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PREFACE

THis little volume is the outcome of a series of
lectures on elementary mechanics, delivered to the
students in the engineering courses of the Cooper
Union Day and Night Schools, with the intention of
partially clearing the ground for some of the engineer-
ing subjects of the subsequent years.

In all cases, some knowledge of trigonometry and
elementary physics has been assumed; and it is
further assumed that the instructor using the text is
thoroughly familiar with the students’ pretraining in
these branches. An attempt has been made to de-
velop the formule from the most fundamental prin-
ciples; it being the opinion of the author that in this
way the student derives the greatest amount of good.
No excuse is made, and none need be made, for em-
ploying the poundal as the unit force, and g as a
proportionality factor.
~ A short chapter on the determination of maxima
and minima values, by algebraic and trigonometric,
methods, is given with the hope that it will prove
useful in solving problems, and also arouse an interest
in mathematical analysis. It is, of course, understood
that for any comprehensive treatment of either applied

or theoretical mechanics, the application of the differ-
iii



1v PREFACE

ential and integral calculus is absolutely necessary;
but, in engineering schools, as a matter of economy
in time, considerable physics must be taught before
the student is familiar with the methods of the cal-
culus. However, were it not a matter of economy
it would still be desirable; for, it is undoubtedly true
that those who have a fair knowledge of physical
phenomena acquire the calculus more readily. The
author is far from being in sympathy with those en-
gineers who attempt to belittle the value of the cal-
culus. When it is remembered that most engineering
problems resolve themselves into the determination of
maxima and minima values, and that so many of the
factors' entering into a problem are the ratios of
variable quantities, it follows that those, other things
being equal, whose minds are best equipped to deal
with the mathematical relations of the quantities in-
volved, will do the most efficient work.

Thanks are here expressed to Messrs. Riedel and
Bateman for supplying the problems.

Coorer UNION, March, 1910.
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ELEMENTARY MECHANICS
FOR

ENGINE ERING STUDENTS

CHAPTER I

MOTION

Our concept of motion is the relative displacements
that occur among bodies; but to describe motion it
becomes necessary to do so with reference to some
body assumed at rest—it being, of course, understood
that, so far as we know, no body is actually at
rest. The earth together with the other planets of the
solar system, and their attendant satellites, are con-
tinually changing their relative positions; and further-
more, the sun is continually changing its position with
respect to the so-called “fixed stars,” and these stars
again suffer displacement among themselves.

A body is said to be in motion when it occupies
different positions at different intervals of time; or,
what amounts to the same thing, when it is continu-
ally changing its position. In terrestrial mechanics
the surface of the earth is assumed at rest, and

I



2 ELEMENTARY MECHANICS

bodies having a fixed position on the earth’s surface
arc said to be at rest. Bodies that are continually
changing their positions, relatively to the earth’s sur-
face, are said to be in motion.

Rectilinear Motion. In our preliminary definitions,
we will consider the motion of a point on the body
rather than the motion of the body, or consider the
body of such dimensions that all parts of it may be
considered as having precisely the same motion. Such
a body is called a particle. To illustrate this, suppose
some body to move so that a point in the body is
always on the same straight line, this point then is
said to have rectilinear motion. The body as a whole
may, however, not have a rectilinear motion; for, it
may at the same time be spinning about a line
through this point as an axis. The body would have
then both motion of translation and rotation. It is
obvious that we are, at this part of the subject, not
prepared to deal with combinations of this kind.

Uniform Motion. A body passing over equal dis-
tances in any arbitrary equal intervals of time is said
to have uniform motion.

It must be remembered that the statement, ‘uni-
form motion is a motion such that equal distances
arc passed over in equal intervals of time,” does not
define uniform motion. For, this definition, though it
includes uniform motion, does not cxclude some other
types of motion which are not uniform. This may
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perhaps be best illustrated by reference to a seconds
pendulum. If we choose for our points of reference
the extremities of its path and for the interval of
time the second, then we have a case of equal dis-
tances passed over in equal intervalsof time. This is
equally true if one half second be taken for the in-
terval of time. But the pendulum has by no means
a uniform motion; for its motion is a maximum at
the middle of its swing and at either extremity of its
path its motion is momentarily zero.

Speed and Velocity. By speed is understood the
time rate of motion. There is, however, another ele-
ment to be considered, viz.: direction. When both
speed and direction are specified itis called Velocity.
Velocity is defined the same as speed; but it is -speci-
fied with respect to the direction of the motion, i.e.,
it is a directed quantity. Such a quantity is called a
Vector. 1t is to be remembered that speed is merely
a ratio; i.e., the ratio of the distance passed over to
the time consumed in passing over that distance.

Unit Velocity. Unit velocity is a velocity such that
unit distance is passed over in unit time. In the
c.g.s. (centimeter, gram, second) system, unit velocity
is a velocity such that one centimeter is passed over
per second.

In the F.P.S. (foot, pound, second) system, unit
velocity is a velocity such that one foot is passed over
per second.
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Varied Motion. When the distances passed over i1
equal intervals of time are not equal, the motion i
said to be varied.

Uniformly Varied Motion. When the velocit
changes at a uniform rate, the motion is said to b
uniformly varied; and the particle is said to have ¢
constant acceleration. Acceleration, then, is rate o
change of velocity. When the velocity of a particle
is increasing, the acceleration is positive, when de
creasing negative, and when it is neither increasing
nor decreasing, i.e., when the motion is uniform, the
acceleration is zero.

In the c.g.s. system, unit acceleration is an accelera
tion such that the velocity changes at the rate o
one cm. per sec. per sec. In the F.P.S. system, uni
acceleration is an acceleration such that the velocity
changes at the rate of one foot per sec. per sec.

Angular Measurements and Curvature of a Curve.

Radian. The unit of angular measure employed ir
mechanics is the Radian, and is the angle subtendec
by an arc equal to the radius. In any case, the
measure of the angle is the ratio of the length of the
arc to the radius. The length of the circumference
of a circle being 2 #r, it follows from the definitior
that the sum of four right angles is equal to 2z
radians.

Curvature. The ratio of the change in direction,
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measured in radians, to the change in length of a
curve is a measure of the curvature.

To illustrate this: The direction of a curve at any
point is the direction of the tangent to the curve at
that point. If we take a second point indefinitely
close to the first point and draw a second tangent,
then the external angle between these two tangents
measures the change in direction; this, divided by the
length of the curve, between the two points, is a
measure of the curvature of the curve.

If the curve is the circle, then this ratio is a
constant; for the extcrnal angle between the tangents
is equal to the angle at the centre, and the length
of arc being proportional to the angle at the centre,
it follows that the ratio of change in direction to
change in length is a constant.

The change in direction in going once round a
circle is four right angles or 2 = radians. The length

. . 27 I
passed over is 2zr. Hence, the curvature is et

That is, the curvature of a curve is the reciprocal
of the radius. The curvature of a straight line is
zero, and the radius of curvature is infinity.
Angular Velocity.—Consider any plane figure rotat-
ing at a constant rate about an axis, normal to the
plane of the figure, with a period T; i.e., T being
the time of one rotation. Any point on the plane
will then be moving at a constant speed; but, the
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direction of motion will continually change at a
uniform rate. In making one rotation, or what
amounts to the same thing, during one period, the

motion changes in direction by an amount equal to .

2 = radians. This change in direction, divided by the
time consumed during the change, is a measure of
the angular velocity of the point. That is, the an-

gular velocity is numerically equal to 2%, and is rep-

resented by the Greek letter . It will be observed
that in the foregoing discussion, the distance of the
point from the axis was not considered, and that the
same result would have been obtained for any point.
It therefore follows that all points on the body have
the same angular velocity. Since, when a point is
moving in the circumference of a circle, the direction
of its motion at any point is in the direction of
the tangent to the circle at that point, and further,
since the radius drawn to the point changes in
direction at the same rate that the tangent does, it
follows that the angular velocity of a point is also
measured by the rate of change of direction of the
radius. We may then define angular velocity in
general as the ratio of the angle swept out by a
radius to the time consumed.

Since the circumference of a circle is equal to
2 7r, it follows that if a point is moving at a uniform
rate in the circumference of a circle with a period
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T, its linear velocity is 2—;— That is, the linear veloc-

ity is equal to the product of angular velocity and
radius.

Angular velocity may be uniform or variable. When
the radius sweeps out equal angles in any arbitrary
equal intervals of time, the rotating body has a
canstant angular velocity.

When the angular velocity changes at a uniform
rate, the rotating body has a constant angular accel-
eration. Angular acceleration has precisely the same
relation to angular velocity that linear acceleration
has to linear velocity. That is, angular acceleration
is the rate of change of angular velocity.

We are now prepared to state some of these re-
lations symbolically.

From the definition of uniform motion, we have

distance traveled _

velocity = time consumed ’

T Vv =

-l

From which
s = vl

In the same manner for constant acceleration;

acceleration = c@nge Liid '”el”“‘)”.
time consumed

or
v, — U,

a—%;.....(l)
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where v, is the initial and v, the final velocity, and
a the acceleration.

The mean velocity of a body having a uniformly
accclerated motion is obviously the half sum of the
initial and final velocity; 4. e.,

Ut

-2

V=

The distance passed over is numerically equal to
the product of mean velocity and time. In symbols '
v, + v,

— L. (2)

s=Vt =

Multiplying equation (1) by (2) and clearing of |
fractions, we have :
2as=v—-v. . . . . (3
Again, if in equation (2) we substitute for wv, its
value, v, + af, we obtain

v at £
s=%t=v,t+a—2. .. @

If the initial velocity is zero; i.e., the body start
from rest, we have the following equations:
v=at, . . . . . (5

v

=Y e
,vz

§ = n, R (7)
2

s=2 . ... @
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The equations for angular motion are deduced in
a precisely similar manner.
By definition for constant angular velocity;

angle swept out

angular velocity = Yime consumed’

or in symbols

w==IL; and p=wt

~|S

In the same manner, for constant angular acceleration;

change in ang. vel.

angular acceleration = :
lime consumed

)

or
Wy — W,

7 - - - -

a =

where o, is the initial, w, the final angﬁlar velocity,
and « the angular acceleration.

The mean angular velocity for constant angular
acceleration is equal to the half sum of the initial
and final angular velocities; i.e.,

_w,+w,.
y = ——
2 H

where w, .is the mean angular velocity. The angle
swept out is the mean angular velocity multiplied by

the time, i.e.,
w
_@9t o,
2

(10)
Multiplying equation (9) by (10) and clearing of

¢ = w,!

fractions, we obtain

2ap =0’ - . . . . (1)
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Again, if in equation (10) we substitute for w, its
value, w, + a ¢, we obtain

] .
=M'TWt=w,t+%. .. (12)

If, as before, we assume the body starting from
rest, we obtain the following relations:

w=at . . . . . (13
¢ = %t, e e e (1)
¢ = 222, P ¢ £
¢ = ath. S (16)

Such are the algebraic equations that must neces-
sarily follow from the definitions.

As was previously stated, linear velocity equals
angular velocity multiplied by the radius, or v = wr;
dividing by ¢ we have

a=ar; hence viac::w:a.




CHAPTER I1

COMPOSITION AND RESOLUTION OF
MOTIONS

THE direction in which a body is moving at any
point of its path may always be represented by a
straight line; and likewise, the distance over which
a body has passed from a given fixed point may be
represented to a given scale by the length of a line.
In Fig. 1, let a particle move from 4 along the line
Ab to the point B; then from B along the line BC
to the point C. Now, the displacement of the particle
from the point 4 is pre- 8
cisely the same as though
the motion had taken
place along the line AC
by an amount equal to
the length of the line
AC; or along the path A DC. That is, it is im-
material, so far as final displacement is concerned,
whether the particle first move in the direction 4 B
by an amount 4 B and then in the direction BC
by an amount BC; or, first move in the direction
A D, parallel to BC, by an amount BC and then in
the direction DC, parallel to 4B, by an amount

II
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A B; or whether it move along the line AC by an
amount AC. Suppose now, the particle to be at
the point 4, and moving at a uniform rate, rela-
tively to the earth’s surface, along the line A B,
and simultaneously with this the plane surface upon
which the particle is moving, to move at a uniform
rate, relatively to the earth’s surface, carrying the
particle with it, in the direction 4 D. Assume that
the relative rates are such that the particle moves on
the surface from A to B, while the surface has
moved by an amount equal to AD. The particle
will then be situated at C, and the displacement will
again be the same as though the particle had moved
along the line AC from 4 to C. But in this case
the particle has actually moved, relative to the earth’s
surface, along the line A C. For, take some fractional
part of the line 4 B, such as 4 b, and a like fractional
part of the line A D, such as Ad. Draw the lines
d ¢ and bc respectively parallel to 4 B and 4 D. Then
from the conditions, while the particle has moved
from A to b, the surface has moved the amount 4d
parallel to A D. Hence, the point ¢ gives the position
of the particle at that instant; but by construction,
the triangles Adc¢ and A DC are similar, hence the
point ¢ falls on the line AC; and this is true no
matter what fractional part of 4 B is taken; hence
the path of the particle is the line AC. It must be
remembered that the line A C is fixed with respect to
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some surface assumed at rest, such as the earth’s
surface.

If now, we assume the diagram drawn to such a
scale that the lengths A B and 4 D represent the dis-
tances passed over in a unit of time, then these lengths
also represent the velocities in magnitude and direc-
tion. And, since A C represents both in magnitude
and direction the displacement of the particle in a
unit of time, it follows that it also represents the
resultant of the velocities 4 B and 4 D.

If the velocities be variable, and at any instant the
velocity in the direction 4 B is equal to 4 B and at
the same instant the velocity in the direction 4 D is
equal to A D, then A C represents in magnitude and
direction the instantaneous resultant velocity. Since
A C represents the resultant velocity when the two
component velocities are constant, it must also repre-
sent the resultant velocity at any instant; for, the
velocities at the instant being such that the two dis-
placements A B and A D would be produced in a unit
of time, and the resultant of these two displacements
being A C, which would also have been produced in
unit time, it is obvious that A C represents the in-
stantaneous resultant velocity. We therefore have the
following theorem:

The resultant of two concurrent coplanar velocities
is represented in magnitude and direction by the
diagonal .of the parallclogram constructed upon the
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component velocities as sides; the component veloc-
ities being drawn from a common point to the same
scale and in the proper directions.

If we assume constant accelerations in the two
directions, and draw our diagram to such a scale that
A B and A D represent the velocities acquired in the
two directions in a unit of time, then the instanta-
neous resultant velocity at the end of a unit of time
will be represented by AC. But, since this velocity
has been acquired in a unit of time, the line A C also
represents the acceleration. Accelerations may there-
fore 'be combined by the same methods as velocities.

It can \readily be scen that the foregoing demonstra-
tions can be extended to any number of coplanar
components; for, it is only necessary to find the re-
sultant for any two of them, combine this resultant
with a third component, and so on, until the final
resultant is obtained; the final resultant being in-
dependent of the order in which the components are
taken.

As has been previously stated, quantitics in which
direction is specified, as well as magnitude, are wvector
quantities. Displacements, velocities, and accelera-
tions are vector quantities. In Fig. 1, the lines 4 B,
BC, and A C represent vectors. By referring to Fig.
1, it will be scen that the resultant of the two com-
ponent vectors may also be obtained by layihg off
the vector 4 B, then from the terminal B laying off
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the vector BC, and by joining 4 and C we obtain
the resultant. Or expressed vectorialiy
AB +BC =AC.

The student must consider carefully what this means.
It, of course, does not mean that the length of the
line 4 B plus the length of the line BC equals the
length of the line AC. But it does mean that in
effect, as regards displacements, velocities, or accelera-
tions, the sum of AB and BC equals AC. This
addition of vectors applies to any number of coplanar
vectors; to find the resultant or vector sum, it is only
necessary to lay off any vector in the proper direction
and to proper scale, and from its terminal lay off
a second vector, etc. The linc then joining the be-
ginning of the first vector and the terminal of the
last vector, is the resultant, or vector sum. The
vector sum of a number of vectors is independent of
the order of addition.

Resolution. A displacement, a velocity, or an ac-
celeration may be resolved into components just as
well as components may be combined. If in Fig. 1,
a particle start from 4 and move to C, its final dis-
placement is independent of the path pursued in going
from A to C. In the same manner, if 4 C represents
the velocity of a particle at any instant, then since
AC equals the components 4 B plus BC it can be
resolved into these two components, or any other two
components whose sum equals AC. But, since each
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of these components can again be resolved into two
components, and these individual components can
again be resolved, it follows that any vector can be
resolved into any number of coplanar vectors whose
sum is equal to the given vector.

Trigonometric Addition of Vectors. The resultant of
two coplanar vectors is readily found by the formula:

Fic. 2.

R = (4% + B? + 24 Bcos 0)}; where R is the result-
ant, 4 and B the two component vectors, inclined to
cach other by the angle 6. The formula gives, how-
ever, the magnitude only, and not the direction. To
find the magnitude and direction of the resultant of
two or any number of coplanar vectors, proceed as
follows: Let in Fig. 2, 4, B, C, and D be the given
vectors; inclined respectively to the X axis by the
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angles ¢,, ¢,, ¢;, and ¢,. Multiplying each vector
by the sine and cosine of its angle of inclination, the
vertical components, 4,, B,, C,, and D, are found;
and likewise, the horizontal components 4,, B,, C,,
and D, Taking now, the algebraic sum of the
vertical components, E, is found, and E, for the
algebraic sum of the horizontal components. The
resultant, E, is now completely specified, it being the
hypothenuse of the right triangle whose legs are
E, and E,, and its inclination to the X axis is given by

¢ = tan—* %’

z
It is not necessary to draw the diagram; it is only
necessary to multiply each vector by the sine and
cosine of its angle of inclination, proper attention
being given to the signs of the trigonometric functions,
then taking the algebraic sum of the vertical com-
ponents and of the horizontal components, the two
quantities obtained being respectively the vertical and
horizontal component of the resultant.

Centripetal Acceleration. Velocity has been defined
as being constant when the rate of motion—speed—
is constant, and further, when there is no change in
direction. When there is a change in direction, even
though the speed be constant, the velocity varies, and
hence there is an acceleration.

A particle moving with a uniform speed in the cir-
cumference of a circle is such a case.
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Let a particle be moving in the circumference of a
circle whose centre is O, with a unitorm speed. The
speed being constant, the distance travelled is
proportional to the time. Let us consider the change
from the instant the body is
passing through the point g,
Fig. 3, with a velocity v in
the direction ¢ f tangent to the
.curve at the point @. Had
there been no acceleration, the
- _body would have continued

to travel in the direction af

with constant speed; but due
to an acceleration, it is continually deviated from
the straight line and travels along the curve. By the
time the particle has reached the point d, it has
been displaced at right angles from its path at g,
a distance a e. Assume the distance a d, along the
arc, an immeasurably small fractional part of the
circumference of the circle, then ae is very small
compared with the radius. Under the assumed con-
ditions, the distances along the arc and chord are
sensibly cqual. Also, the distance @ e along the
radius will be so small that the acceleration, dur-
ing the time required to bring about this displace-
ment, is sensibly constant; hence, we may apply the

Fic. 3.

formula for uniformly accelerated motion. By equa-
27 .
tion (8), Chapter I, we have ae = ¢12_; where ¢ is
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the time required to bring about the change. Further,
we have ad = v/, and by the geometry of the figure,
we have the following proportion:

ba:ad::ad:ae; from which, by éubstitution,

at’
2r:'ut::vt:7.

2
. v: o, .
Solving, we have a = 55 ey the acceleration along

the radius is equal to the square of the speced multi-
plied by the curvature of the curve.

It is to be remembered that distances in the figure
are exaggerated, and that the assumptions made in
the demonstration are true only when the distance
a d becomes indefinitely small.

This formula is so important that it may be
of value to deduce it by an entirely independent '
method.

In Fig. 4, let bc represent the direction and mag-
nitude of the velocity of the par-
ticle at the instant it is passing
through the point b. It is ob-
vious that as the radius r ro- d o
tates about the point O, bc¢ is
always at right angles to it; hence

v_b

it may be represented by a second
line o d, passing through the center
O, parallel to bc and equal to it in length. As
v always represents in direction and magnitude the

Fic. 4.
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motion of the terminal of the radius r, so does ¢
represent the motion of the extremity of v. Hence we
may write, since the angular velocity of r and v is
the same,

r:v::v:a,
or

a=v7z. S 4]

But since @ is the rate of motion of the extremity
of v, and v is the rate of motion of the ex-
tremity of r — or the rate of motion of the particle
—it follows that @ is the rate of a rate of motion;
i.e., an acceleration, and the theorem is proved.

Simple Harmonic Motion. S. H. M. is a mo-
tion along a fixed path, such that the acceleration
towards a fixed point in the path is always propor-
tional to the displacement, measured along the path,
from the fixed point.

