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On the Theory of Groups. 

By PROF. CAYLEY. 

I refer to my papers on the theory of groups as depending on the symbolic 
equation O- 1, Phil. Mag., vol. VII (1854), pp. 40-47 and 408-409; also vol. 
XVIII (1859), pp. 34-37; and " On the Theory of Groups," Amer. Joltrn. of 
Math., vol. I (1878), pp. 50-5 2, and " The Theory of Groups: Graphical Repre- 
sentation," id., pp. 174-176; also to Mr. KemBpe's "Memoir on the Theory of 
Mathematical Form," Phil. Trans., vol. 177 (1886), pp. 1-70, see the section 
"Groups containing from one to twelve units," pp. 37-43, with the diagrams 
given therein. Mr. Kempe's paper has recalled miy attention to the method of 
graphical representation explained in the second of the two papers of 1878, anld 
has led me to consider, in place of a diagram as there given for the independent 
substitutions, a diagram such as those of his paper, for all the substitutions. I 
call this a colourgroup; viz. for the representation of a substitution-group of 8 
substitutions upon the same number of letters, or say of the order a, we employ 
a figure of a points (in space or in a plane) connected together by coloured lines, 
anid called a colourgroup. 

I renlark that up to a = 11, the first case of any difficulty is that of a =8, 

and that the 5 groups of this order were deterimiined in my papers of 1854 and 
1859. For the order 12, Mr. Kempe has five groups, but one of these is non- 
existent, and there is a group omitted; the number is thus = 5. 

The colourgroup consists of 8 points joined in pairs by 4 v (8 -1) coloured 

lines under prescribed conditions. A line joining two points is in general 
regarded as a vector drawn from one to the other of the two points; the cur- 
rency is shown by an arrow, and in speaking of a line ab we mean the line from 
a to b. But we may have a line regarded as a double line, drawn from each to 
the other of the two points; the arrow is then onitted, and in speaking of such 
a line ab we mean the line from b to a and from a to b. A fresh condition is 
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140 CAYLEY: On the Thteory of Groups. 

that for a given colour there shall be one and only one line from each of the 
points, and one and only one line to each of the points. We may have through 
two points a, b only the line ab of the given colour; this is then a double line 
regarded as drawn from a to b and from b to a; and there is thus one and only 
one line of the colour from each of these points and to each of these points. 
The condition implies that the lines of a givenl colour form either a single polygon 
or a set of polygons, with a continuous currency round each polygon; for 
instance, there may be a pentagon abede, meaning thereby the pentagon formed 
by the lines drawn from a to b, from b to c, from c to d, from d to e, and from 
e to a. An arrow on one of the sides is sufficienit to indicate the currency. In 
the case of a double line we have a polygon of two points, or say a digon. 

There is a further condition which, after the necessary explanation of the 
meaning of the terms, may be concisely expressed as follows: Each route must be 
of independent effect, and (as will readily be seen) this implies that the lines of a 
given color must form either a single polygon or else two or more polygons each 
of the same number of points: thus if v k=1, they may form k i1-gons; in par- 

ticular, if v be even, they may form -l a digons. 

To explain the foregoiing statement, first as to the term " route." I denote 
the several colours by capital letters, R = red, G - green, B = blue, etc. Any 
capital or combination of capitals determines a route; R means go along a red 
line; RRBG, go along a red line, a red line, a blue line, a green line, and so in 
other cases. Given the starting point, or initial, the route determines the 
several points passed through, and the. point arrived at, or- terminal, thus 
aRRB G = abefk, = k, meaiis that the route RRB G leads from a through b, e, f 
to k, viz. that the red line from a leads to b, the red line from b leads to e, the 
blue line from e leads to f, and the green line from f leads to k. We may give in 
this way the Itinerary, or write simply aRRBG = k, meaning that the route 
leads from a to k. We may of course write R2 for RR, and so in other cases. 
A single cal)ital, as already mentioned, is a route, but it may for distinction be 
called a stage. A stage, and thence also a route, may be reversed; R-1 means 
go along the red line drawn to the point; if aR` b, then bR-1 = a; and so if 
aRRBG = abefk, - k, then kG'B-'R-'R-1 = kfeba, = a; RbR-1 R-2 
and so in other cases. 

