .X4�2/.X3�5/ over Q.

(a) Give a set of generators for G, as well as a set of defining relations.
(b) What is the structure of G as an abstract group (is it cyclic, dihedral, alternating,

symmetric, etc.)?

A-16 Let F be a finite field of characteristic¤ 2. Prove that X2 D�1 has a solution in F
if and only if jF j � 1 mod 4.

A-17 Let E be the splitting field over Q of .X2�2/.X2�5/.X2�7/. Find an element ˛
in E such that E DQŒ˛�. (You must prove that E DQŒ˛�.)

A-18 Let E be a Galois extension of F with Galois group Sn, n > 1 not prime. Let H1 be
the subgroup of Sn of elements fixing 1, and let H2 be the subgroup generated by the cycle
.123: : :n/. Let Ei DEHi , i D 1;2. Find the degrees of E1, E2, E1\E2, and E1E2 over
F . Show that there exists a field M such that F �M �E2, M ¤ F , M ¤E2, but that no
such field exists for E1.

A-19 Let � be a primitive 12th root of 1 over Q. How many fields are there strictly between
QŒ�3� and QŒ��.

A-20 For the polynomial X3�3, find explicitly its splitting field over Q and elements that
generate its Galois group.

A-21 Let E D QŒ��, �5 D 1, � ¤ 1. Show that i … E, and that if LD EŒi�, then �1 is a
norm from L to E. Here i D

p
�1.

A-22 Let E be an extension field of F , and let ˝ be an algebraic closure of E. Let
�1; : : : ;�n be distinct F -isomorphisms E!˝.

(a) Show that �1; : : : ;�n are linearly dependent over ˝.
(b) Show that ŒEWF ��m.
(c) Let F have characteristic p > 0, and let L be a subfield of ˝ containing E and

such that ap 2 E for all a 2 L. Show that each �i has a unique extension to a
homomorphism � 0i WL!˝.
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A-23 Identify the Galois group of the splitting field F of X4�3 over Q. Determine the
number of quadratic subfields.

A-24 Let F be a subfield of a finite field E. Prove that the trace map T D TrE=F and the
norm map N D NmE=F of E over F both map E onto F . (You may quote basic properties
of finite fields and the trace and norm.)

A-25 Prove or disprove by counterexample.

(a) If L=F is an extension of fields of degree 2, then there is an automorphism � of L
such that F is the fixed field of � .

(b) The same as (a) except that L is also given to be finite.

A-26 A finite Galois extension L of a field K has degree 8100. Show that there is a field
F with K � F � L such that ŒF WK�D 100.

A-27 An algebraic extension L of a field K of characteristic 0 is generated by an element
� that is a root of both of the polynomials X3�1 and X4CX2C1. Given that L¤K, find
the minimum polynomial of � .

A-28 Let F=Q be a Galois extension of degree 3n, n � 1. Prove that there is a chain of
fields

QD F0 � F1 � �� �Fn D F

such that for every i , 0� i � n�1, ŒFiC1WFi �D 3.

A-29 Let L be the splitting field over Q of an equation of degree 5 with distinct roots.
Suppose that L has an automorphism that fixes three of these roots while interchanging the
other two and also an automorphism ˛ ¤ 1 of order 5.

(a) Prove that the group of automorphisms of L is the symmetric group on 5 elements.
(b) How many proper subfields of L are normal extensions of Q? For each such field F ,

what is ŒF WQ�?

A-30 If L=K is a separable algebraic field extension of finite degree d , show that the
number of fields between K and L is at most 2dŠ.

A-31 Let K be the splitting field over Q of X5�1. Describe the Galois group Gal.K=Q/
ofK over Q, and show thatK has exactly one subfield of degree 2 over Q, namely, QŒ�C�4�,
� ¤ 1 a root of X5�1. Find the minimum polynomial of �C �4 over Q. Find Gal.L=Q/
when L is the splitting field over Q of

(a) .X2�5/.X5�1/;
(b) .X2C3/.X5�1/.

A-32 Let ˝1 and ˝2 be algebraically closed fields of transcendence degree 5 over Q, and
let ˛W˝1!˝2 be a homomorphism (in particular, ˛.1/D 1). Show that ˛ is a bijection.
(State carefully all theorems you use.)

A-33 Find the group of Q-automorphisms of the field k DQŒ
p
�3;
p
�2�.
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A-34 Prove that the polynomial f .X/D X3� 5 is irreducible over the field QŒ
p
7�. If

L is the splitting field of f .X/ over QŒ
p
7�, prove that the Galois group of L=QŒ

p
7� is

isomorphic to S3. Prove that there must exist a subfield K of L such that the Galois group
of L=K is cyclic of order 3.

A-35 Identify the Galois group G of the polynomial f .X/DX5�6X4C3 over F , when
(a) F DQ and when (b) F D F2. In each case, if E is the splitting field of f .X/ over F ,
determine how many fields K there are such that E �K � F with ŒKWF �D 2.

A-36 Let K be a field of characteristic p, say with pn elements, and let � be the au-
tomorphism of K that maps every element to its pth power. Show that there exists an
automorphism ˛ of K such that �˛2 D 1 if and only if n is odd.

A-37 Describe the splitting field and Galois group, over Q, of the polynomial X5�9.

A-38 Suppose that E is a Galois field extension of a field F such that ŒEWF �D 53 � .43/2.
Prove that there exist fields K1 and K2 lying strictly between F and E with the following
properties: (i) each Ki is a Galois extension of F ; (ii) K1\K2 D F ; and (iii) K1K2 DE.