From this definition, it at once follows that no
matter what the velocity of the particle, when passing
through the fixed point, it must finally come to
rest; since the acceleration is towards the fixed “point.
Furthermore, after coming to rest the particle will be-
gin to move towards the fixed point with increasing
velocity, and by the time it again reaches this point,
will have a velocity precisely equal in magnitude,
but opposite in direction to that when previously
passing through the point. It will then move to




COMPOSITION AND RESOLUTION OF MOTIONS 2I

an equal displacement on the opposite side of the
fixed point, and so on. In other words, the mo-
tion is periodic; 4., repeats at regular intervals.
The fixed point is called the position of equilib-
rium; there being no acceleration. The greatest
distance from the fixed point, measured along the
path, is the amplitude. The distance at any in-
stant from the fixed point is the displacemens.
The time required to pass through a cycle; 7e.,
the time required to come to the original condi-
tion, which means being at the same point and
going in the same direction, is a period and repre-
sented by T.

To make a complete general solution is far too
complex mathematically for elementary mechanics;
but a good idea may be obtained by studying some
particular case in detail.

Consider a particle, Fig. 5, moving with a uniform
speed in the circumference of a
circle whose centre is C and ra-
dius 7. Let the period be T, then

(o . 2
the angular velocity is Tz = w;

and the angle at any instant is
¢ = w!; the angle and time being
both measured from the origin,
O. If the velocity, V, be resolved into two compo-
nents, one at right angles and the other parallel to

FiG. 5.
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the diameter O B, the parallel component will be
v=Vsinpg=0wrsinwt;. . . (2
w and r being constant, it follows that the velocity
parallel to the diameter is proportional to the sine
of the angle. From cquation (1) we have the radial

2
acceleration equal to VT The component of this

acceleration, parallel to the diameter, is

VZ
f=_7 cos So =a)2f coSs wt. . . (3)

But, r cos wt is cqual to the displacement s;
hence,

f=w’s=—ns. A 1)

That is, since w? is a constant, the accelecration
along the diameter varies directly as the displacement
from the center of the circle. Therefore, when a
point moves with a constant spced in the circum-
ference of a circle, the projection of this motion onto
a diameter of the circle is a simple harmonic motion.
Students cannot become too familiar with these
formule. There are no equations of more universal
application in mechanics and physics than those of
simple harmonic motion.



CHAPTER III

FORCE AND FRICTION
WORK AND ENERGY

Inertia and Force. So far, motion has been con-
sidered in the abstract, without considering the
nature of the body moved. _

As a result of experience we know that it requires
an effort to change the rate of motion of a body; -
and further, that the intensity of the effort depends
upon the body moved and the rate at which the
change is brought about; .., the acceleration.

Broadly stated, every body persists in maintaining
whatever rate of motion it may happen to have;
this is the chief characteristic of matter and is
termed imertia. This idea must not be confused
with inactivity.

As previously stated, an effort is required to ac-
celerate matter, and this effort is termed Force.

We may then define force as that which changes or
lends to change the velocity of a body.

Suppose we have two spheres of equal volume,
but of different materials; say one of wood and

the other of lead, lying on a perfectly smooth hor-
[23]
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izontal surface, and accelerate them equally, it wil
be found that a greater force is required for the
leaden sphere than is required for the wooden one.
Were they of the same material, we should find
the forces equal. Were they of the same material
but of different dimensions, it would be found that
the greater force is required for the larger sphere.
It is evident that the substances being the same,
the larger sphere contains the greater quantity of
matter, That is, by operating on bodies composed
of the same material, we find that the greater the
qﬁantity of matter the greater the force. In the
case of the two spheres of equal volume, one of
wood and the other of lead, it is found that the
leaden sphere requires a greater force than the
wooden sphere when they are given equal accelera-
tions; hence it is assumed that the leaden body con-
tains a greater quantity of matter. The quantity of
matter a body contains is called its Mass.
The mass per unit volume is the Density; i.e.,
Mass M

Volume’ D= v

We may now embody some of the foregoing state-

Density =

ments regarding mass, force, and acceleration in
the form of equations. That is, that the force is
proportional to the mass and to the acceleration it
produces. In symbols, '

F « ma.
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By introducing a constant we may use the equality
sign, i.e.,

F=kma; . . ._ . . (1)
k depending upon the units .chosen, and may be
made unity by choosing the proper units. Equation
(1) shows that the mass of a body may be measured
by the force required to produce a given accelera-
tion; i.e., by its inertia.

In the c.g.s. system, the unit mass is the gram,
the unit acceleration is that when the velocity changes
at the rate of 1 cm. per sec. per sec. Hence if
we choose as our unit force that force which will
accelerate the mass of 1 gram 1 cm. per sec. per sec.,
k in equation (1) becomes unity. This unit force
is called the dyne.

In the F.P.S. system, the wunit force is the
poundal, and is that force which will accelerate the
mass of 1 pound 1 foot per sec. per sec. There is
another unit in common use; namely, the engineers’
unit, called pound. This force is equal to the
weight of a pound, and hence is a variable, depend-
ing upon latitude and elevation. In any case it is
the force that will accclerate the mass of one pound
¢ feet per sec. per sec.; where g is the acceleration
duc to the earth’s gravitational field, for the par-
ticular locality. In this case, % in ecquation (1)

becomes E; i.e.,
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T

4

In most cases 32.2 is sufficiently accurate for the
value of g, and in most engineering computations
32. may be used.

Composition and Resolution of Forces. Assume
a body, whose mass is m, acted upén by two forces
in such a manner that the two accclerations Ab
and Ad (Fig. 6), are imparted. The resultant
acceleration will be represented by Ac¢. The force

FiG. 6.

required to produce the acceleration A b is equal to
m X Ab. Let this be represented by 4 B. Likewise,
let AD represent to the samc scale the product of
m and A d; ie., the force required to produce the
acceleration 4d. The force required to produce the
acceleration A ¢ is equal to the product of m and
Ac. Draw BC and DC respectively parallel to 4D
and AB. Sincc Aband Ad are, by construction, like
fractional parts of A B and 4 D, the point ¢ must
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fall on the line AC. From the similarity of the

figure we have ‘
A AB

Ac " AD
but g—% = m by construction. Therefore, m X 4 ¢

=AC; ie., AC represents the force required to give
the acccleration Ac to the mass m, and hence is the
resultant of the forces 4B and A D. The resultant
of two or more concurrent coplanar forces is there-
fore found in the same manner that the resultant
of displacements, velocities, or accelerations is found.

From what has been shown in the composition of
forces, it is readily seen, that a force may be resolved
into components the same as any other vector quantity.

Friction. When two surfaces are in contact and
are caused to move relatively to each other, a re-
sistance is experienced, which is a function of the
normal pressure between the surfaces and of the
rate of relative motion. This resistance is called
the force of friction. The following statements are
usually given as being approximately true.

(1) The force of friction is directly proportional
to the normal pressure between the surfaces.

(2) The force of friction for any given normal
pressure is independent of the arca of the surfaces
in contact. ,

(3) The force of friction is indcpendent of the rate
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The first and second statements are practically true

for ordinary pressures. \When the pressures become

high there is a very wide departure; and at what
pressure this takes place depends, of course, on the
nature of the substances in contact. The third state-
ment is not even practically true for most cases. In
a great many cases when the rate of motion varies
only slightly, then other things being equal, the force
of friction is for practical purposes constant. But
whenever there is considerable variation in the rate
of motion there is also a measurable change in the
force of friction.

Coefficient of Friction. The ratio of the force of
friction to the normal pressure is called the coefficient
of friction. In symbols

=1—€—,orF=pN; B )]
where p is the coefficient, F the force, and N the
normal pressure. From what has been stated, it is
clear that this formula can be used only when the
conditions under consideration approximate very close-
ly, as regards intensity of pressure and rate of motion,
to those conditions under which the coefficient of
friction was determined.

Angle of Repose. If a plane, having a body resting
upon it, be inclined so that the body is just on the
point of sliding, the angle which the plane makes
with the horizontal is called the angle of repose. It
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will now be shown that the coefficient of friction is
equal to the tangent of the angle of repose.

Let, in Fig. 7, the plane be
inclined at an angle g such
that the body, whose weight is
W, is just on the point of slid-
ing. Resolving the weight into
two components, we obtain for the force parallel to

FiG. 1.

the plane, which is equal to the force of friction,

F = W sin B,
and for the normal pressure
R = W cos 8.

By definition, the coefficient of friction is the ratio
of the force of friction to the normal pressure; hence
p=$ZZZ=mnp. )
Assume, as in Fig. 8, a body of weight W lying
upon a horizontal surface and having applied a force
F making an angle ¢ with a normal
to the plane. The normal pressure
between the two surfaces then is
R=W + Fcos o,
and the force tending to move the
body is

Fic. 8.
f=F sine. ©

Now, for sliding to be impending, the force parallel
to the surface must be equal to the product of the
coefficient of friction and the normal pressure; hence,
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for the body to be on the point of sliding, we must
have
Fsing =p (W + F cos ).
From which
F sin ¢
M= m. .. . . (5)

If the weight of the body be small in comparison with
the applied force, then W in equation (5) may be neg-
lected, and we have

p=tame. . . . . . (6)
Comparing equations (4) and (6) it is seen that for
motion to be impending, the angle which the applied
force makes with the normal must be equal to the
angle of repose. For any angle smaller than this,
there can be no motion, no matter what the intensity
of the applied force.

Work and Energy. When a force overcomes a re-
sistance through space it is said to do work; and the
quantity of work is measured by the product of the
displacement of the point of application of the force
and the component of the force parallel to the dis-
placement. In symbols,

W =Fd;
where W is the work, d the displacement, and F the
component of the applied force parallel to the dis-
placement.

As an example, assume as in Fig. 9, the line of
direction of the force F making an angle 6 with the
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path in which the point of application of the force
is constrained to move, and suppose further, that the

-~ E
&
/o d
B A
FiG. 9.

point of application A4, is displaced through the dis-
tance d, to the point B. '
The work then is

W =Fcos0 Xd=Fdcos@.

F cos 0 being the component of the force paral-
lel to the motion.

Suppose the force applied to a body which offers
no resistance excepting its own inertia; then, from
a previous formula, we have,

F=ma. . . . . . (0

The distance passed over will be, if the force be con-

stant so that the acceleration is constant, and the
body start from rest,
tz

d = =

'U’
2

-

®

N

Multiplying the equations (a¢) and (b), member by
member, we have

2
Fd=W='”2"’. ),

In this case, work is consumed in imparting motion
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to the mass m; but the mass in being brought to
rest is able to do work in quantity precisely equal
to that consumed in imparting the speed v. Work is
therefore said to be stored, or the body possesses
Energy,—capabilty of doing work—in virtue of its
motion. The energy a body possesses due to its
motion is called Kinetic Energy.

When a body is able to do work due to its:
position, its energy is said to be potential. Examples
of potential cnergy arc bodics above the carth’s sur-
face, compressed springs, etc.

Unit Work. In the c.g.s. system, the unit work is
the erg, and is equal to the work done in bringing
about a displacement of one cm. against a force of
one dyne. The practical unit work is the joule, and
is equal to 107 ergs.

In the F.P.S. system, the unit work is the fool
poundal, and is equal to the work done in bringing
about a displacement of one foot against a force of
one poundal. The engineers’ unit, the ft. ., is the
work done in raising the weight of one pound one
foot. One ft. 1b., therefore, equals g foot poundals;
or approximately, 1 ft. Ib.= 32.2 foot poundals.

Conservation of Energy. The change in kinetic
cnergy that a body undergoes in passing over a given
path is equal to the work donc in traversing that
path. For, assumec that at the beginning of the path
the velocity of the body is v,; then after traversing
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the distance s, if the acceleration is @, we have, by
a previous demonstration, the following relation:

=2} 4+2as5; . . . . (8)
where v is the velocity at the end of the path s.
Multiplying both sides of equation (8) by -’;i where

m is the mass of the body, we have
mv:  mv?
— =

+mas. . . . (9

The second term of the right-hand member of equa-
tion (g) is the product of a force and distance, and
therefore represents work. Writing equation (g) in
another form, we have

mv:, mv? ’

=——— —mas. . e . 10
2 , (10)

If the acceleration is not constant, we may assumc
the path to be divided into # elements, each elcment
of the path being indefinitely small, such that the
acccleration for any element may be considered con-
stant. Rewriting equation (10) for this condition, we
have )

mv:, mv®

2 2
—(ma,s, +ma,s, + mags; +.... + mays,); . (11)

where s,, S, S3 etc., represent the elements into which

the path is divided, and a,, a,, a,, ctc., the correspond-

ing accelerations while passing over those elements.
The left-hand member of equation (11), being the
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initial kinetic energy, is a constant quantity for any
given.case; hence, the right-hand member, which is
the sum of the kinetic and potential energies, is a
constant quantity for any body moving under the
action of forces without collision with other bodies.
And this is true for any body of a system of bodies;
providing always that there are no collisions, and the
forces acting are due to the mutual interaction of the
bodies, and not to actions external to the system. It
follows, then, that the total energy of such a system
remains constant.

Potential and kinetic energy of masses are, however,
not the only forms of energy. But by suitable pro-
cesses, energy may be transformed from one form into
another. One of the simplest cases of transformation
of energy is the destruction of kinetic encrgy and the
simultancous evolution of heat through friction or
impact.

If in any system, from which no energy escapes,
and into which no energy enters, account be taken
of all forms of energy, then no matter what trans-
formations take place within the system, the sum
total is a constant quantity. This is the principle of
the conservation of emergy. 1t is, so far as experience
goes, consistent with all physical phenomena.



CHAPTER 1V

MOMENTUM, PRINCIPLE OF MOMENTS,
AND IMPACT

Momentum. By momentum is understood the
quantity of motion a body possesses, and is expressed
numerically by the product of mass and velocity. In

symbols
M=mv. . . . . . (1)

If a body whose mass is m, having an initial veloc-
ity v,, has applied a constant force F, its velocity
will be augmented at a uniform rate. Let its velocity
at the end of the time ¢ be represented by v,; then

the change in momentum is

M =m (v, —v);
but
A

therefore
Ft=M=m@,—v). . . . (2

Or the change in momentum is equal to the product
of force and time; i.e., the Impulse.

The Three Laws of Motion

(1) Every body continues at a uniform rate of
motion in a right line, unless compelled to change its

rate by some force external to it.
* 35
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(2) Change of momentum is proportional to the
impulse that produces it and in the same direction.

(3) Action and reaction are cqual and opposite in
direction.

Statement (2) includes statement (1); for, since
statement (2) says that change in momentum is equal
to the impulse that produces it, it follows that if the
impulse is zero, #.e., no external force, then there is
no change in momentum, and hence no change.in
the rate of motion; and further, it implies that if the
impulse is zero, there is no change in direction.

Statement (3) merely declares that the actions of
two bodies on each other are always equal and op-
posite in direction. This action and reaction between
two bodies considered jointly is termed stress.

Moment of a Force. In considering the action of
a force on a rigid body, it is necessary to consider its
three elements; viz.: Intensity, Point of Application, and
Direction.

It is the result of expcrience that the tendency of
a force, of given intensity, to produce rotation is
independent of the point of application, so long as
the direction in which the force acts remains un-
changed. If, then, we understand by the line of
direction of a force, the dircction and position of the
line along which the force acts, then the conditions in
regard to the tendency of the force to produce rota-
tion are completely specified by specifying its indensity
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;nd its line of direction, or as some prefer to call it,
Lts line of action.

The moment of a force, with réspect to an axis, is
& measure of the tendency of the force to produce rota-
tion about that axis. Numerically, it is equal to the
product of the force and the perpendicular distance
from the axis to the line of direction of the force. Call-
ing this perpendicular distance the arm of the force,
then the moment is equal to the product of the force and
its arm. In symbols

C=Fad,
where C is the moment, F the force, and d its arm.
(As a matter of convenience, moments tending to
producé anti-clockwise rotation are considered posi-
tive, and those tending to produce clockwise rotation,
negative.)

Principle of Moments. Experiment shows that if
a rigid body, capable of rotating about a fixed axis,
is in equilibrium under the action of any number of
forces lying in a plane perpendicular to the axis, then
the sum of the moments, with respect to that axis
tending to produce rotation in one direction, is equal
to the sum of the moments tending to produce rotation
in an opposite direction; or, the algebraic sum of the
moments is equal to zero. 'This theorem is called the
principle of moments. ,

The two conditions necessary so that a rigid body

shall be in equilibrium under the action of coplanar
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forces are: the algebraic sum of the forces in aw
direction must be equal to zero, and the algebraic sum
of the moments about amy axis, perpendicular to the
plane of the forces, must be equal to szero.

One particular case requires especial attention.
Assume a body under the action of a number of
coplanar forces acting in various directions, and that
these forces be resolved into horizontal and vertical
components. Assume further, that the algebraic sum
of these components in any direction is equal to
zero; but that the algebraic ‘sum of the moments is
not equal to zero. It is obvious that such a system
of forces can not be balanced by one force; but that
two equal and opposite forces must be applied, the
sum of whose moments is equal and opposite to the
sum of the moments of the system. Such a pair of
forces is called a couple; that is, two equal and op-
posite forces not in the same straight line, constitute
a couple, whose moment is equal
to one of the forces multiplied by
the perpendicular distance between
their lines of direction. This may
be shown as follows: Assume, as

in Fig. 10, the two equal coplanar
parallel forces oppositely directed,
with the perpendicular distance d between their lines
of direction. Choose any axis O at a perpendicular
distance x from the line of direction of the force F,.

Fic. 1o0.
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The moment of the force F,, with respect to this
axis, is :
F,(d+x)=F,d + F,x.

The moment of the force F,, with respect to the same

axis, is —F,x=—F, x;

since F, = F,. Hence, the sum of the moments of

the two forces, or the moment of the couple is
G=F,d+F,x—F,x=F,d.

It is clear that the same result will be obtained no

matter where the axis is chosen, and hence the

moment of the couple is equal to the product of one

of the forces and the perpendicular distance between

their lines of direction.

Centre of Mass. If two particles, m, and m, be
rigidly connected and a force applied on the straight
line joining them at such a point between the two
particles that only lincar acceleration is produced, the
moments about-the point of application, due to the
reactions of the particles, must be
equal and oppositely directed. Since
the acceleration is the same for both
particles, the reactions must be di-
rectly as their masses; and, conse-

quently, for the moments to be
equal, the arms must be to each other inversely as
the masses of the particles. From which, we have

(Fig. 11),

m,d, = m,d,
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but for this to be true, we must have
ml, =m,l,

and the point ¢ is determined. The point ¢ is the
centre of mass of the two particles, and is so situated
that if a force be applied at this point, in any direc-
tion whatsoever, the two particles will be equally
accclerated parallel to the direction of the applied
force; and, hence, no motion of rotation is produced
in the system. If there be a third particle, m,, then
to find the centre of mass of the three particles,
we assume a mass equal to m, + m, concentrated at
¢, and combine this with m;, in precisely the same
manner that m, and m, were combined. In a similar
manner, the centre of mass for any number of
particles is found. The centre of mass of a system
of particles is then a point where the whole mass of
the system may be considered concentrated, and is
so situated in the system that if forces be applied
whose resultant passes through the point, there will
be no tendency to produce rotation. From the fore-
going discussion it is evident that the centre of mass
is a point so situated in the body, that if a plane be
passed through it in any direction whatsoever, then
the sum of the products, obtained by multiplying each
particle by its perpendicular distance from the plane,
on one side of the plane, must be equal to the sum
obtained in a similar manner on the other side of the
plane; ‘or if we call the products on one side of
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the plane positive and on the other side of the
plane negative, their algebraic sum must be zero.

Centre of Gravity. The force with which a body
is attracted toward the centre of the earth is the re-
sultant of the forces due to the particles of the body;
and since the angle subtended at the centre of the
earth, by any body of ordinary dimensions, is practi-
cally nil, the force with which the body is attracted
is the resultant of a system of parallel forces.

The sum of these parallel forces, or the resultant,
is, of course, the weight of the body. The point
where the entire weight of the body may be considered
to act is called the centre of gravity, and is deter-
mined by the principle of moments in precisely the
same manner as the centre of mass. It is clear that
in all ordinary cases the centre of mass and centre of
gravity are defined by the same point. For bodies of
regular geometric form and homogeneous in con-
struction the centre of mass coincides with the geo-
metrical centre. For bodies not so constituted the
centre of mass or centre of gravity must be found
experimentally.

Impact and Momentum. From the third law of
motion it follows, that if two bodies impinge, the forces
acting on the two bodies are equal; since action and
reaction are equal. Furthermore, since the time of
impact is the same for both bodics it follows that the
impulse acting on the one is cqual to the impulse
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acting on the other; therefore, the change in momen-
tum in the one body is equal to the change in mo-
mentum in the other body.