The effect of a route depends in general on the initial point: thus, a route 
may lead from a point a to itself, or say it may be a circuit from a; and it may 
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not be a circuit from another point b. And similarly two different routes each 
leading fronm a point a, to one and the same point x, or say two routes equiva- 
lent for the initial point a, may not be equivalent for a different initial point b. 
Thus we cannot in general say simpliciter that a route is a circuit, or that two 
different routes are equivalent. But the figure may be such as to render either 
of tnese locutions, and if either, then each of them, admissible. For it is easy 
to see that if every route which is a circuit from any one initial point is also a 
circuit from every other initial point, then two routes whichWare equivalent for 
any one initial point will be equivalent for every other initial point. And con- 
versely, if in every case where two different routes are equivalent for anly one 
initial point, they are equivalent for every other initial point, then every 
route which is a circuit from any one initial point is a circuit from every other 
initial point; and we express this by saying that every route is of independent 
effect: this explains the meaning of the foregoing statemeint of the condition 
which is to be satisfied by a colourgroup. 

It is at once evident that a colourgroup, qua figure where each route is of 
independent effect, furnishes a graphical representation of the substitution-group 
and gives the square by which we define such group. For in the colourgroup of 
u points we have the route from a point to itself and the routes to each of the 
other (a - 1) points, in all a non-equivalent routes; and if starting from a given 
arrangement, say abcd .... , of the E points, we go by one of these routes from 
the several points a, b c, cl, .... successively, we obtain a different arrange- 
ment of these points. Observe that this is so; the same point cannot occur 
twice, for if it did, there would be a route leading from two different points b, f 
to one and the same point x, or the reverse route from x would lead to two 
different points b, f. The route from a point to itself which leaves each point 
unaltered, and thus gives the primitive arranigement abed ..., may be called 
the route 1. Taking this route and the other (a -1) routes successively, we 
obtain u different arrangements of the points, or say a square, each line of which 
is a different arrangement of the points. And not only are the arrangements 
different, but we cannot have the same point twice in any column, for this would 
mean that there were two different routes leading from a point to one and the 
same point x; hence each column of the square will be an arrangement Qf the 
s points. We have thus the substitution-group of the e points or letters; the e 

routes, or say the route 1 and the other (a - 1) routes, are the substitutions of 
the group. 
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The complete figure is called the colourgroup. As already mentioned, the 

lines of any colour form either a single polygon or two or more polygons each of 

the same number of points. The number of lines of a given color is thus =, 

or when the polygons are digons (which implies a even), the number is = 2 8. 

The number of colours is thus - 2 (8-1) at least, and = -1) at most. A 

general description of the figure may be given as in the annexed Table. Thus 

for the group 6B we have R. 2 3gons 6; we have the red lines 
B,7 G , Y. (3 2gons)3 = 9' 

15 

forming two trigons, 6 lines, and the blue, green and yellow lines each forming 

three digons, together 3 X 3, = 9 lines, in all 15, = 2- 6.5 lines. Such descrip- 

tion, however, does not indicate the currencies, and it is thus insufficient for the 

determination of the figure. But the figure is completely determined by means 

of the substitutions as given in the outside column of the square, thus 

B = (abc)(dfe) slhows that the red lines form the two triangles abc, dfe with 

these currencies, G = (ad)(be)(cf), that the green lines form the three digons 

ad, be, ef, and so for the other two colours B anad Y. 
The lines of a colour inay be spoken of as a colour, and the lines of a colour 

or of two or more colours as a colourset. The colourset either does not connect 

together all the points, and it is then a broken set; or it does connect 

together all the points, and it is then a bondset. A bondset not containilng 

any superfluous colour is termed a bond, viz. a bond is a colourset which connects 

together all the points, but which is nmoreover such that if any one of the colours 

be omnitted it becomes a broken set. The word colour is used as a prefix, colour- 

set as above, colourbond. etc., and so also with a numeral, a twocolourbonid is a 

bond with two colours, and so in other cases. Observe that we nmay very well 

have for instance a threecolourbond, and also a twocolour or a onecolourbond, 

only the colours or colour hereof must not be included amionig those of the three- 