A-39 Let F D Fp for some prime p. Let m be a positive integer not divisible by p, and let
K be the splitting field of Xm�1. Find ŒKWF � and prove that your answer is correct.

A-40 Let F be a field of 81 elements. For each of the following polynomials g.X/,
determine the number of roots of g.X/ that lie in F : X80�1, X81�1, X88�1.

A-41 Describe the Galois group of the polynomial X6�7 over Q.

A-42 Let K be a field of characteristic p > 0 and let F DK.u;v/ be a field extension of
degree p2 such that up 2K and vp 2K. Prove that K is not finite, that F is not a simple
extension of K, and that there exist infinitely many intermediate fields F � L�K.

A-43 Find the splitting field and Galois group of the polynomial X3� 5 over the field
QŒ
p
2�.

A-44 For every prime p, find the Galois group over Q of the polynomial X5�5p4XCp.

A-45 Factorize X4C1 over each of the finite fields (a) F5; (b) F25; and (c) F125. Find its
splitting field in each case.

A-46 Let QŒ˛� be a field of finite degree over Q. Assume that there is a q 2 Q, q ¤ 0,
such that j�.˛/j D q for all homomorphisms �WQŒ˛�! C. Show that the set of roots of
the minimum polynomial of ˛ is the same as that of q2=˛. Deduce that there exists an
automorphism � of QŒ˛� such that

(a) �2 D 1 and
(b) �.�/D �./ for all  2QŒ˛� and �WQŒ˛�! C.
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A-47 Let F be a field of characteristic zero, and let p be a prime number. Suppose that
F has the property that all irreducible polynomials f .X/ 2 F ŒX� have degree a power
of p .1D p0 is allowed). Show that every equation g.X/D 0, g 2 F ŒX�, is solvable by
extracting radicals.

A-48 Let K DQŒ
p
5;
p
�7� and let L be the splitting field over Q of f .X/DX3�10.

(a) Determine the Galois groups of K and L over Q.
(b) Decide whether K contains a root of f .
(c) Determine the degree of the field K\L over Q.

[Assume all fields are subfields of C.]

A-49 Find the splitting field (over Fp) of Xp
r

�X 2 FpŒX�, and deduce that Xp
r

�X

has an irreducible factor f 2 FpŒX� of degree r . Let g.X/ 2 ZŒX� be a monic polynomial
that becomes equal to f .X/ when its coefficients are read modulo p. Show that g.X/ is
irreducible in QŒX�.

A-50 Let E be the splitting field of X3�51 over Q. List all the subfields of E, and find
an element  of E such that E DQŒ�.

A-51 Let k D F1024 be the field with 1024 elements, and let K be an extension of k of
degree 2. Prove that there is a unique automorphism � of K of order 2 which leaves k
elementwise fixed and determine the number of elements of K� such that �.x/D x�1.

A-52 Let F and E be finite fields of the same characteristic. Prove or disprove these
statements:

(a) There is a ring homomorphism of F into E if and only if jEj is a power of jF j.
(b) There is an injective group homomorphism of the multiplicative group of F into the

multiplicative group of E if and only if jEj is a power of jF j.

A-53 Let L=K be an algebraic extension of fields. Prove that L is algebraically closed if
every polynomial over K factors completely over L.

A-54 Let K be a field, and let M DK.X/, X an indeterminate. Let L be an intermediate
field different from K. Prove that M is finite-dimensional over L.

A-55 Let �1;�2;�3 be the roots of the polynomial f .X/DX3CX2�9XC1.

(a) Show that the �i are real, nonrational, and distinct.
(b) Explain why the Galois group of f .X/ over Q must be either A3 or S3. Without

carrying it out, give a brief description of a method for deciding which it is.
(c) Show that the rows of the matrix0BB@

3 9 9 9

3 �1 �2 �3
3 �2 �3 �1
3 �3 �1 �2

1CCA
are pairwise orthogonal; compute their lengths, and compute the determinant of the
matrix.
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A-56 Let E=K be a Galois extension of degree p2q where p and q are primes, q < p and
q not dividing p2�1. Prove that:

(a) there exist intermediate fields L and M such that ŒLWK�D p2 and ŒM WK�D q;
(b) such fields L and M must be Galois over K; and
(c) the Galois group of E=K must be abelian.

A-57 Let � be a primitive 7th root of 1 (in C).

(a) Prove that 1CXCX2CX3CX4CX5CX6 is the minimum polynomial of � over
Q.

(b) Find the minimum polynomial of �C 1
�

over Q.

A-58 Find the degree over Q of the Galois closure K of QŒ2 14 � and determine the isomor-
phism class of Gal.K=Q/.

A-59 Let p;q be distinct positive prime numbers, and consider the extensionKDQŒpp;pq��
Q.

(a) Prove that the Galois group is isomorphic to C2�C2.
(b) Prove that every subfield of K of degree 2 over Q is of the form QŒ

p
m� where

m 2 fp;q;pqg.
(c) Show that there is an element  2K such that K DQŒ�.



APPENDIX B
Two-hour Examination

1. (a) Let � be an automorphism of a field E. If �4 D 1 and

�.˛/C�3.˛/D ˛C�2.˛/ all ˛ 2E;

show that �2 D 1.
(b) Let p be a prime number and let a;b be rational numbers such that a2Cpb2 D 1. Show
that there exist rational numbers c;d such that aD c2�pd2

c2Cpd2
and b D 2cd

c2Cpd2
. !!Check!!

2. Let f .X/ be an irreducible polynomial of degree 4 in QŒX�, and let g.X/ be the resolvent
cubic of f . What is the relation between the Galois group of f and that of g? Find the
Galois group of f if

(a) g.X/DX3�3XC1;
(b) g.X/DX3C3XC1.