Suppose two bodies whose masses are m, and m,
and having velocities #, and %,, impinge in such a
way that the velocities are changed to v, and v,
Then since, from what has been previously shown,
the changes in momentum are ecqual, it follows that

m, (“1 - 'vl) =m, ('v, - u's)’ . e (3)
from which
mou, +mt, =mv, +muv,, . . (4

That is, the sum of the momenta before impact is
equal to the sum of the momenta after impact. This
is the first law of impact.

If there is no energy absorbed during impact, the
bodies are said to be perfectly elastic, and the kinetic
energy of the system after impact is equal to the
kinetic energy before impact; hence

my Uty + myut, = m v+ my v, o (5)

and

m, (u?, — v*) = m, (v, — u?),

I

from which
m, (u, —v,) (u, +v,) =m, (v, — %) (v, + u5);
by equation (3)

m, (4, — v,) = my (v, — %),
hence
U, + v, = v, + Uy
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from which
Uy — Uy =Ty — Uy

and
UV, — U

ul_uz=1. N ()]

That is, the ratio of the difference of velocities
after impact to the difference of velocities before im.
pact is a constant, and equal to unity. In the case
of two bodies impinging, which are not perfectly
elastic, this ratio is less than unity, and must be de-
termined by experiment. In any case, the ratio

Uy — YU
%, — U,

=e . . . . .

is a constant for any two given bodies and is called
the coefficient of restitution.

Conservation of Momentum. Let the two spherical
bodies of masses m, and m,, approach each other on
the right line joining their centres with velocities, #,
and #,, as indicated in ]iFig. 12.

Let a b be the plane of impact, and the full circles
represent the position of the bodies with respect to
the plane ab one second betore impact. Let the
centre of mass of the two bodies at that instant be
to the right of the plane by a distance x. The
centre of mass of the body m, one second before
impact, must be to the right of the plane of impact
by the distance %, + r,; the centre of mass of the
body m,, must at the same instant be to the left of
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the planc a b by the distance u, + r,. Writing now
the cquation for the centre of mass, we have

my (4, + 1, — x) =m, (u; + 1, + x);
from which

)
Mty = Malhy M T, — M1,
m, + m, m, + m,

A ]

If now the dotted figures, displaced downward to
avoid confusion, represent the positions of the two

a
—_ Us le Uy
i\
(":? > n]| (5 \
T
§ [}
me 4--.@.___,! Slj
Ve év_‘
< mo
P /My N
’ LY ! \
[ F g V!
\\ /, ‘\ '.l//'
S a)
l(—-y-——’
)

F16. 12.

bodies one second after impact, and the centre of
mass of the system is at that instant to the left of
the planc a b by the distance y, then by writing the

cquation for the centre of mass for this configuration, °

wc obtain

ml(y_‘vl'*'rl):mz.(vz""z—y),
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from which
ml'”l"'mz'”z: mr, — M1, ©)
m, + m, my, + m,

The numerators in the left-hand members of equa-
tions (8) and (9) represent respectively the sum of
the momenta before and after impact, and are there-
fore equal; hence the right-hand members of these
two equations are equal. Now the fraction,

mr, — m,r,
Ex
represents the distance that the centre of mass of the
two bodies is to the right of the plane of impact at
the instant of impact. Hence in the unit of time
before impact the centre of mass passes over the
distance mor,—mr,
m,+m, ’
and in the unit of time after impact the centre of
mass moved over the distance - )
m,r, — m,r,
v+ my, + m,
But, by equations (8) and (g), these two distances
are equal, and hence the rate of motion of the centre
of mass is unchanged by the impact.

If the two bodies do not approach cach other on
the same straight line, but on lines inclined to cach
other, then the impact will be oblique. In this case
the velocities of the bodies may cach be resolved into

two components, one at right angles to the plane of
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impact and one parallel to it. The components
parallel to the plane of impact will be unchanged,
and those perpendicular to the plane of impact wil
obey the laws of direct impact. Hence, that part of
the component of the velocity of the centre of mass
perpendicular to the plane of impact is the same after
impact as before, and the parallel component being
unaffected, it follows that the velocity of the centre of
mass is unchanged.

It will be readily scen how this demonstration can
be extended to three or more bodies. This constitutes
the fundamental law of momentum; viz.: The veloc-
ity of the centre of mass of a system cannot be
altered by any internal forces; or in other worcs
the momentum of a system can be changed only by the
action of a force, or forces, external to that system

Loss of Energy during Impact. As previously
stated, there is no loss of energy when perfectly
elastic bodies impinge. If, however, the bodies are
not perfectly elastic then there is a loss of energy
depending upon the coefficient of restitution.

To obtain the expression for loss of energy during
impact, it is convenient to first obtain equations for
the final velocities in terms of the masses, the initial
velocities, and the coefficient of restitution.

From the principle that the velocity of the centre
of mass is unchanged by impact, we may write

(mi+m)V=mu +mu,=muv, + m,v,;
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where V is the velocity of the centre of mass. From

this we obtain
_m U+ mu,
m, + m,

14 y -+ . (10)

and
_mv, +m,
m, + m,

(11)

From equations (7) and (11), we obtain

m

v,=V—me(ul—u,)

(12)

vz-_—V.'.L. :
m,

U, — u
T mze (u, 2)
Substituting in (12) for V' the valuc as given in (10),
we obtain
_ Mt + Mty — mye (u, — u,)
m, + m,

1

(13)

_mu, +mt, +mie (1, — u,)
m, + m,

2
The kinetic cnergy, before impact, is equal to
I 2 2 ).
;(mnun + myu%,);
and, after impact, it is equal to
1
2 (m,v*, + m,v%).

The loss in kinetic energy then is

E= —:. [ (m, 42, + mz“uzz) — (m, ¥ + m,1%) | (14)
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Substituting in equation (14), the values of v, and 7,
as given in (13), performing the indicated operations
and simplifying, we obtain, finally

m, m, 2
E=m(l =) (u, —w) . (1)



CHAPTER V

MOMENT OF INERTIA

AssuMe a force F applied, as indicated in Fig.

13, and that the particles m, m, m, . ..

m,, are

situated at distances 7, 7, 7, . . . 74, from the axis

O, and are rigidly connected to this
axis. Assume further, that all masses
may be neglected but the masses of
the particles, and that therc is no
friction; then the various masses will
be accelerated, and every particle ex-
erts a reaction due to its inertia.

Let these reactions be represented

by fi, f» fs - .. fu and the linear

m,,(?—«—f”
mD—A,

m D,
‘”ll( ><-f 1

d
(o]

Fic. 13.

accelerations by a,, @, @, . . . @, we then have

A
dl—m1
- _h
a, m,

_ b5
ag m,

_S
a"_mn
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and, from the Principle of Moments, we have
Fd=flrl +f2’z+f3r;+ ...... +f,‘fn

The bodies being rigidly connected, the angula
celeration must be the same for all; hence,
equation (1), we obtain

{ a_ S
rl ml rl
&_ _fi
r, m,r1,

a = ﬁ= f—a ) . . . .

s Myt
G

L fn mn'n

from which

fi=amr,

fo=am,r,

Jo=amyr,

fn =am,r,

Substituting these values of f,, fo fo . . . f,

equation (2) we obtain

Fd=amr +am,r’, +amr’; +...... +am

a being the same for all terms, we have
Fd=a(mr’ +mr’, + mr’, +...... + ma

=almr . .
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It is obvious that the preceding demonstration holds
for any number of masses; and that in any case
where there is a rigid body capable of rotating about
a fixed axis, we would obtain

Fd=G=Cmr)a; . . . (6)
in which G is the #Jorque, or turning moment, and
2 mr® is the summation of the products obtained by
multiplying the mass of each particle by the square
of its distance from the fixed axis.

It is obvious that for any given body with given
axis, 2 mr® is a constant; hence, we may replace it
by a symbol; i.e.,

G=Ia. . . . . . (O

As previously defined, G is a measure of the ten-
dency of a couple to produce rotation about a given
axis; hence, it follows that I has precisely the same
rclation to motion of rotation that mass has to mo-
tion of translation. It has been stated that the in-
crtia of a body may be measured by the force re-
quired to produce a given linear acceleration. In
the same way, I may be measured by the torque,
or turning moment, required to produce a given
angular acceleration. Hence, I may be appropriately
called Moment of Imertia.

We may then define the moment of inertia of a
body with respect to an axis as a measure of the im-
portance of the inertia of that body as regards its
rotation about that axis.
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It is of such importance to the engineering student to
have a proper conception of moment of inertia, that it
is advisable to derive formula (7) by an entirely inde-
pendent method; i.e., from the principle of energy.

Assume again, as previously, that the particles
whose masses are m,, ms, ms, . . . m,, are rigidly
connected to the axis O, as in Fig. 13, at distances
r1, 72, 73, . . . r,. If at any instant the angular
velocity of the system about the axis is w, then the
linear velocity of the various particles is wry, wr, or,
. .« . wry; and the kinetic energy of the system is

I I I
E, = e r+ s r + M wirs +

...+-:-m,,w’r’,, . ®

The angular velocity being the same in all terms,
equation (8) may be simplified as follows:

E, = %2 (mars +mars +mgrs + ... ... + m, r%,)
L sme, ©
== O ()

where Zmy¢? has precisely the same significance it

had in equation (6).

Hence, replacing it by the symbol I, we obtain
I w*

E,,=2......(Io)

* If a constant force Fis applied at the end of an arm /, such that
the body starting from rest sweeps out an angle ¥, the work doneis
equal to Fl ¥ = E;, the kineticenergy stored in the rotating body; ..,

2
FI'P=£2:,- =Ia1,b.‘. Fl=G=Ia.
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As has been previously shown, the kinetic energy of a
body expressed in terms of its mass m, and velocity v, is
m v?

Ek-'—'z.

Comparing this expression with equation (10), it
is at once seen that I, thc moment of inertia, has the
same relation to motion of rotation that mass has to
motion of translation.

The moment of inertia of all homogeneous bodies
that have regular geometric figures may be found by
computation; but the student must take this for
granted until he has learned to integrate. It will be
shown later how to find, by experiment, the moment
of inertia of any body that is not homogencous or of
regular geometric form.

Change of Axes. If the moment of incrtia of a
body with respect to a given axis is known it is
always possible, by a simple computation, to find the
moment of inertia about a new axis, parallel to the
given axis, and at a fixed distance from it.

Let the moment of inertia of the body, as depicted
in Fig. 14, about the axis 4 B, passing through the
centre of mass C, be I.. To find the moment of
incrtia about the axis E D, parallel to the axis 4 B,
and at a distance @ from it. Consider any particle
of mass m, situated at a distance r from the centre
of mass. From the figure, we have

%*=a>+1r"+ 2ab,
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and
mx:=ma*+mr’+mz2ab.

Repeating this operation for each particle, we have
Imx*=Zma*+Zmr*+ Imz2ab. . (1)

But, ¢ being a constant, we may write equation (1)
as follows:

Emx*=Ma*+Zmr*+2aZmb; . (12

where M is the mass of the body. Now X m#’is
the moment of inertia about the axis E D, and may

A

r%“’\
[
i

3

Fic. 14.

be represented by the symbol I, I mr® is the
moment of inertia of the body about the axis 4 B;
i.e., about the axis passing through the centre of
mass C. 2 mb represcnts the moment of all the
particles about the axis C and is by a previous
proposition equal to zero. 4
Hence, equation (12) may be written,
I,=I1,+Mae. . . . . (13

Therefore, the moment of inertia with respect to any
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axis, parallel to an axis passing through the centre of
mass, is equal to the moment of inertia with respect
to the axis through the centre of mass, plus the mass
multiplied by the square of the distance to the par-
allel axis.

This may also be proven by the principle of energy.
Assume the body whose mass is M and centre of
mass at C, Fig. 15, to be revolving with a uniform
angular velocity o, about the
axis through O, in such a
manner that any line on the
body, such as bd, is always
parallel to its first position.
Its kinetic energy then is

M »?a?
2

i

Y d

W, =

<. (14)
F1e. 15.
If, however, the body is

rigidly connected and rotates about the axis through
O, in such a manner that the line bd makes a con-
stant angle 6 with the radius ¢, as depicted in the
second position by &’ d’, the body must rotate about
the axis through C with an angular velocity equal to
the angular velocity of the radius @ about the axis
O. The kinetic energy of the body, due to its rota-
tion about the axis through C, is

I, w?

W, == .

(15)
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Adding cquations (14) and (15) we obtain, for the
total kinctic energy

wz
W=—2—(Ic+Ma’). S ¢ ]

As has been previously shown the kinetic energy of a
rotating body is equal to the product of the moment
of inertia, and one half the square of the angular
velocity. Hence, the moment of inertia of the body
about the axis through O, is equal to the moment of
inertia about a parallel axis through the centre of
mass, plus.the mass multiplied by the square of the
.distance between the two axes, as has becen shown by
equation (13).

There are certain cases where it is possible, by a
simple method, to find ihe moment of inertia of a
figure about an axis which is not parallel to the axis
about which the moment of inertia is known.

In Fig. 16, let A BC be a triangle of mass M.
Then the moment of inertia of the triangle, about
the axis X X, is \

I=M6h; N € €
where h is the altitude of the triangle.

If the threce sides of the triangle are given, or two
sides and the included angle, or two angles and the
included side, then the whole triangle is determinate,
and hence it is possible to determine the area, and
the mass m, per unit area.
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Let it be required to find the moment of inertia of
the triangle about a new axis X, X,, lying in the
same plane and passing through the point A4, and
making an angle 6 with the axis X X.

The triangle 4 BC being determinate, the altitude
and area of the triangles ABD and AC D can be
determined.

Assume that the mass per unit area of the triangle
ACD is the same as that of the triangle 4 BC,

Fi1c. 16.

Then by a simple computation the mass of the tri-
angle A BD may be determined, and its altitude
being known, its moment of inertia with reference to
X, X, may be stated; i.e.,

where M, is the mass and k, the altitude of the
triangle A BD. 1In a like manner the moment of
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inertia of the triangle 4 C D with respect to the axis
X, X, is
_M. P,

IZ 6 ]

where M, is the mass and Ak, the altitude of the
triangle A C D. Now the moment of inertia of the
triangle 4 BC with respect to the axis X, X, is equal |
to the moment of inertia of the triangle 4 B D, minus ‘
the moment of inertia of the triangle A C D with
respect to the same axis. In symbols:

2 2

M'6h ! — M’6h 2. (@19
Again, since the moment of inertia about any axis
is equal to the moment of inertia about the axis
passing through the centre of mass, plus the product
of the mass and the square of the distance to the

new axis parallel to the given axis, we have
I.=I,—Ma* . . . . (19
where a is the distance between X, X, and X,X,,
and I, is the moment of inertia about the axis X, X,
passing through the centre of mass. Let d be the
distance between the axis X,X, and some parallel
axis Xy X;. Then, by the same principle, the moment

of inertia with respect to X; X, is

I.=1,+Md =1, — Ma®>+ Md*. . (20
Since 6 may be any angle, it follows that the moment
of inertia of the triangle 4 BC may be found with

I,=1,-1I,=
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respect to any axis lying in the plane of the figure.
Furthermore, it is obvious that the foregoing demon-
stration applies to any plane figure that is determinate,
whose moment of inertia about an axis lying in the
plane of that figure is determinate.

Radius of Gyration. Since, as has been previously
stated, for any given body with given axis, the sum-
mation 2 mr? is a constant, we may write

I=3mr=MK?

where M is the mass of the body, and K is the dis-
tance from the fixed axis where the mass M would
have to be concentrated at a point so as to have a
moment of inertia with respect to the axis equal to
that of the body. K is called the radius of gyration
of the body, with respect to the given axis, and nec-
essarily changes in valuc for different axes.



CHAPTER VI

. POWER AND ANGULAR MOMENTUM

THe rate at which work is being done is called
Power. 1If the point of application of a force is dis-
placed through a distance s, and the component of
the force in the direction of the displacement is F,
the work done is Fs. If the motion is uniform, and
¢t is the time consumed during the displacement, then
the rate of doing work, that is, the power, is constant.
In symbols

P=—=—=Fv.. . . . (1)

From which we see that the power expended is nu-
merically equal to the product of the component of the

force in the direction of the motion and the speed.
In like manner, it can be shown that the power ex-
pended is numerically equal to the

: product of Torque and Angular Ve-
>"" locity.

Fio, 17, Let, as in Fig. 17, the drum whosc

centre is O, and radius 7 be acted

upon by a constant force F, and let the resistance

be such that the angular velocity maintained is a
constant. The work done in a time ¢ is '

W =Fuwrt,
60
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v

and the power is

w
P=7

=Fro=Go. . . . (2
Again, let a constant force F, act upon a mass m,

which is perfectly free to move, then the acceleration

is

F

m

a = — = a constant.

Since velocity is equal to the product of accelera-
tion and time, it follows that it is a variable and
changes at a uniform rate with the time; in other
words, it is a function of the time. This being the
case, that is, the force being constant, and the
velocity variable, it follows that the power expended
to produce the accelerated motion is variable.” But
power is equal to the product of velocity and force;
hence, at any instant the value of the power ex-
pended is equal to the product of the force and the
instantaneous velocity; i.e.,

p=Fu;

.where p represents instantaneous value of power and
v represents instantaneous value of velocity.

In the French system, the unit power is doing work
at the rate of one joule per second. This unit is
called the Wat#t. In the English system, the unit
power is the Horse-power and is equal to doing work
at the rate of 33,000 ft. lbs. per minute.
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Angular Momentum or Moment of Momentum. If
a body of mass m, has a velocity in the circumference
of a circle whose radius is 7, its momentum is

mv=muwr,
where w is the angular velocity.
The angular momentum then is
mvr=mowr’ . . . . (3
If some constant force has been acting to produce
the velocity v, there has been a constant acceleration,

and the force is
v
F=m 7,

from which we have for torque

v mwr:

G=m7r= R @

Under the conditions stated, the velocity v, and the
angular velocity w, will be functions of the time; i.e.,
will change at a uniform rate. The power, however,
at any instant that is expended to produce the acceler-

. r .
ation = wT’ is the product of the torque and angu-

lar velocity; i.e.,
mor?

p=GCGw= e (5)

mowr’

But, is the ratc of change of angular momen-

tum; thcrefore, the instantaneous value of power is
cqual to the product of rate of change of angular -
momentum and the instantaneous angular velocity.



CHAPTER VII

TENSION IN CORDS .

Ir a cord support a weight, the tension in the
cord at any section is, of course, equal to the weight
supported plus the weight of the cord below the sec-
tion. In practical problems, it is, however, seldom
necessary to consider the weight of the cord since it
is usually a very small fractional part of the total
weight supported.

As an example, a Manilla rope, capable of support-
ing 7,000 lbs., weighs 14 lb. per running foot. Assume
a length of 100 ft., supporting a weight of 7,000 lbs.;
the weight of the rope then is about 33.3 lbs., which is a
trifle less than 4 per cent of the total weight supported.
Since the ultimate breaking strength of any specimen
of material can never be predicted with certainty
closer than 1 per cent or 2 per cent, it follows that
in most cases the weight of the cord, cable, or rope
may be neglected.

As previously stated, if a rope support a weight,
the tension in the rope is equal to the weight. If,
however, the body supported has an accelerated
motiopn, the tension may have any. value.

To fix the attention, assume a body supported as
63
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in Fig. 18. If the body be at rest the tension in the
cord is

T=Mg=W. . . . . (1

If the body be raised or lowered with a constant

speed, the temsion is still M g; for, since there is no

acceleration there can be no additional
e force. Assume now that the drum has
impressed upon it an acceleration, such

that the body has an acceleration down-
ward of g feet per scc. per sec. The ten-

sion, then, is zero; for the body is
Fic. 18.

perfectly free to fall.
In general, if the accecleration downward is @, the
tension is the unbalanced force; i.e.,

T=M@E-a. . . . .0

If the acceleration is upward, it is considered nega-

tive, and therefore, for upward acceleration
T=M@g+ao. . . . . 0

If the downward acceleration is greater than g, it
follows from equation (2) that T is negative; that
is, a pressure. This is possible only if the support
is .rigid, like a rod, and has impressed upon it a
downward acceleration in cxcess of g.

Take a concrete casc by assuming a spring bal-
ance suspended from the roof of an clevator cage,
which is ascending with a constant acccleration of
16 ft. per sec. per sec. Assume further, that this
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spring balance is supporting a mass of 200 pounds,
to find the weight registered by it. From formula
(3) we have

T = 200 (32 + 16) poundals;

g being assumed equal to 32 ft. per sec. per sec.
From this we find
T = 9,600 poundals
= 300 Ibs.

If, on the other hand, the cage is descending with
a constant acceleration of 16 ft. per sec. per sec., then
the weight registered becomes

T = 200 (32 — 16) poundals
= 3,200 poundals
= 100 Ibs.

Atwood’s Machine. Assume, as in Fig. 19, two
masses M and m, supported by a cord, whose mass
is negligible, over a wheel, without mass, and perfectly
free to rotate. To determine the tension
in the cord and the acceleration of the »
system.  The total mass moved is
(M + m); and the moving force is

F=Mg-mg=M—-m)g. . (4

The acceleration is, the moving force et IJ__]
divided by the mass moved, i.e., M
M-m

M +mb

Fic. 19.