colourbond, for this would then contain a superfluous colour or colours and would 

not be a bond. 
A colourgroup may contain a onecolourbond, viz. this is the case wheni all 

the poilnts form a single polygon; it is then said to be unibasic. If it contains 

no onecolourbond but contains a twocolourbond, it is bibasic; if it contains no 
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onecolourbond or twocolourbond but contains a threecolourbond, it is tribasic, 
and so on. In all cases the nuinber of bonds (onecolour-, twocolour-, etc.) may 
very well be and in general is greater than one; thus a unibasic colourgroup will 
in general contain several onecolourbonds, a bibasic colourgroup several two- 
colourbonds, and so on. 

The bond of the proper number of colours completely determines the colour- 
group; in fact the colourbond gives the route from any one point to each of the 
other (a -1) points; that is, it determines all the U routes, and consequently the 
colourgroup. The onily type of onecolourbond is the polygon of the u points; we 
have thus for any value whatever of U a unibasic colourgroup which may be called 
8A. The theory is well known. If U be a prime number, the number of colours 

is 2 (8( - 1), each colour gives a polygon through the t8 points, so that we have 

here only onecolourbonds; but in other cases we have broken sets, and there 
will be in general (but not for all such values of a) twocolourbonds. Observe, 
moreover, that for U a prime number the only colourgroup is the foregoing uni- 
basic group 8A. I have just enmployed, and shall again do so, the word type; 
the sense in which it is used does not, I think, require explanation. 

Passing next to the bibasic colourgroups uB: there will be in general for a 
given composite value of a several of these, and in the absence of a miiore com- 
plete classification they may be called aBi, aB2, etc. In regard hereto observe 
that supposing for a given value of a that we know all the different types of two- 
colourbond, each one of these gives rise to a group, but this is not in every case 
a group 8B; any twocolourbond contained in the corresponding group 8A would 
give rise to the group 8A which contained it, and not to a group aB. We have 
thius in the first instance to reject those twocolourbonds which are contained in 
the group 8A. But attending only to the remaining twocolourbonlds, these give 
rise each of thein to a group aB, but the groups thus obtained are not in every 
case distinct groups. For looking at the converse question, suppose that for a 
given value of a we know the group 8A and also the several groups aB. In 
any one of these groups, combining in pairs the several colours hiereof RG, RY, 
GY, etc., we ascertain how many of these combinations are distinct types of 
twocolourbond, and in this manner reproduce the whole series of types of two- 
colourbond, not in general singly, but in sets, those which arise froiii 8A, 
those which arise from aB1, those which arise from uB2, etc.; and we thus have 
(it inay be) several types of twocolourbond each leading to the unibasic group 
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sA, several types each leading to the bibasic group 8B1, several each leading 
to aB2, and so on. 

The like considerations would apply to the tribasic colourgroups Xa. Sup- 
posing that we had for a given value of 8 the several distinct types of three- 
colourbond, it would be necessary first to exclude from consideration those which 
give rise to a unibasic group 8A or a bibasic group 8B, and then to consider 
what sets out of the remaining types give rise to distinct tribasic groups C. 
But in the table we have only one case 8 C of a tribasic group. 

I give now a table of the several groups a = 2 to 12, viz. these are as 
above: A, unibasic; B, bibasic; C, tribasic; the several groups being 

2A, 3A, 4A, 5A, 6A, 7A, 8A , 9A, 10A, 1lA, 12A 
4B, 6B, 8B1, 9B, loB, 12B1, 

8B2, 12B2, 

8B3, 1 2B3, 
8C , 12B4, 

in all 23 groups. 

TABLE OF THE GROUPS 2 TO 12. 