3. (a) How many monic irreducible factors does X255�1 2 F2ŒX� have, and what are their
degrees.
(b) How many monic irreducible factors does X255� 1 2 QŒX� have, and what are their
degrees?

4. Let E be the splitting field of .X5�3/.X5�7/ 2QŒX�. What is the degree of E over
Q? How many proper subfields of E are there that are not contained in the splitting fields of
both X5�3 and X5�7?
[You may assume that 7 is not a 5th power in the splitting field of X5�3.]

5. Consider an extension ˝ � F of fields. Define a 2 ˝ to be F -constructible if it is
contained in a field of the form

F Œ
p
a1; : : : ;

p
an�; ai 2 F Œ

p
a1; : : : ;

p
ai�1�:

Assume ˝ is a finite Galois extension of F and construct a field E, F �E �˝, such that
every a 2˝ is E-constructible and E is minimal with this property.

6. Let ˝ be an extension field of a field F . Show that every F -homomorphism ˝!˝ is
an isomorphism provided:

(a) ˝ is algebraically closed, and
(b) ˝ has finite transcendence degree over F .
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Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterexam-
ple.)

You should prove all answers. You may use results proved in class or in the notes, but you
should indicate clearly what you are using.

Possibly useful facts: The discriminant of X3CaXCb is �4a3�27b2 and 28�1D 255D
3�5�17.



APPENDIX C
Solutions to the Exercises

These solutions fall somewhere between hints and complete solutions. Students were expected
to write out complete solutions.
1-1. Similar to Example 1.28.

1-2. Verify that 3 is not a square in QŒ
p
2�, and so ŒQŒ

p
2;
p
3�WQ�D 4.

1-3. (a) Apply the division algorithm, to get f .X/ D q.X/.X � a/C r.X/ with r.X/
constant, and put X D a to find r D f .a/.
(c) Use that factorization in F ŒX� is unique (or use induction on the degree of f ).
(d) If G had two cyclic factors C and C 0 whose orders were divisible by a prime p, then G
would have (at least) p2 elements of order dividing p. This doesn’t happen, and it follows
that G is cyclic.
(e) The elements of order m in F � are the roots of the polynomial Xm�1, and so there are
at most m of them. Hence every finite subgroup G of F � satisfies the condition in (d).

1-4. Note that it suffices to construct ˛ D cos 2�
7

, and that ŒQŒ˛�WQ�D 7�1
2
D 3, and so its

minimum polynomial has degree 3 (see Example 3.21). There is a standard method (once
taught in high schools) for solving cubics using the equation

cos3� D 4cos3 � �3cos�:

By “completing the cube”, reduce the cubic to the form X3�pX � q. Then construct a
square root a of 4p

3
, so that a2 D 4p

3
. Let 3� be the angle such that cos3� D 4q

a3
, and use

the angle trisector to construct cos� . From the displayed equation, we find that ˛ D acos�
is a root of X3�pX �q.

2-1. (a) is obvious, as is the “only if” in (b). For the “if” note that for any a 2 S.E/, a … F 2,
E � F ŒX�=.X2�a/.

(c) Take Ei D QŒppi � with pi the i th prime. Check that pi is the only prime that
becomes a square in Ei . For this use that .aCb

p
p/2 2Q H) 2ab D 0.

(d) Every field of characteristic p contains (an isomorphic copy of) Fp, and so we are
looking at the quadratic extensions of Fp . The homomorphism a 7! a2WF�p! F�p has kernel
f˙1g, and so its image has index 2 in F�p . Thus the only possibility for S.E/ is F�p , and
so there is at most one E (up to Fp-isomorphism). To get one, take E D F ŒX�=.X2�a/,
a … F2p.

2-2. (a) If ˛ is a root of f .X/D Xp �X �a (in some splitting field), then the remaining
roots are ˛C1; : : : ;˛Cp�1, which obviously lie in whichever field contains ˛. Moreover,

119



120 C. SOLUTIONS TO THE EXERCISES

they are distinct. Suppose that, in F ŒX�,

f .X/D .XrCa1X
r�1
C�� �Car/.X

p�r
C�� �/; 0 < r < p:

Then �a1 is a sum of r of the roots of f , �a1 D r˛Cd some d 2 Z �1F , and it follows
that ˛ 2 F .

(b) As 0 and 1 are not roots of Xp �X � 1 in Fp it can’t have p distinct roots in Fp,
and so (a) implies that Xp�X �1 is irreducible in FpŒX� and hence also in ZŒX� and QŒX�
(see 1.18, 1.13).

2-3. Let ˛ be the real 5th root of 2. Eisenstein’s criterion shows that X5 � 2 is irre-
ducible in QŒX�, and so QŒ 5

p
2� has degree 5 over Q. The remaining roots of X5� 2 are

�˛;�2˛;�3˛;�4˛, where � is a primitive 5th root of 1. It follows that the subfield of C
generated by the roots of X5� 2 is QŒ�;˛�. The degree of QŒ�;˛� is 20, since it must be
divisible by ŒQŒ��WQ�D 4 and ŒQŒ˛�WQ�D 5.

2-4. It’s Fp because Xp
m

�1D .X �1/p
m . (Perhaps I meant Xp

m

�X — that would have
been more interesting.)

2-5. If f .X/D
Q
.X �˛i /

mi , ˛i ¤ ˛j , then

f 0.X/D
X

mi
f .X/

X �˛i

and so d.X/D
Q
mi>1

.X �˛i /
mi�1. Therefore g.X/D

Q
.X �˛i /.