(s)

a =
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The tension in the cord, supporting the mass M, is

T=M(g—a).=M(g'LA§;:g)

2Mm

The tension in the cord, supporting the mass m, is

M__
Tl=m(g+a)=m(g+M+::g)
2Mm

=M+mg;

thus making T and T, equal. This must necessarily
be so; since the wheel is assumed without mass and
friction, the tension must be the same throughout the
cord.

Assume now, the cord supporting the mass M
wrapped over a cylinder of radius 7, and moment of
inertia I, to find the tension in the cord and the
acceleration.

If T is the tension in the cord, then, as has been
previously shown

Tr=Ia, . . . . . (D

T r being the torque, I the moment of inertia, and
a the angular acceleration. From which the linear
acceleration is

g=ar=—p~ . . . . 8)
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As previously shown

T 2
T=M@—@=M(g—7i)
From which we obtain
MI
T = Mrz—_l_l g. . . .. . (9)

Substituting in equation (8), the value for T as found
in equation (g9), we obtain

M

TS (o)

a

Dividing by 7, we obtain

Mr
r*+ 1

a = =

g . . . (11

N |

S

If the drum is a solid homogenecous cylinder, of mass

M,, then

7= M,
pat

Substituting this value in equations (9), (10), and
(11), we obtain

uu "
T = 2 = UM
Mr"+M;f‘2 2M+ M7
2
o= M r? g - 2 M (13)
wr s r M+, 8 - 3
. 2
o Mr 2 M (10)

Tur+I18 T oMM, ¥
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Assume, now, a drum of moment of inertia I and
radius 7, having wrapped around it a cord supporting
a mass M on one side, and a mass m on the other

side, as depicted in Fig. 20. Assuming
no friction, we have

I

t i T=$+m@+@;.@9
m and since ¢ = a7, we have
M
Fic. 20. T=17a+m(g+ar). . (16)

Again
T=M@E-ean; . . @

hence, equating (16) and (17), we have
{r—a+m(g+ar)=M(g—ar);

from which
Ta+mrg+mar’!=Mrg - Mar’
Rearranging and factoring, we have
a(I+mr*+Mr)=M-m)rg,

from which
: M —-—m)r

““rr@rmr® - - - @
finally,
_ . M -mr
a—ar—l————+(M+m)r,g. . . (19

Substituting now, in equation (17), for a its value, we
obtain
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T=M@E-ar)=M(g- (1 = m) )

T+ M +mré
I +2mp?

“Merrarime - @
Also
_ _ M - m) r?
t_m(g+a)_m(g+l+(M+m)r”g)
I4+2M7r
mg——— B €39

- I+ M+ mr*
In this case there must be a difference in the tensions,
since the drum has inertia; this difference is
I+2mr?
ST+ +mr
I+2M7r IM—m)
Ery M +mr T+ @ +mes (@2

This may be found dircctly, since the difference in

4, =T —t=M

—-m

the tensions must be equal to the tension required to

produce the acceleration of the drum, i.e.,
ITa I M —-—m)r

— ==X 3 8
r r I+ M+mr
 IM-m .

ST+ M rmr¥

ty =

which is the same as given in equation (22).
Reverting to the figure, we see that the moving
force is (M — m) g, and the mass moved is, M
+ m + K; where K is the equivalent mass of the drum.
The acceleration then is
M-m

‘~wimikS - - - @
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As expressed in equation (19)

M -mr
T+ ML +mnr¥

a

Hence, by equating (19) and (23), we have

I r?
M+im+K T+ M+mr

and .
I+ MP+mr=Mr+mr+ Kr

from which
K=;{. B ¢ 7))

The value of K may also be found in a different
manner. Let a constant force F be applied to the
surface of a drum whose moment of inertia is I, and
radius 7, then

Fr=1aq,
and
0 Fy
-7
from which
o= '_Fr’
ar=-—p
But
F
(1='E;

where K is the equivalent mass of the drum, hence,

F 7’
- = FT’
from which

K = —Iz, as before.
r




CHAPTER VIII

MAXIMA AND MINIMA

IT frequently becomes necessary, when dcaling with
equations involving two or more variableé, to deter-
mine under what condition one of these variables
attains either a maximum or a minimum value in
terms of the other quantities involved. In general,
this is done by the application of the differential
calculus. 1It, however, is frequently the case that the
conditions are such as to enable us to do this by
inspection, or by elementary mathematics. A few
examples will be given here to illustrate this.

Let it be required to determir. the value of the
angle which makes the product of its sine and cosine
a maximum. Given the equation

y=sinxcosx; . . . . (1)

to determine under what conditions y assumes its
maximum value. Equation (1) may be written in
the form of

y=£—sz’n2x.. N )

Since the sine has its maximum values when the

angle is go° 450°, etc., and its minimum values when

the angle is 270°% 630° etc.,, we have y in equation
71
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(2), and consequently, the product of the sine and
cosine of ¥ a maximum, when x equals 45° 22,
ctc.; and the minimum values occur for the product
of sine and cosine when x equals 135° 315° etc.
Let it be required to show what must be the reb-
tion between two variable quantities, whose sum is a
constant, such that their product is a maximum, Let
x+y=%k . . . . .0

where %k is a constant and x and y variables. Make
k, as in Fig. 21, the diameter of a circle, inscribe the §i
triangle bcd, and drop a perpendicular a, from the
point ¢, dividing the diameter k into

ﬁ the segments x and y. Since bcdis

b Y N; a right-angled triangle, we have
v @=xy. . . .
Fie. 21. If, now, the vertex ¢ take various
positions along the circumference of

the circle, # remains constant, but x, y, and ¢ wil §
vary; and a attains its maximum value when equal o

> But when this occurs, ¥ and y are equal and

each equal to —I:— Hence, from equation (4), it fol

lows that the product of two variables, whose sum is
constant, is a maximum when the two variables are
equal.

We may now draw the further conclusion that the
triangle of maximum area which can be inscribed in1
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semicircle is the one having equal legs. For the
ea, which is measured by the product of the diam-
er k, and altitude ¢, is a maximum when a is a
@ximum, but this occurs when the legs b¢ and cd
re equal. Stated more broadly, the area of any
ight-angled triangle of given hypothenuse and variable
:gs is a maximum when the legs are equal.

It will now be shown that if a right-angled triangle
ave the perpendicular distance from the vertex of
he right angle to the hypothenuse a constant, and
1e legs variable, the hypothenuse is a minimum when
te legs are equal. Let, in Fig. 22, the triangle bcd
ave the legs bc¢ and cd

jual, and an altitude equal e T :
' @, making the hypothenuse al \
jual to 2a. Let the tri- ® d_}_\

igle bef have the legs be
ad ef not equal, then the
agle 6 is less than 45°. Calling the segments x
ad y, then the hypothenuse is equal to

x_'_m— a _'_ a .
"~ tan 6  tan (go — 6)’
om which
why—
Y= Sinbcos0

ut it has been shown that the product of the sine
id cosine is a maximum when the angle is 45°
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Hence, since 6 is less than 45°, this product is less
than i, and we have x + ¥y > 2a. The hypothenuse

is therefore a minimum when the legs or, what
amounts to the same thing, the two segments are
equal.

We may now draw the further conclusion, since
%y =.a? that when the product of two variables is a
constant, their sum is a minimum when the variables
are equal.

Given the particle @, Fig. 23, moving in the direc-
tion a b with the constant speed # and the particle
b moving in the direction b 2 with the constant speed
v, together with the distance ¢ b and the angles 0

aF--\-¥§ b
/ T\n}\ roy
/ VEN T
/ RN
/ \ )
/ ANNY
/ \ \/Q
/ -
e\
{ b
Fic. 23.

and ¢, to determine what will be the position of the
particles when the distance between them is a mini-
mum. The relative motion of the two particles is
precisely the samec as though b were at rest ande
had impressed upon it, together with its own velocity,
a velocity ad, parallel and equal to v but in the




MAXIMA AND MINIMA 75

opposite direction. The resultant velocity of a4, under
these conditions, is ¢4, and since b is at rest the
particles are nearest together when the particle a is
at the point g; the point g being found by dropping
a perpendicular from & on to the line a¢ produced.
Actually at that instant the particle ¢ is at a’; the
point ¢’ being on the intersection of the. line @k
produced and a line through g parallel to b4 And
the particle b will be at b’, the point & being on the
intersection of the line b4 and a line through o’
parallel to gb. The angles 6 and ¢ being given,
the angle g is determinate, and hence the magnitude
and direction of @i may be found. Knowing the
direction of ¢b and a g, the angle a is given; this,
together with a b, determines ag and bg, and from
these a o’ and b may be found.

Given the two particles ¢ and b, Fig. 24, a having
a constant speed v, in the direction @ ¢ making an
angle 0 with the line a b; to determine what is the
minimum speed which b may have and still meet the
particle . Let x be the speed

with which the particle b is mov- > 7
ing along some line bc¢; the path
b c making an angle ¢ with the

F1G. 24.

line a b, and the point ¢ being

the intersection of their paths. If ¢ is the time
required for the particle a to travel from a to
¢, then ac =vt¢; and for the particles to meet
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at ¢, we have bc = x¢. From the law of sines we

have xt:vit::sin0:sing,
from which sin 0
T Using .

For x to be a minimum, si%z ¢ must be a maximum,
since v and sin 0 are constant. But the maximum
value for sin ¢ is unity, and occurs when ¢ equals
00°; hence, the minimum value for the speed of b is

x =vsinl. )

Having given the coefficient of friction between a
body and an inclined plane together with the angle
of inclination of the plane, to determine the minimum
force that will move the body, without acceleration,
up the plane.

Let, in Fig. 25, W represent the weight of the
body, then the normal pressure on the plane, due to

the weight W, is
R, = W cos 0;

where 0 is the angle of inclination of the plane. If,
now, F represents the re-
quired force making an angle
¢ with the plane, its normal
component is

R, = Fsin ¢,

Fic. 25.

and the normal pressure on
the plane is the algebraic sum of R, and R,; i.e,

R=Wcos6 —Fsing. . . . . (5
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The component of the force F, parallel to the plane
must, to maintain a constant speed up the plane, be
equal to the component of the weight parallel to the
plane plus the force of friction. The force of friction
being equal to the product of the normal pressure
and coefficient of friction, we have

Fcoso=Wsin0 + pR; . . . (6)
where g is the coefficient of friction. Substituting
in equation® (6) the value of R as given in equation

(5), we obtain
Fcosop=Wsinb + pW cos 0 — pF sin p;
from which, solving for F, we find
gy Sind +p cos 0
_Wcosgo+,usingo' (7)_
The coefficient of friction is equal to the tangent of
the angle of repose. If we then represent, by 8, the
angle of repose, we have
_ sin B
k= Cos g
and substituting this value of g, in equation (%), we
obtain )
sin 0 + sin 8 os 0
F=W cos B
cos ¢ + sin 8 sin .
¢ cos 8 ¢

This expression reduces to

sin (0 + B)

F=Wcos(<p—ﬂ)'

©)
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From equation (8) it is evident, since the numerator
is a constant, that F is a minimum when ¢ and}
are equal, making the denominator a maximum.

To determine the pitch of the thread of a jack-
screw, having given the cocfficient of friction, suck
that its efficiency shall be a maximum. The thread
of the screw being an inclined plane and the applied
force acting parallel to the base of the plane, we
will first determine this force in terms of the weight
lifted and the coefficient of friction.

Let, in Fig. 26, F be the force required to move
the weight W at a uniform rate up the plane, and ¢
the angle of inclination of the plane. The total
normal pressure on the plane,
due to the weight W and the
- force F, is 4

R=R,+R,=W cos ¢+F sin ¢. (9)

The force component parallel to
the plane, being the sum of the

Fic. 26.

weight component parallel to the plane and the force
of friction, we have .

f=Wsine+pR. . . . 09
Substituting in equation (10), the value of R as given
in equation (g), we obtain

f=Wsine + pWcoso + nF sin ¢.
Dividing both sides of the equation by cos ¢, we have
F=Wtane+ pyW + nFtang;
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and solving for F, we find

F=W M. .. . (1)

I — ptang
o ) ) sin B
Substituting in equation (11), for g, the value cos p;

where 8 is the angle of reposc, we obtain

sing  sinp
cos  cosf
_ sinBsin g’
cos B cos ¢
from which
i sin (B + ¢) ) '
F = W—cos Gt (12)
If now d is the diameter of the screw, the height
through which the weight is lifted, during one revolu-
tion, is
h = mdtan ¢;
and since the work done by the screw is measured
by the product of the weight and hcight, we have

W,=Wmrdtane. . . . . (13)

The work done on the screw, during one revolution,
is
_ o Sin (B4 )
W,=F=nd = W—cos (ﬁ+¢)”d° .o (1)
The efficiency of any machine being the ratio of the
work done by the machinc to the work done on the
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machine, we find, by dividing equation (13) by equa-
tion (14),
W,  Wadtlany
W, T sin(@+¢)
cos (B + ¢)

from which
_singcos (B + ¢)
"= 5in( + ) cosg

(15)

Since, sin x cos y =

N

sin (x + y) + isin (x — ),

equation (15) may be written in the form of

_sin(B+2¢) —sinp,
M= Sin (8 + 2¢) + sinf’

from which
[ — 25sinp
sin (B + 2¢) + sin g

n= (16)

7 is a maximum, when the second term of the right-
hand member of equation (16) is a minimum; and
this occurs, since the numerator is a constant, when
the denominator is a maximum; and since 8 is a .
constant, thc denominator is a maximun when 8
+ 2¢ = go° Hence for 7 to be a mazimum

o ﬂ
¢ =45 —

Having given, the direction in which a vessel is to
sail, the direction of the wind, and furthermore, as
suming no drift and the sail a plane surface, to de-
termine the set of the sail such, that the component
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of the wind pressure producing motion, shall be a
maximum.

Let, in Fig. 27, cd be the direction in which the
vessel is to sail, and P represent in magnitude and
direction the pressure of the wind on the sail ab.
Resolving P into two com-

ponents, the component N ‘
e

parallel to the sail has no & £¢
effect in producing mo- k i
tion; and the normal com- IF
ponent is Fig. 27.
fo=Psin6. . . . . (17)

Now, resolving fb into two components, one normal
to the direction of the motion, which produces drift
and is here neglected, and the other, parallel to the
direction of the motion, and which produces the mo-
tion, is

F =fbsine. R € £
Combining equations (17) and (18), we obtain
F=Psinfsing. . . . . (19

Now, since the direction of the wind is fixed and also
that of the motion of the vessel, we have the angle
8 a constant, and further, since

e+0=5 . . . . . (20
we may eliminate one of the variable angles in equa-
tion (1g). Substituting in equation (19), the value of
¢ as found from equation (20), we obtain
4. F = P sin 0 sin (3 — 0);
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from which
F = P (sin 0 cos 0 sin g — sin® 0 cos p). . (21)
Since )
sin 0 cos 0 sin 8 = %sin 2 0 sin 8,
and also,

— sin® 0 cos 8 = i (cos 2 0 cos B — cos B);
equation (21) reduces to
F = ‘—12—) (sim 2 0 sin 8 + cos 2 0 cos B — cos B);
from which
P
=;[cos (20 —8) —cosBl. . . . . (22

Since cos f is a constant, the expression in the brace,
and hence F, becomes a maximum when 260 =5

and 0 = ¢ = g-, which determines the set of the sail

for the maximum force in the direction of motion.




CHAPTER IX

PENDULAR MOTION

ANY body free to vibrate about a'fixed axis under
the action of gravity is called a pendulum.

The period of a pendulum, or time of wibration,
represented by T, is the time required to pass through
a cycle, i.e., it is the time that elapses between any
two successive identical positions when the body is
moving in the same direction.

Half a period, or the time of an oscillation, repre-
sented by ¢, is the time required to pass through half
a cycle.

The amplitude of the pendulum is the maximum
displacement from the position of ¢
equilibrium.

Simple Pendulum. Assume, as
depicted in Fig. 28, a small particle
of mass m, concentrated at a point,
supported by a weightless cord -._
whose length is L. The force
acting vertically is constant and
equal to m g, and may be repre-
sented by the line ac. Resolving this into two

components, ¢ b, parallel to the motion, and bc¢ at
83 '

Fic. 28.
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right angles to the motion, or parallel to the sup-
porting cord, then the component producing motion is
ab=F=mgsin0. . . . . (1)
Since acceleration equals force divided by mass, we
have, for the acceleration along the arc
a=gsinb. . . . . . (2
If the angular displacement of the body be small, the
angle and sine are sensibly equal, and we have
ea=g6. . . . . .
But the displacement of the body from the position
of cquilibrium, measured along the path described
by the body, is proportional to the angular displace-
‘ment; hence, the acceleration is proportional to the
displacement, and the body has a simple harmonic
motion. Therefore

o
a=g0=‘—"T—zs; B 1)
where s is the displacement. But,
s =LG6;

and, substituting this value in equation (4), we have

_am
6-45-Lo,
and
L
T = 42°=;
ams
from which
L
T=27n4-.. (s)
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Such an arrangement as we have just been con-
sidering is called a simple pendulum. It is, however,
impossible to realize this condition practically; since
any support that may be used has weight, and the
supported mass is always a body of finite dimensions.

Physical Pendulum. Assume a rigid body, as in
Fig. 29, whose centre of mass is at C, supported by
an axis S, perpendicular to the
plane of the paper. Let the mo-
ment of inertia of the body,
whose mass is M, about the axis
S be I, then

Mgd=Iea; . . (6)
where M gd is the torque. Now,

d=rsin0,

where 0 is the angular displace-
ment from the position of equili-

F1G. 29.

brium, and r the distance from
the axis of suspension to the centre of mass. Hence,

Mgrsin0=Ia. . . . . (7

If the angular displacement be small, the sine and
angle are sensibly equal, and we may write:

Mgro=Ia; . . . . . (8
from which
_Mgro
=7 - - - (9

The body being rigid, the angular acceleration for all
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points is the same at any instant, and varies directly
as the angular displacement 6. But since angular
acccleration and angular displacement are to each
other directly as linear acceleration and linear dis-
placcment, it follows that every point in the body has
a simple harmonic motion; therefore,

Mgri0 4=
a=ar= gI == s (10)
But,
s =r0;
hence,
Mgnro 2
gI’ = 4T_u’ r0;
from which
I
— 2
T =4n Mgy
and

I
’ I Mr
T=2= .Mgr.=2n T .o (1)

Comparing equation (11) with equation (5), we find
that %’ takes the place of L; hence HI—; is the
length of the equivalent simple pendulum.

Such an arrangement as just discussed is called a
physical pendulum. The quantity M r is called the
statical moment; and the length of the physical pen-
dulum then is numerically equal to the moment of
inertia about the axis of suspension divided by the
statical moment.
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Kater’s Pendulum. The most accurate method for
determining the acceleration of gravity is by means of
a pendulum. But the only quantity in cquation (11)
that is readily determined by experiment is the
time.
1t is, however, possible by employing a Kater’s, or
reversible pendulum, to determine the length, without
knowing the moment of incrtia or statical moment.
The following discussion will make this clear.

In Fig. 30, let ab be a rigid rod sup- a
porting the two unequal masses m, and <[]>m1
m, and let M be the mass of the whole 1 s

i

L_0

lum is <D>m,
L= L, .o (12)

Mr ’ b
Fie. 3o0.
where I, is the moment of inertia of the

system about the axis S, and r the distance from
the axis S to the centre of mass.
But, as has been previously shown,

system whose centre of mass is at C. Let
this system be supported by an axis S, then
the length of the equivalent simple pendu-

e

I,=1.+Mr
where I, is the moment of inertia about a parallel

axis through the centre of mass. Hence, we have

. I.+MPr
L—T. . . . . (13)
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If the pendulum be now reversed and suspended
by the axis O, parallel to the axis S, and at a dis
tance L from it, we will have for the new length

_Ic+M(L—-r).’
L, = MEL-n (14)

From cquation (13), we have
I.=MrL-Mr=Mr(L —r).

Substituting this value, for I, in equation (14), we

obtain
_Mr(L-1+M(L-r1)?
- ML -7 ’

L,

from which
Li=r+L—-—r=L . . . (1)

Showing that the length is the same, and therefore
the time of vibration is the same when vibrating about
the axis S as it is when vibrating about the axis O,
at a distance L from S.

If, therefore, we take such an arrangement, as
depicted in the figure, and adjust the axes S and
O, until the time of vibration about the two axes is
the same, it becomes necessary only to note the time,
and measure the distance L; then by equation (5)
g may be calculated.

