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FOREWORD

The reception accorded by the scientific pubHc to Professor

Bern's " Problems of Atomic Dynamics," published by Tech-

nology in 1926, has made evident the value of extending to a

wide circle of readers reports of lectures at the Institute by
leading investigators in the several fields of modern physics.

For the spring term of 1926 Professor T. De Donder of the

University of Brussels was appointed special lecturer at the

Department of Physics, where he delivered a course on the

Mathematical Theory of Relativity. This book contains the

text of these lectures and is the second of the series.

C. L. NORTON
Department of Physics

Massachusetts Institute of Technology
March, 1927
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PREFACE

This book includes ten lectures on the Mathematical Theory

of Relativity, as I have developed it during the last twelve

years. These lectures were delivered at the Massachusetts

Institute of Technology during the Spring Term of the academic

year 1925-1926.

I desire to express to this Institute my deepest gratitude

for the invitation which has been extended to me to give these

lectures. It was very pleasant to think that I would be able

to collaborate in the scientific research of this important and

celebrated institution, and to renew the ties of friendship with

the intellectual elite of the American people. I have not been

disappointed in my hopes. The cordial reception extended to

me by my colleagues in the Departments of Physics and Mathe-

matics, the interesting conversations and exchanges of ideas

I have had with them, have played no small part in creating

this feeling. In the domain of thought we are all citizens of

the same country. Barriers appear only where science ceases

to cast its light; and these frontiers recede ever toward more

remote regions. Thanks to science, the world becomes vaster

and richer. The only revolutionists are scholars and artists,

for they create new conditions and they change the aspect of

the universe. To be sure, this evolution sometimes carries

along with it sudden and terrible changes. Think of the

Great War ! The present adaptation towards the universality

due to science is still painfully felt in many countries. In my
fatherland, scientific reconstruction was greatly helped by the

C. R. B. This Committee for Relief in Belgium was organized,

during the war, for avoiding famine and, in collaboration with

other American organizations, has helped Belgium very much
in its new organization of teaching and scientific research.

Indeed, Belgium will always remember with thankfulness and

admiration that noble initiative of the United States of America.
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Viii PREFACE

Before closing this brief preface, I wish to express my sincere

thanks to my colleague, Professor M. S. Vallarta, who has

aided me, with his deep knowledge of the subject, in the final

writing of these lectures.

TH. DE BONDER.

Massachusetts Institute of Technology
May, 1926
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THE MATHEMATICAL THEORY
OF RELATIVITY

LECTURE 1

General Introduction

Space-time — Gravific field and the T-Map — Mass and elec-

tromagnetic fields — Restricted relativity— The Michelson-Miller

experiments.

No science has excited the curiosity of the pubhc at large

as much as relativity. This is due, it is well to remind you,

to the fact that the new conceptions of Lorentz, Minkowski

and Einstein disrupt our former beliefs of space and time.

It was necessary to destroy the rigid structure of Euclidean

geometry, it was necessary to reject the universal time of

Newton, in other words, it was necessary to assume that the

standards of length and of time no longer have the same value

for all observers. Space and time are now relative; they are

united in a new conception in order to obtain a tool independent

of the spectators using them. This new mathematical tool is

called space-time.

In the first part of this course we shall make a systematical

study of space-time, independent of any other physical con-

ception such as electricity, mass, etc. We shall first consider

the simplest space-time, that obtained by Minkowski, by ex-

pressing in one quadratic form the characteristic properties of

Euclidean space and in which the propagation of light is iso-

tropic and uniform. All the graphical representations will be

constructed in a Euclidean space provided with clocks regu-

lated by this light. We shall never use visualization in space-

time itself. This space-time is only utilized as a purely mathe-

matical tool particularly fitted to the needs of relativity and
capable of giving us valuable information about the deforma-

1



2 THE MATHEMATICAL THEORY OF RELATIVITY

tions of the ether when submitted to various physical actions.

From the start we shall use this tool in all its generality. Thus

on considering a Minkowskian field and in it a spectator having

a uniform rectilinear motion, we shall obtain the Lorentz

transformation with its physical interpretation of the con-

traction of the standard of length and the dilatation of the

standard of time. This method of analysis is later extended to

all types of motion in a Minkowski field.

It is now easy for us to develop the much more general con-

cept of space-time which defines the Einsteinian ''gravific"

field. The graphical representation will be constructed as

before, but will only have the significance of a map, i.e., of a

picture drawn in Euclidean space using the earher conception

of a universal time. Thanks to space-time, or to the (dsY of

Einstein, it will be possible to pass from the numbers written

on the map to the physical measurements obtained by various

observers who explore the gravific field under consideration.

This correspondence is made possible by a space-time which is

independent of the spectator; it stays invariant. Our con-

ceptions of space and time are only particular aspects of space-

time.

The second part of this course will deal with the theory of

gravific fields. The laws governing these fields will be ob-

tained by writing that the variational covariant derivatives of

a certain function called the "phenomenal Junction are re-

spectively equal to the variational covariant derivatives of

another function called the " gravific" junction. The latter

is a linear function of the Gauss-Riemann curvature invariant.

We thus introduce two arbitrary constants: Newton's gravific

constant and Einstein's cosmic constant.

This phenomenal function will be called the "mass'' func-

tion when the perturbations of the ether are produced by matter

exclusively; it will be called "electromagnetic" function when

the perturbations of the ether are caused by electricity. We
have succeeded in writing the phenomenal function for the

most general case when the gravific field is due to anisotropic,

non-homogeneous bodies, electrically and magnetically polar-

ized, at rest or in motion, which are the seat of convection



GENERAL INTRODUCTION 3

currents. This function, on account of the fundamental

principle of relativity, includes in itself celestial mechanics,

dynamics of continuous media. Maxwell's electromagnetic field,

Lorentz's electronic dynamics and Minkowski's electrodynamics

of bodies in motion. Not only do we find in this ultimate

synthesis all the classical results, but we obtain them with a

greater degree of approximation.

Thus the Einsteinian relativity makes the physical world

better known, it discloses unsuspected phenomena, it supplies

the quantitative explanation of facts that previously had re-

mained in the dark.

What is the source of this almost magic power of relativity?

In my opinion we must look for it in its mathematical structure.

Thanks to space-time and to tensor calculus, relativity brings

to the fore what is intrinsic or absolute. When physical laws

are expressed independently of the choice of space and time

variables they leave what is unessential in the shade; all that

which is particular to a given physical observer. The human
spectator vanishes, making room for a single, absolute spec-

tator. The latter tells us in mathematical language all that is

essential in the laws of nature, and the laws he formulates

have that perfect form, independent of time and space, char-

acteristic of masterly works.

It seems that the different modifications sustained by the

ether and which form the object of the study of the gravific

field should cast some light on the nature of electricity. We
might thus hope that this study of the ether from a novel stand-

point would disclose the secret of the two electric fluids. That

would unquestionably be the most important unification trace-

able to general relativity, even when compared with the deep

correlation it has already established between matter and

energy.

In spite of repeated attempts by Weyl, Eddington and

Einstein, this is still an open question. Einstein, who on two

occasions thought he had reached this long-sought result, was

kind enough to write me in December 1925 that he had given

up definitel}^ that line of research, as it was bound to yield no

result. This conclusion appears almost immediately from our
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own interpretation of the gravific field. The perturbations of

the ether are given by the mathematical methods peculiar to

general relativity only if we start from certain physical causes

given "a -priori. ^^ To give up these causes is to come back to

the Minkowski field.

As early as 1914 we had the foundations for a theory of pure

gravific electromagnetic fields. Researches in that direction

have recovered all their importance since the failure of Weyl's

theory. We have given a systematic and advanced description

of these investigations in the second part of our new synthesis

of relativity which has just been published in the "Memorial

des Sciences Mathematiques." Let us consider first the electro-

magnetic tensor of this field. It has the same form as Max-
well's tensor, but it contains an additional term depending

essentially on masses in motion. This additional term replaces

here the material connections which have to be taken into ac-

count in the Maxwellian theory. This electromagnetic tensor

gives very remarkable and useful forms of the theorems of the

momentum and of the energy of electric charges in motion.

All these results are obtained with a minimum of hypotheses.

If now we introduce a new fundamental electromagnetic

function, in which the electromagnetic forces and the electric

density appear, we obtain, besides the generalization of Max-
well's equations, some very important invariants concerning

mass and electric densities, besides a very simple form of the

above mentioned theorems of momentum and of energy.

The relation enabling us to compute the ratio of mass to elec-

tric charge by means of the electromagnetic field appears to be

worth mentioning. All equations of this electrodynamics can

immediately be put in the Lagrangian form and next in the

Hamiltonian or canonical form. These transformations are

as successful in space-time as in space and time. By this it

is meant that we can use as independent variables, either ab-

solute time s or relative time t, at will.

If we immerse in the Minkowski field the electromagnetic field

that we have studied we obtain the classical field of Maxwell-

Lorentz. Here we find again the Maxwellian tensor with an

additional term for masses and charges in motion. If we
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consider an observer having a rectilinear uniform motion in

this field, by simply applying the Lorentz transformation, we

obtain the restricted relativity of Maxwell's electromagnetic

field. In short, everything evolves in perfect harmony.

When we formulate problems in general relativity we are

somewhat astonished at the considerable amount of physical

data that have to be chosen arbitrarily. The reason is essen-

tially that relativity gives us a method for determining the

deformation or the tension in the ether. We have at our dis-

posal the ten components of the Einstein tensor. Ether

adapts itself, in all points and at every instant, to the given

physical data written on our map.

To formulate a problem in general relativity, we shall em-

ploy a map. This map will usually be a Minkowski map.

We shall introduce arbitrary constants and functions, the latter

permitting the map to be adapted to the particular physical

problem under consideration. It will be permissible to proceed

by successive approximations. We must not, however, lose

sight of the fact that Einstein's gravific theory is, in fact,

a first approximation of the perturbations produced in the

ether by the bodies or phenomena which have been introduced

there. We have seen that the Gauss-Riemann invariant of

curvature is fundamental in Einsteinian relativity. Now
there exists an infinity of other invariants. We justify this

very special choice by noting that the Gauss-Riemann invariant

is the only invariant which is linear with respect to the second

derivatives of the Einstein tensor Qap. It is now clear that we

retain in the Einstein method, only the principal part of ethe-

real deformations. Let us note, in passing, that it would be

impossible to take into account all the infinity of curvature

invariants of higher and higher order. Confronted with this

impossibility, we could, it is true, adopt an opposite attitude,

that of not working with any of the invariants of curvature.

The attempts of Weyl, Eddington and quite recently Einstein,

reduce themselves fundamentally to this attitude.

After this digression let us return to the map in which we

formulated our problem. To fix our ideas let us consider, for

example, the gravific field produced by a material sphere at
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rest, containing a perfect fluid of constant density. This is

Schwarzschild's problem. The gravific field has spherical

symmetry. Let us note that almost in spite of ourselves we
have abandoned space-time in this formulation and have fallen

back on the old habit of thinking of space and time.

If we wish to study the state of the ether in the case of a

material sphere moving with uniform rectilinear motion we
again formulate this problem on Minkowski's map. The
gravific field has in this case axial symmetry. Let us note that

if the mass of this sphere is negligible, we revert to the uniform

rectihnear translation of a trihedron in the Minkowski field, in

other words, to restricted relativity. This remark will allow us,

in addition, to indicate the components gap which cannot be

annulled in the (dsY of the gravific field to be determined.

The problem of uniform and rectilinear translation, on the map,

of a material sphere leads us to wonder if it is possible, by optical

experiments performed in such a gravific field, to detect this

motion with respect to the Minkowski field at infinity. In

other words, will it be possible to detect experimentally the

absolute motion of matter with reference to the ether at absolute

rest? The answer is yes. At first sight this result will surely

appear paradoxical. It seems, indeed, to contradict the op-

posite affirmation of restricted relativity. But this apparent

contradiction disappears if we remember that a gravific field

differing from zero cannot be identified with a Minkowski

field. A few months ago, I had occasion to develop these

considerations before H. A. Lorentz, with respect to the recent

experiments of D. C. Miller. Mr. Lorentz told me that in

principle he was entirely in agreement with me on this point.

Let us consider Miller's results for a moment. We know

that if these results were exact and if the gravific field in which

the experiments were performed was negligible, it would be

necessary to abandon the principle of isotropy of Hght propa-

gation in the Minkowski field. In other words, physical inter-

pretations would become impossible; general relativity would

only furnish an analytical method allowing us to calculate the

perturbations of the ether produced by the bodies and phenom-

ena which we have placed in it, starting from a given map.
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All the results would be in a certain sense totally contained

within the ma-p. Relativity would become the science of

relative deformations.

Before concluding, it will be necessary to consider if the

gravific field of the earth in its uniform rectilinear motion with

respect to the ether at rest is sufficient to explain the displace-

ments of the interference fringes observed by Miller. As this

problem is not yet solved, it is desirable to ask whether the

variations due to altitude, azimuth, right ascension and the

various seasons of the year have the general trend indicated

by the graphic results of Miller. This comparison has been

made by Thirring^ who concludes that: "we must assume an

error of observation of the whole measured effect in order to

have agreement between the observed and calculated curves.

It follows from this that the effect observed on Mt. Wilson

cannot be a real one; it has nothing to do with the anisotropy

of light propagation due to the earth's motion, but must depend

on unexplained disturbing influences."