2-6. From (2.12) we know that either f is separable or f .X/D f1.Xp/ for some polynomial
f1. Clearly f1 is also irreducible. If f1 is not separable, it can be written f1.X/D f2.Xp/.
Continue in the way until you arrive at a separable polynomial. For the final statement, note
that g.X/D

Q
.X �ai /, ai ¤ aj , and so f .X/D g.Xp

e

/D
Q
.X �˛i /

pe with ˛p
e

i D ai .

3-1. Let � and � be automorphisms of F.X/ given by �.X/ D �X and �.X/ D 1�X .
Then � and � fix X2 and X2�X respectively, and so �� fixes E def

D F.X/\F.X2�X/.
But ˛�X D 1CX , and so .��/m.X/ D mCX . Thus Aut.F.X/=E/ is infinite, which
implies that ŒF .X/WE� is infinite (otherwise F.X/DEŒ˛1; : : : ;˛n�; an E-automorphism of
F.X/ is determined by its values on the ˛i , and its value on ˛i is a root of the minimum
polynomial of ˛i ). If E contains a polynomial f .X/ of degree m > 0, then ŒF .X/WE� �
ŒF .X/WF.f .X//�Dm — contradiction.

3-2. Since 1C �C �� � C �p�1 D 0, we have ˛Cˇ D �1. If i 2 H , then iH D H and
i.GXH/DGXH , and so ˛ and ˇ are fixed by H . If j 2GXH , then jH DGXH and
j.GXH/DH , and so j˛ D ˇ and jˇ D ˛. Hence ˛ˇ 2Q, and ˛ and ˇ are the roots of
X2CXC˛ˇ. Note that

˛ˇ D
X
i;j

�iCj ; i 2H; j 2GXH:

How many times do we have iCj D 0? If iCj D 0, then�1D i�1j , which is a nonsquare;
conversely, if �1 is a nonsquare, take i D 1 and j D�1 to get iCj D 0. Hence

iCj D 0 some i 2H; j 2GXH ” �1 is a square mod p ” p ��1 mod 4:

If we do have a solution to i C j D 0, we get all solutions by multiplying it through
by the p�1

2
squares. So in the sum for ˛ˇ we see 1 a total of p�1

2
times when p � 3
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mod 4 and not at all if p � 1 mod 4. In either case, the remaining terms add to a rational
number, which implies that each power of � occurs the same number of times. Thus for
p � 1 mod 4, ˛ˇ D �.p�1

2
/2=.p � 1/ D p�1

4
; the polynomial satisfied by ˛ and ˇ is

X2CX � p�1
4

, whose roots are .�1˙
p
1Cp�1/=2; the fixed field of H is QŒpp�. For

p � �1 mod 4, ˛ˇ D p�1
2
C .�1/

�
.p�1
2
/2� p�1

2

�
=.p� 1/ D p�1

2
�
p�3
4
D

pC1
4

; the

polynomial is X2CX C p�1
4

, with roots .�1˙
p
1�p�1/=2; the fixed field of H is

QŒp�p�.

3-3. (a) It is easy to see that M is Galois over Q with Galois group h�;�i:�
�
p
2D�

p
2

�
p
3D
p
3

�
�
p
2D
p
2

�
p
3D�

p
3
:

(b) We have

�˛2

˛2
D
2�
p
2

2C
p
2
D
.2�
p
2/2

4�2
D

 
2�
p
2

p
2

!2
D .
p
2�1/2;

i.e., �˛2 D ..
p
2�1/˛/2. Thus, if ˛ 2M , then �˛ D˙.

p
2�1/˛, and

�2˛ D .�
p
2�1/.

p
2�1/˛ D�˛I

as �2˛ D ˛ ¤ 0, this is impossible. Hence ˛ …M , and so ŒEWQ�D 8.
Extend � to an automorphism (also denoted � ) of E. Again �˛ D˙.

p
2�1/˛ and �2˛ D

�˛, and so �2 ¤ 1. Now �4˛ D ˛, �4jM D 1, and so we can conclude that � has order 4.
After possibly replacing � with its inverse, we may suppose that �˛ D .

p
2�1/˛.

Repeat the above argument with � : �˛
2

˛2
D

3�
p
3

3C
p
3
D

�
3�
p
3

p
6

�2
, and so we can extend � to an

automorphism of L (also denoted � ) with �˛ D 3�
p
3

p
6
˛. The order of � is 4.

Finally compute that

��˛ D
3�
p
3

�
p
6
.
p
2�1/˛I ��˛ D .

p
2�1/

3�
p
3

p
6
˛:

Hence �� ¤ �� , and Gal.E=Q/ has two noncommuting elements of order 4. Since it has
order 8, it must be the quaternion group.

4-1. The splitting field is the smallest field containing all mth roots of 1. Hence it is Fpn
where n is the smallest positive integer such that m0jpn�1, mDm0pr , where p is prime
and does not divide m0.

4-2. We have X4�2X3�8X �3D .X3CX2C3XC1/.X �3/, and g.X/DX3CX2C
3XC1 is irreducible over Q (use 1.11), and so its Galois group is either A3 or S3. Either
check that its discriminant is not a square or, more simply, show by examining its graph that
g.X/ has only one real root, and hence its Galois group contains a transposition (cf. the
proof of 4.15).

4-3. Eisenstein’s criterion shows that X8� 2 is irreducible over Q, and so ŒQŒ˛�WQ�D 8
where ˛ is a positive 8th root of 2. As usual for polynomials of this type, the splitting field
is QŒ˛;�� where � is any primitive 8th root of 1. For example, � can be taken to be 1Cip

2
,

which lies in QŒ˛; i �. It follows that the splitting field is QŒ˛; i �. Clearly QŒ˛; i �¤ QŒ˛�,
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because QŒ˛�, unlike i , is contained in R, and so ŒQŒ˛; i �WQŒ˛��D 2. Therefore the degree is
2�8D 16.