Ballistic Pendulum. Assume a body, Fig. 31, such
as ab of mass M, and centre of mass at C. 1If
a force F be applied to the body at a distance x
from the centre of mass C, the effect of this force
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will be to produce a linear acceleration; which is

o F
a ==

vlg M

o]

Further, there will be an angular accelera-
tion about the centre of mass; which is

-R ———4(--‘
4
)

_Fax

I )

1
——

H
|’

F

k) where I, is the moment of inertia
Fic. 31 about the axis through C. The con-
dition for the point S to be at rest is
a=ar,;
where r is the distance between the points S and C.
Substituting for ¢ and «, as given above, we have

F Fxr,
M-I
from which
x = I,
Mr

But L, the distance from S to the point of application
of the force F, is (x + r); therefore,

L, _L+ur
. T My T Mr

But (I, + M r? is the moment of inertia of the body
about the axis through S, hence

1,

L=Mr'
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Showing that the distance from the axis of suspen-
sion, where a blow must be struck, so that there shal
be no jar on the axis, is the length of the equivalent
simple pendulum; hence, the axis of oscillation is
also the axis of percussion.

Graphical Representation of the Pendulum. Con-
sider any irregular body, such as
is depicted in Fig. 32, having its
————— centre of mass at C, and suspended
\\ by an axis through .S, perpendicu-
\“' lar to the plane of the paper. If
I its moment of incrtia about an axis,

// parallel to the axis through S, and
\\\\\\ - passing through the centre of mass
C is I, and the distance from the
centre of mass to an axis of sus-

F1G. 32.

pension is e, then by a previous
equation the length of the pendulum is

I.+ Ma*,
L=

where M is the mass of the body.

If now, with C as centre and ¢ as a radius we
describe a circle, then the axis of suspension may be
taken anywhere on the circumference of this circle
for a constant time of vibration; for, the expression
for the length of the pendulum is obviously constant.

Let, now, O be thc axis of oscillation, then if we
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describe a circle with C as centre and b as radius, b
being the distance from C to O, the time of vibration
of the body when suspended at any point on the cir- -
cumference of the circle whose radius is & will be
constant and the same as when suspended on the
circumference of the circle whose radius is ¢; and
the length of the pendulum is

L=a¢+5b . . . . . (16
Also I.+Ma I.+MP
L= cMa - ch S ¢ £/))

Taking, now, thc general equation for the length of
the pendulum and writing it in a different form, we
have

I.

L=Ma

+a . . . . (18

since I, and M are constant for the body under con-
sideration, then if ¢ be varied and approach infinity
for its value, L approaches infinity for its value; and,
if a approach zero for its value, L again approaches
infinity for its value. But, for any other values of
e, L will have a finite value. We will now show
that L is a minimum when @ = 5. Let

I, = M K?
where K is the radius of gyration with respect to the

centre of mass, and is that distance from the centre
of mass where the mass of the body would have to
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be concentrated at a point so as to have a moment
of inertia I,. In general

K=J%.. N )

Let in the triangle O S 4, Fig. 33, SO be the length
of the pendulum, ¢ and b, respectively, the distances
from the centre of mass to the axis of
suspension and oscillation. Erect a per-
o pendicular at C, and make it equal in

-3

Y length to K, the radius of gyration for
5D the body about an axis through the
4 centre of mass C. We then have
0FIG. 33. I,=1.+Ma*=MK?
+Ma*=M @@+ K%, . (20
and

I,=I,+Mb =MK*+M¥b¥ =M@ +K); . (21)
where I, and I,, respectively, are the moments of
inertia with respect to the axis through S and O.

By construction, we have

@+ K= Pz )
~and

B+ K= qz;
hence, by substituting in equations (20) and (21), we
obtain . .

IL=Mp, . . . . . (22
and

IL=M¢ . . . . . (23
From equations (22) and (23), it follows that p and
g, respectively, are the values for the radius of gyra-
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tion for the body when suspended by the axis through
S, and when suspended by the axis through O.

Since L, which is equal to (¢ + b), is the same
whether the body be suspended by an axis through
S or O, we have

and
%l{_qb’ =a + b

Therefore :

pP=a+ab,
and

¢ =ab+ b
from which

P+ =@+0b%. . . . (29

Equation (24) shows that the angle SA4 O is a right
angle. Now, ¢ and b are variables and K is a con-
stant, and as has been previously shown, the hypothe-
nuse of a variable right triangle, when the perpendicular
distance from the vertex of the right angle to the
hypothenuse is fixed, is a minimum when the hypothe-
nuse is divided equally and is double the perpendicular.
Therefore, the minimum length of the pendulum is

L,=2K. . . . . . (25)

Equivalent Mass of the Pendulum. The equivalent
mass of the pendulum must be a mass of such value
that if concentrated at the point O, its moment of
incrtia with respect to the axis through S is the same
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as that of the body under consideration; and when
reversed the mass concentrated at S must have a
value such that its moment of inertia with respect to
an axis through O, is the same as that of the body;
and further, their relation must be such that their
centre of mass falls at C.

Let m, represent the mass to be concentrated at 0,
and m, the mass to be concentrated at S; then

mo(a+b8>=M(@+K) =M (@®+abd),

and
Ma
° a4+t (26)
Again
my(@a +0)*=M(@®+K) =M@ + ab),
and
m, = M (27)
T a+b 7

From which, by adding equations (26) and (27),

a b
a+b+a+b

mo+my = M ( ) =m.

To have the same centre of mass the moments about
C must be equal; i.e., m,a should be equal to m, b.
Multiplying equation (26) by b and equation (27) by
a, we find the two expressions equal. Therefore the
statical and dynamical conditions are completely ex-

. a .
pressed by assuming two masses; M P situated

at O, and M situated at S.

a+b
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Conical Pendulum. Assume, as in Fig: 34, a mass
m supported from an axis O, and caused to rotate
such that the supporting cord L describes a cone.

The mass then moves in the cir- °
cumference of a circle of radius /i
7, and the horizontal force acting // E
upon the mass is mrv’; where v / ih
is the speed in the circumfer- ‘///""T‘\ me?
ence of the circle described by ‘~=Li‘\"“"“
the mass m. 77
The vertical force is m g, and Fio. 34.

the condition of equilibrium is
given by the fact that the direction of the supporting
cord prolonged is the diagonal of the parallelogram

2
constructed upon the forces

and m g as sides;

from the similarity of triangles

mTvz:mg::r:h.

From which
_mgr _gr
h—m'v’-'v"' ... (28

Let, now, n be the number of revolutions the mass
makes per unit time in the circumference of the
circle, then

v=27nrmn,

and
V=47 rnd
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Substituting this value of w, in equation (28), we
obtain

__&” _ & . =
=m0 W

or, writing this in another form, we obtain

_x e
n=—\Np - (30

This is the equation for the conical or centrifugal

governor.

Since the time of a revolution is T' =_%, it follows
that L
h

T=2=n \l——. Ce .. 1

; (31)

If, now, r be small, so that # and L are sensibly
cqual, equation (31) becomes

T=2z\l—§. N )]

Showing that the period of a conical pendulum of
small amplitude is equal to that of a simple pendu-
lum of small amplitude.



CHAPTER X

FALLING BODIES AND PROJECTILES

SiNce the acceleration of gravity is sensibly a con-
stant for ordinary heights above the earth’s surface at
any specified place, it follows that the formule de-
duced in Chapter I, for uniformly varied motion
apply equally for bodies moving under the action of
gravity; it only becomes necessary to replace a by
g; where g is the acceleration due to gravity.

Making these substitutions, we obtain:

v =U+gt . . . . . (D
v, — %,
= ';2'—g—‘, Ce e e (2)
t2
h=v,¢+ %; N €))

7, being the initial, and v, the final velocities, ¢ the
time, and A the height.
If the initial velocity be zero, these formule become,

v=g¢t . . . . .. (4
h = 2Lg’ B ()
A L )

The relation between velocity and height is given

by farmula (5); i.e., to produce a velocity v a body
97
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must fall from a height % such that v = v/2 g k; and
similarly to rise to a height &, the body must be pro-
jected with a velocity v such that the same relation
subsists. The time is fixed by either equation (4)
or equation (6), depending upon whether v or ki
given.

If a body be projected horizontally, its range de-
pends upon its initial velocity, and height above the
carth’s surface; whereas, if it be projected vertically
the height to which it will rise depends solely upon
the initial velocity.

If the body be projected so that its initial velocity
is inclined to the horizontal its height and range both
depend upon the magnitude and direction of the
initial velocity.

If V is the initial velocity and 6 the angle of in-
clination, then the horizontal and vertical components

arc given as follows:
u ="V cos 0
. oAt )
v=Vsinb
where # is the horizontal, and v the vertical com-
ponent.'

The time required by the body to reach its highest
point is ¢ = ;—’; and since, in falling, an equal in-
terval is consumed, the total time, or time of flight is

2V sin 0. . @

T 2Y_
8 8
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Since the horizontal component of the velocity is
constant, the range is numerically equal to the pro-
duct of the time and horizontal component. Desig-
nating the range by R, we have
R=ﬂ)1"___2'V’sin0cbs’0n ©)
4 4
This is a maximum for a given speed, when the
angle of inclination is 45°; since the product of the
sine and the cosine of an angle is a maximum when
the angle is 45°.

The actual velocity at any instant is numerically
equal to the square root of the sum of the squares of
the horizontal and vertical velocities at that instant.

Designating this by v,, we have

v=vVu+@w-—gdh, . . . (10
which is a minimum, and equal to % when at the
highest point; since at that instant (v — g#)= o.

To obtain the equation for the path of the projec-
tile, we let x equal the horizontal distance, and y the
vertical distance; we then have

x=ut . . . . . . (11)

and
2

y='ut—-g7t. S ¢ £3)

Substituting in equation (12), the value of ¢ as found

in equation (11), we obtain
u’y=uvx—‘§x’; ... (13)

which is the equation of a parabola.



CHAPTER XI

ELASTICITY

Force has been defined as that which changes or
tends to change the rate of motion of a body. But
since to every action there is an equal and contrary
reaction, it follows that there can never be a single
force.

The mutual interaction of bodies changing or tend-
ing to change their rates of motion is called a stress;
or, in other words, force is a stress considered in one
of its aspects. '

Heretofore, we have been considering bodies as be-
ing perfectly rigid. This is never the case. When-
ever a body is under the action of a stress, there
is produccd- a change in dimensions; which may be
a change in volume, a change in shape, or as is
usually the case, a change in volume and shape. This
change is called a strain.

It is the result of experiment, known as Hookes
Law, that when a body serves to transmit a stress,
then up to a certain limit, the strain produced is
proportional to the applied stress; beyond this limit,
the strain increases at a greater rate than the applied
stress.

The force of restitution, or the resistance which a
100
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body offers to a stress producing deformation, is
ascribed to its elasticity. Bodies which recover their
original form upon the removal of the applied stress
are said to be perfectly elastic. If, however, a body
be deformed beyond the limit for which Hooke’s Law
holds, it will not return to its original size and shape.
That point where a body ceases to obey Hooke’s Law
is called the elastic limit. '

The ratio of the applied stress to the corresponding
strain in a unit of a body is numerically equal to its
modulus of elasticity.

There may be specified:
(1) Elasticity of traction.
(2) Elasticity of torsion.
(3) Elasticity of flexure.
(4) Elasticity of volume.

Modulus of Tractional Elasticity. If a body of
cross section A, and length Z is subjected' to a stress
S tending to compress or elongate it, then, up to
the elastic limit, it is found that the elongation e, is
directly proportional to the product of the applied
stress and length, and inversely proportional to the
cross section. In symbols

and
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where p is the modulus of tractional elasticity; and
may be defined as the ratio of the stress per unit
area to the corresponding strain per unit length.
Elasticity of Torsion. Theory indicates and experi
ment verifies that when a cylindrical body of radius
r and length L be clamped at one end, and the other
end be subjected to a couple G whose axis is the
axis of the cylinder, then the amount of twist, or
torsion 6, is proportional to the product of the couple
and the length, and inversely proportional to the
fourth power of the radius. In symbols
0 oc (H'
The exact relation, between the various magnitudes, is
given by the formula
0-—-:’%; S )]
where # is the modulus of rigidity. ~Writing this in
another form, we have
n=ﬂ. O )
Ornr *
The modulus of rigidity n, may be determined in
two ways, one is by direct measurement; i.c., by
subjecting a cylindrical body of known length and
radius to a given torque and measuring the amount
of torsion. These values substituted in equation (3)
determine #. By taking a number of observations
and plotting a curve, torques as abscisse and
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amounts of torsions as ordinates, the limit of elas-
ticity may be determined by noting the point where
the curve departs from a straight line.

The modulus of rigidity may also be determined
by clamping at one end a cylindrical body of known
length and radius, and suspending from it a mass
whose moment of inertia is determinate, and deter-
mining the period of the suspended body when vibrat-
ing about the axis of the cylinder. :

Let = equal the moment of torsion; 4.e., the moment
of the couple which will twist the body through one
radian. Then, since the amount of torsion is pro-
portional to the torque, it follows that

0r=G=Iea;. . . . . (8
where I is the moment of inertia of the suspended
body, and a its angular acceleration. This being
the case it follows that the torque tending to restore
the vibrating body to equilibrium is directly propor-
tional to the angular displacement. And, since angular
di-splacement and angular acceleration are directly
proportional to linear displacement and linear accel-
eration, it follows that every point in the body has
a simple harmonic motion. From this, it follows that

2
a=%0.' N ()
But, from equation (4), we have
Ia

)
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Substituting in equation (6), the value of « as given
in cquation (5), we obtain '

(4
=451 0
Now
2
G=or=4T”, I0.

Substituting this valuc of G, in equation (3), we ob-
tain

8=nIL

A (8)

n =

If, in place of T, the time of .vibration, we usc ¢ the
time of an oscillation, equation (8) becomes

_2zIL

2 ()

From equation (7), it is seen that if the moment of
torsion of a given wire be known, then the moment
of inertia of the vibrating body is determined, no
matter how irregular, providing the time of vibration
is found. It is, however, not necessary to know the
moment of torsion of the wire, provided we first de-
termine the time of vibration of the body whose mo-
ment of inertia is sought, and then joining with this
a body whose moment of inertia is known (or can be
computed from its dimensions and mass), and again
determining the time of vibration.

" Let I, be the moment of inertia of the first body,
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and T, its time of vibration; then, by equation (7),'
we have ‘

2
r=‘¥:l[,.. B ¢ {9))

If, now, we join with the body whose moment of
inertia is I, a body of moment of inertia I, and find
the time of vibration T',; then, sincec the momert of
torsion is a constant, it follows that

_ 4T
T = T‘,(I’+D' .. o (11)
Combining equations (10) and (11), we obtain
I, I +1
Tzl - Tz2 )
from which
,
Iz = —IT_'—I,—ZI I . . . (12)

Elasticity of Flexure. Assume, as in Fig. 35, a
rectangular beam, of width & and depth 2d, bent

into the arc of a circle. Then the innermost fibres
will be compressed, and thec outermost fibres will be
clongated; and, if the material offers the same resist-
ance to compression that it does to clongation, the
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amount of compression of the innermost fibres wil
be equal to the amount of elongation of the outer-
most fibres; and furthermore, the amount of com-
pression at any section at a distance x from the
concave surface will be equal to the amount of elonga-
tion at a distance x from the convex surface; and at
a distance d there will be neither compression nor
elongation. A plane passed through the beam mid-
way between, and parallel to the two surfaces, wil
not change in length when the beam is bent. This
plane is called the mewiral plame. If the resistance
offered to compression is not the same as that offered
to elongation, then the neutral plane will not fall
midway between the two surfaces.

Let L, be the original length of the beam, and R
the radius of curvature of the neutral plane, then

L,=R6; . . . .-. (13
where 0 is the angle at the centre.

The length of the outermost fibre, after bending,
becomes
L=R+ad80
=R6+d0. . . . . (19
Subtracting equation (13) from equation (14), we
obtain the elongation; ..,

e=L—L,=d60. . . . . (1)
But, by definition

(16)
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vhere s is the stress per unit area. Substituting in
«quation (16), the values of L, and ¢, as given by
:quations (13) and (15), we obtain

__sR0__s_Ri_
F="g9 =’
rom which
_ud,
s =% B € &)

vhich is the expression for the stress per unit area
>»n the concave and convex surfaces.

In like manner the stress per unit area, at any
listance x from the neutral plane, is

s,=/%f. Coe e (18)
That is, the stresses at any section vary directly as
he distances from the neutral plane; and, since they
1ave opposite signs, on opposite sides of the neutral
slane, it follows that they constitute a torque, or
urning moment, about the meutral axis. The neutral
ixis is defined by the intersection of the neutral plane
with the section under consideration.

Let the beam whose width is b and depth 2d be
livided, as in Fig. 36, into a number of sections of

width & and indefinitely small depth '—‘f, such that

the stress throughout the depth of the section may be
considered constant. If s is the stress per unit avea
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on the outermost fibre, or ‘“skin stress,”” then the
stress for unit area at a distance x from the neutra

Fic. 36.

.. x
axis is, §7; and the stress for the element whose

width is b, and depth :i-;, at a distance x from the

neutral axis, is
s s pd ( b i) =s%a;
z d n/  "d’
where a is the area of the section; and the turning

moment of the section is

m="2g
= 7%

If, now, we denote the distances from the neutral
axis to the various clements by x,, x, x, etc., the
arcas for the corresponding sections by a,, a,, a,, etc,
and by M the turning moment of the whole section,
the turning moment, on one side of the neutral axi,
then becomes

M
S MMt my + m,
s s s
=Ex’lal+zx’._,a2+ ...... +Zx’,.a,,;
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that is,
M s
S = 7@he +wha +ahe + &% a4);

and the turning moment for the whole section is,

M=%(x2!al+x’2a,+x’3as+ ...... + *’p ay)

s
=Zz£x‘a..........(19)

2 3 x’a denotes the result obtained by multiplying
each eclementary area by the squarc of its distance
from the axis. It is the importance of the area with
respect to the ncutral axis, and may be appropriately
called moment of area. In most text-books it is called
moment of inertia and designated by I. This, how-
ever, is not a well-chosen expression, since it has
nothing to do with inertia. To distinguish moment
of arca from moment of inertia we shall denote the
former quantity by 74. We then have

s

M=3

Iao . o . . . (20)

Substituting in equation (20), the value of Es as

obtained from equation (17), we have

Mé%‘.. L 21)

The moment of arca may rcadily be found for all
regular figures by intcgration.
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It is possible to find this quantity, in certain cases,
without the aid of the calculus; but all such methods
arc cumbersome. As a matter of illustration, the
moment of area of a rectangular figure of width B
and depth 2 d, will here be determined about an axis
lying in the plane of the figure and half way between
the top and bottom edges.

In Fig. 37, let OO be the axis, and assume the
rectangle to be divided into an indefinitely large
number of strips of equal width, whose edges are all
parallel to OO; then the width

B
of each strip is indefinitely small
¢ | and equal to Q, where 7 is
o 0 n

d the number of strips for the

half rectangle.
The moment of area of any

Fic. 37.

strip at a distance x from- the
axis is, by what has been previously shown, cqual to
the product of arca and square of distance from
axis; in symbols

ia=Bd;x’;. B (1))
and the moment of area, of half the rectangle, be-
comes

I . Bd ’
L I ORI e

where x,, x,, x,, etc., are the respective distances for
the 1st, 2d, 3d, etc., strips from the axis.
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Substituting for x,, x,, x,, etc, their valnes; namely:

d 2d 3d .
ol R etc., equation (23) becomes
I _Bd(& £+£+__,_+-Ff)
2 n ' 2 ' 2 =
B& .
=?-(I+4+9+....+r). .. {20
Now, the series, '+ 22+ 37+ ....:.+# L

n I e e e 4
equaltog(n+1)(n+;). But, if » is indea-
nitely large, all quantities such as 1 and 2 vanish

with respect to it, and the sum of the series equal;

3
%. Substituting this value, in equation (21), wc

obtain
I, B&,

Pl
and the moment of area of the whole rectangle, with
respect to O O as an axis, is

=222 . @
3

Deflection of a Rectangular Bar Clamped at one
En&.' Assume a bar of length L, width B, and depth
D, to be clamped rigidly at one end and have applicd
to it a force F, at the free end normal to the surface,

as depicted in Fig. 38.
From equation (21), it is seen that the radius of

curvature of a bent beam varies inversely as the turn-
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ing moment. But at any section of a beam that is
in equilibrium, the turning moment due to the inter-
nal forces must be equal to the dending moment due
to the external fcrces. Now, the bending moment for
a beam fastened at one end, and an applied force at

A2

Fic. 38.

the other, varies directly as the distance from the
free end. It thercfore follows that the curvature
varies; and is zcro at the free end and a maximum
at the clamped end. For a distance x from the
applied force, we have for the radius of curvature

_tla _ply
R, = M, " Fax (26)
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Assume the beam to be divided into a number of
equal lengths, each equal to 5; # being an indefi-

nitely large number, so that the curvature may be
assumed constant for cach element.