2A 1 colour. 
a b 1 =1 R. 1 digon 1 

1 

b a R=(ab)=R 

3A 1 colour. 
a b c 1 =1 =1 R. 13gon3 

b c a R -(abc) = R 

eLiLi R'2=(acb)=R-1 

4A 2 colours. 
a bc d 1 1 1 R. l 4gon 4 

G. 2 digons 2 

6 
b c d a R = (abed) =R 

c d a b R2 = (ac) (bd )G 

d a b c R3 = (adeb) =R-k 
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4B 3 colours. 
a b c d 1 =1 =1 R, G, Y. (2digons)3 6 

_ _ _~~~~~~~~~~~~~~~~~~~6 
b a d c R = (ab)(cd)=R 

c d a b G = (ac)(bd) = G 

d c b a RG = (ad) (bc) = Y 

5A?2 colours. 

a b o d e 1 =1 =1 R, G. (1 5gon)2 10 

b c |d e a R = (abcde) =R 

c d e a b R2 =(acebd) = G 

d e a b c R3 = (adbec) = G-1 

e a b c d R4 = (aedeb) = R- I 

6A 3 colours. 
a b c d e f 1 =1 =1 

b c d e f a R = (abedef) =R B. 1 6gon 6 
G. 2 3gons 6 

| ~~~~~~~~~Y. 3 digons 3 
c d e f a b R2 = (ace) (bdf) = G 15 

d e f a b c R3= (ad) (be)(cf )= Y 

e f a b c d R4= (aec)(bfd) =G- 

f a b c d e R5 = (afedeb) = Y- 

6B 4 colours. 
a b c d e f 1 =1 1 B. 2 3gons 6 

G, Y, B. (3 digons)3 9 

b c, a f d e R = (abc) (dfe) = R 

c a b e f d R2 = (acb)(def) = R- 

d e f a b c G = (ad) (be) (cf) = G 

e f d c a b RG = (ae)(bf) (cd) = Y 

d e b c a R2G= (af)(bd)(ce) =B 
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7A 3 colours. 
a b c d e f g =1 R, G, Y. (17gon)3 21 

._ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 1 

b c d e f g a R = (abedefg)=R 

c d e f g a b R2 =(acegbdf) = G 

d e f g a b C R3 =(adgcfbe) = Y 

e f g a b c d R4 = (aebfcgd) = Y- 

f g a b c d e R5 = (afdbgec)-=GX' 

g a b c d e f R6 = (agfedeb) = R- 

8A - . - 4 colours. 

a b c d e L=g 1 R,G. ( 8gon)2 16 
__ __ __ __ __ __ __ ~~~ ~~~~~Y. 2 4gons 8 

B. 4 digons 4 
b c d e f g h a R = (abedefgh) =R - 28 

c d e f g h a b R2 = (aceg)(bdef) = Y 

d e f g h a b c R3 = (adgbehef) = G 

e f g h a b c d R4 = (ae) (bf) (cg) (dh) = B 

gf h a b c d e R = (afchebgd) = G-1 

_ h a jb c |d e f |RI = (age (bhfd) = Y- 

h a b c d e f g R7 = (ahgfedeb) =R- 
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8B1 5 colours. 
a b c d e f g h 1 R1 , I. (2 4gons)2 16 

Y, G, B. (4 digons)3 12 
28 

b c d a f g h e R (abcd) (efgh) -R 

c d a b g h e f R2 (ac)(bd)(eg)(fh) Y 

d a b c h e g B3 =(adeb) (ehgf) = B- 

e f g h a b c d G (ae) (bf ) (cg) (dh) G 

f g h e b c d a RG -(afoh) (bgde) = I 

g h e f c d a b R2G= (ag)(bh)(ce)(df) = B 

h e f g | d a b | R3G =(ahef)(bedg) =I- 

8B2 o1 6colours. 
a b c d e f g h R R. 2 4gons 8 

_ _ _ - __ - ~~~~~~~~~~~~Y, G,I.B,O0. (4 digons) 5 20 

b c d a h e f g R r~~~~~(abed) (ehgf)~ 28 

c d a b g h e f R2 =(ac)(bd) (eg) (fh) = Y 

d a b c f g h e R3 =(adcb)(efgh) =T- 

e f g h a b c d G =(ae)(bf) (eg) (dh) = G 

f g h e d a b c RG (af) (bg) (oh) (de) = I 

g h e f c d a b R2G (ag)(bh)(ce) (df ) = B 

h e f g b {c d a R3G= (ah)(be)(f) (dg) 0 

20 
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8B3 - 4 colours. 
a b c d e fg h 1 , G, B. (2 4gons)3 24 