4-4. Find an extension L=F with Galois group S4, and let E be the fixed field of S3 � S4.
There is no subgroup strictly between Sn and Sn�1, because such a subgroup would be
transitive and contain an .n�1/-cycle and a transposition, and so would equal Sn. We can
take E D LS3 . More specifically, we can take L to be the splitting field of X4�XC2 over
Q and E to be the subfield generated by a root of the polynomial (see 3.26).

4-5. Type: “Factor.X343�X/ mod 7;” and discard the 7 factors of degree 1.

4-6. Type “galois.X6C2X5C3X4C4X3C5X2C6XC7/;”. It is the group PGL2.F5/
(group of invertible 2� 2 matrices over F5 modulo scalar matrices) which has order 120.
Alternatively, note that there are the following factorizations: mod 3, irreducible; mod 5 (deg
3)(deg 3); mod 13 (deg 1)(deg 5); mod 19, (deg 1/2(deg 4); mod 61 (deg 1/2(deg 2/2; mod
79, (deg 2/3. Thus the Galois group has elements of type:

6; 3C3; 1C5; 1C1C4; 1C1C2C2; 2C2C2:

No element of type 2, 3, 3C2, or 4C2 turns up by factoring modulo any of the first 400
primes (or, so I have been told). This suggests it is the group T14 in the tables in Butler and
McKay, which is indeed PGL2.F5/.

4-7. (H : Condition (a) implies that Gf contains a 5-cycle, condition (b) implies that
Gf � A5, and condition (c) excludes A5. That leaves D5 and C5 as the only possibilities
(see, for example, Jacobson, Basic Algebra I, p305, Ex 6). The derivative of f is 5X4Ca,
which has at most 2 real zeros, and so (from its graph) we see that f can have at most 3 real
zeros. Thus complex conjugation acts as an element of order 2 on the splitting field of f ,
and this shows that we must have Gf DD5.
H) : RegardD5 as a subgroup of S5 by letting it act on the vertices of a regular pentagon—
all subgroups of S5 isomorphic toD5 look like this one. IfGf DD5, then (a) holds because
D5 is transitive, (b) holds because D5 � A5, and (c) holds because D5 is solvable.

4-8. Omitted.

4-9. Let a1;a2 be conjugate nonreal roots, and let a3 be a real root. Complex conjugation
defines an element � of the Galois group of f switching a1 and a2 and fixing a3. On the
other hand, because f is irreducible, its Galois group acts transitively on its roots, and so
there is a � such that �.a3/D a1. Now

a3
�
7! a1

�
7! a2

a3
�
7! a3

�
7! a1.

This statement is false for reducible polynomials — consider for example f .X/D .X2C
1/.X �1/.

5-1. For aD 1, this is the polynomial ˚5.X/, whose Galois group is cyclic of order 4.
For aD 0, it is X.X3CX2CXC1/DX.XC1/.X2C1/, whose Galois group is cyclic
of order 2.
For a D�4, it is .X �1/.X3C2X2C3XC4/. The cubic does not have ˙1;˙2; or ˙4
as roots, and so it is irreducible in QŒX�. Hence its Galois group is S3 or A3. But looking
modulo 2, we see it contains a 2-cycle, so it must be S3.
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For any a, the resolvent cubic is

g.X/DX3�X2C .1�4a/XC3a�1:

Take a D �1. Then f D X4CX3CX2CX � 1 is irreducible modulo 2, and so it is
irreducible in QŒX�. We have g D X3 �X2C 5X � 4, which is irreducible. Moreover
g0 D 3X2 � 2X C 5 D 3.X � 1

3
/2C 42

3
> 0 always, and so g has exactly one real root.

Hence the Galois group of g is S3, and therefore the Galois group of f is S4. [In fact, 4 is
the maximum number of integers giving distinct Galois groups: checking mod 2, we see
there is a 2-cycle or a 4-cycle, and so 1;A3;A4;V4 are not possible. For D8, a can’t be an
integer.]

5-2. We have Nm.aC ib/D a2C b2. Hence a2C b2 D 1 if and only aC ib D sCit
s�it

for
some s; t 2Q (Hilbert’s Theorem 90). The rest is easy.

5-3. The degree ŒQŒ�n�WQ�D '.n/, �n a primitive nth root of 1, and '.n/!1 as n!1.

8-1. If some element centralizes the complex conjugation, then it must preserve the real
numbers as a set. Now, since any automorphism of the real numbers preserves the set of
squares, it must preserve the order; and hence be continuous. Since Q is fixed, this implies
that the real numbers are fixed pointwise. It follows that any element which centralized the
complex conjugation must be the identity or the complex conjugation itself. See mo121083,
Andreas Thom.

A-1. (a) Need that mjn, because

nD ŒFpn WFp�D ŒFpn WFpm � � ŒFpm WFp�D ŒFpn WFpm � �m:

Use Galois theory to show there exists one, for example. (b) Only one; it consists of all the
solutions of Xp

m

�X D 0.

A-2. The polynomial is irreducible by Eisenstein’s criterion. The polynomial has only one
real root, and therefore complex conjugation is a transposition in Gf . This proves that
Gf � S3. The discriminant is �1323D�3372. Only the subfield QŒ

p
�3� is normal over

Q. The subfields QŒ 3
p
7�, QŒ� 3

p
7� QŒ�2 3

p
7� are not normal over Q. [The discriminant of

X3�a is �27a2 D�3.3a/2.]