Let us therefore await developments. Further experiments

are necessary. One of my colleagues at the University of

Brussels, Mr. Aug. Piccard, will attempt in the near future to

repeat Michelson's experiment in a balloon^. At first sight,

a balloon seems to be a laboratory short of stability for such

a delicate experiment but it is hoped that these difficulties will

eventually be overcome.

We shall see that general relativity applied to the most general

type of electromagnetic bodies yields ia a very simple, almost

automatic way, the problem enunciated but not completely

solved by Minkowski of the restricted relativity of such bodies.

In the same way we obtain the complete, rigorous expression

for the electromagnetic tensor and we derive from it, as a

particular illustration, the mechanical force in a Maxwellian
field.

1 Zeitschrift fur Physik, Feb., 1926.

2 Since this was written, Piccard and Stahel have repeated the Michelson
experiment in a rotating balloon and in the laboratory, with negative re-

sults. See Piccard and Stahel, Comptes-Rendus, Aug. 17, 1926; Jan. 17,

1927; also Die Naturwissenschaften, Vol. 15, p. 121, 1927.
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We then say a few words about the mysterious quantum.

To throw some hght on this obscure physical entity, we shall

deduce at first from the relativistic electrodynamics expressed

by means of points in space-time, the dynamics of an atomic

or molecular system of any number of degrees of freedom.

We shall then devise a general method of quantization in space-

time, which we shall apply to the quantization of the point

electron and to that of continuous systems: It will be shown that

this quantization is a logical consequence of our gravific theory

applied to permanent ensembles of continuous or point systems.

Once more relativity unfolds the great physical drama of the

universe clad in an immutable form bearing the stamp of

eternal laws.



LECTURE 2

The Minkowskian Field

Physically empty space — The Minkowskian field — Distance—
Time — Event — Simultaneity — Coincidence — Interval — Ex-

amples — Changes of variables performed by the physical observer

S— Euclidean trihedron in Minkowski's field— Generalization of the

Lorentz contraction and the Einstein dilatation— Restricted rela-

tivity— Michelson-Morley's experiment.

Experience teaches us that a portion of space without mass

or electricity may be the seat of very different gravitational

and electromagnetic fields. There exist, therefore, widely

different physically empty spaces. In order to visualize better

the idea of these physically empty spaces, we may appeal to a

hypothetical fluid, "the ether," and to its perturbations. But,

as in relativity neither its structure nor its way of acting plays

any role, we shall avoid speaking of it.

An empty space will be called the seat of a Minkowski field

when it is Euclidean and when the propagation of light rays

occurs along Euclidean straight lines, with the same constant

velocity in all directions. As an approximate example of a

Minkowski field, we may cite the interstellar space in regions

sufficiently remote from stars.

We shall now explain how an observer or physicist S will

verify these properties by using standards of length and time,

at rest in that space.

The distance between two points will be defined by its

measure taken by means of the standard of length belonging

to the observer S working in the Minkowski field. This

measurement shall be made as follows:

Using a ray of light the observer S will trace the straight

line connecting the two points and will then see how many times

this straight segment contains the standard of length. In a

similar way, he will construct a trirectangular trihedron T
9



10 THE MATHEMATICAL THEORY OF RELATIVITY

attached to this field and then will measure the rectangular co-

ordinates of the two points with respect to the trihedron T.

Let Xi, yi, zi be the values obtained thus for the coordinates of

the first point Pi, and X2, ^2, ^2 the values found for the coordi-

nates of the second point P2. In agreement with the definition

of Euclidean space, the observer S will find

:

{PiP^l = V(xi - X2)2 + {yi - y^y + (^1 - 22)' (1)

To define the measurement of time at different points in

the Minkowskian field, the observer S will make use of the

properties of light. He will define the mode of propagation of

light by a positive number c, arbitrarily chosen once for all.

At the moment ^0, arbitrarily chosen, S sends a light signal

from Po towards P; he makes the number

t = to-{-l\PoP\ (2)
c

correspond with the point B and calls (t-to) the interval of

time taken by light to travel from Po to P. To keep track

of these instants, he uses clocks fixed at the different points

of the space considered. These clocks are regulated when
the clock at P shows the time t at the instant when it receives

the light signal. The number to will be called the initial instant,

read by S on the clock fixed at Po.

Owing to the introduction of the constant c, the time t

is thus determined by S at all points P of the field. In other

words, the clocks attached to different points P are regulated

by S by means of light signals.

An event will be defined for the observer S by four numbers

^1, X2, X3, Xi or X, y, z, t. The first three determine the co-

ordinates of the point where the event occurred, and the fourth

determines the epoch of the occurrence of the event. These

numbers are obtained by S in the manner shown above.

Two events defined respectively by the systems of numbers

{xi, yi, zi, ti), (^2, ^2, 22, h) are called simultaneous for S when

^1 = ^2- _ _
Two events are coincident for S, or form a coincidence for S,

when
Xl = rc2 ti = t2.
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Let us consider two points infinitely close together Pi, P^,

the coordinates of which with respect to the trihedron T are

respectively (xi, yi, zi) and (x2, ^2, 22). Let us place ^2 — ^1 =

8x, Vi — yi = Sy, Z2 — zi = 8z. The distance between the

two points will be measured by

Let us place 8a = IP1P2I; we shall have

{8ay = i8xy + {8yr + i8z)\ (3)

From the definition of the measurement of time given above,

we deduce that a light signal sent at the instant t from the point

Pi towards P2, will reach the latter at the instant t + 8t, de-

fined by the equation,

~t-^ 8t = t +1 IP1P2I = 7 + i 6ff.

c c

Consequently we have

da = cdt (4)

the differentials d (instead of 8) reminding us that we are dealing

with the propagation of light.

It follows that the number c is the measure of the velocity

of light in Minkowski's empty space, this measure being ob-

tained by the observer S. By introducing the coordinates,

the preceding relation (4) may also be written:

-dx" - dif - dz" -^-'c" cm = 0. (5)

Consider two infinitely close events, defined respectively for

S by the numbers (x, y, z, t), (x -\- 8x, y -\- 8Tj,z-{- 8z,t-\- 8t).

Let us place

5s2 = - 8x'~ - 8y'' - 8z^ + cHt\ (6)

We shall say that this 8s^ has the Minkowski^ form. We have

thus (Equation (3)),

' H. Minkowski "Raum iind Zeit" Verh. d. Naturforsch. Ges. zu Koln,

Lecture delivered on Sept. 21, 1908.
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If in (7) we have

c\8i\ > ba

we write, by definition,

bS = \V-{baY-^{lbty\; (8)

if, on the other hand, we have in (7)

c\bt\ < bff

we write, by definition,

8s = |V(5^)2 - (cbty\ V^. (9)

The element bs defined in this way is called the interval of the

two infinitely close events (x, y, z, t), {x -\- bx, y + 5^", z + 8z,

t + bt) measured by S in the Minkowski field under consideration.

Let us consider with S a point P moving from (x, y, z) to

(x -^ bx,y -\- by, z + 5^) and let bt be the lapse of time between

the moment t when the point P is at (x, y, z) and the moment
t -\- bt when it is at (x -\- bx, y -\- by, z -\- bz). The transport

velocity v of P, measured by S, is given by

(vy = l^

The square of the interval between the two events, that

is, between the passages (transits) of P at each of the two

positions considered, is

(5S)2= [_(y)2+(c5])2]. (11)

This interval vanishes when jz;] = c. _
At the same point {x, y, z) the observer S is reading off on a

clock fixed at that point two infinitely close instants t and t +
bt. We suppose bi > 0. The interval between these two

events measured by S is

b's = cU',

hence

bt=i. (12)
c
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Thus 8s/c is precisely the interval of time read off by S on the

clock fixed at (x, y, z) and at rest with respect to him. For this

reason, 8s/c is called, in the case considered, the proper time

measured by S.

Let us try to find in a general way for what cases the interval

between two infinitely close events is zero. For this to be so,

it is necessary and sufficient that we should have

1 5^1 ^c\8t\. (13)

If 5^5^ it is necessary and sufficient that (SaY = (c8ty.

In case we have to deal with a transfer of the point P into another

point infinitely close to it, the preceding condition is, according

to (10), equivalent to \v\ = c. This is the case in the first

example above.

If si = the condition (13) gives 8a = 0, i.e. 8x = 8y =
Sz = 0, thus for the observer S both events coincide.

If S considers, at the same instant I, two different points

infinitely close together (x, y, z) and (x -\- 8x,y -\- 8y, z -\- 8z),

he will find 8t = and 8a > 0; hence the interval between the

two infinitely close events, simultaneous for S, defined by the

numbers (x, y, z, t), (^ + 8x, y -{- 8y, z -\- 8z, t -{ 8t) will be,

according to (9)

8s = 8a V^^ (14)

We thus see that 8's becomes imaginary.

The observer *S has determined so far an event by the num-
bers X, y, z, t, defined by the direct measurements made by using

his standards of length and his clocks. He has thus constructed

a space-time reference system, in which space is divided into

cubes, while at each vertex of this cubic net is fixed a clock

regulated by ;S. These synchronous clocks show intervals of

time as small as we desire, and the dimensions of the cubic

meshes may also be taken as small as we like.

To define the event (x, y, z, t) the observer S may sometimes

find it convenient to use other numbers x'
,
y' , z' , t' connected

with x, y, i, t by given relations : in other words, he may per-

form on X, y,z,ta, change of variables. It is important to notice
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that *S makes this change of variables while keeping Ms stand-

ards of length and his clocks.

Fig. 1

Let us examine how the {SsY may be written when we go

over from the variables x, y, z, t, measured by S, to the vari-

ables x', y', z' , t' obtained through the relations:

x' = x'{x^ yj 2, t)

y' = y'(^, y, ^,

z' = z'{x,y,z,l)

t' = t'{x, y, z, t)

(15)

Assuming that these equations define x'
,
y', z', t' as uniform

functions of x, y, z, t and that they can be solved with respect

to these variables, in such a way that they determine x, y, z, t

as uniform functions of x', y', z', t' we have

X = x{x', y', z', t'), z_ = z_{x', y', z' , t'),

y = Tj{x',y',z',t'), t = t{x',y',z',t').

For the sake of uniformity, we place

X = xi, y

x' = xi, y'

X2, Z = Xz, t = X4,

X2, Z' = Xz , t' = Xi.

(16)

(17)

(18)

Using these notations and the former variables, the form (6)

may be written

5s2 = _ 5^^^2 _ gy^^ - 8x3^ + c^Xi^ (19)



-1
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numerically all events. The left-hand member of equation

(19) is not, therefore, affected by this change of variables.

The coefficients of the quadratic form which now enter in the

second member of (21) will in general be different from the

coefficients Qa^ exhibited in the array (20). The new coeffi-

cients Qap are collected in the following array:

g2i,

gzi,

gu',

gn

,

g22,

gs2,

Qi2,

g\3

giz

gss

gis

gu
g2i

gsi

gu'

(22)

From the transformation just performed, we deduce that

g^J = gj. (23)

Example: Suppose that *S chooses Euclidean spherical co-

ordinates Xi = r, X2 = Q, Xz = 0. Then formula (21) be-

comes :

SP = -dr^ - P(6^2 ^ gin2 e 5</)2) + c^se. (24)

This is Minkowski's form in spherical coordinates. _
The observer *S attached to the Euclidean trihedron T de-

termines events by means of the numbers x,_y, z, t, in the

Minkowskian field. In order to study with S the physical

effects on the standards of length and time, resulting from their

motion in the field considered, we choose a system_of reference

T' moving in this field (Fig. 2). The observer S will define

this motion by the equations

X = xix', y', z', t'), z = z(x', y', z', t'),

y = yix\ y', z\ t'), t = t'. (25)

We suppose that by this transformation there is established

a one-to-one reciprocal correspondence between x, y, z, t and

x', y', z', t' . We propose to construct, with *S, a curvilinear

trihedron (0'; re', y' , z') in the following way: To fix our ideas

we consider at the instant ^or f', the point x' = y' = z' = ^\ we

thus obtain the origin 0', at the time t' considered. To con-

struct the x'-axis, we shall vary only x\ keeping this same value
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of t' and taking y' = z' — 0. We shall proceed, in the same

manner, to construct the i/'-axis, and then the s'-axis. In an

infinitesimal space region, it is permissible to replace these

curvilinear axes by their tangents. For simplicity, we shall

Fig. 2

suppose that the trihedron T' obtained in this way is trirec-

tangular for 8.

To the trihedron T' we shall attach the observer S' who will

use the variables x', y' , z', t' . Attaching *S' to the trihedron T'

means that if a point is at rest with respect to T' during W 7^ 0,

this point is said to be at rest with respect to *S'; on the con-

trary, if during 5^' 5^ the point is moving with respect to T'

it will be said to be moving with respect to 5', during this same

interval of time.

The observer & in the Minkowski field uses the quadratic

form

5s2 = - 5^2 _ 5^2 _ 5p _|_ pg^2 (26)

while *S' expresses this same Si^ as follows:

5s2 = 226f«/ hxj 8xp' (a,^= 1,2, 3, 4). (27)
a

Let us attach to T" and to *S' a physical observer S' using

standards of length and time fixed with respect to himself.

We agree that these are the standards of S taken over by S'.
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Let us admit with Einstein that in a certain infinitesimal space

and time region, physical measurements made by S' give num-
bers x', y', z', t' which are such that the quadratic form (27) may
be written:

5s2 = - hx"" - hy"" - 8z'^ + c^r~. (28)

Suppose further with Einstein that c' = c, in other words that

both observers S and S' find the same velocity of light.