The angle at the centre for an element at a dis-
tance x from the applied force is

L FxL
T AR, mply

If the total deflection is small, then the deflection

0,

due to an element is very small and equal to the
product of the angle and distance from the free end; i.e.,

(27)

But the total deflection is equal to the sum of the
partial deflections; that is

0=0,+0d+0+...... + On;
where 0,, J,, J,, etc., are the deflections due to the

elements at distances x,, %, x; ctc., from the free
end. Hence, we have

FL

a=ﬂ[lIA

(P 4 o+ e, +a%). . (28)

Now «,, «, x, etc, are respectively equal to

L 2L 3L . . . .
Pl 3’7 etc.; making this substitution, in equa-

tion (28), we have
_ FL L* 4L* ol n L\
_ﬁﬂ(m ol e RPPREP + ),
8
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from which
FL3 y
8—m(1+4+9+-...+”).. N (29)

But, as previously shown, when n is indefinitely large

the sum of the series, in equation (29), becomes equal

3
to % Making this substitution, we finally obtain

_FL
3ely

Equation (25) gives I4 = %ﬁ In deducing this

(30

formula the depth of the beam was designated by 24;
if, in place of this, the depth be designated by D,
equation (25) becomes

B D?

12

(31)

Is =

Substituting, in equation (30), for I, its value, as
given in equation (31), we have

= ;-.E-D_s' . e e e (32)

This shows that when the deflections are small, they
vary directly as the force and the cube of the length,
and inversely as the width and the cube of the depth.
These deductions are fully verified by experiment.
Consider, now, a rectangular bar of length L, width
B, and depth D, supported at both ends and a force
F applied at its middle section producing a deflection
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d. Since the bending moments at any two sections
of the bar, on opposite sides of the middle section,
and at cqual distances from the point of support are
cqual, it follows that the curve assumed by the bar
is symmetrical with respect to the middle section.
This is obvious from Fig. 39, L being the length of
the bar, and the force F being applied at a distance

g from either point of support, it follows that the

Fic. 39.

reaction on either support is > and therefore, the

bending moments, at equal distances from the points
of support, are equal. Furthermore, the tangent to
the curve at the middle section is parallel to the
original position of the bar. The deflection, therefore,
is the same as would be produced if the bar were

clamped in the middle and subjected to a force 1;

at the end; the length of the bar being é Making
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these substitutions in equation (32), %.e., substituting
F L .

for F, Y and for L, 5 we obtain

FL®
= 2BD* (33)

By equation (31)
1214 = B D5,
Substituting, in equation (33), for B D?® its value, we
have
FL3
= 28ala (34)

Equations (30) and (34) show that, other things being
cqual, the deflection varies inversely as the moment
of area of the section. But, since the moment of
area of a section is found by taking the sum of the
products obtained by multiplying each elementary area
by the square of its distance from the neutral axis, it
follows that for any given sectional area, the moment
of area may be increased, and the deflection decreased,
by distributing the material in such a manner that
the greater part of it is at a maximum distance from
the neutral axis. It is for this reason that a plate
will support a greater load turned edgewise than when
lying flat; and for the same reason an I beam of
given sectional area will support a greater load than
a rectangular beam of equal scctional area.

Elasticity of Volume. Liquids differ from solids,
since solids offer resistance to changes i form; and
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liquids, such as water, gasoline, alcohol, etc., offer
practically no resistance to changes in form; but they
do, like solids, offer resistance to changes in volume.
As an example, water always takes the form of the
containing vessel; but, to bring about a diminution
in volume without change of temperature, a pressurc
must be applied. Experiment shows that the change
per unit volume is directly proportional to the change
in the applied pressure; i.e.,

v

v <
where V is the original volume, » the diminution in
volume, and p the applied pressure per unit area. Re-
writing, we have

pV
el U a constant;

<HQ

where p is defined as the modulus of voluminal
elasticity. For water, the modulus of voluminal
elasticity is found to be about 300,000 lbs. per sq. in.;
whereas, for stecl, the modulus of tractional eclasticity
is about 28,000,000 lbs. per sq. in.

Gases. Like liquids, gases offer no resistance to
changes in form; but differ from liquids, inasmuch as
a liquid merely takes the form of the containing
vessel and a gas tends to fill the whole space in
which it is enclosed. That is, as the pressurc on a gas
is decreased, the volume continually increases, and
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finally, if the pressure be made indefinitely small, the
volume becomes indefinitely large. At constant tem.
perature, for the so-called permanent gases, such as
air, hydrogen, oxygen, etc., the volume varies inversely
with the préssure; or, in other words, the product
of pressure and volume equals a constant. This is
known as Boyle’s law. In symbols

pv=Fk . . . . . (3
where p is the pressure per unit area, v the correspond-
ing volume, and % a constant, whose numerical value
depends upon the units chosen.

Assume now, the temperature rcmaining constant,
that the pressure receives an indefinitely small incre-
ment A p, in consequence of which the volume suffers
a change equal to — A v; hence, since the product
of pressure and volume is constant, we have

G+Ap0w— a7 =F
Expanding
pv—porv+vAap—ApAv=F . (30
Subtracting equation (35) from ecquation (36), and
rearranging, we obtain
A
”Z_f:=1’+ Ap . ... @)

If we had assumed a decrement in pressure and 2

consequent increment in volume, we would have found

the following:
A

>

|

=p—-—Ap . . . . 39

v

g
Q
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Now, the nearer A p and consequently A v approach
zero for their values the nearer the left-hand members
of equations (37) and (38) approach the ratio of the
change in pressure to the conespoﬂding change per
unit volume; and in the limit, just as the pressure is
beginning to suffer a change, the right-hand members
are equal to each other, and necessarily equal to p,
and the left-hand members are rigidly equal to the
ratio of cha.ngé in pressure to the corresponding change
per unit volume. Therefore, the modulus of vo-
luminal elasticity of a gas obeying Boyle’s law is
numerically equal to the pressure. '



CHAPTER XII

STATICS

It was stated, in Chap. IV, when dealing with the
principle of moments, that experiment shows, that the
tendency of a given force to produce rotation about
an axis is independent of the point of application, but
depends solely upon the intensity of the force and its
arm. Assume, as depicted in Fig. 40, the two non-
parallel coplanar forces ab, and cd, applied to a
rigid body perfectly free to move; the points of ap-
plication being @ and ¢. Since the tendency of a

A force to produce rotation is

/0\ not altered by shifting the
// \\g point of application along the
/ N line of direction of the force,

L3 / :
A ///\ the two forces, ab and cd,
[ \ / .
\ / may be replaced, respectively,
by the forces O g and O};

where O g = ab, and Ok =
FIc. 40. c¢d, and O is the point of in-

tersection of b a and d¢
produced. Now, since neither force has an arm
with respect to an axis through O, there can be
no rotation about this axis. If then a third force,

lying in the same plane cqual in magnitude to O 5
120
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which is the vector sum of ab and c¢d, be ap-
plied along the line Of, but opposite in direction,
the tendency of the forces @b and cd to produce
linear acceleration will be balanced. Since the three
forces have no tendency to produce either an angular
acceleration about an axis ihrough O, or a linear
acceleration of the point O, the three forces are in
equilibrium. If, on the other hand, a force equal to
O f, and opposite in direction, whose line of direction
does not pass through the point O, be applied to the
body, there will be no tendency to produce linear
acceleration; but there will be a tendency to produce
angular acceleration, since the two forces constitute
a couple. Hence, for three non-parallel coplanar
forces to be in equilibrium, their lines of direction
must intersect af a common point, and the intensity of
any ome of the three forces must be equal and opposite
o the vector sum of the two remaining forces.

Force Polygon. It was shown, in Chapter III,
that the resultant of two or more concurrent coplanar
forces may be found by vector addition. That is, if
we begin at any point O, and draw, assuming a cer-
tain scale, a line in the direction of one of the forces,
and from the terminal of this line draw a second line,
representing to the same scale and in a proper direc-
tion a second force, and from the terminal of this
seccond line, a third linc representing in a similar
manner a third force, and continue in fhis Toanner
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until all the forces have been represented, the line
then joining the point O and the terminal of the last
line drawn, represents in direction and magnitude the
resultant of all the forces. And for the system of
forces to be in equilibrium, a force equal in magnitude
to the resultant and opposite in direction must be
applied on the line of direction of the resultant.
From this, it follows that if a number of coplanar
forces are in equilibrium, and a vector diagram be
drawn, as just described, the resulting figure is a
_closed polygon. ‘This may be further illustrated as
follows: Assume the forces, F,, F,, Fy, . . . ... F,
when plotted as just described, to form the closed
polygon O, 9, ¢, . . . ... u, as depicted in Fig. 41.
The line R,, joining the points O and ¢, represents
the resultant of the two forces F, and F,, and there-
fore may replace these two
forces; similarly, the line R,
represents the resultant of
R, and F,, and therefore
may replace them. Con-
tinuing in this manner therc
finally remain the threc
forces, R,, F,, and F,; but
the resultant of R, and F,
is equal and opposite to F, and passes through the
point O; hence the system is in equilibrium.
Funicular Polygon. The figute assumed by a
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closed flexible cord when in equilibrium under the
application of a number of coplanar forces is termed
a funicular polygon. Let, as in Fig. 42, the forces
F,F,F,...... F,, which are in equilibrium, be
applied to a closed flexible cord in such a manner
that the cord assumes the form of a polygon, O, p,
Qoo u. The two following statements may

then be made. (1) The system being in equilibrium,
the applied forces, F,, F,, F,,......F, must
give a closed polygon. (2) Since all points of applica-
tion are in equilibrium, the vector sum of the three
forces at these points must be zero; i.e., the applied
force F, must be equal and opposite to the resultant
of the two stresses in the cord, viz., S, and S,; like-
wise, the applied force F, must be equal and opposie
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to the resultant of the stresses, S: and Ss; likewise
for F;, etc.

Ray Polygon. If now, in Fig. 43, we lay off the
force F,, then S; and S; must form a triangle 1 O 7 with
F,; laying off from the terminal of F, the force F,
then S; and S; must combine with it to form the tri-
angle 2 O 1. Hence the two triangles 1O 7 and 201
have the side S; in common. Likewise, if we lay off the
force F; from the terminal of F; and combine with it
the two stresses S: and S; we obtain the triangle 302,
having the side S: in common with the triangle 201.
Proceeding in this manner it is found that each tri-
angle has one side in common with the triangle
preceding; hence, since the force polygon closes, the
lines drawn from the points 1, 2, 3, etc., parallel to the
stresses Si, Ss, Ss, etc., must meet in a point O, termed
the pole; and the lengths of the lines radiating from
the pole determine the stresses in the sides of the
original polygon.

A little consideration will show that if the applied
forces acting upon a closed cord are in equilibrium
and their directions and magnitudes are known, then
the assumption of the directions of two consecutive
sides of the polygon determines the directions and
stresses for the whole polygon; also, if the shape of
the polygon and the directions of the applied forces
are given, then the assumption of the magnitude of
one of the applied forces determines all the others.
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The foregoing demonstration holds equally well for
an articulated frame, when in equilibrium under the
action of forces applied to the joints. The only
difference being that some or all of the members may
be under compression instead of, as in the case of
the cord, under tension.

From what has been said about the force polygon,

.

it is clear, that if the forces acting on a frame are

Fic. 44.

not in equilibrium, then the closing side of the poly-
gon determines the direction and magnitude of the
equilibrant.

Assume, as in Fig. 44, the frame O, p, ¢, 1, s, ¢,
u, in equilibrium under the action of the forces F,,
F, F,, ......F,; and further, that two of the
sides, such as ¢7 and ¢s, are cut across. Since the
forces F,, F,, F,, F, and F, arc in equilibrium with
the two stresses acting along ¢ and s¢, it follows
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that the resultant of these two stresses is the equili-
brant of all the forces applied to the left of @ b; viz,
F,, F,, F,, F,, and F,, and must lie on a line passing
through the point ¢, the intersection of ¢r and is
produced. If we now draw the triangle of forces for
the two stresses S, S, and the force F,, and the
triangle of forces for the two stresses S; S,, and the
force Fy, the side S, will be in common, and there-
fore the two stresses S; and S; are balanced by the
two forces F, and F;. Hcence, the resultant of S,
and S; has the same magnitude and line of direction
as the resultant of F, and F; and its line of direction
must pass through the point j, the intersection of the
lines of direction of F, and Fi. _

If we have a given system of forces, such as F,
F, F, F, and F,, which arc not in equilibrium, the
magnitude and line of direction of the equilibrant can
rcadily be determined as follows: Consider the given
forces applied to the joints of an articulated frame
and assumc the directions of two consecutive sides of
the frame, such as O p and O %, this determines, as
previously stated, the directions and stresses for all
thc members of the frame; hence, S, and S; are
known. But, as has just been shown, the resultant
of S, and S; is the cquilibrant of the given forces.
If it develops that S, and S; are ncarly parallel, so
that it is impracticable to get the point of intersection,
then if we assume g7 and ¢4 to be cut by a third
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member, such as 7s, under an assumed stress S,, the
two forces to be applied at the joints r and s, namely
F, and F;, may be found. For, since S; and S, are
given in both magnitude and direction, F, is deter-
mined; and similarly F;. But, as has been shown in
the previous demonstration, the resultant of F, and
F; is the equilibrant of the given forces. The re- .
sultant of the given forces may, of c6urse, be found,
both in magnitude and direction, by the polygon of
forces; but this does not give the line of direction.

Parallel Forces. If the forces applied to the joints
of an articulated frame are parallel, then the force
polygon reduces to a straight line, and necessarily,
to be in equilibrium, the algebraic sum of the forces
must be zero.

Assume, as in Fig. 45, the three parallel forces
F,, F, and F; applied to the jointed frame at the
points b, ¢, and d; and further, that the frame is
supported at the points ¢ and e by the reactions
R, and R, parallel to the applied forces. The con-
ditions here represented are similar to a chain or
cable supporting weights. O p g is the ray polygon
obtained by constructing the triangle of forces
for the points d, ¢, and b, as previously described.
Since the point e is in equilibrium the three forces,
Ss S, and R, must combine to form a triangle; hence
by drawing O s, in Fig. 46, parallel to ae, in Fig. 43,
the stress S; is determined by the length of the line
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O's, and the reaction R, by the length of the line s .
Similarly the rcaction R, is determined by the length
of the line ¢s. Again, since one of the three forces,
acting at any point, is vertical, the horizontal com-
ponents of the stresses for the two adjacent members
must be equal and opposite. But, since all the ap-
plied forces are vertical, it follows that the horizontal

—hs
!

S

e e — D e

@

F1G. 45. F1c. 46.

component for the stresses throughout the frame is
constant, and is determined by the length of the line
t,, in Fig. 46; i.e., the normal from O to the line #g,
called the “polar distance.”

Uniform Horizontal Loading. If a perfectly flexible
cord, supported at two points, has applied equal
weights uniformly distributed between the points of
support, and the weight of the cord is negligible in
comparison with the weights, the curve assumed by
the cord is a parabola. The curve which a perfectly
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flexible non-stretchable cord, supported at two points,
assumes under its own weight is a catenary. The
equation of this curve, however, cannot be deduced
without the aid of the calculus. If, however, the
deflection is small in comparison with the length be-
tween supports, as is the case in a belt or cable drive,
such that we may, without appreciable error, assume
uniform horizontal loading, the equation is readily
determined.

Assume, as in Fig. 47, the half span %, to be
divided into # equal parts, and the deflection y, of
the cord a, b, ¢, to be so small, in comparison with

A ———— ———f— e —

8
°

of-—g——+

F1c. 47.

the span, that the weight of the cord for equal hor-
izontal distances is practically constant throughout. If
% be divided into an indefinitcly large number of

parts, such that 5 s very small, then in any triangle,

such as def, the chord and tangent practically coin-
cide, and the deflection is given by

x x x
y=—tan b, + —tan b, + ...... + —tan b,
n n n

= g—(tan 0, +tanb, +...... + tan 0,). . (1)
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Since all the applicd forces, namely the weights of
the various clements of the cord, act vertically, the
horizontal tension must be constant throughout. The
vertical tension at any point is equal to the weight
of the cord "included between the point b and the
point under consideration. If the tension in the cord,
at any point, be resolved into its two components, the
horizontal component will be a constant, which we
will denote by #,, and the vertical will be as jus
stated, the weight of the cord from the point b to the
point under consideration. But by assumption, we
have constant loads for equal horizontal distances;
hence, for the point f, the vertical component is
WELS
where w is the weight per unit length. The horizontal
component being constant and equal to #, we have
for the slope at f,

x
tan 0, = w3 .
ni,
In a similar manner, we find
x 2x nx
tan b, = w—, tan 0, = w—, tan 0, = w —.
! nt, 2 nt, ~ =Y

Substituting the values of the tangents in equation

wx
(1), and factormg the common part e we obtain

n’t (I+2+3+ + n)

=2nzt w+n. . . . . . @
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. . x
It is, of course, obvious that the smaller the length p

becomes, and consequently the larger # becomes, the
nearcr equation (2) represents the exact conditions.
Assume 7 so large that 1 vanishes in comparison with
it; equation (2) then becomes

wat
e N )]

y=

which is the equation of a* parabola.
We will now determine ¢, in terms of the total
span S, the corresponding deflection D, and the

Fic. 48.

weight per unit length. Since, in a parabola, the
subtangent is bisected at the vertex, we have in the

* Equation (3) is easily found by integration.  For any point whose
co-ordinates are x and y, the vertical component is w x; and the hori-
zontal component being /o, we have

dy wx,
tan ox—ﬁ_f’
from which
2%,
y_zto '

The constant of integration being found to be zero from the condition
that x = o, when y = o.
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triangle O g ¢, in Fig. 48, gb equal to 50; ie, Og
equal to 2D, Hence, we have

tan 0 = 4—5?—
But, since the slope is also equal to the vertical
component divided by the horizontal component, we

have

_4D _wS
tan 0 = RrYX
from which
‘ w S?
t, = S—D. B [ (4)

Three Forces Meeting in a Point. Problems whose
solutions involve the principle that three coplanar
forces to be in equilibrium must have their lines of
direction meet in a point, being of such frequent
occurrence it will be well to consider a few concrete
cases. The simplest case is that of a weight sup-
ported as shown in Fig. 49. The three forces meeting
in the point ¢ being: the tension in the member
supporting the weight W, and the stresses in the
members a¢ ¢ and bc¢, ac¢ being under compression and
bc¢ under tension. The point ¢ being in equilibrium,
the vector sum of the two stresses along ac¢ and b¢
must be equal and opposite to W, as shown by the
triangle of forces ¢ de; where ¢d and de are respect-
ively the reactions of the members b¢ and @c. Since
the triangles a b ¢ and ec d are similar, it follows that
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the stresses in the members, ac, ¢ b, and bc¢, are to
each other directly as the sides of the triangle formed
by the members. But the stress in e b is necessarily

=4

[ Pp——

k3

F16. 49.

equal to W. Hence, denoting the stress in ac by
S, and in bc by S, we have

W:ab::S,:ac,

from which _
' ac
S, = Wﬁ' N )
Similarly
s, - wbe ©)
2 - a bo . . - . .

The same results will, of course, be obtained if the
problem be solved by the principle of moments.
Taking moments, about the point @, we find

S; Xeg=WXac. . . . . (D
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But, the triangles a bc and g ac are similar; hence

_acXab
be -~
Substituting this value of a g in equation (7), we find
be
Sz = W a_b,

which is the same as equation (6). Similarly, taking
moments about the point b, we find
S, Xab=W Xac,

from which
ac

a_b’
which is the same as equation (s).

The moment tending to turn the support bm, ina
clockwise direction, about the point m, is

WXac=S,Xmi—S,h

S, =W

In order to balance this moment about the point m,
a tie rod b% may be used which must be under a
tension S, such that

Sy Xmj=WXac=8,Xmi— S, h.

Bar Supported by a Horizontal and Vertical Surface.
Assume.a bar resting with one end on a horizontal
surface, and the other against a vertical surface, in
such’ a manner that it lies in a plane normal to the
two surfaces. We have here three forces; i.e., the
reactions of the two surfaces, and a force, equal to
the weight of the bar, applied at its centre of gravity
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acting vertically downward. Remembering, that when
there is no friction, the reactions must be normal to
the surfaces, it follows that equilibrium cannot obtain
for perfectly smooth surfaces; for, in such a case,
the lines of direction of two of the forces are parallel
and the third acts at right angles to them. If, how-
ever, the horizontal surface is rough, equilibrium will
obtain, providing the normal reaction of the vertical
surface is not greater than the force of friction on
the horizontal surface. Assume, as depicted in Fig.
50, the bar @ b, whosc weight is W, and whose centre
of gravity is at G, having the end a resting against
a perfectly smooth vertical surface, and the end b, .
resting upon the rough horizontal surface O b. The
vertical surface, O @, being perfectly smooth, the re-

d Fic. so.

action R, must be normal to it. Hence, for equili-
brium to obtain, the line of direction of R, must pass
through the point ¢, the intersection of R,, and W.
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The magnitude of W being known, the two reactions
are found by constructing the parallelogram b d e f.
It is evident from the figure that as the angle g de-
creases, R, increases; but, for the equilibrium to obtain,
the balancing force due to friction must be equal and
opposite to R,. Since the greatest value the force of
friction can have is the product of weight and co-
efficient of friction, it follows that when the angle §
has been decreased to a value such that
R
=W‘ A ()

sliding will be impending. For all values of 8 less
than this, equilibrium is impossible. To determine
the critical value for the angle 8, 4.e., that value
when sliding is impending, take moments about the
point of support b. For equilibrium to obtain, we
must have

Wmcosp =R, bsinp; . . . (9
where m is the distance from the centre of gravity to
the point of support b, and ! the length of the bar.
From equation (g), we find
Wm
RV
and substituting for R,, its value, as obtained from
cquation (8), we obtain

tan =

tcmﬁ=;:ﬁl.. B € )

|
|

For all values of A greater than that given by equa- -

tion (10), equilibrium will obtain.