A-3. The prime 7 becomes a square in the first field, but 11 does not: .aC b
p
7/2 D

a2C7b2C2ab
p
7, which lies in Q only if abD 0. Hence the rational numbers that become

squares in QŒ
p
7� are those that are already squares or lie in 7Q�2.

A-4.(a) See Exercise 3.
(b) Let F D F3ŒX�=.X2C1/. Modulo 3

X8�1D .X �1/.XC1/.X2C1/.X2CXC2/.X2C2XC2/:

Take ˛ to be a root of X2CXC2.

A-5. Since E ¤ F , E contains an element f
g

with the degree of f or g > 0. Now

f .T /�
f .X/

g.X/
g.T /

is a nonzero polynomial having X as a root.

A-6. Use Eisenstein to show that Xp�1C�� �C1 is irreducible, etc. Done in class.
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A-7. The splitting field is QŒ�;˛� where �5 D 1 and ˛5 D 2. It is generated by � D .12345/
and � D .2354/, where �˛ D �˛ and �� D �2. The group has order 20. It is not abelian
(because QŒ˛� is not Galois over Q), but it is solvable (its order is < 60).

A-8. (a) A homomorphism ˛WR!R acts as the identity map on Z, hence on Q, and it maps
positive real numbers to positive real numbers, and therefore preserves the order. Hence, for
each real number a,

fr 2Q j a < rg D fr 2Q j ˛.a/ < rg;

which implies that ˛.a/D a.
(b) Choose a transcendence basisA for C over Q. Because it is infinite, there is a bijection

˛WA! A0 from A onto a proper subset. Extend ˛ to an isomorphism Q.A/!Q.A0/, and
then extend it to an isomorphism C! C0 where C0 is the algebraic closure of Q.A0/ in C.

A-9. The group F � is cyclic of order 15. It has 3 elements of order dividing 3, 1 element of
order dividing 4, 15 elements of order dividing 15, and 1 element of order dividing 17.

A-10. If E1 and E2 are Galois extensions of F , then E1E2 and E1\E2 are Galois over F ,
and there is an exact sequence

1! Gal.E1E2=F /! Gal.E1=F /�Gal.E2=F /! Gal.E1\E2=F /! 1:

In this case, E1\E2 DQŒ�� where � is a primitive cube root of 1. The degree is 18.

A-11. Over Q, the splitting field is QŒ˛;�� where ˛6 D 5 and �3 D 1 (because �� is then a
primitive 6th root of 1). The degree is 12, and the Galois group is D6 (generators .26/.35/
and .123456/).

Over R, the Galois group is C2.

A-12. Let the coefficients of f be a1; : : : ;an — they lie in the algebraic closure˝ of F . Let
g.X/ be the product of the minimum polynomials over F of the roots of f in ˝.

Alternatively, the coefficients will lie in some finite extension E of F , and we can take
the norm of f .X/ from EŒX� to F ŒX�.

A-13. If f is separable, ŒEWF �D .Gf W1/, which is a subgroup of Sn. Etc..

A-14.
p
3C
p
7 will do.

A-15. The splitting field of X4�2 is E1DQŒi;˛� where ˛4D 2; it has degree 8, and Galois
group D4. The splitting field of X3�5 is E2 DQŒ�;ˇ�; it has degree 6, and Galois group
D3. The Galois group is the product (they could only intersect in QŒ

p
3�, but

p
3 does not

become a square in E1).

A-16. The multiplicative group of F is cyclic of order q�1. Hence it contains an element
of order 4 if and only if 4jq�1.

A-17. Take ˛ D
p
2C
p
5C
p
7.

A-18. We have E1 D EH1 , which has degree n over F , and E2 D E<1���n>, which has
degree .n�1/Š over F , etc.. This is really a problem in group theory posing as a problem in
field theory.

A-19. We have QŒ��DQŒi; �0� where �0 is a primitive cube root of 1 and˙i D �3 etc..

A-20. The splitting field is QŒ�; 3
p
3�, and the Galois group is S3.

A-21. Use that
.�C �4/.1C �2/D �C �4C �3C �
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A-22. (a) is Dedekind’s theorem. (b) is Artin’s theorem 3.4. (c) is O.K. because Xp�ap

has a unique root in ˝.

A-23. The splitting field is QŒi;˛� where ˛4D 3, and the Galois group isD4 with generators
.1234/ and .13/ etc..

A-24. From Hilbert’s theorem 90, we know that the kernel of the mapN WE�! F � consists
of elements of the form �˛

˛
. The map E�! E�, ˛ 7! �˛

˛
, has kernel F �. Therefore the

kernel of N has order q
m�1
q�1

, and hence its image has order q�1. There is a similar proof
for the trace — I don’t know how the examiners expected you to prove it.

A-25. (a) is false—could be inseparable. (b) is true—couldn’t be inseparable.

A-26. Apply the Sylow theorem to see that the Galois group has a subgroup of order 81.
Now the Fundamental Theorem of Galois theory shows that F exists.

A-27. The greatest common divisor of the two polynomials over Q is X2CXC1, which
must therefore be the minimum polynomial for � .

A-28. Theorem on p-groups plus the Fundamental Theorem of Galois Theory.

A-29. It was proved in class that Sp is generated by an element of order p and a transposition
(4.14). There is only one F , and it is quadratic over Q.

A-30. Let LDKŒ˛�. The splitting field of the minimum polynomial of ˛ has degree at most
dŠ, and a set with dŠ elements has at most 2dŠ subsets. [Of course, this bound is much too
high: the subgroups are very special subsets. For example, they all contain 1 and they are
invariant under a 7! a�1.]