__ __ __ __ __ __ __ __ ~~~ ~~~~~~~~ ~ ~~Y. 4 digons 4 
-1 

. 
~~~~~~~~~~~~~~~~~28 

b c d a h e f g R -(abed) (efgh) =R 

c d a b g h e f R2 -(ac)(bd) (ef ) (gh)= Y 

d a b G f g h e R3 =(adeb)(ehgf) -R-1 

e f g h a b c d G =(aeeg) (bhdf) =G 

f g h e d a b c R3G-(afoh)(bedg) =B 

g h e f c d a b R2 G =(agoe) (bfdh) G-1 

h e f g b c d a RG -(ahef) (bgde) = B- 

8C - 7 colours. 

a b o d e f g h 1 1 R, G, B, Y, I, O, V. (4 digons)7 28 
. 

_ 
~~~~~~~~~~~~~~~~~~~~28 

b a d c f e h g R? = (ab)(cd)(ef)(gh) =R 

c d a b g h e f = (ac) (bd) (eg) (fh) = G 

d c b a h g f e RG =(ad)(b) (eh) ( fg) = B 

e f g h a b c d Y = (ae) (bf )(g) (dh) = Y 

f e h g b a d c RY =(af)(be)(ch)(dg) =I 

g h e f c d a b GY = (ag) (bh) (ce) (df) = O 

h g f e d c b a RGYz= (ah)(bg)(cf)(de) = V 
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9A 4 colours. 
a b c d e f g h i 1 = ,G,B. (1 9gon) 397 

Y. 8 3gons 9 
86 

b c d e f g h i a R = (abedefghi) = R 

c d e f g h i a b R2 = (acegibdfh) = G 

d e f g h i a b c R3 = (adg) (beh) (cfi) = Y 

e f g h i a b c d R4=(aeidhogbf) = B 

f g h i a b c d e R5 = (afbgchdie) =B- 

g h ih a b e d e f R6 = (agd)(bhe)(cif) =Y- 

h i a b c d e f g R7 r(ahfdbigeo) G-1 

i a b c d e f g h R8I-(aihgfedeb) zR' 

9B 4 colours. 
a b c d e .f 9 h i |1 = 11 R, GB, Y. (3 3gons)4 36 

b c a e f d h i g R =(abe) (def )(ghi) = R 

c a b f d e i g h R2 =(acb)(dfe)(gih)-=R- 

d e f g h i a b c G =(adg)(beh)(cfi)=G 

e f d h i g b c| a RG = (aei)(bfg)(odh)-B 

f d e i g h | a b R2G = (afh)(bdi)(ceg)= Y 

g h i a b c d e f G2 = (agd)(bhe)((cif) - G6- 

h i g b c a e f d RG2 =(aht)(bid)(oge) -Y- 

i g h c a b f d e R2G2 =(aie)(bqf)(chd) B-' 
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IOA 5 colours. 
a b c d e f g h i j 1 R, G, Y, B. (1 Ogon)4 40 

0. 5 digons 5 
45 

b c d e f g h j a R = (abedefghij) R 

c d e f g h i j a b R2 = (acegi) (bdfhj) = G 

d e f g h i j a b c R3 =(adgjfibeh) = 

e f g h i j a b c d R4-(aeieg) (bfdjh) =B 

f g h i j a b c d e R5 =(af) (bg) (ch) (di) (ej) 0 

g h i j a b c d e f R6 (ageie) (bhjdf) B- 

h i j a b c d e f g R7 =(ahebifcjgd) =- 

i j a b c d e f g h R8 =(aigee) (bj7hfd) = G- 

j; a b e d e f g h i R9 =(ajihgfedeb R- 

... 7 coor. 2 

lOB - - - - - - - - - - - - - -. 7 colours. 1R, Y. (2 5gons)2 20 
a b e d e f g h i j 1 t 1 G,B,0,V,L (5 digons)5 25 

b c d e a j f g h i R - (abcde)(fjihfg) =R 

c d e a b i j f g h R12 = (acebd)(fiWh) -Y 

d e a b c h i j f g R13 =(adbec)(fhjgi) =Y' 