In the infinitesimal space and time region considered, let us

expand gap' in a Taylor series starting with the event ixi)o,

(x2)o, (a^'sOo, (0:4') 0. We get:

-),= 1 \ OXy /O
g.,' = (g^Oo + S ^ 6x/ (29)

-),= 1 \ OXy /O

where {gafi')o is the value of the function g^^' for the event

(xiOo, (3^2') 0, (3^3') 0, (3^4') and where the dXy's are infinitesimal

quantities in the region considered. Neglecting in (27) in-

finitesimal quantities of order higher than the second, we may
consider the gap"s entering in this quadratic form as constants,

i.e., the (ga^')o's.

To pass from (27) to the quadratic form (28), it will be suffi-

cient to establish a linear correspondence between 8x1, 8x2

,

8x3 , 8xi on the one hand, and 8x1 , 8x2 , 8x3 , 8x4! on the other

hand. From the theory of algebraic forms, we know that this

correspondence can be established in an infinite number of

ways. But it is essential to notice here, that S' and S' are

fixed with respect to each other; in other words if 8x' = 8y' =

8z' = and 8t' ?^ we consequently have 8x' = 8y' = 8z' =
and 5? ^ and conversely. As a result 8x', 8y', 8z' rnust be

expressed as a linear function of 8x', 8y', 8z' only {8t' excluded).

Starting from the quadratic form (27), we have to proceed as

follows •}

\^gu'8x^V \^gj8xj^ {a = 1,2,3,4,) 1

5? = -EXgi 8x/8x/ - '
, + "

,
(30)

'
\ Vg,,' j \ Vg,,' I (i,i=l,2,3) J

1 Th. De Bonder, Academie Royale de Belgique, Bulletin, Dec., 1922,

Feb., Mar., 1923.



THE MINKOWSKIAN FIELD W
We may notice that in (30) we formed the perfect square

(31)

and in an infinitesimal region of space:

-8r' - 8y" - 8z'^ = ^^(gi/ - ^^^') 5a:/5a;/. (33)

The Hnear correspondence between 8x', by' , 8z' on the one

hand and 8x', by' , bz' on the other hand, is easily established

through the theory of quadratic forms or analytic geometry

(case of the ellipsoid). Before studying this correspondence,

let us consider for a moment the relation (31).

Let us place bxi = bx'/ = bxs' = 0, then (33) gives bxi' =
8x2' = bxs' = and the relation (32) becomes

b? = ^ V.^ 5^'. (34)

The correspondence between the time t' of S', and the time t'

of S' is given by

i' - to' =^ f ^^^i', (35)
C J to'

to' and t' being two instants chosen by ;S', and ^0', t' the corre-

sponding instants read by S' on a clock at rest with respect to

him. Integral (35) has a definite value, because x', y', z' are

fixed ; hence the relation between i' and ? is a one-to-one corre-

spondence.

Let us notice also that at the same point for »S' and 8', two

simultaneous events for &' are also simultaneous for *S'. In

fact, formula (34) shows that 5^' = involves 5^' = 0. We
already knew that any coincidence for *S' must be a coincidence

for *S' and conversely. On the other hand, at two different

points for S', simultaneity for S' does not involve simultaneity

for *S'. If we consider two infinitely close points, where two

events are simultaneous for ^'(5^' = 0), these events will be

separated for ;S', by an interval of time



20 THE MATHEMATICAL THEORY OF RELATIVITY

3

bt' = 'Z^ ,— . (36)
c' Vga'

Conversely, to the simultaneity at two different points for

S'(8t' = 0), corresponds a non-simultaneity for S'. We have,

by (32):

2 q^a' 8xJ = 0, (37)
a=l

or
3

S gu'bx/

8t' = - '^\
. . (38)

Let us remember that by (25) *S and S' use the same variable

i = t'.

Let us return now to the reduction problem formulated by

(33) and write

Ci; = -Qil +^' (^, i = 1, 2, 3, 4) (39)

We have q/ = Cj{ , In the infinitesimal space-region of /S',

and during an infinitely small interval of time, all the c,/'s

may be treated as constants to a first approximation.

The quadratic form in the right-hand member of (33) will be

written

^l^dj'bxi'bxj' {i,j = 1, 2, 3). (40)
i J

In the infinitely small region about 0', let us draw another tri-

rectangular Euclidean trihedron x*, y*, z* having 0' as origin.

Let us place x* = x*i, y* = x*2, z* = x*3. We perform on

(40) the orthogonal transformation

x/ = Sa:/ cos (x/, xf) {i, j = 1, 2, 3) (41)

which transforms (40) into a quadratic form in bxi*, bx^*, bxs*.

Let us choose the trihedron 0' {x*, y*, z*) in such a way that

this quadratic form is independent of any cross terms; we
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shall have then, in the infinitely small region about 0' and at

the time t' (or I)

:

(Sx'y + (5^')^ + (Sz'y = si*(8x*y + S2*(8y*y + ss*{8z*y (42)

Si*, S2*, S3*, being the roots of the equation,

Cn - s* Ci2 Cn

C21 C22 — s* C23

C31' C32' C33' — s*

= 0.

*andz\
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ciprocal correspondence, in the same infinitesimal region about

{x'
,

y' , z' , t'). Thus, finally, there is a one-to-one reciprocal

correspondence between the numbers (x, y, z, t) used by S and

the numbers (F, y', z', ?) used by 8'.

To fix the ideas let us consider with *S' or S', at the time t

or t', an infinitesimal vector located on the x* or x'-axis. The

first formula (45) shows that the observer S' will obtain for the

modulus of this vector a number Vsi* times larger than the

one found by the observer S', and consequently also by the

observer *S. Therefore we infer that *S will say that the stand-

ard of length of *S' is Vsi* times smaller than his. This is, by

definition, the generalized Lorentz contraction, the magnitude

of which is in general different according to the orientation of

the standard of length- with respect to the system of reference.

If in his infinitesimal region, the observer *S' considers a

sphere of radius r' and center A, he will write the equation of

the sphere as follows:

{x'Y + (^0' + iz'Y = (r')2. (46)

Let us translate this equation into the language of *S. By
means of relations (45) it becomes

si*(x*)2 + 82*{y*y + sz*{z*y = (?y (47)

and S will say that he is observing an infinitesimal ellipsoid.

Let us go back to Equation (33). This has been built up

on the hypothesis that 8x' = 8y' = dz' = to which corre-

sponds, as we have seen, Sx' = 8y' = 8z' = 0. Hence 5^' is an

infinitesimal time interval determined by S' at a point at rest

with respect to his reference system, and 8t' the corresponding

interval of time read by S' on a clock which is also at rest with

respect to that system. Supposing '^^gu' < c, then from

8i=-^8t' (48)

it follows that 8t' < 8t. Hence the observer S will say that

the standard of time used by *S' is c/Vg^/ times larger than his.

This is the generalized Einstein dilatation. It can also be

expressed by saying that S observes the clocks of S' to slow
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down with respect to his: this effect is ascribed by S to the

motion of the clocks of S' in the Minkowski field which he is

exploring.

z
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or further if we call a the angle between the direction of

propagation and the direction of translation,

«/2 + 2 vv' cos a - (c^ - 1^2) = 0. (52)

In the direction of translation, we have y' = c ± ^^; in the

directions perpendicular to the direction of translation, we have

v' = |Vc2 - v'\.

Placing

^ ^
|Vi - iv/-cy\

^^^^

formulas (31) and (32) give

iS c
bx' = I38x', by' = by', bz' = bz', bi' = ^ - gl bx'. (54)

Therefore under the condition that x' and x' vanish together,

and also y' and y', z' and z', t' and t' (for x' = 0)

x' = ^x', y' = y', z' = z', ?= ^^ - ^x'. (55)

We may notice here that the correspondence established in

formulas (55) is not limited to an infinitesimal space region.

Hence, formulas (55) are rigorously valid in the whole Euclidean

space x', y', z' and for all times t' of *S'. In this particular case,

we deduce immediately from (55) the Lorentz contraction and

the Einstein dilatation.

By Equation (49), Equations (55) may be written

x' = Kx - vt), y' = y,z' = ~z, 1' = ^(t -^^ (56)

and conversely

X = Kx' + -vV), y = y',z = ~z',t = ^{t' + ^') • (57)

Equations (56) and (57) define the Lorentz transformation.^

1 J. J. Larmor, ^ther and Matter, pp. 167-177, Cambridge, 1900;

H. A. Lorentz, Versl. kon. Ak. van Wet. Amsterdam, 12, p. 986, 1904;

H. Poincare, Comptes-Rendus Acad. Sc. de Paris, 140, p. 1504, 1905; A.

Einstein, Ann. d. Physik, 17, p. 891, 1905; see also Voigt, Gottingen

Nachrichten, 1897.



THE MINKOWSKIAN FIELD 25

The general method used here to obtain these equations of

transformation shows that they form a grou-p,^ a statement

which can be verified by calculation.

By Equations (56) or (57), we have anj^where in space and

for any time

ds2 = -dx^ - dy^ - dz" + c'di' (58)

with c = c'. It follows that the ol^server >>' , according to his

experiments, will be able to make the statement, as reasonably

as S, that the empty space in which he has made his measure-

ments is a Minkowski field. In summing up we may say that

neither of the observers 8' , S ••• having with respect to each

other a uniform rectilinear translatory motion, will be able to

state, according to his own measurements of length and time,

that only his empty space is a Minkowski field; we therefore

say that none of the trihedrons T, T' • are privileged in any

way. This is the philosophical meaning of the expression re-

stricted relativity.

Let us consider, with *S, two points on the 0^-axis, with the

abscissas Xi and Xi, at the same time 1. From the first of Equa-

tions (56) we have

xi' - Xi' = iS(xi - Xi). (59)

If the two points considered are at rest with respect to *S',

then the observer S will say that S' finds a number /3-times

larger than the one he has found himself, because the standard

of length used by *S' has become |S-times smaller than his. S

will also say that the standard carried along in the system of S'

has undergone the Lorentz contraction.

Consider with S' a point with abscissa x', at two different

instants ^i' and ii. From the last Equation (57) we have

h' -V = ^^{ti-k). (60)

1 H. Poincar^, "Sur la Dynamique de I'Electron," Rend. d. Circ. Mat.

di Palermo, July 23, 1905; pp. 129-175.

KV
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The observer S will say that the standard of time carried

along in the system of S' has undergone the Einstein dilatation^

or otherwise, that the clock used by >S' runs /3-times slower than

his.

The Michelson-Morley Experiments Let O'A and O'B

(Fig. 4) represent, according to S', the two equal arms of the

apparatus used by Michelson and Morley. If we call a' and

b' the measures of these arms, obtained by S', we have a' = b'.

But according to Einstein's hypothesis c' = c, whatever be the

direction of the light ray considered by S'. Hence 2 a'/c' =

2b'/c'; in other words, the time intervals required by the rays

O'AO' and O'BO' are the same jor S'. It follows that the

Michelson experiment cannot detect the uniform rectilinear

translation of S' with respect to S. We have to keep in mind

that these consequences result essentially from the fact that

the field considered is identifiable with a Minkowski field.

In the same way, it is possible to explain the Fizeau experiment

and in the case of uniform rotation in the Minkowski field, our

method yields an explanation of Sagnac's experiment.^

1 A. Einstein, Annalen der Physik, Vol. 17, 1905, par. 4.

2 A. A. Michelson,. Amer. Jour, of Science, III series, 22,p. 1 20, 1881;

Michelson and Morley, ibid. 34, p. 333, 1887; Phil. Mag., Vol. 24, p. 449,

1887; H. A. Lorentz, "Versuch einer Theorie der elektrischen und optis-

chen Erscheinungen in bewegten Korpern" ^ 89-92, Leyden, 1895.

^ T. De Bonder, Memorial des Sciences Mathematiques, Fasc. VIII, pp.

22-32, Paris, 1925.



LECTURE 3

The Einstein Field

Definition — The mathematical observer S and the physical ob-

server S— The moving mathematical observer S' and the moving
physical observer *S' — The direct passage from S toS' — The theorem

of parallel displacement — Motion of the reference trihedron of S'

with respect to that of S.

So far we have_considered only a Minkowski field explored

by the observer *S. Let us remember that the latter used a

Euclidean mesh system provided with clocks regulated by
light signals (Fig. 1).

Fig. 5

Einstein supposes that there exist fields in which such a mesh

system cannot be physically constructed. These fields will be

called Einstein fields. Together with an observer or mathe-

matician S, let us consider the Euclidean mesh system, pro-

vided with clocks and used by S to explore the Minkowski

field. This mesh will have here only a representative value,

such as a series of meridians and parallels on a geographic map.