A-31. The Galois group is .Z=5Z/�, which cyclic of order 4, generated by 2.

.�C �4/C .�2C �3/D�1; .�C �4/.�2C �3/D�1:

(a) Omit.
(b) Certainly, the Galois group is a product C2�C4.

A-32. Let a1; : : : ;a5 be a transcendence basis for ˝1=Q. Their images are algebraically
independent, therefore they are a maximal algebraically independent subset of ˝2, and
therefore they form a transcendence basis, etc..

A-33. C2�C2.

A-34. If f .X/ were reducible over QŒ
p
7�, it would have a root in it, but it is irreducible

over Q by Eisenstein’s criterion. The discriminant is �675, which is not a square in R, much
less QŒ

p
7�.

A-35. (a) Should be X5 � 6X4C 3. The Galois group is S5, with generators .12/ and
.12345/ — it is irreducible (Eisenstein) and (presumably) has exactly 2 nonreal roots. (b) It
factors as .XC1/.X4CX3CX2CXC1/. Hence the splitting field has degree 4 over F2,
and the Galois group is cyclic.

A-36. This is really a theorem in group theory, since the Galois group is a cyclic group of
order n generated by � . If n is odd, say nD 2mC1, then ˛ D �m does.

A-37. It has order 20, generators .12345/ and .2354/.

A-38. TakeK1 andK2 to be the fields corresponding to the Sylow 5 and Sylow 43 subgroups.
Note that of the possible numbers 1;6;11;16;21; ::: of Sylow 5-subgroups, only 1 divides
43. There are 1, 44, 87, ... subgroups of ....
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A-39. See Exercise 14.

A-40. The group F � is cyclic of order 80; hence 80, 1, 8.

A-41. It’s D6, with generators .26/.35/ and .123456/. The polynomial is irreducible by
Eisenstein’s criterion, and its splitting field is QŒ˛;�� where � ¤ 1 is a cube root of 1.

A-42. Example 5.5.

A-43. Omit.

A-44. It’s irreducible by Eisenstein. Its derivative is 5X4�5p4, which has the rootsX D˙p.
These are the max and mins, X D p gives negative; X D�p gives positive. Hence the graph
crosses the x-axis 3 times and so there are 2 imaginary roots. Hence the Galois group is S5.

A-45. Its roots are primitive 8th roots of 1. It splits completely in F25. (a) .X2C2/.X2C3/.

A-46. �.˛/�.˛/D q2, and �.˛/�.q
2

˛
/D q2. Hence �.q

2

˛
/ is the complex conjugate of �.˛/.

Hence the automorphism induced by complex conjugation is independent of the embedding
of QŒ˛� into C.

A-47. The argument that proves the Fundamental Theorem of Algebra, shows that its Galois
group is a p-group. Let E be the splitting field of g.X/, and letH be the Sylow p-subgroup.
Then EH D F , and so the Galois group is a p-group.

A-48. (a) C2�C2 and S3. (b) No. (c). 1

A-49. Omit.

A-50. Omit.

A-51. 1024D 210. Want �x �x D 1, i.e., Nx D 1. They are the elements of the form �x
x

;
have

1 ����! k� ����!K�
x 7!�x

x
����!K�:

Hence the number is 211=210 D 2.

A-52. Pretty standard. False; true.

A-53. Omit.

A-54. Similar to a previous problem.

A-55. Omit.

A-56. This is really a group theory problem disguised as a field theory problem.

A-57. (a) Prove it’s irreducible by apply Eisenstein to f .XC1/. (b) See example worked
out in class.

A-58. It’s D4, with generators .1234/ and .12/.

A-59. Omit.

SOLUTIONS FOR THE EXAM.

1. (a) Let � be an automorphism of a field E. If �4 D 1 and

�.˛/C�3.˛/D ˛C�2.˛/ all ˛ 2E;

show that �2 D 1.



127

If �2 ¤ 1, then 1;�;�2;�3 are distinct automorphisms of E, and hence are linearly
independent (Dedekind 5.14) — contradiction. [If �2 D 1, then the condition becomes
2� D 2, so either � D 1 or the characteristic is 2 (or both).]
(b) Let p be a prime number and let a;b be rational numbers such that a2Cpb2 D 1. Show
that there exist rational numbers c;d such that aD c2Cpd2

c2�pd2
and b D 2cd

c2�pd2
.

Apply Hilbert’s Theorem 90 to QŒpp� (or QŒp�p�, depending how you wish to correct
the sign).

2. Let f .X/ be an irreducible polynomial of degree 4 in QŒX�, and let g.X/ be the resolvent
cubic of f . What is the relation between the Galois group of f and that of g? Find the
Galois group of f if

(a) g.X/DX3�3XC1;
(b) g.X/DX3C3XC1.

We have Gg DGf =Gf \V , where V D f1;.12/.34/; : : :g. The two cubic polynomials
are irreducible, because their only possible roots are˙1. From their discriminants, one finds
that the first has Galois group A3 and the second S3. Because f .X/ is irreducible, 4j.Gf W1/
and it follows that Gf D A4 and S4 in the two cases.

3. (a) How many monic irreducible factors does X255�1 2 F2ŒX� have, and what are their
degrees?

Its roots are the nonzero elements of F28 , which has subfields F24� F22� F2. There
are 256�16 elements not in F16, and their minimum polynomials all have degree 8. Hence
there are 30 factors of degree 8, 3 of degree 4, and 1 each of degrees 2 and 1.
(b) How many monic irreducible factors does X255� 1 2 QŒX� have, and what are their
degrees?