e a b c d g h i j f _R 4 (aedeb) (fghij) = R- 

f g h i j a b c d e G =(af)(bg)(ch) (di)(ej) - G 

g h i j f e a b o d RG (ag) (bh) (ci)(dj) (ef) B 

h i j f g d e a b c R2G (ah)(bi)(cj) df)(eg)-O 

i j f g h c d e a b R 3G (ai) (bj)(ef)(dg) (eh) V 

i f g h i b c d e a R 4G-(aj) (bf) (cg) (dh) (ei) I 



11A 5 colours. 
a b e d e f g h i k 1 =1 1 RI , Y, B, . (1 llgon)5 55 

55 

b c d e f g h i k I a R =(abedefghijk) =R 

c d e f g h i j k a b R2 (acegikbdfhj)= G 

d e f g h i j kc a b c R3 =(adgjbehkefi)= Y 

e f g h i j kc a b c d R4 (aeibfjcgkdh)= B 

f g h i j k a b c d e R5 -(af1kejdichbg) O 

g h i j k a b c d e f R6 =(agbheidjekf) = O- 

h i j k a b c d e f g R7 = (ahdkgcjfbie) B-I 

i i k a b c d e f g h R8 = (aifckhebjgd) y- 

j k a b c d e f g h i R19 =(ajhfdbkige) =G- 

k a b o d e f g h i j R1 0 (akjihgfedeb) R- 

12A 6 colours. 
a b c d e f g hi i j i | 1 1 -1 R, O. (l 12gon)2 24 

G. 2 6gons 12 
Y. 3 4gons 12 

b c d e f g h i j k I a R =(abedefghijkl) =R B. 4 3gons 12 
_ __ _ _ _ _ _1 _ _ V. 6 digons 6 

66 
| d e f g h i j ck 1 a b R 2=(acegik))(bdfhjl) G G 

d e f g h i j k 1 a b c R3 (adgj)(behk)(cfil) Y 

e f g h i j k I 1 a b c d R 4 (aei) (bfj)(cqk)(dhl) =B 

f g h i j k 1 a b c d e RI (afkdibglejh) = 

g h i f kc 1 a b c d e ff R6 =(ag)(bh)(oi)(dj)(ek)(fl) V 

h i kj c 1 a b c d e f g R 7 (ahcjelgbidkf) =O 

i kj c 1 a b o d e f g h R8 =(aie)(bjf)(ckg)(dlh) B-I 

j ck 1 a b c d e f g h i R9 = (ajgd)(bkhe)(clif) y- 

k I a b c d e f g h i j R10 =(akigeo)(bljhfd) G- 

1 aI b c d e f g h i j k i R"z= (alkjihgfedeb) 



12B1 7 colours. 
a b c d e f g h i j k 1 1 11 R, P, 0 2 6gons)3 86 

_ _ _ _ _ _ I_ __ 
_ _ _ _ _ _ _ _ Y . 4 B g o nsY1 2 

_ ~~~~~~~~~~~~~~B, G, V. (6 digonls) 3 18 
b e d e f a h i j kc 1 g R = (abcdef) (ghijkl) R 66 

c d e f a b i j Ik 1 g h R = (ace)(bdf)(gik)(hjl) = Y 

d e f a b c j k 1 g h i R3 =(ad) (be) (cf) (gj) (h) (il) = B 

e f a b c d k 1 g h i j R4 (aec) (bfd) (gi) (hlj) = Y- 

f a b c d e 1 g h i j k R5 z(aofedeba)(glkjih) = R- 

g h i j k I1 a b c d e f G =(ag) (bh) (oi) (dU) (ec) (fl) = G 

h i j Ic 1 g b c d e f a RG (ahcjel) (bidkfg) = P 

i j k 1 g h c d e f a b R2G= (aiegck)(bjfhdl) = 

j Ic 1 g h i d e f a b c R3 G =(aj) (bc) (cl) (dg) (eh) (fi) V 

kc 1 g h i i e f a b c d R4G=(akegei)(bdlhfj) =0- 

1 g h i j k f a b c d e R5G=(alejch)(bgfkdi) P 

12B2 9 I 1 1colours. 
a b c d e hf g h i j k 1 t R 2 6gons 12 

__ __ __ __ __ V~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~. 4 3gons 12 
I I I_ I I_ I_ I I-' B,G, P, O,V, I,S. (6 digons)3 42 