We shall call this Euclidean mesh including all its temporal,

27
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geometrical and physical indications a T-map (Fig. 5). The
mesh system of this T-map being Euclidean, the measure da

of the distance on the T-map between the points {x, y, z) and

(x -\- bx,y -\- by, z + bz) will be given by

5o-2 = bx^ + 52/2 4- bz\

Using a fictitious light with the velocity c = c, we may write

as above,

bs" = - 5X2 - ^y2 _• 522 _^ ^25^2^

where 5s is the interval on the T-map between the events

(x, y, z, t) and (x -}- 5x, ?/ + by, z -\- bz, t -\- bt). Except in the

Minkowski field these expressions correspond only approxi-

mately to physical or real measurements. In order to obtain

the latter in a rigorous manner, let us generalize, with Einstein,

the last quadratic form by placing

>S • • • • 5? = 2Sfif„^ 5x„ 5x^ {a, /3 = 1, 2, 3, 4) (1)
a/3

where g^p = g^a are ten functions of Xi, X2, X3, X4. These are

the gravitational potentials of Einstein. We shall say that they

define the Einstein field considered.^ The determination of

these ten functions g^p of Xi, Xi, Xz, X4 constitutes the funda-

mental problem of gravific theory. In the particular case

where these functions have the values shown in table (20),

Lecture 2, we find again the particular form (5), Lecture 2,

which S has associated with the Minowski field. Thus we see

that S is identical with S. Let us remember that the numbers

X\, X2, X3, X4 in the quadratic form (1) are just the same as those

used in our T-map. We may say, with Einstein, that they are

the parameters of the space-time defined by (1), but we wish to

avoid any visualization in space-time. The quadratic form (1)

is used by the observer S attached to the Euclidean trihedron

(0; Xi, X2, X3). An event will be defined by S by means of the

four parameters Xi, X2, X3, X4 or x, y, z, t. Two events (xi, yi,

Zi, ti) and (x2, 2/2, 22, ^2) will be simultaneous for S, ji ti = U.

1 A. Einstein, "Die Grundlage der allgemeinen Relativitatstheorie,"

Annalen der Physik, 49, 1916.
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Two events {xi, yi, Zi, h) and (x2, y^, z^, ^2) will coincide for *S,

when we have at the same time xi = x^, yi = 2/2, 21 = 22 and

ti = h. For S the square of the interval between two events

{x, y, z, t) and {x -{- bx, y -\- 8y, z + bz, t + bt) is given by (1).

Let us attach to S an observer S equipped to take physical

measurements. For this purpose we consider an infinitesimal

space and time region, about the event (xi, 0:2, Xz, Xi), and try

to write (1) in the Minkowski form (Eq. 6, Lecture 2). In

the last lecture we have already explained how this passage

is effected. Formulas (26) to (45) still hold after suppression

of the accents of x', y', z' and t'. For example, Equations (30),

(32) and (33) now become

il^QiibXi^ /Sgr„45.T„

*j
\ ^(Jn I \ ^(Jii

2 (a = 1, 2, 3, 4)

(2)

_ _ 4

cbt ^ ^ (g„4/vg47) bx^, (3)

-bx" - by^ - b¥ = ^^{(jij - ^^^)bXibxj. (4)

A clock at rest for & will also be at rest for &', this can be

expressed by sajdng that if bl^i = bxz = bxs = 0, then bxi =
bx2 = bxs = 0. The time shown by the clock used by S will

be given by

f^^XK^t. (5)
c

The time shown by >S's clock will be expressed by

i-i° =i f V^ 5^. (6)

We remember also that at the same point for S and S, two

simultaneous events for S will also be simultaneous for S. On
the other hand, at two different points for *S, simultaneity for

S does not involve simultaneity for *S. Conversely, to simul-

taneity at two different points for S, that is to say, to 5^ = 0,

corresponds non-simultaneity for S. In order to obtain the

correspondence between the space parameters xi, X2, Xs used
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in the T-map by S, and the space measurements obtained by

the physical observer S, we shall proceed as in the last lecture

(see Equations (39) to (45), Lecture 2), taking care to remove

the accents from Xi, X2', Xz . For example, formula (45)

becomes

:

^ = X* Vs^, y = y* V.S2*, z = z* Vsa*. (7)

Similarly we may extend to any Einstein field the considera-

tions developed in the last lecture concerning the generahzed

Lorentz contraction and the Einstein dilatation. We only

have to consider two observers *Si and S2 at rest with respect

to>S.

For example, let us suppose that S adopts on the I -map

Euclidean spherical coordinates r, d, (f>
and the fictitious time

t. As an example, we consider, with S,

5s2 = -Adr^ - r2(502 + sm^9d<t>^) + c^ B8t^ (8)

where A and B are functions of r only. We intend now to

write the 5P in Minkowski's form (24)

:

The numbers r, 6, (/>, t are thus obtained by the physical ob-

server S performing his measurements in the infinitesimal

space and time region considered. We may suppose that 6 = 6

and 4> = (l>.
Equation (5) gives immediately the correspond-

ence between the number t used by the mathematical observer

S and the number t used by the physical observer S, namely,

^t = ^Tb bt, or integrating, as B does not depend on t, t — f^ =

VB(t — t°). To find the correspondence between the numbers

r and r used by the observers S and S respectively, let us place

S6 = 86 = 0, 8(f>
=

8(t)
= 0; in this way these two observers

are considering the same radial direction. Suppose further

that dt = 0; hence, from (3) and (8), 8t = 0. We have Sr =

VA 8r, and integrating r — ro = / ^A dr.

As in the last lecture we may draw on the T-map a Euclidean
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trirectangular trihedron T' (0'; x', y', z') having a definite

motion with respect to the trihedron T {0; x, y, z) (Fig. 6).

^X2 ory

Fig. 6

The observer S will attach to this trihedron T' an observer

*S' who shall make use of the variables x', y' , 2', /' = t, and will

construct in this way a r'-map (Fig. 6). The quadratic form

(1) becomes now:

S'... hT" ^ i:^gj bxj bxp'

where we have placed

, _ v^^ dXa dXb

a

b

OXa OXff

(10)

(11)

Let us now attach to S' an observer S\ performing physical

measurements in an infinitesimal space and time domain.

Carrying through the same calculations indicated in the pre-

ceding lecture, we have:

S'... 5s2 = -{8xy - {hy'Y - {bz'f + {ly (8ty. (12)
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We place, with Einstein,

l' = 1 = c (13)

and we may extend to the Einstein fields all the results obtained

above.

The results just outlined may be summed up in the following

condensed table:

aS' ••• 5s2 = ^-Lg^p' 8xJ bxp'
a

s' ... ds^— {dxy - (8yy - {8zy + (cy(8ty

(14)

(15)

In the preceding developments the motion of S' with respect

to S was supposed known; we next passed from S' to aS' by a

change of variables from x', y', z', t' or t to x', y', z', t'. We now
search for a change of variables such that the quadratic form

(1) takes the Minkowski form, to the closest possible approx-

imation, in an infinitesimal space and time region. We write

the change of variables

:

x = x{x', y', z', ?), z = z{x', f, z', P),

y = y(x', y', z' , ?), t = t{x\ f, z' , t'), (16)

such that

where

5s2 = 22g„/ hx^ 5V (17)

takes to the closest approximation the Minkowski form in the

infinitesimal space and time region considered. To fix our

ideas, we suppose that the variable Xi has the same dimensions

as the time t = Xa used by S. Let us construct with S' (Fig. 7)

a curvilinear trihedron T' (0'; x', y' , z') in the following manner:

At a given instant t' = Xa we take as origin of this trihedron

the point 0' having the coordinates xx = x^' = ^3' = 0. To
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construct the a;'-axis, we vary only x' keeping the preceding

vakie of t' and taking y' = z' = 0. We proceed in the same

manner to construct the y'-axis and then the i'-axis. The
trihedron T' thus obtained will be in general moving with

respect to the trihedron T used by S.

^y

Fig. 7

In order to find the change of variables (16) which solves the

problem in question, we assume that the .r/s can be developed

in a Taylor series in the neighborhood of the point xi = x<l =

Xz = X4 = 0, thus,

d^Xi
Xi = XjO +

21 k I \dXk dxi'/o

a, k,l= 1, 2, 3, 4). (19)

The index denotes that the symbols so affected refer to

Xi' = X2 = Xs' = Xi' = 0. The (Sa')'s in (19) will be con-

sidered as infinitesimal quantities of the first order. Let us

determine the coefficients of the series (19); we have first

Xi^ = Xi{0, 0, 0, 0). These numbers are hence the coordinates

and the time used by *S and corresponding to the origin 0'

considered at the initial time t' = 0. The four numbers .Ti° are

given by the data of the prolilem under consideration.

We assume that the functions g„p' may also be expanded in a

series of integral positive powers in a domain of the first order

about the point xi = X2' = x/ = Xi' = 0,

gae' = {gap')o + S(^a^/)^/ + ^,22((/^,,/).r/.r/' + - (20)



-1
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(dXi/dXk)o's have been calculated, or chosen, as we have just

explained. To obtain expUcitly the expressions of the coeffi-

- ,
-

,
\ we notice that according to the equations

oXk axi 1

(9a/3,&') = 0, we have

The definition of this symbol will be given in the next lecture.

By a simple calculation we may find

«^ r ^[22 (
^^

\ J^^ ^' + ^'^^i_ ^1 (24)
A; J i Li " l- '' •• ^^a'^^/s' ^x" dXc! dxp' dxi\

and we obtain

\dXk dxi'/o a/3 1 ^ J o\dXk)o\dx/)o

gaff' = 5„/3 + ^ 22(g'„^,«)o Xk' ^/ + •••. (26)
k I

In order that the ^^/s' 's be identical with the 8ap's to a third

order of approximation, that is, to infinitesimals of the third

order, one hundred relations {g'cs.ki) = must be satisfied. Now
from (23) we deduce by differentiation the expressions g'a^,ki

{ bH- \
as functions of U^ / qx' dx T ^^ placmg (fif'a/s,*/) = we

obtain one hundred relations for determining the eighty coef-

ficients L _ . ^- ,\- , 1 of the terms of the third order in the
\bXk dxi dXm Jo

series (19), so that in general it is impossible to identify com-

pletely to a third order of approximation, the Qa^''^ with the

8a0S. The determination of these eighty coefficients can be

made in many ways.^

For a clock at rest with respect to S' or at rest at the point

1 See for example A. S. Eddington's "The Mathematical Theory of

Relativity," pp. 78-81, Cambridge, 1923; A. D. Fokker, Versl. kong. Akad.

van Wet. te Amsterdam, Oct. 30, 1920, pp. 614-616; G. Darmois, Annales

de Physique, 1924.
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(xi, X2', Xz) we have bxi = 8x2' = dxs' = whence by (12)

Ss'/c' = 8t'. We have 5s = 8s'. Integrating, we obtain by (1)

}' - I'o = i r Vi:i:g^p8xjxp (27)

where the integral is taken along a line X provided with time

indications t, drawn on the T-map. We have obtained the

physical meaning of s' : except for the factor c', it is the interval

of the proper time of S'. It is also said that it is the time lived

byS'.

Let us differentiate (19) with respect to the independent

parameter s; we obtain

u« = sfe) u'^+i:x(^J^) u'n'y (a,/3,7 = 1,2,3,4) (28)

where we have placed

u"=^, m'«=^. (29)
ds

'

ds

By (19) we have the series expansion

dx,

dl7=fe)o+;t-|^>^' + -- ^'°^

Let us differentiate these equations with respect to s. We
obtain

d/dxA ^ ^f d Xr\= 2 --V^, u'y+ " . (31)
ds\dx// y \dxp dXyJo

From (10) we have SS gab w'" m'* = 1, hence for any point at
a b

rest with respect to the trihedron T', u'^ = u'^ = u'^ = 0, u'^ =

Let us return to Equation (31). At the initial event x' =

y' = z' =t' = Owe have, by (26),

(dxAl _ 1 / d^Xg \ ,o2^
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Using Equations (25) the preceding relations become

But by (26), (28) and since we are considering a point at rest

with respect to T',

("'^'^dr-I
(^=1.2.3,4). (34)

Substituting (34) in (33), we get finally

B(M-:f{tl(S-).w«- (3^)

We shall say that these relations express the theorem of parallel

displacement or of geodesic translation, for the origin 0' and at

the initial time t' = 0. This theorem may easily be correlated

with the theory of parallel displacement due to Levi-Civita.^

If, at the point 0', the observer S' draws, at the time t', the

tangents to the curvilinear x'-, y'-, g'-axes, respectively, a tri-

rectangular trihedron which will still be called T" is obtained.

We now investigate the motion of the trihedron T" with respect

to the trirectangular trihedron T (Fig. 7).

For this purpose we consider, with S, the trajectory Xj" =
Xi\t) {i = 1, 2, 3) described by the origin 0' of T'. To each

of the points 0' of this curve, we associate a trirectangular

trihedron on the F-map formed by the tangent, the principal

normal and the binomial, at 0' , to this trajectory. We call this

trihedron (0'; X, Y, Z). We have now to perform the trans-

formation of variables xi = .Tj" + ^{xi, Xj)Xj {i, j = 1, 2, 3).
j

The direction cosines (x,, Xj) are known functions of t.

Next, let us consider the points infinitely close to 0' and

attached to the trihedron T', and investigate this motion with

respect to the trihedron (0', X, Y, Z). Using the foregoing

transformation we have finally their motion with respect to

the trihedron T. The problem is hence solved.^

1 Rendiconti del Circolo Matematico di Palermo, 1917.

^ See an example of this method in a note by T. De Donder, Bull. Ac.

Roy. de Belgique, Feb. 13, 1923.



LECTURE 4

Kinematics

Velocity — Composition of velocities— Acceleration— Composi-

tion of accelerations.

The contravariant velocity is defined by cu" (a = 1, 2, 3, 4)

where

"" = "t- ("

The u"'s are functions of the four parameters Xi, X2, Xs, x^, only.