PROBLEMS

CHAPTER 1

1. A body moving uniformly passes over a distance of 10
feet in 2 seconds. What is its speed? How long will it take
totravel 25 feet?

Ans. 5 ft. per sec.; § sec.

2. A particle has a uniform speed of 30 kilometers per day.
How long will it take to travel 3,500 millimeters?

Ans. 10.08 sec.

3. A body starts from rest with a constant acceleration of
10 ft. per sec. per sec. Determine the distance passed over in
the 3d, 5th, and 7th seconds, and the total distance passed over
in 10 seconds.

Ans. 25 ft.; 45 ft.; 65 ft.; and 500 ft.

4. The velocity of a body changes uniformly from 1o ft. per
sec. to 25 ft. per sec. in 3 seconds. What is its constant ac-
celeration? When is its velocity 75 ft. per sec.? How long
will it have been in motion, assuming it to have started from
rest? What space will it have passed over?

Amns. 5 ft. per sec. per sec.; in 10 sec.; 15 sec.; §562.5 ft.

§. A body changes speed from 100 meters per second to 6o
137
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meters per second in going 40 meters. What is the acceleration,
assuming it to be constant? With the same acceleration, how
far will the body have moved before coming to rest? In what
time will it come to rest?

Ans. — 8o meters per sec. per sec.; 22.5 meters; o0.75 sec.

6. At a given instant a body is found to have a velocity of 200
ft. per sec. Ten seconds later it is found to have a velocity of
500 ft. per sec. What is its acceleration, assuming it constant?
What space did it cover in the 10 seconds?

Ans. 30 ft. per sec. per sec.; 3,500 ft.

7. A body starting from rest with a uniformly accelerated
motion passes over a distance of 36 kilometers in 2 hours.
What is its acceleration in cm. per sec. per sec.? What
was its velocity, and how far had it travelled, 15 minutes
after starting?

Ans. 5/36 cm. per sec. per sec.; 125 Cm. per sec.; §62.5
meters.

8. The velocity of a particle shanges uniformly from 3o ft.
per sec. to 20 ft. per sec. in passing over 25 ft. What is its
acceleration? How long will it be before coming to rest, and
what distance will it have traversed in that time, if its retarda-
tion is constant?

Ans. — 10 ft. per sec. per sec.; 2 sec.; 20 ft.

9. With what acceleration, and how far must a body-move to
have a speed of 30 m. p. h. in 30 seconds after starting from
rest? What retardation would destroy this speed in 10
seconds? How far would the body have travelled ?

Ans. 1.467 ft. per sec. per sec.; 1/8 mile; 4.4 ft. per sec. per
sec.; 1/24 mile.
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10. A body moving with a speed of 40 m. p. h. is re-
tarded uniformly and brought to rest in 500 ft. What was
the retardation in miles per hour per sec., and in feet per sec.
per sec.?

Ans. 2.346; 3.44.

11. What is the curvature of a circle whose diameter is eight
feet?

Ans. 1/4 radian per fopot.

12. The direction of motion of a particle is changed uniformly
by o.25 radians in passing over 5 feet. What curve has it
described and what are its dimensions?

Ans. Circle; 40 ft. diameter.

13. What will be the change in direction of a particle moving
10 ft. in the circumference of a circle 100 ft. in diameter ?

Ans. 11.46°.

14. What distance has a body moved in the circumference of
a circle of 25 ft. radius, if its change in direction of motion was
0.6 radians?

Ans. 15 ft.

15. A rotating disc makes 3,000 r.p.m. Find its angular
velocity. Find the linear speed of a point 2 ft. from the axis of
rotation.

Ans. 100 7 radians per sec.; 200 7 ft. per sec.

16. The linear speed of a point on a rotating body is go ft.
per minute and its distance from the axis of rotation is g5 ft.
How long will it take the body to sweep out 54 radians?

Ans. 3 minutes.
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17. A bucket is raised by a rope passsing over a sheave near
the end of a derrick boom, at the uniform speed of ten feet per -
second. If the rope winds up on a drum four feet in diameter,
then, neglecting the thickness of the rope, what is the angular
velocity of the drum? If the given velocity were acquired in
three seconds, what would be the angular acceleration of the
drum?

Ans. 5 rad. per sec.; 1.67 rad. per sec. per sec.

18. A flywheel starting from rest is found in twenty seconds
to be revolving 150 times per minute. What is its angular
acceleration, assuming it a constant? What would be its
angular velocity at the end of one minute from rest ?

Ans. w[4 rad. per sec. per sec.; 15 7 rad. per sec.

19. A rotating body, having an angular acceleration of 10 rad.
per sec. per sec., has been in motion 10 sec. What is its angular
velocity and how many rotations has it made? What time
will elapse and how many rotations will be made, before its
angular velocity is goo rad. per sec.?

Ans. 100 rad. per sec.; 250/m; 80 sec.; 20,000/ 7.

20. A rotating body starting from rest has been in motion
nseconds. If its angular acceleration is & how many rotations
will be made during the next # seconds?

Ans. :—; (2n + ).




CHAPTER II

1. Add together the four vectors, ten north, fifteen east,
seven south, and twelve west.

Ans. 3v/2 N.E.

2. Resolve the vector twenty into two vectors making angles
of 30° and 60° on each side of it.

Ans. 10V 3; 10.

3. Resolve the vector A into the vectors B,C, D, E, and F;
having assumed the directions of the vectors B, C, D, and E.

4. Two cars are moving along level lines inclined at an angle
of 45° with speeds of 20 and 30 m.p.h. If the cars are re-
spectively 500 and 600 feet from the crossing point, show by
diagram the motion of each car as it appears to the driver of
the other.

5. A captain wished to sail a ship, whose speed is 12 m.p.h.
in a Southeast direction. There is a current running 5 m.p.h.
which sets the ship due West, off her course. In what direction
must she be headed in order to sail in the S.E. direction?
Show by diagram.

6. In problem (5) what will be the actual speed of the ship
in the S.E. direction? If the ship had been headed S.E., where
would she have been at the end of one hour?

Ans. 7.93 m.p.h.; 9.17 miles from starting point, and 3.54
miles out of her course.
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7. A boat steams across a river at right angles to the course of
the river with a speed of 10 m.p.h. If the boat reaches the
opposite shore 2 miles below the starting point, and if the river
is 4 miles wide, what was the speed of the current?

Ans. 5 m.p.h.

8. A point moves in the circumference of a circle, whose
diameter is 20 ft., with a uniform angular velocity of 5 radians
per sec. What is the centripetal acceleration ?

Ans. 250 ft. per sec. per sec.

9. If in problem (8), the point started from rest and moved
with a uniform angular acceleration of 2 radians per sec. per
sec., what would be the centripetal acceleration at the end of five
seconds?

Ans. 1,000 ft. per sec. per sec.

10. If a point moves with a uniform speed of 10 ft. per second
in the circumference of a circle of diameter 40 feet, what will be
the velocity and the acceleration of the projection ¢f the point
upon a diameter, when the point has moved through /4 radians™
from the extremity of the diameter?

Ans. 5V/2 ft. per sec.; §/A/2 ft. per sec. per sec.



CHAPTER III

1. A picture whose weight is 21 lbs. is suspended by a cord
hung over a peg. Each branch of the cord makes an angle of
30° with the vertical. What is the tension in the cord ?

Ans. 74/3 1bs.

2. An inclined plane has a rise of 1 in 10. Assuming no
friction, what force, acting parallel to the plane, will just support
a weight of 1001bs.? What force parallel to the base?

Ans. 9.95 lbs.; 10 lbs.

3. A body weighing 50 lbs. rests on a plane inclined at an
angle of 30°. Assuming the coefficient of friction to be o.3,
what force, acting parallel to the plane, will draw the body up
the plane with uniform motion?

Ans. 37.99 lbs.

4. A body weighing 100 lbs. rests upon a plane inclined at
an angle of 45°. Assuming the coefficient of friction to be o.1,
what force, parallel to the base, will draw the body up the plane
with uniform motion?

Ans. 122.2 lbs.

5. A mass of 1 gram, perfectly free to move, starts from rest
under the action of a constant force of 1 dyne. In what time
is 1 erg of work performed?

Ans. +/2 sec.

6. A mass suspended from a railway car by a cord 3 ft. long,
rises a vertical height of o.1 inches upon starting. If the mass
143
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is in equilibrium 1n this position, what is the acceleration of the
car?

Ans. 28.68 inches per sec. per sec.

7. A mass of 10 pounds, resting on a horizontal plane, is
moved 8 feet in 8 seconds, starting from rest. What force,
parallel to the plane, was necessary if the coefficient of friction
is 0.3?

Ans. 3.08 lbs.

8. A weight of 100 lbs. rests on a plane, inclined sin™ 0.6
with the horizontal. What happens, respectively, when forces
of 20, 40, 80, and 100 lbs. are applied to the body up and
parallel to the plane? Coefficient of friction o.25.

9. If a carriage be slipped from a train moving at 30 m.p.h-
up a plane inclined sin™o0.02 with the horizontal, how far,
friction being neglected, will it move before beginning to run
back?

. Ans. 1512.5 ft.

10. A mass of 10 pounds is whirled in a horizontal plane by
a cord 10 feet long capable of carrying but 50 Ibs. How many
revolutions per minute are necessary to break it?

Ans. 38.2.

11. 400 masses of 6 pounds each are distributed around the
circumference of a rotating body at a mean distance of 3 it
from the axis. What will be the tension in a cord wrapped
round them when the system is making 200 r.p.m.?

Ans. 15,708 lbs.

.
12. A 400-ton train travels round a curve 1 mile in radius at
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40 m.p.h. What is the horizontal component of the pressure
on the rails?

Ans. 16,300 lbs.

13. If thecentreof gravity of the train in the preceding prob-
lem be midway between the rails (5 ft. gauge), and 5 ft.
above them, what must be the speed so that the train is on the
point of turning over?

Ans. 198.17 m.p.h.

14. Assuming, in problem (12), the centre of gravity midway
between rails, then how much would it be necessary to incline
the track in order that there be equal pressure on them?

Ans. tan"'0.02037.

15. Find the number of vibrations that would be executed
per minute by a mass of 5 pounds attached to a spring, obeying
Hooke’s Law, if a weight of 4 lbs. causes an elongation of 10
inches.

Ans. 53 (very nearly).

16. A mass of 5 pounds when attached to a spring obeying
Hooke’s Law executes 240 vibrations in 3 minutes. What is
the force required to elongate the spring 1 ft.?

Ans. 11 lbs. (very nearly).

17. A mass of 5 pounds attached to a spring obeying Hooke’s
Law, vibrates with an amplitude of 2.5 ft., executing 100 vibra-
tions in 3 minutes. When the displacement is 18 inches, find
the value of the acccleration, velocity, kinetic energy, potential
energy, and total energy.

Ans. 18.3 ft. per sec. per sec.; 6.98 ft. per sec.; 121.9 ft.
poundals; 68.5 ft. poundals; 1go.4 ft. poundals.

10
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18. Find the value of the quantities named in the preceding
problem when the mass is at a position such that o.15 seconds
elapse before reaching the equilibrium position.

Ans. 15.23 ft. per sec. per sec.; 7.56 ft. per sec.; 142.8 ft.
poundals; 47.6 ft. poundals.

19. The velocity of a body moving with a S.H.M. is 20 ft.
per sec. when 3 ft. from the equilibrium position, and 15 ft.
per sec. when 4 ft. from it. What are the maximum values of
the displacement, velocity, and acceleration?

Ans. 5 ft.; 25 ft. per sec.; 125 ft. per sec. per sec.

20. A weight of 100 lbs. rests on a platform which moves
with an S.H.M., having an amplitude of 4 ft., and a period of
4 seconds. When the platform is 2 ft. above the equilibrium
position and moving upward, what is the pressure exerted
by the weight? What is the pressure, at the same position,
when moving downward ?

21. How long will it take a force of 1,000 lbs. to stop a 200-
ton mass moving at 6o m.p.h.? What work will be done?

Ans. 18 min. 20 sec.; 24.44 H.P. hours.

22. What is the constant force required to stop a mass of
200 tons, moving at 6o m.p.h., in 100 feet? How much work
has been done?

Ans. 242 tons; 484 X 10° ft. lbs.

23. A weight of 500 lbs. rests upon a plane having an in-
clination of 30° If the coefficient of friction is 0.1, how much
work will be done in drawing the weight, with uniform speed,
10 ft. up the plane?

Ans. 2,933 ft. lbs.
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24. A mass of 10 grams, at rest but perfectly free to move,
is acted upon for 5 seconds by a constant force of 50 dynes.
What kinetic energy will the mass have at the end of 10
seconds?

Ans. 3,125 ergs.

25. A weight of 200 lbs. falls from a height of 15 feet upon
the head of a pile, which, under the action of the blow, sinks
3 inches into the ground. What was the resistance?

Ans. 12,000 lbs.



CHAPTER IV

1. A force of 5 poundals acts upon a mass of 10 pounds for
2 minutes. How much will the momentum of the body be
changed?

Ans. 60oo F.P.S. units.

2. What force in 5 seconds will change the speed of a 100
gram mass from 4o cm. per sec. to 100 cm. per sec. ?

Ans. 1,200 dynes.

3. Masses of 5 and 10 pounds, having velocities of 8 and §
ft. per second respectively, collide. What are their velocities
after impact if the coefficient of restitution is unity? What
if o.57 What if zero? Illustrate conditions by diagrams.

4. Solve problem (3) when the 10-pound mass has a velocity
of — 5 ft. per sec.

5. Solve problem (4) when the s-pound mass has a velocity
of 10 ft. per sec.

6. Solve problem (5) when the 10-pound mass has a velocity
of — g ft. per sec.

7. Solve problem (3) when the 5-pound mass has a velocity
of 12 ft. per sec.

8. Solve problem (7) when the 10-pound mass has a velocity
of — 5 ft. per sec.
148
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9. An inelastic mass impinges directly upon another which is
at rest and twenty times as great. What was its initial veloc-
ity if, after impact, both move a distance of 3 feet in 2 seconds?

Ans. 31.5 ft. per sec.

10. A one-ounce bullet is fired with a velocity of 1,600
ft. per sec. from a zo0-pound rifle, which is held against
a mass of 180 pounds. With what velocity did the rifle
“kick” back?

Ans. 6 inches per sec.

11. A body is dropped from a height of 16 ft. and bounces a
height of ¢ ft. What is the coefficient of restitution? To
what height will the body bounce the next time?

Ans. o.75; 5 ft.

12. A jet of water from an orifice 1 sq. inch in section im-
pinges against a wall. What is the force exerted if 120 gallons
are delivered per minute?

Ans. 20.07 lbs.

 13. What force is exerted upon a gun delivering 200 one-
ounce bullets per minute with a speed of 1,600 ft. per sec.?

Ans. 10.42 lbs.

14. A projectile whose mass is 100 pounds is fired into a
target, whose mass is 20,000 pounds, with a velocity of 1,000
ft. per sec. If the target be free to move, find the loss in energy
during impact.

Ans. 1,555,000 ft. Ibs.

15. A square board 2 feet on a side and weighing 3 lbs., has
placed at the corners A, B, C, and D, weights of 1 lb., 2 lbs.
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3 lbs,, and 4 lbs., respectively. .Where must the boa
supported in order to remain in a horizontal position?

Ans. 1.307 ft. from the side A B, 1.0 ft. from the side

16. A uniform bar 10 ft. long and weighing 10 Ibs.
weights of 5, 6, 7, and 8 Ibs. suspended from it at distan
1, 2, 3, and 4 feet respectively, from one end. Find the e
brant.

Ans. 36 lbs. acting upward 3 ft. 4 inches from the end
which measurements were taken.



CHAPTER V
MoMENTS oF INERTIA

1. Hollow cylinder of mass M, length /, internal radius r,,
and external radius 7,, Moment of inertia with respect to axis
of cylinder = %[ 2, + r2,).

I1. Solid sphere, mass M, and radius . Moment of inertia
with respect to a diameter = ;— M2

I11. Cone, mass M, radius 7, and height % in the direction
of axis. Moment of inertia with respect to its axis = 3 Allo” .

IV. Rectangular plate, mass M, length /, width 5, and depth
d, in the direction of axis. Moment of inertia with respect
to a perpendicular axis passing through centre of mass
=¥ .

12

V. Thin rectangular plate, mass M, length /, and breadth
b, in direction of axis. Moment of inertia with respect to one

. M
endasana.xls=—3-.

V1. Thin triangular plate, mass M, altitude &, and base b.
o e . . _MP#p
Moment of inertia with base as axis = 5
VII. Moment of inertia of a thin plate with respect to an
axis normal to the figure is equal to the sum of the moments of
inertia with respect to two axes, coplanar with the figure, at
right angles to each other, and whose intersection is coincident
with the normal axis.

VIIL. To show that the acceleration of a body rolling, on a
151
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circular section, down an inclined plane, is less than g sin 6;
where 0 is the angle of inclination of the plane. Let, as de-
picted in the accompanying figure, the homogeneous body roll
on the circular section whose centre
is at C; and let its moment of inertia,
about an axis normal to this section,
and passing through the centre of
mass C, be MK?, where M is the
mass of the body and K the radius
of gyration for this particular axis.
The moment of inertia then, about the parallel instantaneous
axis, through the point of contact p, is

I=M(K?*+ 7).
The torque, about the axis through p, is

G = Mgrsin 0;
and since angular acceleration is given by the ratio of.torque
to moment of inertia, we have

Mgrsin @
MK* +r) K2
Multiplying by r, we find for the linear acceleration

a = f,gsmﬂ

r .
¢=ar= g gsin 0;

which shows, since is less than unity, thata is less

'3
y o
than g sin 0. It furthermore shows, since M is eliminated,
that the acceleration is independent of the mass; and since, in

any case K = kr; where k is some constant, we may write
r . I .
a = m—gsnn0=ﬁgsm0;

which shows that the acceleration is independent of the radxus
of the section on which the body rolls.

It will prove instructive to the student to demonstrate these
results from the principle of energy.



PROBLEMS 153

1. Find the moment of inertia of a thin square plate with
respect to a diagonal as axis.

2. Find the moment of inertia of a thin trapezoidal plate
about its base as axis.

3. Find the moment of inertia of a thin circular plate with
respect to a diameter as axis.

4. Find the moment of inertia of a thin iron plate (density
= 480 pounds per cu. ft.), 3 feet long and 1 square inch in cross-
section, about one end.

Ans. 30 pound ft.2

5. Find the moment of inertia of a plate whose mass is 10
pounds, the dimensions being five feet by two feet by one-eighth
inch, about an axis through the centre of mass parallel to the
five-foot side. '

Ans. 3 1/3 pound ft.?

6. What is the moment of inertia of a thin plate of iron, 10
feet long and 1 square inch in cross-section, about an axis in tiic
plane of the plate, parallel to a short edge, and 2 feet from it,
assuming the density of iron to be 480 pounds per cubic foot?

Ans. 577.8 pound ft.2

7. What is the moment of inertia of a thin rectangular plate,
2 feet by 6 feet, whose mass is 4 pounds, about a long edge?
About a short edge? About an axis through the centre, per-
pendicular to its plane?

Ans. 51/3 pog.pd ft.2; 48 pound ft.?; 13 1/3 pound ft.?

8. A wheel, consisting of ‘a solid disk of stone, 4 feet in
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diameter and 6 inches thick, makes 120 revolutions per minute.
If the density of the stone is 150 pounds per cubic foot, what
kinetic energy does the wheel possess?

Ans. 150 ¢ ft. Ibs.

9. A cast-iron flywheel has a rim 1 inch thick, 12 inches wide,
and 4 ft. mean diameter; 6 spokes, 19.5 inches long and 4 inches
by 3 inches in section. The hub is 10 inches external diameter,
4 inches internal diameter, and 10 inches thick. What is the
moment of inertia of the flywheel, the density of cast iron being
480 pounds per cubic foot?