b c d e *f a 1 g h i j kc R -(abcdef)(glkcjih) = R 66 

c d e f| a b kI g h i j 2 =(ace)(bdf)(gki)(hlj) = Y 

d e f a b c j k 1 g h i R3 =(ad)(be)(cf)(gj)(hk)(il) = B 

e f a b c |d i j ck 1 g h R4 = (aec)(bfd)(gikc)(hjl) = Y- 

f a b c |d e h i j ck 1 g R5 =(afedeb)(ghijkcl) R- 

| h i j Ic 1 a b c |d e f G z(ag)(bh)(ci)(dj)(ekc)(fl) =G 

h i j ck 1 g f a b c cd e RG =(ah)(bi)(cj)(dk)(el)(fg) =P 

i j Ic 1 g h e f a b c d R2G (ai)(bj)(ock)(dl)(eg)(fh) O 

j kI g h i cd e f a b c R3G (aj)(bkc)(ol)(dg)(eh)(fi) V 

Ic 1 g| h i j c cd e f a b R4G=(akc)(bl)(cg)(dh)(ei)(fj)=j 

I I g h i j Ik b I c I d e f a R5G=(al)(bg)(ch)(di)(ej)(fI) =S 



12B3 6 colours. 

a b c d e f g h i j k I 1 =1 =Bl R. 2 6gons 12 
_ _ _ __ _ 1 G, O, P. (3 4gons)3 36 

B. 4 3gons 12 
b c d e f a 1 g h i j Ik R =(abcdef)(glkjih) =R Y. 6digons 6 

__ ___ ___ ___ ~~~~~~~~~~~~~~~~~~~~~~66 
c d e |f a b I g h i j B2 =(ace)(bdt)(gkti)(hlj) =B 

d e f a b c k k I g h i R3 =(ad) (be)(cf ) (gj) (hkc) (l) = Y 

e f a b c d i j k I1 g h R4 =(aec) (bfd) (gic) (hjl) =B- 

f a b c d e h i j k I1 g R5 (afedcb) (ghijkl) =R 

g h i j k I d e f a b c G (agdj)(bhekc)(cifl) = G 

h _j k 1 g c d e f a b RG =(ahdk)(bel)(cjfg) -O 

i j k I1 g h b c d e f a R2G (aidl) (bjeg) (ckfh) =P 

k 7c I g h i a b c d e f R3G (ajdg) (bceh) (clfi) G-' 

k 1 g h i j f a b c d e R4G =(akdh) (blei) (egfj) =0O 

1 g h i j k e f a b c d RI5 G (aldi) (bgej) (chfk) =-p-P 

12B4 -7 colours. 
a b e d e fg h i j k 1 =1 -1 R, B, P, O. (4 3gons)4 48 

__ __ __ __ ~~~~~~~~~~~~~~~~~~~~~~~~~~Y, G, V. (6 digons)3 18 

b c a e f d h i g k I c R = (abc)(def)(ghi)(Ijkl) R 6 

c a b f d e i g h I 1 I B' = (acb)(dfe)(gih)(jlkc) R-I 

d 1 g a i j c kI e f h b RGR2 = (ad)(bl)(eg)(ei)(fj)(hk) = Y 

e j h b g |k a 1 f d i c RG = (aeg)(bjd)(chl)(fki) =B 

f k i c h I b j d e g a RGR = (afl)(bkg)(cid)(ehj) 0 

g d I j a i e c |k b f| h GR2 =(age)(bdj)(clh)(fik) B-' 