Let us place

M„ = 2g„^w^ (a, /3 = 1, 2, 3, 4). (2)

These four functions define the covariant velocity cUa (a = 1, 2,

3, 4). We define g'^^ as the cofactor of g«^ in the determinant

(J,
divided by the determinant itself. From the identity

Sfifo^r^ = c^^ (3)
a

where ip' is equal to or 1 according to whether the indices are

different or equal, we may write, by (2)

Let us place

we have

u" = '^g'^Ufi. (4)

W^ = 2w„w«; (5)

W^ = -E-Sg^fiW^vP =1. (6)
a/3

The preceding definitions may easily be translated in terms

of space and time. We understand by this that we ascribe to

Xa a privileged role with respect to the three other parameters

38
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Xi, X2, Xz. We shall say that the latter refer to space, whereas

Xi represents the time t. Let us place

and

whence

v^=-g (i = 1, 2, 3), V* = 1 (7)

f or V^^g^^v-i^ = V (a, /3 = 1, 2, 3, 4) (8)
at aP

u" = v^y-K (9)

These relations enable us to express the generalized velocity

cu" as a function of v^. Let us notice that by (8)

V = -'
u*

it follows from (9)

V" (a = 1, 2, 3, 4).

(10)

(11)

These relations enable us to pass from if to u".

r-Map

r-Map

Fig. 8

The passage (Fig. 8) from the trihedron (0; x, y, z) to the

moving trihedron (0'; x', y', z') is performed through the

orthogonal transformation,

Xi = x^ + S X- cos (x/, Xi) {i, j = 1, 2, 3)

t = t'

(12)
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Taking the derivative with respect to s, we have

3 r)T'

w' = S u'^ cos {Xi, x/) +^ u" {i, j = 1, 2, 3) (13)
j=i at

placing

OXi QXj .

f
U If v

(14)

Let us go back to &'pace and time, noticing that, by (12) and

the invariance of ds, we have

F = Y'.

Equation (13) now becomes

"^ QX'
y» = 2 v'J cos (Xi, X-) + *

i=i dt

(15)

(16)

a result which may be stated as follows : The absolute velocity

is equal to the resultant of the drag velocity dxijbt and of the

relative velocity, the components of which are ?;'\ y'^, v'^.

Let us assume a Minkowski field and replace in (8) the

quantities Qa^ by their values taken from table (20), Lecture 2.

We obtain, with the observer >S,

y = 1-= y/W -^-'e = cVl - (y/c)2 (17)

where we have placed

m-m^m-
We shall have, by (17),

_. %

w =

cVl - (y/c)2

1

cVi - {v/cy

and

Ui = — w'

Ua = (c)2w^

(19)
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// we neglect v as compared with c in (17) we have, approxi-

mately,

and by (11)

V 1 -

cu} ^^ v^, cu^ ^^ v^, cv? ^^ v^.

(20)

(21)

The last two expressions furnish the physical interpretation

given by >S to the symbols cu" and V and their order of magni-

tude.

The contravariant acceleration c^A" {a = 1, 2, 3, 4) is defined

by

ds a/3 1 c i ds ds
(22)

where we have introduced the Christoffel three-index symbols

r^!=2</"M (23)
[ <X 1 T

\_ T J

and

2 (6'ar,/3 + g^T.a ~ Qa^.r)' (24)

By analogy to (2) we define the covariant acceleration c-A^

(o- = 1, 2, 3, 4), placing

A, = ^^g^rA^. (25)

Finally by a simple calculation we obtain the new expression,

A^ =^ - ^ i:Zg„p,„u"u^.
CLS afi

(26)

By taking the derivative of W^, defined by (6), with respect

to s we get

d\
= 2 2A„M« =

which may also be written

2A„w« = 0.

(27)

(28)
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We note that (26) may also be written

--|©-(af)
the parenthesis indicating that the variables u" and Xg are to

be considered as independent variables. To establish this

relation, it is sufficient to notice that

It is important to point out that the covariant components A^
may be derived from the invariant W by taking the variational

or Lagrangian derivatives of W with respect to the variables x^

and noting that u" = dx^/ds. The covariancy (29) might give

the starting point for obtaining all the formulas of the so-called

absolute calculus.

In space and time we find, similarly,

where

iav\ 1 laY\ ^^s^-'^'^

the parenthesis indicating that the variables v' and x^ are to

be considered as independent variables.

Consider an Einstein field, defined by

dP = SSg^^ 8x^ bxp (33)

and let X\, xi, Xs, Xi be the coordinates used by the observer S
who plots the T-map of this field. We introduce in the

r-map (Fig. 8) another observer S' moving with respect to S
and using the parameters Xi, x^, Xz , x^ . The problem of the

composition of the contravariant accelerations is then reduced

to the investigation of the contravariant relation

A'" = S^'a« (34)
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where the new variables Xx , x^, x^, x^' are given by the general

transformation,

xJ = xj{xi, X2, Xz, Xi) (a = 1, 2, 3, 4) (35)

and conversely. Let us place, for simplicity.

(a) = SSpT'U^M^.
fiy [a

\

We obtain, finally,

dH^

ds'
— ^ /;.

,^w'^i^'- + 2(«)p-
^ y dXfi dXy dXa a OXa

(36)

(37)

This relation expresses in the most general way the analogue of

Coriolis' theorem. We now show what is understood by this

analogy in a particular case.

In order to define the change of variables, let us choose the

Euclidean relations.

re = .To + aiX' + anjf 4- a3z'

y = y^ + /3i.t' + i32?/' + ^,z'

2 = 2o + lix' + 722/' + 732'

t = t'

(38)

In these formulas xa, ijq, zq, are the coordinates of the origin

0' with respect to the fixed trihedron (0; x, y, z). The direction

cosines «;, ^i, yi are given functions of t and are related by the

conditions of orthogonality,

ai' + ^r + If =1 (t = 1, 2, 3)

ociaj + I3i^j + 7i7i = (i ^ j; i, j = 1, 2, 3)

Equations (38) and (39) are given by S and written down on

the r-map by this observer (Fig. 8). In this case, the con-

travariant acceleration for S' has the components,

,dxV

(39)

^'^

='^+ K^'S- ^'fV^+
«^''(^'^)^ + :!:(«)

A'2 = A'3 = A'
dH

ds^
+ (4)

(40)

In these formulas p', q', r' are the components of the instan-

taneous rotation of the moving trihedron (0'; x'
,
y', z') with
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respect to the fixed trihedron (0; x, y, z). This rotation is

defined in the same way as in classical kinematics, that is, by

p' = aza-i + 183182 + T372 = — (aoas + ^i^z + 7372) 1

q' = -, r' = -. j

On the other hand, we place as in ordinary kinematics

ax'' = ai(xo + ociX' + aoj/ + ocsz')

+/3i (yo + iSix' + 'l32y' +M
+ 71(^0 + 71^:' + 72I/' + 73^')

Civ'' = •••, ttz'' = •••.

(41)

(42)

The last two components are obtained l^y replacing successively

«i, /3i, 7i, which are outside the parenthesis, by 0:2, ^2, 72 and

«3, 183, 73. The components given by (39) may be written in

space and time as follows:

.T'+2(gy-ry)+aV-i'|logr+SM^
(43)

where ??', q', r' , ax''"' have the same meaning as before (Equa

tions (41) and (42)), and where we have placed, as in (35),

/37

0y I a
v^v''. (44)

Let us return for a moment to the definitions of the contra-

variant and covariant accelerations and inquire what becomes

of these expressions in the Minkowski field. In this case we
obtain

Aa — ^ ^°-

^ ~ ds'

or, in space and time,

2 r^ _ y«

Id'P dt
logF

(45)

(46)

Let us notice that these expressions are similar to those of

classical mechanics and further that for all motions ordinarily
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considered in mechanics, we have approximately

c^A-^^. (47)

Let us investigate now what becomes of Coriolis' theorem in

the Minkowski field. All the Christoffel symbols being zero,

the symbols (a) and [a] vanish and Equations (40) or (43) give

the answer to this problem.^

1 The detail of the calculations in this lecture may be found in Chap. 3

of the author's "Introduction a la gravifique einsteinienne." Memorial

des sciences mathematiques, Paris, Gauthier-Villars, 1925.



LECTURE 6

The Fundamental Equations of the Gravific Field

Variational derivative— The gravific equations— Theorem of the

phenomenal tensor— Theorem of the gravific pseudo-tensor.

Let ^i, ^2 ••• be arbitrary functions of {xi---Xi). Let us

denote the derivatives of one of these functions ^a with respect

to Xk by the symbol ^a,k, similarly by ^a,ki the second derivative

of ^a with respect to Xk and to x/. We consider an arbitrary

function F{^i, ^2, •••, ^1,1, '••) of the functions ^a and of their

derivatives ^a,k • For purposes of simplification we denote

the function F{^a, •" ^a,k •••) by the symbol F.

Let us place

\d^c,j/ j k dxjdxk\d^c,jk)

^ _dF_ d_

S^c d^c j dxj\d^c,j/ ' "j" dxjdxk

This operation is called the variational derivative of F with

respect to ^c- It has the following remarkable property: The
variational derivative with respect to ^c of the partial deriva-

tive

3— = 2
(
;-— ^a,i + 2 T-— ^a.ik + '

•

"

)
(2)

OXi a \o^a k 0^a.k J

is identically zero.

Let us consider now a function depending only on the g"^,

gafi.i^ •••. Its variational with respect to an arbitrary change

of variables Xi, X2, Xs, Xi is that of a multiplier or density factor,

that is

Six')

d{x)

d(x')

d{x)

46

(3)
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where X\ ••• Xa are arbitrary functions of Xi •'•X/^. We call

M« the characteristic gravific function. Let us further consider

a function M, having the same variational but which, besides

depending on g'^, gf°^'' • • •, may involve other functions, such as u",

\,Aa, etc., already defined above. This function will be

written explicitly in the following lectures and will then be

called the characteristic phenomenal function.

Let us take the variational derivative of the sum

M« + M (4)

with respect to g"". We have

^^(M^ + M) = ^,(M« + M) - SA ^.(M^ + M)
d

8g<^^"^ ' "*' ag«^^*" '

''^'
'J dXjldg°

j k dXj dXk dg'

^ (M« + M)
'0,jk (5)

The fundamental variational principle of the gravific theory

consists in placing all ten variational derivatives with respect to

the g"^'s equal to zero. We obtain in this way the ten fundamen-

tal equations of the gravific theory, i.e.,

gp(M^ + M)=0. (6)

Let us place also

5M^ 5M
"^ 6^^' "^

bg'^'
^^

We call T^ctfi the symmetrical covariant gravific tensor, T^p the

symmetrical covariant phenomenal tensor or simply the syjn-

metrical tensor. By (6) we have

T^o^ = T^. (8)

Let us denote by C the curvature invariant and by a and b

two imiversal constants, i.e., the gravitational constant and the

cosmological constant. We know that C is given by

C = XXg'^^Cae (9)
a/3
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where

'^--(4r:i-i;r/Kr;}r;)-{:){fi)<'0)

The Christoffel symbols i have been defined above (Lecture

4, Equation (23)). If M« is taken as

M« = (a + hC) V^ (11)

we get by performing the operations indicated in (7)

-Ha + bC)g^-i-bC^0= T^ (12)

where

T^,=^. (13)V-g

Let us multiply both sides of (12) by g"^ and sum over a and jS.

Then, by (9),

bC = -
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Q, being a region of space-time at the boundaries of which the

variations must vanish. It is in order to avoid the use of a

four-dimensional space that we have preferred the above

presentation.

Applying to the function M^ theorems already proved^ we
have, because of the nature of the density factor of this func-

tion, the following four identities:

—
- 2gy : + 4 Sf/y-" —^

8g" J
= (i,i= 1,2,3,4) (19)

or by (7)

= (« = 1,2,3,4)

where

TV = Sg'>'T^„,-.

(20)

(21)

The ten fundamental equations (6) together with the four

identities (20) give us immediately the following four equations.

[^T '

where as in (21)

T„' = Sg'JT„y.

(22)

(23)

We say that the four equations (22) express the theorem of the

phenomenal tensor. We note that Equations (22) may also be

written

"5T '

_dxi
^-^-^'"^

= (a = 1, 2, 3, 4) (24)

or agam,

SdTJ
l-a. flTi-^'

= (a = 1, 2, 3, 4). (25)

^ Th. De Donder "La synthese de la gravifique," Comptes-Rendus de

Paris, June 11, 1923, p. 1701; see also Bull. Acad. Roy. de Belgique, April,

1924.
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We shall place

F = 2 S-^^^'H (26)

and shall say that F« (a = 1, 2, 3, 4) are the components of the

total generalized force. The four equations (24) may now be

written

F„ = 0. (27)

The theorem of the phenomenal tensor expresses therefore that

the four components of the total generalized force are zero.

A mixed gravific pseudo-tensor^ is, by definition, a set of six-

teen functions

equations

(a, jS = 1, 2, 3, 4) satisfying the four

dx.
{;)-ifff«"-T'.7]=o. (28)

Let us remember that the T^,j's depend only on the ^"^'s and

their derivatives with respect to Xi, Xi, xz, Xi. On comparing

(28) with the fundamental identities (20) we have

i dXi
+ TV = 0. (29)

Using Equations (8) and Notations (23), we obtain four equa-

tions

^ d

i dXi
+ T, = (30)

which express the theorem of the gravific pseudo-tensor.