Mass. I.
Rim......... .502 pounds 2,008 pound ft.?
6 spokes. . . . 390 pounds 679 pound ft.?
Hub. ....... 183 pounds 18.4 pound ft.?

Total....... 1,075 pounds 2705.4 pound ft.*

10. A hollow cylinder 6 inches long, is free to vibrate about a
knife-edge support, passing through it. If its external diameter
is 36 inches and its internal diameter is 18 inches, what is the
moment of inertia about its support? Density of material 400
pounds per cubic ft.

Ans. Mass, 1,060 pounds; I, 2,087 pound ft.?

11. A body free to rotate about an axis has its speed changed
from goo r.p.m. to 600 r.p.m. in go rotations. If its moment
of inertia is 4,000 pound ft.?, what constant torque brought
about the change? '

Ans. 545.4 1b. ft.

12. What is the moment of inertia of a body free to
rotate, if a constant torque of 4,000 lb. ft. is necessary
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to produce a speed of 1,200 r.p.m.,in go seconds, starting
from rest?

Ans. 91,670 pound ft.2

13. What is the constant torque required to stop a body,
whose moment of inertia is 500 pound ft.2, making 1,200r.p.m.,
in 6o rotations?

Ans. 327 lb. ft.

~ 14. Arotating body mounted on a shaft, 4 inches in diameter,

is making 240 r.p.m. and is being retarded by the friction of the
bearings which support it. The coefficient of friction is o.o1,
mass of rotating system 2,500 pounds, and its moment of
inertia 7,500 pound ft.2 What time elapses before coming to
rest? How much work has been done?

Ans. 23 min. 33.7 sec.; 74,000 ft. Ibs.

15. A flywheel, whose mass is 2,000 pounds and radius of
gyration 3 ft., takes 2 minutes to come to rest from a speed of
240 r.p.m. What is the retardation, and coefficient of friction
at the bearings? Diameter of shaft 4 inches.

Ans. o.21 rad. per sec. per sec.; 0.354.

16. What energy is possessed by the fly wheel in problem
(9), if it makes 300 r.p.m.?

Ans. 41,460 it. Ibs.

17. A car weighing 42 tons including its 8 wheels of 500
pounds each, is moving at 30 m.p.h. If the diameter of each
wheel is 3 ft., and its radius of gyration is 1 ft., what is the
kinetic energy possessed by the car?

Ans. 2,595,000 ft. lbs.



CHAPTER VI

1. Assuming an efficiency of 75 per cent, what quantity of
water, per minute, will a 40 H.P. engine raise from a mine 300
ft. deep?

Ans. 52.9 cu. ft.

2. A mass of 25 kilograms, perfectly free to move, is under
the action of a constant force. Its velocity changes from 2
meters per second to 4 meters per second in passing over 3
meters. Find the power in watts, H.P., and kilogram-meters
per sec., that is being expended when the velocity is 4 meters
per sec.

Ans. 200; 0.268; 20.4.

3. A mass of 200 tons, having a velocity of 5o m.p.h. is re-
tarded uniformly at 2 miles per hour per sec. What is the
mean rate in kilowatts at which its kinetic energy is destroyed?
What work in kilowatt-hours wilk be performed?

Ans. 1823.5; 12.66.

4. A mass of 500 kilograms, starting from rest, is made to
move with a uniformly accelerated motion up a plane, inclined
30° with the horizontal, and passes over a distance of 8 meters
in 8 seconds. If the coefficient of friction is o.25, find the total
work done during the eight seconds. What power is being
expended at the end of the eighth second?

Ans. 29,080 joules; 9.748 H.P.
156
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5. What power must be expended to propel, at 15
m.p.h., a 200-ton mass, up a plane inclined with the
horizontal sin ~'o.05?7 What if the friction be 15 Ilbs.
per ton?

Ans. 800 H.P.; g20 H.P.

6. To propel a mass of 400 tons along a horizontal surface at
60 miles an hour requires gso H.P. What is the coefficient of
friction ?

Ans. 0.0074.

7. The angular velocity of . a rotating mass changes in
5 seconds from 100 radians per second to 4o radians per
second. If the mass is 1,000 pounds and its radius of
gyration s ft., find the time rate at which its angular
momentum is changing.

Ans. 300,000 F.P.S. units.

8. What is the time rate at which work is being done at the
end of the 5 seconds in the previous problem?

Ans. 508.6 K.W.

9. An engine is doing work, at the rate of 40 H.P., in
maintaining a constant speed of 300 r.p.m. against the
force of friction applied to the circumference of its flywheel
by means of a Prony brake. If the centre of the flywheel
and the platform of the balance, upon which the lever arm
of the brake rests, arc in the same horizontal plane, then
what will be the reading of the balance, if the distance between
the centre of the flywheel and the point of contact on the
platform is 4.5 ft.?

Ans. 155.6 lbs.
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. 10. A force of 50 lbs. friction exists at the circumference of a
pulley 8 inches in diameter. If a constant speed of 1,525 r.p.m.
is maintained, what is the H.P. expended?

Ans. 4.84.
11. If the pulley in the previous problem is hollow and

capable of containing 4 pounds of water, how long will it take
to raise the water 160° F., assuming no heat losses?

Ans. 3 min. 7 sec.



CHAPTER VII

1. Posts are placed at the corners of a square. A rope is
passed completely around them. In what direction would
the posts fall if unable to withstand the pressure?

2. An elevator car weighing 2,000 lbs. is made to ascend with
a constant acceleration of 16 ft. per sec. per sec. What is the
tension in the rope hauling the cage? If the elevator car were
falling with a constant acceleration of 32 ft. per sec. per sec.,
what would be the tension in the rope?

Ans. 3,000 lbs.; zero lbs.

3. A 100 Ib. weight rests upon the floor of an elevator car,
which is descending with a constant acceleration of 2 ft. per
sec. per sec. What pressure does the weight exert upon the
floor? If the elevator car were ascending with a uniform speed
of 16 ft. per sec. what pressure would the weight exert upon the
floor? .

Ans. 93.75 lbs.; 100 Ibs.

4. In an Atwood’s Machine a rope is led over a pulley and
has attached to the ends masses of 8 pounds and 7 pounds
respectively. Assuming the equivalent mass of the pulley to
be 1 pound and neglecting the mass of the rope, what is the
acceleration of the system? What is the tension in each branch
of the rope?

Ans. 2.0 ft. per sec. per sec.; 7.5 lbs. and 7.437 lbs.

5. Masses of 40 and 50 grams are connected together by a
thin cord and hung over a frictionless pulley, whose mass may
159
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be neglected. What distance will be traversed in 2 seconds
when starting from rest? What is the tension in the cord?

Ans. 218 cm.; 44.4 gms.

6. If the masses, in the previous problem, had but passed .
over a distance of 196 cm. in the 2 seconds, and the diameter
of the pulley is 10 cm., what would be the moment of inertia
of the pulley? Its equivalent mass? The tension in the
cords?

Ans. 250 gram cm.?; 10 grams; 45 gms.; 44 gms.

7. A rotating body, together with the shaft upon which it is
mounted, has a moment of inertia of 5,000 pound ft.2 What
weight must be suspended from a rope wrapped round the shaft
to produce a speed of go r.p.m. in one minute? Diameter of
shaft 12 inches.

Ans. 49.2 lbs.

8. Two masses of 0.4 and 0.6 pounds, respectively, are sup-
ported by a cord, passing over a frictionless pulley, whose
radius is 3 inches. It is found that the masses in starting
from rest pass over a distance of 16 ft. in 4 seconds. What
is the moment of inertia of the pulley? What is its equiv-
alent mass?

Ans. o.1375 pound ft.2; 2.2 pounds.

9. The coefficient of friction between a mass of 10 pounds
and a horizontal plane is o.2. The mass starting from rest
moves over a distance of 24.6 ft. in 2 seconds, and is propelled
by a cord parallel to the plane, passing over a pulley 6 inches in
diameter, supporting a weight of 12 Ibs. What is the moment
of inertia of the pulley? :

Ans. o.251 pound ft.2
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10. A mass is drawn up a plane, inclined 6° with the hori-
zontal, by a cord parallel to the plane, passing over a frictionless
pulley (radius r, moment of inertia I), suspending a weight W.
If the coefficient of friction between the mass and plane is g,
what is the acceleration? What are the tensions in the cord?

11. A solid drum, whose mass is 500 pounds, nas a diameter
of 4 feet. There is wound about the drum a rope supporting a
load of 1,000 Ibs. Assuming no friction, what H.P. is expended
at the instant the weight is 48 ft. above its initial position, if
the time consumed was 4 seconds and the acceleration con-
stant? What is the tension in the rope?

Ans. 53.9; 1187.5 lbs.



CHAPTER IX

1. What is the length of a simple pendulum that will make
one oscillation per second where g = 32 ft. per sec. per sec.?

Ans. 38.9 inches.

2. What will be the time of vibration of a simple pendulum,
whose length is one meter, where g = 980 cm. per sec. per sec.?

Ans. 2.007 seconds.

3. Find the time of vibration of a thin rod 4 ft. long when
vibrating about an axis 6 inches from one end. What is the
equivalent length of the simple pendulum?

Ans. 1.717 sec.; 2.389 ft.

4. What is the radius of gyration of the rod in problem (3),
as suspended ?

Ans. 1.893 ft.

5. What will be the minimum time of vibration of the bar of
problem (3)?

Ans. 1.688 seconds.

6. If the mass of the pendulum in problem (3) is 2 pounds,
what are the masses which, when concentrated at the axis of
suspension and oscillation respectively, will constitute a pendu-
lum having the same characteristics?

Ans. o.745 pounds; 1.255 pounds.
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7. What is the time of vibration of the hollow cylinder, of
problem (10), Chapter V? What is the length of the equivalent
simple pendulum?

Ans. 1.8 seconds; 2.625 ft.

8. A thin rectangular bar 6 ft. long is suspended by a cord g
ft. long. At what point must a blow be struck to make the
system vibrate smoothly about the point of suspension of the
cord? About the point of suspension of the bar?

Ans. 2.75 ft. from bottom; 2.o0 ft. from bottom.

9. A mass, attached to a cord ;5 ft. long, rotates in a horizon-
tal plane making 27 r.p.m. How high will the mass be from its
position of rest? What will be the velocity of the mass in its
path? ’

Ans. 1 ft.; 8.48 ft. per sec.

10. What is the time of vibration of a rectangular plate, six
feet by eight feet, about one corner, the axis being perpendicular
to the plane of the plate?

Ans. 2.868 seconds.

11. Determine where else the plate of problem (10) must be
suspended in order that it will vibrate in the same time.

Ans. 13 ft. from the centre of the plate.

12. A one-pound projectile is fired into a suspended block
of wood, whose mass is 319 pounds, and causes it to rise, with-
out rotation, a vertical height of 6 inches. What was the
velocity of the projectile at the instant of the impact?

Ans. 1,810.2 feet per sec.



CHAPTER X

1. A body falling from rest passes over 496 ft. during a certain
second. How long had it been in motion?

Ans. 15 sec.

2. A freely falling body starting from rest has been in motion
n seconds. What will be the space traversed by it during the
next ¢ seconds?

Am.%f (21 + ).

3. A body is dropped from an elevator ascending with a
speed of zo ft. per sec. How long will it take to reach its highest
point, and then fall 100 ft.? What will its velocity be at the
end of that time?

Ans. 3} sec.; 8o ft. per sec.

4. If an elevator is descending with a speed of 20 ft. per sec.,
how long will it take a body dropped from it to fall 100 ft.?
What will be its velocity at the end of that time?

Ans. 1.952 sec.; 82.46 ft. per sec.

5. A body, projected vertically, has an upward velocity of
100 ft. per sec. after being in motion for 5 seconds. How high
is it? How much further will it continue to rise? What time
will elapse before reaching the ground?

Ans. goo ft.; 156} ft.; 11} sec.
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6. A body is dropped from a height of 100 ft. and at the same
ime another body is projected vertically upward with a veloc-
ty sufficient to carry it to that point. When and where will
‘he bodies pass each other?

Ans. 75 ft. from bottom, in 1.25 sec.

7. Two masses are let fall from the same place one second
apart. How long a time will elapse before the masses are 32 ft.
apart?

Ans. 1% seconds after the first mass is let fall.

8. A body is projected vertically upward with a velocity of
fo ft. per sec. To what height will it rise? How long will it be
sefore reaching the level from which it was projected? At the
nstant the body is 2o ft. from that level a second body is dropped
rom there. At what distance below the level will the bodies
neet ?

Ans. 25 ft.; 2.5 sec.; 2o ft.

9. An elevator car is ascending at the uniform rate of 32 ft.
ser second, and when 240 ft. above the floor of the building a
sall is kicked off. In what time will the ball reach the floor?

Ans. 5.0 sec.

10. In problem (y), how high will the elevator car be when
the ball strikes the floor?

Ans. go0 ft.

11. A balloon is sinking at the uniform rate of 10 ft. per
second. A ball is thrown upward with a velocity, relative to
the balloon, of 74 ft. per second.  'When the ball is at its highest
»oint, how far down from it will the balloon be?

Ans. 84 ft.
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12. What is the actual velocity of a projectile in its path at an
elevation y ?

Ans. W+ v* —agy)}

13. A projectile is shot over the ocean from the top of a hill
1,600 ft. high, with a horizontal velocity of 1,200 ft. per sec.
Neglecting the curvature of the earth, where will the projectile
strike the water? How soon will it strike the water?

Ans. 12,000 ft. from the projection of the cannon’s mouth
on the plane of the ocean; 10 sec.

14. A projectile is shot out with a velocity of 300 ft. per sec.,
and after travelling 1,000 ft. arrives at the same level with a
velocity of 250 ft. per sec. What was the average resistance
of the air?

Ans. 0.43 (nearly) of the weight of the projectile.

15. A gun is elevated at an angle of 60° to the horizon. A
projectile shot out reaches the ground in 54 1/8 seconds. Find
the initial velocity and range.

Ans. 1,000 ft. per sec.; 27,062.5 ft.

16. A projectile is shot out ot a gun, elevated at an angle of
30°, with a velocity of 8oo ft. per sec. Find the time of flight,
maximum height, and range.

Ans. 25 sec.; 2,500 ft.; 17,300 ft.

17. With the same gun as in problem (16), but elevated at an
angle so as to give the maximum range, find the time of flight,
height to which the projectile will rise, and the range.

Ans. 35.355 sec.; 5,000 ft.; 20,000 ft.
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18. A projectile is shot out at an angle of 45° to the horizon,
with a velocity of 1,414.2 ft. per sec. To what height will it
rise? What will be its range?

Ans. 15,625 ft.; 62,500 ft.

19. A baseball is struck at an angle which will give the
maximum range with a velocity of 100 feet per second. A
fence 12 ft. high is at a distance such that the ball will just clear
it. What is the distance?

Ans. 300 ft. or 12.5 ft.

20. A projectile after being in motion for 31 seconds strikes
the ground at an angle of 30°. Assuming it to have been fired
from the same horizontal plane, what was its velocity ?

Ans. g9z ft. per sec.

21. A projectile having a range of 30,000 ft. was in motion 50
seconds. If its initial velocity was 1,000 ft. per sec., how high
did it rise?

Ans. 10,000 ft.

22, What was the velocity, in ft. per sec., of the projectile in
the previous problem at an elevation of 5,000 ft.? At 10,000
ft.? After being in motion 12.5 seconds? After 25 seconds?

Ans. 824.6; 600; 721.1; 60O.

23. A mass of 25 pounds is whirled in a vertical plane by a
string 10 ft. long until it breaks. If the string is capable of
supporting but 45 lbs., and the centre of the circle, which the
mass describes, is 74 feet above a horizontal surface, what will
be the range of the mass?

Ans. 32 ft.



CHAPTER XI

1. A brass rod 8o cm. long is clongated 1.8 mm. by a load of
400 lbs. If its diameter is 3 mm., ‘what is the modulus of
elasticity ?

Ans. 1.12 X 10" dynes per sq. cm.

2. The modulus of tractional elasticity of wrought iron is
15,000 tons per sq. inch, and the safe working load for tensile
stresses is 10,000 lbs. per sq. inch. What will be the elongation
per foot of a bar so loaded?

-Ans. 0.004 inches.

3. Allowing the elongation per foot as found from the previ-
ous problem to be a safe working practice, what must be
the diameter of a wrought-iron bar to support a load of 5 tons?

Ans. 1.13 inches.

4. What is the largest force that can be safely sustained by a
phosphor bronze wire o.1 inches in diameter, if an elongation of
0.0084 inches per foot is allowable? # = 7,000 tons per sq. inch.

Ans. 77 lbs.

5. Find the modulus of rigidity of a steel wire 75 cm. long,
4 mm. in diameter, if a force of 5 Ibs., having a moment arm of
10 cm., produces a twist of 47°. '

Ans. 8.09 X 10 c.g.s. units.

6. A torque of 1 dyne-cm. applied to a quartz fibre, 10 cm.
long, produces a twist of 360°. If the modulus of rigidity of
168 ’
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quartz is 2.9 X 10" c.g.s. units, what is the diameter of the
fibre?

Ans. 0.0273 mm.

7. Find and compare the forces in microdynes, which when
having a moment arm of 1 cm., and applied to quartz fibres
10 cm. long, of diameters 0.002, 0.003, 0.004, 0.005, 0.006 mm.,
will produce twists of 1 radian. Modulus of rigidity for quartz
2.9 X 10" dynes per sq. cm.

Ans. 4.56; 23.1; 72.9; 178; 369.

8. Find the period of a torsion pendulum, consisting of a
cylindrical mass of 3 kilograms 10 cm. in diameter, suspended
by a phosphor bronze wire 2 meters long, 0.5 mm. in diameter,
whose modulus of rigidity is 3.6 X 10" c.g.s. units.

Ans. 36.61 sec.

9. What is the moment of torsion of the wire in the preceding
problem?

Ans. 1,104 c.g.s. units.

10. Find the moment of inertia of the body which when
added to the cylindrical mass of the torsion pendulum, in the
preceding problem, makes the period 50 seconds.

Ans. 32,400 gram cm.?

11. If the modulus of tractional elasticity of the wire, in the
preceding problem, is 9.3 X 10" dynes per sq. cm., find the
elongation produced by the added mass of 3 kilograms.

Ans. 3.22 mm,

12. Find the modulus of rigidity of the wire of a torsion
pendulum 185 cm. long, 0.5 mm. in diameter, which has a
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period of so seconds; the rotating mass having a moment of
inertia of 86,000 gram cm.?

Ans. 4.09 X 10" C.g.s. units.

13. A steel shaft 50 ft. long, and 3 inches in diameter, trans-
mits 1o H.P. at 250 r.p.m. How much is it twisted if its
modulus of rigidity is 6,000 tons per sq. inch?

Ans. 0.9o8°.

14. What diameter steel shaft is necessary to transmit 50
H.P. at 200 r.p.m.? The permissible twist is 1° for every 20
diameters contained in the length, and the modulus of rigidity
of steel is 6,000 tons per sq. inch.

Ans. 2.48 inches.

15. What horse-power is being transmitted by a steel shaft
320 mm. in diameter, making 75 r.p.m., if the amount of
torsion for a length of 25 meters is 17.5 mm., measured along
the circumference of the shaft? Modulus of rigidity of steel
8 X 10! c.g.s. units.

Ans. 3,793.
16. The formula for the angle of torsion may be written,

9=kSGL

T Find the numerical value of K, so that § will

be expressed in degrees when G is measured in 1b.ft., L in feet,
n in tons per sq. inch, and d, the diameter, in inches.

Ans. 42.02.

17. The angle of torsion in degrees in a shaft, d inches in
diameter, whose modulus of rigidity is # tons per sq. inch, when



PROBLEMS 171

transmitting H.P.horse-power, a distance of L feet,at N r.p.m.,

. L HP
130°—Cm.

Ans. 220,700.

What is the numerical value of C?

18. With the aid of the constant found in problem (17%),.
recalculate problem (13).

19. A rectangular bar o.75 inches wide, and o.25 inches
thick, is lying flat; when it is supported at points 3 ft. apart, it
is deflected o.177 inches by a load of § Ibs. midway between
them. What is the modulus of elasticity?

Ans. 14,060 tons per sq. inch.

20. Compare the deflection of a rectangular beam supported
at each end lying flat, with that obtained when turned on edge,
other conditions remaining the same.

21. A rectangular beam, whose section is 8 inches by 4 inches,
is supported at the ends, and is loaded at the middle by a force,
applied parallel to the 8-inch side. If the resulting deflection
be one inch, what would the deflection be if the same force were
applied at the middle, parallel to the 4-inch side?

Ans. 4 inches.

22. A beam of rectangular cross-section, 20 feet lorg, 18
inches deep, and 6 inches wide, is supported at the ends and
loaded at the middle by a force of 1,000 lIbs. If the modulus
of elasticity is 1,500,000 lbs. per sq. inch, what is the deflection?

Ans. 0.0658 inches.
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