Obviously, X255�1D
Q
d j255˚d D˚1˚3˚5˚15 � � �˚255, and we showed in class that

the ˚d are irreducible. They have degrees 1;2;4;8;16;32;64;128.

4. Let E be the splitting field of .X5�3/.X5�7/ 2QŒX�. What is the degree of E over
Q? How many proper subfields of E are there that are not contained in the splitting fields of
both X5�3 and X5�7?

The splitting field of X5� 3 is QŒ�;˛�, which has degree 5 over QŒ�� and 20 over Q.
The Galois group of X5� 7 over QŒ�;˛� is (by ...) a subgroup of a cyclic group of order
5, and hence has order 1 or 5. Since 7 is not a 5th power in QŒ�;˛�, it must be 5. Thus
ŒEWQ�D 100, and

G D Gal.E=Q/D .C5�C5/ÌC4:

We want the nontrivial subgroups of G not containing C5�C5. The subgroups of order
5 of C5�C5 are lines in .F5/2, and hence C5�C5 has 6C 1D 7 proper subgroups. All
are normal in G. Each subgroup of C5�C5 is of the form H \ .C5�C5/ for exactly 3
subgroups H of G corresponding to the three possible images in G=.C5�C5/D C4. Hence
we have 21 subgroups of G not containing C5�C5, and 20 nontrivial ones. Typical fields:
QŒ˛�, QŒ˛;cos 2�

5
�, QŒ˛;��.

[You may assume that 7 is not a 5th power in the splitting field of X5�3.]

5. Consider an extension ˝ � F of fields. Define ˛ 2 ˝ to be F -constructible if it is
contained in a field of the form

F Œ
p
a1; : : : ;

p
an�; ai 2 F Œ

p
a1; : : : ;

p
ai�1�:
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Assume ˝ is a finite Galois extension of F and construct a field E, F �E �˝, such that
every a 2˝ is E-constructible and E is minimal with this property.

Suppose E has the required property. From the primitive element theorem, we know
˝ DEŒa� for some a. Now a E-constructible H) Œ˝WE� is a power of 2. Take E D˝H ,
where H is the Sylow 2-subgroup of Gal.˝=F /.

6. Let ˝ be an extension field of a field F . Show that every F -homomorphism ˝!˝ is
an isomorphism provided:

(a) ˝ is algebraically closed, and
(b) ˝ has finite transcendence degree over F .

Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterexam-
ple.)

Let A be a transcendence basis for ˝=F . Because � W˝ ! ˝ is injective, �.A/ is
algebraically independent over F , and hence (because it has the right number of elements)
is a transcendence basis for ˝=F . Now F Œ�A�� �˝ �˝. Because ˝ is algebraic over
F Œ�A� and �˝ is algebraically closed, the two are equal. Neither condition can be dropped.
E.g., C.X/! C.X/, X 7!X2. E.g., ˝ D the algebraic closure of C.X1;X2;X3; : : :/, and
consider an extension of the map X1 7!X2, X2 7!X3, : : :.
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division, 9
Euclid’s, 9
factoring a polynomial, 12

automorphism, 33

base
neighbourhood, 91

basis
separating transcendence, 108
transcendence, 103

bound
upper, 85

characteristic
p, 8
zero, 8

closure
separable, 89

cohomology group, 67
commutative, 7
composite of fields, 16
conjugates, 36
constructible, 20, 41
cubic

resolvent, 48
cyclotomic polynomial, 61

degree, 13
of an algebra, 80
separable, 37

directed, 97
discriminant, 45

Eisenstein’s criterion, 11
element

maximal, 85
exponent, 70
extension

abelian, 37
cyclic, 37
finite, 13

Galois, 35
inseparable, 35
normal, 35
separable, 35
simple, 16
solvable, 37

extension field, 13

F -algebra, 80
étale, 80

field, 8
prime, 8
stem, 15

fixed field, 34
Frobenius

endomorphism, 9, 30
fundamental theorem

of algebra, 12, 19, 23, 24, 59
of Galois theory, 37

Galois, 92
Galois closure, 38
Galois correspondence, 97
Galois field, 52
Galois group, 35

absolute, 94
infinite, 93
of a polynomial, 42

Gaussian numbers, 13
general polynomial, 75
group

Cremona, 33
profinite, 98
topological, 91

group algebra, 64

homomorphism
crossed, 67
of fields, 8
of rings, 7
principal crossed, 67

ideal, 7
integral domain, 7
invariants, 34
inverse limit, 97
inverse system, 97

Lemma
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Gauss’s, 10

module
G-, 66

multiplicity, 29

norm, 68, 77
normal basis, 63
normal closure, 38

ordering
partial, 85
total, 85

PARI, 6, 10, 12, 15, 17, 46, 49, 52, 54, 55, 61, 80
perfect field, 30
'.n/, 61
polynomial

minimum, 17
monic, 10
primitive, 106
separable, 30

prime
Fermat, 22

primitive element, 57
primitive root of 1, 60

regular n-gon, 62
ring, 7
root

multiple, 29
simple, 29

separable, 57
separable element, 37
separably closed, 89
Sn, 42
solvable in radicals, 43
split, 26, 81
splits, 23
splitting field, 26
subfield, 8

generated by subset, 16
subring, 7

generated by subset, 15
symmetric polynomial, 73

elementary, 73

theorem
Artin’s, 34
binomial in characteristic p, 9
constructibility of n-gons, 62
constructible numbers, 20, 41
cyclotomic polynomials, 61
Dedekind, 53
Galois 1832, 43
Galois extensions, 35
independence of characters, 63
Liouville, 19
normal basis, 63
primitive element, 57

topology
Krull, 93, 109

trace, 77
transcendence degree, 104
transcendental, 17, 18
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