The theory of gravific waves and rays has been developed

in the author's "Gravifique Einsteinienne " (Arts. 29 and 45)

(Paris, 1921). Let us choose new variables Xi, x^, Xz, Xi such

that the new gapS satisfy the four complementary equations:

SSr^(g„0,,-2fir,„,p) = 0.

a /3

(31)

1 The first example of such a tensor was given by the author in Versl.

Akad. Amsterdam, May, 1916; see also a note by T. Okaya, Japanese

Journal of Physics, Vol. 3, pp. 95-115, 1924.
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These relations may also be written

22,"{f]=
0. (32)

Using these new variables, the fundamental equations of the

gravific field (17) become

^^g"^g.r,a0 = (cr, r) (33)

where the right-hand member (cr, r) does not involve the second

derivatives of the Einsteinian potentials. We further note

that the left-hand member of each of these equations contains

the second derivatives of only one of these potentials.

Following on the footsteps of J. Hadamard and E. Vessiot

we consider the surfaces f{xi, X2, Xs, X4) = which satisfy the

characteristic equation of (33), i.e.,

^ = 22^°^^!^ = 0. (34)

We consider also the characteristics of this equation, or the

bicharacteristics of (33). These bicharacteristics are to be

determined by the well-known Cauchy equations,

dx^^dJl dX^_ dH
dl dXa dl dXa

(35)

where X„ = -r^ and we have introduced the parameter I. We

shall say that the characteristic surfaces / determine the

gravific waves and that the bicharacteristic lines determine the

gravific rays. From their definition (35) it follows that the

gravific rays are geodesies in the space-time (Equation (1),

Lecture 3) and that they are lines of zero length, i.e. such that

22ga^ dXa dxfi = 0. This relation is independent of the choice

of variables xi, X2, xs, Xi. This fundamental property of

gravific rays interpreted in space and time may be looked upon

as a generalization of Fermat's theorem.



LECTURE 6

The Mass Gravific Field

Definition — The characteristic function — The fundamental equa-

tions— The mass tensor— Special cases— Dynamics in space and

time— Examples— Physical measurement— Approximations.

Let us consider a gravific field due to masses. In order to

describe the motion of these masses, we shall use, together

with the observer S, the Euclidean coordinates Xi, x^, xz and

the time Xi, defined in Lecture 3. The motion of these masses

will be described by S, on the F-map, by means of the covariant

velocities w„ (a = 1, 2, 3, 4) (Lecture 4), which should be con-

sidered as functions of Xi, x^, Xz, Xi. The observer S will make
use of the mass density-factor N, which is a function of Xi, X2,

Xs, Xi. This observer will also make use of a mass tensor, the

ten symmetrical components of which will be denoted by P«(j

and are also functions of Xi, x^, xs, Xa.

We place^ in the case of the gravific mass field

M = -2Sr^(Nw«M^ + P,^). (1)
a/3

The characteristic function (1) enables us to compute the

phenomenal or mass tensor T^^s defined by (7), Lecture 5. We
have, in this way,

Tafi = Nu„up + P„^. (2)

We place, as usual,

N
iV = -^, (3)V-g

then Equations (2) become

T^p = Nu^up + P^. (4)

^ Generalizing the results of H. A. Lorentz (Verslag. Ak. van. Wet. te

Amsterdam, p. 1076, 1915), we first introduced a function M (Bull. Acad.

Roy. de Belgique, p. 317, 1919) and then the present more general form

(Bull. Acad. Royale de Belgique, p. 77, 1924).
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We introduce now the mixed tensor

PJ = ^g^'P^i (5)

and the invariant

P = 2P/; (6)
i

it follows that

T = N + P. (7)

After these preliminaries, we find immediately that the ten

Equations (17), Lecture 5, of the gravific field due to masses,

may be written

2 (/a/3 + bC^fi = N{u„Ufi - I Oaff) + -Pa/3 - ^ QaffP- (8)

These are the fundamental equations of the gravific mass field.

Let us go back to the four Equations (22), Lecture 5, which

express the theorem of the phenomenal tensor. We substitute

in them the values of TJ deduced from (2), i.e.,

T/ = Nm„u.^ + PcP (9)

whence

sr^(Nw„w' + P„0 -i 22^%,,-,(Nw,7i* + Pi*) = 0. (10)

Let us place

S^ (Nm„w') - -^ ^^gkjAiPu^ = N« (11)
i OX,- ^ j k

and

Pa. (12)
3P '

C7Xj ^' ^

Then the four Equations (1) can be abbreviated as follows:

F„ = N„ + P« = («= 1,2,3,4). (13)

They express the theorem of the total generalized force. Let us

notice that (11) may be written down immediately, using the

covariant acceleration A^ introduced in Lecture 4,

N„ = N.-U + ii„2^(NmO. (14)
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Multiplying both sides of this identity by m" and adding, we
obtain

S^(Nw«) + 2:P„w« = 0, (15)

which is the equation of continuity of mass.

The theorem of the mass tensor (13) may also be written as

follows by using the identities (14) and the relation (15),

F« = NAa - uj:PiU^ + P„ = 0. (16)
i

Multiplying by g"^ and adding with respect to a we obtain

F« = NA« - w«SPi?A' + P« = (17)
i

where

p« = 2fif«^P^, F« = S{/«^F^. (18)

The incoherent mass fluid is by definition that for which

Po/j = 0. The fundamental gravific Equations (18) become

'^Qa^ + hC^p = N{UaUff - ^ gafi) (19)

and the theorem of the mixed tensor becomes, by Equations (10)

to (12),

N« = xl-— (Nw«wO - - Sgry>w'wn = 0. (20)

Equation (15) takes the very simple form

S^.(NwO = 0. (21)

This is the equation of continuity of the incoherent mass fluid.

At every point where N 5^ we have, by (16),

A^^^-i ^^gij,.uiu^ = (22)

or, by (17),

^"=^"+??{f^-''^^' = «- ^23)
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These equations can be given a very interesting interpretation:

the tracks of any mass point and the mode of its motion may be

obtained by taking the extremal

8 fVzXg^^dz^dXfi = (24)

or

0. (25)5 Tds =

We take the variation with respect to Xi, x^, Xz, x^, assuming

that the ends of the hne along which the integration is taken

are fixed. If we place

W = V^Ig^^u^ = 1 (26)
«/3

the equations of the extremal (25) may be written

dxa

ds

\dXa)

(27)

and we have seen in Lecture 4 that these equations are identical

with Equations (23).

The mass fluid is called perfect when the tensor P^P has the

particular form

PJ = -ecPp. (28)

We recall that
P ^

Pa^ = -4^ (29)V-g

and that e^^ = 1 if /S = a and e/ = if /? 5=^ a.

If a ynass fluid is perfect in a system of coordinates Xi, X2, Xs, X4,

it is perfect in any other system Xi, X2', Xs', Xi. This may be

verified by the variance of the mixed tensor (28) and it is seen

also that p is an invariant for all transformations of the vari-

ables Xi, X2, X3, Xi. The fundamental equations of the gravific

field produced by a perfect mass fluid become

gS'a/s + bCafi = N(u„Ufi - ^ Qafi) + pgafi. (30)
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The theorem (13) of the phenomenal tensor becomes

N„ + P„ = (31)

where P^ is given by (12), that is, by

This theorem may also be written

NA« + V^(u«^ - :^P-gA = 0.
\ ds (3 dXfi J

(33)

We have already established in Lecture 4 the relations en-

abhng us to go over to space and time. Equations (10) then

become

N-BC-^-fj]--©-'"' + P„ = 0. (34)

The equation of continuity (15) may be written now,

S^(N7-V) + F-lSPi^^^ = 0. (35)

Let us now use Equations (17). The formulas developed in

Lecture 4 enable us to write

V-'nIj (7-V) + F-^SS r^l v'yM- F-^y^SPf^;' + P« = (36)

or

In the last equation if we place a = 4 we obtain an identity.

A mass field is called stationary when all the gr^^'s and all the

v°''s are independent of Xi = t. Then at any point where the

velocity of the fluid is zero (v^ = v^ = v^ = 0), Equations (36)

become

i Ng44,„ + g^aP, - g44P„ = (a = 1,2, 3). (38)

If the fluid is incoherent and at rest, in a stationary mass field,

the potential gu reduces to a constant. This theorem results

immediately from (38).
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In the case of an incoherent mass fluid, we always have, by

(23), at any point where N is different from zero,

^(F-V) + F-1S2 f^^l vh^ = (« = 1, 2, 3, 4) (39)
at i k \a ]

where

| = |+.^f +.^f +.^1-. (40)
at dt dx dy dz

The equation of continuity (21) reduces to

S ^ (NF-ii^O = 0, (41)
i aXi

it follows that

^ V-^ 8x1 8X2 8x3 = (42)IJ-
where d/dt indicates a total derivative with respect to t, that is,

following the motion of the mass contained in the volume 8x18x28x3,

the visualization being made on the T-map. Let us re-

member that the point {x\, X2, X3) has the velocity (v^, v^, v^)

on this r-map. Let us place^ with *S, in the case of the in-

coherent fluid,

N
c^ 5m* = Y7 8x18x28x3. (43)

The observer S will then write on the T-map that

d

dt,
fsm* = 0. (44)

We multiply both sides of (39) by 8m*. By Equation (44) we

have

d I 8m*\

dt['"-r)
+ ^2s|'^"[i;V = 0. (45)

V i j la'

The analogy between these equations written by S and those

used in the classical dynamics of the mass-point is immediately

apparent. The analogy with the first term in (45) is found

1 T. De Bonder, Bull. Acad. Roy. de Belgique, February, 1921, p. 101;

also "La gravifique einsteinienne," Equations (185), (186).
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in the Galilean expression for the force as a function of mass

and acceleration; the analogy with the second term in (45),

with opposite sign, is found in the force applied to the mass.

If the observer S places

Vdm = c8m* (46)

we may write Equations (45) as follows:

J {if8m) + 5m2S {^"^ 1 z;V = 0. (47)

The parenthesis {ifbm) is particularly interesting. Let us

immerse a mass-point 5m, considered as an exploring particle

(i.e. such that its gravific action is completely negligible) in

the gravific field defined by Minkowski's form,

5s2 = -bx" - 8y^ - 8z^ + c" 8t\ (48)

Then from (47) we obtain, placing a = 4,

|(M = 0. (49)

Therefore, by introducing this result in formula (47) and

placing now a = 1, 2, 3, we find

The last equations define a uniform rectilinear motion. We
thus have now a so-called inertial field. Let us remember that

(Lecture 2) *S = *S in Minkowski's field and that we may set

X = X, y = y, z = z, t = t. When the mass 8m or 8m is at

rest with respect to S, we see by (46) that 5m = 5m*. Thus,

if we attach the observer S' to 5m* then this observer will obtain

5m' = 5m*.

Let us consider Equation (34) ; in the case of an incoherent

mass fluid, we have

These relations may be condensed in the formula

bJVdt = 0, (52)
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the variation being taken with respect to Xi, X2, X3, X4 and van-

ishing at the hmits of the integration. The tracks of the in-

coherent mass fiuid are extremals defined by (52).

We have shown elsewhere (Theorie des champs gravifiques,

Paris, Memorial des Sciences mathematiques, 1926, p. 21)

how these equations may be extended to the perfect mass fluid.

We shall show how we can pass from the numbers or pa-

rameters xi, X2, xs, X4, u^, u^, V?, W^, N, written down by the ob-

server S on the F-map to the measurements obtained by the ob-

server *S'. To each of the mass particles we attach an observer

*S'. All of these observers S' have taken along with them stand-

ards of length, time and mass which are identical when at rest

in Minkowski's field. We have seen in Lecture 3 that it is

always possible to find a transformation such that the array

of the quantities ga/ reduces to a first approximation to

-10
0-10-10

{c'y

(53)

We therefore have, to the same order of approximation,

Since N and V — gr are density-factors, we have

V^<
d(x')

d{x)
(54)

where ^
' / denotes the Jacobian of x' with respect to x. Thus

d{x)

we have

N
V- g

N'
(55)

We may notice that from the invariance of the integral form

N 8x1 8x2 8x3 8x4 with respect to any change of the variables

Xi, X2, X3, X4 we have

N 8x1 8x2 8x3 8xi = N' 8v' 8t'. (56)

In order to find the physical significance of the components of

TaP we investigate their meaning for the observer *S' at rest with
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respect to the volume 5^'. We suppose thus that the velocities

v^, v^, v^ vanish and that the values of the ^a^"s reduce to (53).

We then get for the values of the T"/'s, from (9)

P/i P/' P/' P/'

PJ^ P2'' P2'' PJ'
Pa'i Pa'^ P3'' _ P3''

P4'^ P4'2 P/' A^' + Pa"

T' /3 = (57)

The dimensions may be chosen in such a way that in this

table the P'J's (a = 1, 2, 3) have the dimensions of the classical

elastic tensor of Cauchy. Then we also see that P/^, P2'*,

P3* have the dimensions of momentum per unit volume and

Pa^, Pi^, Pi^ those of energy-flow per unit area and unit time.

Finally T'4'^ has the dimensions of energy per unit volume;

we place therefore

f." = §; (58)

de' being the quantity of energy measured by S' and contained

in the element of volume 8v'. Let us define the mass Sm'

measured by S' by means of

5e' = (cySm'. (59)

The mass density D' measured by S' and defined by

D'
8mW

will have the value
. T '4 N' + P4"'

(60)

(61)
(c'y {I'y

It follows that D' has the dimensions L^W where L is the

dimension of length and M that of mass.