h e j k b g f a | c d i G =(ah)(be)(cj)(dk)(fg)(il) =G 

i f k I c h d b j a e| g GR =(aij)(bfh) (cke) (dlg) =P 

j h e g k| b 1 f a i c d R2G =(aji)(bhf)(cek)e(dgl) = - I 

k i f h I c j d b g a e R2GR = (ak)(bi)(cf)(dh)(el)(dj) = V 

1 g d i j a k e | h b f R?,fR2 = (alf) (bgkI)(cdi)(ejh) =0- 
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Extracting from these colourgroups the twocolourbonds contained in them 
respectively, we have the twocolourbonds shown in the annexed series of figures. 
I have in each case given the nuniber 4B, 6A, etc., of the colourgroup in which 
the bond is contained, and which colourgroup is given conversely by the two- 
colourbond. The several points may have letters a, 6, c, d, etc., attached to themn 
at pleasure, but as the particular letters are quite immaterial, it seemed to mne 
better to give the several figures without any letters. 

4B 6A 6B 6B 

,~~~~ ____i_ ! 

8B1 8B1 8B2 8B2 

I: I N{ j .\N ju\/]/i/ l 

8B3 9B 

A 

V $ I/ ~ ~ ~ I 

1OA lOB lOB 

I I I I I I 
j 

I 
j ; >, - 
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12A 12A 

12B2 12B2 

W~~~~~~~~~~~~~~ W 

12B 3 12B3 

2,1 1 
*~~~~~~ * 

12B2 12B2 

1 2 B 1 2 
B3'8 . S 

__A_ ___ 

V~~ ~ ~ ' V 

12B4 

_ N 

21~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~, 
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In any one of the foregoing forms of twocolourbond, each point is in its 

relations to the other points indistinguishable from each of the other points. 

This would seem to be a relation of symmetry equivalent to the before-men- 

tioned condition that each route is of independent effect; and it would moreover 

seem as if the relation of symmetry were satisfied for each of the following 

forms: 
12 (wrong form). 12 (wrong form). 

I i.t ,'t /:1 >1 

12 (wrong form) 12 (wrong form). 

/~ ~ ~ ~ / 

Each of these is, however, a wrong form, not satisfying the condition that each 

route is of independent effect. As to this, observe that when the condition is 

satisfied, there are in all (8 =) 12 non-equivalent routes, and there is thus a 

completely determinate square. When the condition is not satisfied, there are 

more than this number of non-equivalent routes, and there may very well be 

8 routes giving rise to a latin square, viz. a square each line of which, and also 

each column of which, contains all the letters, and which thus seems at first sight 

to represent a substitution-group; but the substitutions by which each line of the 

square is derived from itself and the other lines of the square are not the same 

as those by which each line is derived from the top line, and thus the square 

does not represent a group. Thus in one of the above wrong forms, starting from 

the routes R = (abcdef)(glkjih) and G = (agciek)(bhdjfl), we have 
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12 (wrong form). G R2 G 

a b c d e f g h i j Ic k 1 a g kI a 

b c d e f a I g h i j k B = (abedef)(glkjih) b h I b 

c d e f a b kc I g h i j | 2 = (ace)(bdf) (gki)(hlj) c i g c 

d e f a b c j |k I g h i B 3 = (ad)(be)(ef)(gj)(hkc)(il) d j h d 

ef a b c d i j k I g h R4 = (aec) (bfd) (gik) (hjl) e k i e 

f a b c d e h i k 1 g| R5 = ((fedeb)((ghikl) f 1 l f 

g h i j Ic 1 c d e f a b G = (agoiek) (bhdjfl) g c e k 

h i j Ic 1 g b c d e f a RG = (ahcjel)(bidkfg) h d f I 

i i Ic I g h a b c d e f R2G= (aickeg)(bjdlfh) i e a g 

k I g h i f a b c d e RI G = (ajcleh) (bkdgfi) j f b h 

k I g h i j e f a b c d R4G = (akccgei) (bldhfj) k a c i 

I ? h i Ik d e a b c | RsG = (alchej)(bgdifk) I b d j 

which is not a group; there is no substitution G- (akeicg)(blfjdh). And we 
see that in fact each route is not of independent effect; the route GR2G leads as 
shown from the primitive arrangement abcdefghijkl to abedefklghij, viz: it is a 
circuit from each of the points a, b, c, d, e, f, but not from any one of the remaining 
points g, h, i, j, k, 1. 
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