If the fluid is incoherent, all the P„^'s vanish. Thus all the

P'„^'s also vanish on account of their variancy. Hence the

array (57) reduces to

0^

A^'

(62)
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and formula (61) becomes

— N'
D' =-^—-

icy
(63)

The invariance of theN used by S gives N' = N, i.e. D' = N/c^.

We get in this way the physical meaning of N.
In the case of the perfect mass fluid, the PJ's are given by (28).

It follows from the invariance of p that p = p' , where p' denotes

the mass pressure measured by S'. The array (57) now becomes

-W
-p' _

-p' + N'

rpr
(64)

Formula (61) gives

D' = N' - p'

(cy (65)

From the invariance of the N and of the p used by aS it follows

that

N - pD' =
C"

(66)

We study with Einstein^ the mass gravific field, to a first

approximation. Therefore, we place

gaB= - 5a/3 + 7aP (67)

where hp = if a 5^ /S, bn = 822 = 833 = 1 and Su = —&.
Einstein's hypothesis leads us to admit that the products of

la& (a, /3 = 1, 2, 3), 7a4/c (a = 1, 2, 3), 744/c^ taken in pairs are

negligible with respect to 1. Suppose, moreover, that we have
taken new variables Xx, X2, Xs, X4, which satisfy, to a first ap-

proximation, the four relations

^W{gcr,»» - Qaa.rfi " ^^cr.^r) = 0. (68)

The components Cap of the Riemann tensor reduce in this way,
except for a factor, to the D'Alembertians,

Ca0= -I DTo/S. (69)

1 A. Einstein, Sitzungsber. Akad. Berlin, pp. 688-696, 1916,
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Let us go back now to the right-hand members of Equations

(8). Besides the approximation which has just been introduced,

let us assume that the velocities of the masses are so small that

v/c is negligible compared with 1. We thus obtain,

n7a^= -f^a^* (70)

where we have placed

(71)Tap* = 5^,3[5a„iV^^ - P/ + I eJ(N -\-P + a)
c c

and where €„« = 1 and e/ = if /3 5^ a. Integrating by the

method of retarded potentials, we obtain

where r is the distance between the point x, y, z and the element

of volume dv. The symbol HT^is*!! is used to denote that

Tap* is taken at the time (t — r/c).

In the case of the incoherent fluid, the left-hand member of

Equations (45), expressing the theorem of the phenomenal

tensor, may be written in vectorial form as follows,^

3(i+i)3H-(^^+?^^+^'^^^^"K*=°<''>
where we have placed, with Einstein, a = —ju/^ and where

A denotes a vector having the components A^ — 7^4 (a = 1, 2, 3).

The element of mass 5m* has been defined before by (43).

Equation (73) has been obtained by Einstein^ in the case of

a unit mass. The method followed here allows us to specify

the meaning of the element 5m*.

^ We have used here Gibbs' vector notation, where grad a = v<t, curl

A = V X A, [AS] = A X fi.

2 A. Einstein, "The Meaning of Relativity," Methuen, London, 1922;

see Equation (116).



LECTURE 7

The Electromagnetic Gravific Field

Definition — The characteristic function— The fundamental equa-

tions— The electromagnetic tensor— Maxwell's equations — Elec-

trodynamics — Dynamics of the electron.

Let US consider the case where the gravific field is due to

electric charges. For this purpose we introduce the char-

acteristic function (1)

M = -s2:g-^(Nw„M^ - W^g^^g^'H^iRp^ (i)

where N is the generalized mass due to the electromagnetic

field, Ua the covariant velocity of the electric charge and 7/„j

the covariant electromagnetic force. We place Hai = —Hia.
The characteristic function (1) enables us to calculate the

phenomenal tensor T^^ defined by Equation (7), Lecture 5,

that is

T„^ = Nw„u^ + iV^ g^pXZHmij - V^l^HJH^i (2)
i j i

where we have placed

HJ = ^g^'H^i. (3)
i

From (13) and (15), Lecture 5, we deduce immediately

r/ = Nuo,u» + i eJli:HijH'J + ^HJH,^. (4)
t j i

Explicitly the ten fundamental equations of the gravific theory

become here:

% gap + hCafi = N{UaUp - \ Q^p) + \ g^Hl^HijH^^ - ^HJH^i. (5)
•^ i j i

The analogy between these Equations (5) and Equations (8),

Lecture 6, which determine the gravific mass field, is worth

noting. The factor A^ is now of electromagnetic origin, while

in (1), Lecture 6, it was of mass origin.

63
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The electromagnetic tensor (4) may also be written:

(6)

(7)

where Hai denotes the symbol H provided with two lower

indices which, with a and i, form an even permutation aiai of

the numbers 1, 2, 3, 4, that is,

H\2 = H34, Hn = —H24, Hji = H23

He = Hu, H2I = —Hi3, Hzi = H12

Likewise H""* denotes H with two upper indices which form

with a and i an even permutation, i.e.,

(8)

Writing the components of the mixed tensor (6) exphcitly,

we get the following complete table:

Ti^ = Nuiu' - 1 {Hx^H^^ - Hz,m' + HxzH^^

- Hi^H^'^ + HuH'' - H^sH^')

Ti2 = Nuiu" - (HuH^' + HuH^')

Ti^ = Nuiu' - (HuH^ + ^^12^'')

Ti^ = Nuiu"" - (HnH"^ + HizH^)

T^^ = Nuou' - (H2sH'' + Ho^H'^)

Ti' = NuiU" - \ {H2zH^' - HuH''

+ H2,H'' - HrsW' + H21H'' - Hz,m')

T2' = Nuiu? - {H^iH^' + H21H'')

T2' = NU2U' - (//2lH« + H23H'')

Ts^ = Nu3u' - (Hs2H'' + H^iW')

Ts^ = Nuzu^ - {Hz,m + //3i//^0

7^3^ = Nuzu^ - i {H3,m' - H12H'' + HsiH''

- H2JI'' + H32H'' - H41H'')

T3' = Nu3u' - {Hz,m + H32H^)

T^ = NuiU^ - (HioH'' + HuH'')

T4' = NuiV? - {H,zH'' + H41H'')

Ti' = NuiV? - {HiiW' + H42H'')

T4* = Nu,u' - i (HuH'' - H2zH^^ + H^iW^
- H31H'' + H,3H'' - HnH'')

(9)
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The symmetric tensor T„(S may also be written

T^ = Nm„m^ - i\/^2Sgy (V^H^) {V^m)
(10)

Let us go back now to the four Equations (22), Lecture 5,

expressing the theorem of the phenomenal tensor. We obtain

» C-^'t i j

d

^
dXi

.H.j-(V-gWJ)^ (11)

where ^4^ is given by (26), Lecture 4. Let us place in (11)

«' j

V-,H«-^|5_H,,A(V-,ff.V)] (12)

then the theorem of the electromagnetic tensor becomes

F„ = NA„ + M«2^ (NwO + F„W = 0. (13)

Multiply Equations (13) by u" and sum over a. We obtain

by (28), (5) and (6) of Lecture 4,

F„ = N^„ - w„2F/«)w' + F„w = 0. (14)

We place

SA„A« = B. (15)

Multiply (14) by A" and sum over a; we get, by Equation (28),

Lecture (4),

N = - isA«F„w.
-Da

Let us now introduce Maxwell's electromagnetic equations

and

i dXi

»• OX;

au°

=

(16)

(17)

(18)
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where we have placed

H-i = H*-. (19)

From (18) and (19) it follows immediately that we may write

//„.=|^-^ (20)

where <^a is the electromagnetic potential.

It is important to notice that Maxwell's Equations (17) and

(18) may be obtained from the fundamental electromagnetic

function,

D(e)= S[(rM«0„ + iV^gXZXg^Pg^m^iHej] (21)
a fi i j

where a is the electric density factor and u^ia = 1, •••,4) are

the contravariant components of the velocity of the electric

charge, by taking the variational derivatives with respect to

0a as shown in the author's "Theorie des champs gravifiques"

(Paris, 1923).

From Equations (17) it follows immediately that

s/-((rw«)=0 (22)

which expresses the conservation of electric charge in motion.

Let us place

5t(«) = a bxi bx2 bxz 5x4 (23)

whence

Let us go back to (12); we have, by Equations (17) and (18)

F«W = (rSu'iy„;. (25)
j

It follows, taking into account (20), that

SF„Wm« = 0. (26)
a

Hence Equation (13) becomes

sA(Nw-) = 0. (27)
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Let us place

8t^»') = N5a:i 8x2 8x3 8Xi (28)

we obtain

dsj
5t^«) =0.

. (29)

Equation (29) expresses the conservation of mass of electromag-

netic origin in motion. From (22) and (27) it follows that

m- (30)

Hence the ratio N/<r remains constant during the motion of

electric charge. The four Equations (14) of the theorem of the

electromagnetic tensor become^ by (26) and (25)

F„ = N^, + (tSm^//^ = 0. (31)
/s

We deduce immediately

F« = N^« - a^u^f = (32)
/s

and also

2F„w« = 0, SF«w„ = 0. (33)
a <x

By (25), relations (16) for N become

N = -^^^A-vPHa0. (34)

Let us replace in (31) N by its value (34); we get, by (15)

(ri:w^A^[-A^Hij + AiH„j]=0 (35)
J i

or, ii a ^ 0,

X7:A'u^[-A^Hij -{ AiH^j] = 0. (36)
« J

We may not place in (31) the mass density factor N of electro-

magnetic origin equal to zero, since then Equations (31) would

reduce for a 9^ Q, that is, at the electrified points, to a system

' T. De Bonder, "La gravifique einsteinenne" Equation (350').
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of four linear homogeneous equations in u^, u^, v?, w^. The

determinant of H^ being in general different from zero, these

equations admit only the solution u" = 0, which is absurd,

owing to condition (6), Lecture 4.

The coefficients of o- in Equations (31) may be written in the

Lagrangian form. In fact we have

^uHU = 2»^(*.. - *...) = ^(^) - (g) (37)

where we have placed

U = 2m«o (38)

We notice that the variables a;„, u" are to be treated here as

independent variables.

The theorem (31) of the electromagnetic tensor may also

be written, by (37) of this Lecture and (29) of Lecture 4,

^-«g(^)-(S)]-K©-(a^)]-- (39)

Let us multiply both sides of this equation by bxi dx2 Sxs 8x4.

We obtain by (24) and (29)

By definition the supplementary equation of Maxwell is

^ = ^S-^(V^0") =0 (41)
V — g a OXa

where we have placed 0" = ^g"^<i>p- Maxwell's electromagnetic

equations (17) may be simplified by using Equation (41) in

such a way that each of them contains only the second deriva-

tives of one single electromagnetic potential </>«. After a few

calculations, we get

o-W = Z^ H- ssgf^^-
dXi dXiv —g ^ 3 '^•^» ""^J

where K„ does not include second derivatives of 0i, ^2, (t>s, <f>4

(42)
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We may also write all these electromagnetic equations in

space and time. Let us recall Lecture 4 and place

The Maxwelhan Equations (17) and (18) become

aHi2 ^ ^1 _ ^1 ^ aH23 aHi2 en^'^

dx-i dXs dt

dxi dx2 dt

aH«
, ,

dw
6a;i

+ pv^

dt

dW^

+ pv"^

dw dH^
dxi dX2 dxs

an. dKJ^
dX2 dxs dt

'
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The density factor N satisfies Equation (27). Thus, we have

This equation is equivalent to

j^f(^yxi8x2dx, = (53)

where d/dt denotes a total derivative and the integral is taken

over a space region; we follow the motion of electric charge

when we take the total derivative with respect to t. Let us

place

c2 8m* ={-^]8xi 8x2 8x3, (54)

the observer S will write on the T-map that

dt
C8m* = 0. (55)

Let us go back to the theorem of the mixed tensor (32). We
have

Let us multiply both sides of (56) by 8x1 8x2 8x3. The last

equation becomes, by (48), (54) and (55),

V fiy \ a
||(^5m*)+"-^2S]"'[i'V 8e*i:v^Hf = 0. (57)

We may notice that the parenthesis entering in (57) is identical

with the first member of (45), Lecture 6. If we put, with the

observer S,

V 8m = c 8m* (58)

we may write (57) in the form

c\^ (v"8m) + 5mSS (^^l yvl - 8e*'Ev^Hp" = 0. (59)
dt p y [ a i J (3

Let us place, by analogy with (38),

U* = Sy«<A„ (« = 1, 2, 3, 4). (60)
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We consider Xi, x^, Xs, x^ and v^, v^, v^, v* as being two sets of

independent variables; we have

Substituting in (31), the theorem of the electromagnetic tensor

becomes

dt [dV^J \dxJi ^\_dt \dv" ) \ dx„ J_

= 0. (62)

These relations have to be compared with (39) and also with

Equation (51), Lecture 6, relating to the incoherent mass fluid.

Multiply both sides of (62) by 8xi 8x2 8x3 and use (49) and (55);

we obtain

/dU*\

\dXa/

Let us introduce the canonical variables pj^'' and pj^^ by
placing

7, (m) = f^^L] y ie)

Moreover, introduce the functions

Him) = _ -J^ 4. l^pJ^^U"
a

{a = 1, 2, 3, 4). (64)

(65)

where H^^'^ is a function of x^ and Pa^^\ and W^^^ a function

of Xa and pj^\ Equations (39) may be written in the canonical

form (66)

We shall have by (64)

Pa^"" = Wa, Va^'^ = <i>a. (67)

Substituting these values in (65) we see that we have the con-

ditions

^W = H(e) = 0. (68)
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To study the dynamics of the electron in space-time, we
introduce, by (24) and (29), the two constants t^""^ and t<*)

which characterize the electron from the points of view of mass

and charge. Then Equation (40) becomes

where we have introduced the Lagrangian function,

L = TFr('») + Ut^'K (70)

Using canonical variables and introducing the Hamiltonian

function

H = -L + i:p^u" (a = 1, 2, 3, 4) (71)
a

where

we obtain the canonical equations of electronic dynamics

^ = ^Ji, ^=-^, («= 1,2,3,4) (73)
ds dpcc' ds dx„' ^ > ' ' ^

V
y

with the condition

H = 0. (74)

This condition is equivalent to

W = 1. (75)

Let us note that

p„ = UaT^'^^ + </)„tW; (76)

thus (75) may be written in terms of canonical variables

SSr^(?)„ - 0„rW)
(pff

- </>^r(«)) = (t(-))2. (77)

From this follows Jacobi's equation which governs electronic

dynamics
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It is known that if a complete integral S{xi, Xo, xs, x^; ai, 02,

as, a^) of this partial differential equation is found, then we may
deduce immediately, through Jacobi's theorem, the general

integral of the differential equations (73).

We shall now take up this problem in space and time. For

this purpose we introduce the canonical variables

p/"'=g). ?'."=(^) (^-=1.2,3), (79)

and introduce the Hamiltonian functions

fj^(m) =, _ 7 _|_ Sp.WyJ
I

i/^W = -U* -\- SpiW2;'
(^• = 1, 2, 3). (80)

Equation (63) furnishes the following three equations:

We get immediately

1 4

p .w =
(1 = 1,2,3); (82)

substituting these values in (80) we have, after a few reductions,

(83)

1 4

y a=l
//^W = -04

We recall that v^ = 1 and that we still have to calculate from

(82) vS v^, v^ as functions of pi^'"), p2^'"\ Ps^""^ m order to sub-

stitute them in the right-hand member of the first Equation

(83).

Let us extend the integrals appearing in (63) to an electron

and replace 5m* and 5e* respectively by the constants m* and

e* which characterize on the T-map the electron considered.

We may then write (63) in the form
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where we have introduced the Lagrangian function

L* = em*Y 4- e*C/*. (85)

Let us now go over to canonical variables by introducing the

Hamiltonian function

3

H* = -L* + 2 p,V (86)
i=l

where

Vi =^ ii= 1, 2, 3). (87)

We obtain immediately the canonical equations

dVi ^ _ ^H^ dxi ^ dm
dt dXi

'

dt dpi

where

(88)

4

H* = -c2w*F-i 2 sf„4V« - e*<j>i. (89)
a=l

By (82) and (89) we find that

H* = -pi (90)

where

P4 = -t7- 2 Qa^V" + e*<^4. (91)
y o=i

We have now, by (82), (87) and (91)

f^TY)^ 4

Pa = V- 2 ^«^^ + ^*^« (« = 1'
•••' 4) (92)

y (3=1

from which we get immediately the y"'s as functions of p\, pz,

ps, p4. Substituting in Equation (8) of Lecture (4), we obtain

22fif«^(p„ - e*(/,„) (pp - e*ct>p) = {(fm*y. (93)

From this equation we obtain pi. It is easy to see that the

radical has to be taken with a plus sign, if V is taken positive.

By (90) the value of p4 with opposite sign is nothing but the

Hamiltonian function H*. From this remark, it follows imme-
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diately that the Jacobi equation corresponding to the differential

r) Si

equations (88) may be obtained by replacing p„ by -— (a =
OXa

1, 2, 3, 4) in Equation (93). Hence the Jacobi equation

This equation may be written in several forms which are in-

teresting from the standpoint of the applications to particular

problems.^

^ T. De Bonder, Association frangaise pour I'avancement des sciences.

Congrte de Juillet. 1925.



LECTURE 8

The General Electromagnetic Mass Gravific Field

Definition— The characteristic function— The fundamental equa-

tions— The electromagnetic mass tensor— Generalized Maxwell

equations— Case of perfect matter— Generalized electromagnetic

potentials— Electrostriction.

Let US consider the general case where the gravific field is

produced by anisotropic inhomogeneous bodies, electrically

and magnetically polarizable. These bodies may be electrically

and magnetically charged and be the seat of conduction cur-

rents. The gravific fields to be studied in this lecture include,

as particular cases, those studied in the last two preceding

lectures.

Let us introduce with Einstein^ the force of electric polariza-

tion defined by six contravariant components,

P(e)^ = PiefuP - Piefu-, (1)

where P{ef are the four contravariant components of the electric

polarization. We recall that the w"'s are the four contravariant

components of the velocity of the masses.

In the same way we introduce the force of magnetic polariza-

tion,

Pi,f^ = Pi,fu^ - P(.fu-, (2)

where the P(m)"'s are the four contravariant components of the

magnetic polarization.

We introduce also the electromagnetic force defined by six

contravariant components,

K-^ = H-P - P(ef^ (3)

and the adjoint electromagnetic force^

Z^«^ = H^-^ + P(,)«^ (4)

1 A. Einstein, Sitzungsber. d. preuss. Akad. d. Wiss., p. 164, 1914.

* T. De Donder, Bull. Acad. Roy. de Belgique, April, 1924.

76



GENERAL ELECTROMAGNETIC MASS GRAVIFIC FIELD 77

where we again recall that the meaning of the symbol H^"^

is given in Equation (19), Lecture 7; that is, H^;^ = H^'^ =

For the characteristic function of the field we are studying

we place here

M = 22:r^[(-Nw«W^ - P„^) + 1 V~g'2Xgh-K^,Kj^] (5)
a i j

where K**^-^' = K^^^^J V^ = H^- + 'Po.fJ and N is the mass

density. The mass tensor is defined by Pq^. All these quan-

tities as well as Ka^ are to be considered as functions of xi, Xi,

Xz, Xi', that is, their variations with respect to g'^ are zero.

Let us now calculate the symmetric tensor T^^ defined by

Equation (7), Lecture 5. To do this we must first write M
in (5) in a symmetrical form with respect to a and (S. For this

purpose we permute a and /8 in (5) and take the half-sum.

Thus we obtain finally

+ i g„^^i:^i:gkigiiKk^Ji. (6)
i j k I

From this we derive the mixed tensor

+ \ €/SSS2^^'g'ii^,,K/ (7)
i j k I

and obtain

T = •ETJ' = N -\- P. (8)
a

We may now write the fundamental equations of the electro-

magnetic mass field,

~ga0 + hC^p = T^-h gaffiN 4- P). (9)

We shall study now the theorem of the electromagnetic

mass tensor by using (22) of Lecture 5. We have

F« = N« -h P« + F«w = (10)
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where

P« = 2
OXi j k

},a^i

(11)

and

F„W = sF^T^W^- - i 226f'>-^^,-,„T/«)4 (12)

Or, after some reductions,

t OXi t V T

k I t V ^•'^a

(13)

Multiplying both members of (10) by m° and summing, we
obtain

2F„w« = S -^ (Nw«) + 2P„M« + 2F„f^)M« = 0. (14)

This relation expresses the conservation of energy. It may
also be regarded as a generalization of the equation of con-

tinuity.

Combining Equations (14) and (10) we may also write the

theorem of the electromagnetic mass tensor as follows,

F„ = NA„ - M„SPiW^" - m„SF/^)m'' + P„ + F„(«) = 0. (15)
i i

Let us multiply this Equation by A" and sum over a. We
obtain, by (15) of Lecture 7 and (28) of Lecture 4,

N = -^SA«(P« + F„W). (16)

By generalizing the equations given by Einstein in his paper

just quoted, we write the electromagnetic equations as follows.

2 -^ = a(e)W« -f- L(e)« (17)
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and
-^ir at

= (Tww« + Lw« (18)
dK^^

i dXi

where the L(e)"'s are the contravariant tensor components of the

electric conduction current, and cr(e)M" the components of the elec-

tric convection current. Likewise, L(^)" and (r(ju)M" are the mag-

netic conduction current and the magnetic convection current,

respectively. Equations (17) and (18) give immediately.

2^.(^(e)W''-f- W) =0

S^.(<T(M)W'' + L(^)0 =
(19)

expressing, respectively, the conservation of electric and of

magnetic charge. Expression (13) for the force F^'*' can be

simplified by using (17) and (18).

Perfect matter^ will be defined by the following relations,

L(ef = -2Sg(e)£«H'JMy, L(^f = ^^q(^)fYL^'^Uj
]

' ^ ' ^
\

('20')

i j i j >

where q{e)i"- is a mixed tensor obtained by generalizing the elec-

tric conductivity (Ohm's law), P(e)i" the electric susceptibility

(Poisson's law), ?>(^)," the magnetic susceptibility, and 5(^)," the

magnetic conductivity.

If we have

(7(^)W« + L(;,)« = (21)

then we may write, by (18),

K=,«^' = 0^ - c^t;^ (22)

where the 4>J& are the components of the electromagnetic po-

tential.

Let us now consider an example. We suppose that all the

masses are at rest with respect to the observer S. It follows

that at every point where mass is present we shall have u^ = v?

' T. De Donder, Comptes-Rendus, July 9, 1923; also "Theorie des champs
gravifiques," 1926.
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= u^ = and w^ = (^^44)"'.

P(e)^ = PieM

From this it follows that

ii,j= 1,2,3)

(i = 1, 2, 3)

and also

P(M)'

PiM)i' = P(^M
{i,3 = 1,2,3)

{i = 1, 2, 3)

(23)

(24)

Denoting by Hx, Hy, Hz the components of the electric force,

by Bx, By, Bz the electric induction, by H^;, H^,, H2 the magnetic

force, by B^;, By, Bj the magnetic induction and by i//, ^/, fl^/

the so-called applied electric force, Equations (17) should

reduce to the classical Maxwell electromagnetic equations for

bodies at rest.^ Thus we obtain the following expressions,

K12 = cH„ K*i2 ^ c{Hz - Hz')

K*i3 = -c{Hy - Hy-)

K24 B^

K*2^ = c{H,

K,i^ = B,

K^24 = By

K*^^ = B,

^/)

K34 = -Bz

Likewise we obtain the expressions

ffi = K^-i (i,j = 1,2,3)

H^^ = -H,
H24 = -Hy
H34 = -Hz

To obtain the classical formulas

B = H -VP
B = H + P

(25)

H*24 = Hy
H*3^ = H,.

(26)

(27)

where P is the electric polarization and P the magnetic polariza-

tion, we have to place

PW^W^ = Px PW'W^ = Px

P(e;2w^ = Py P(,)2m4 = Vy (28)

P(e)3w4 = Pz Pw^W^ = P, J

1 See, for example, T. De Bonder, "Theorie mathematique de I'^lectri-

cite," Eqs. 578, 579, 582, 587; Paris, Gauthier-Villars, 1925.
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If we substitute these expressions in (12) or (13) we have the

general expression for the electromagnetic striction. In order to

deduce electrostriction from the gravific theory we have de-

veloped here, we split up the tensor P„^ which enters in (11)

into two tensors, one of which is the electrostriction tensor and

the other the mass tensor proper. In the study of electro-

striction we shaU only consider matter undergoing infinitely

small deformations. The masses thus having infinitesimal

velocities, we apply to this system the Maxwell equations

governing the electromagnetic field for bodies at rest. Leaning

upon the ideas of Maxwell, Hertz and Lorentz, we equate the

elastic power of the electrostriction tensor to the power of

electromagnetic hysteresis. We thus find again the classical

expression for the electrostriction tensor as a function of the

derivatives of the electromagnetic energy with respect to the

deformations. Our relativistic method allows us to obtain

these formulas in the case of any gravific field, while keeping,

without modification or change. Maxwell's purely electromag-

netic tensor.

To attain this result, let us go back to Equation (10). The
values of N„ and P„ are given by (11) and T„W by the last two

terms of (7) . Let us break up the tensor P/ into two tensors,

one of which, VcP'''"\ is due to the mass field only, and the other,

•p^{m,e)^ is due to the combined action of the mass field and the

electromagnetic field. We shall speak of the tensor P^'^Cm.e) ^s

the "electrostriction tensor." We shall have, by definition,

P„^ = P^^C") + P/('«'«) (a, jS = 1, •••, 4). (29)

We recall that, by (11),

Let us now denote by v* {i = 1, 2, 3) the three rectangular

components of the velocity y of a point {x, y, z) of the body, at

the instant t. We calculate the work done by the electro-

striction force vector P/»^«) per unit time, during the motion

of the body; this power is

(2p.(»»,e)i,r)5'y

P{m,e) — V .p^0im,e)_l^s^g0jg^.^^p^kim,e)\^^
/3, k,j=l,-, 4). (30)

J J k J

XFi=l
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where d'v is an element of volume and 8't = 0. Integrating by
parts by Green's theorem, we obtain immediately for this

power

JVij OXj Js Jvi ot

{i,j = 1, 2, 3; 0,k,l = 1, 2, 3, 4; P.if-'.^) = P/M)

(31)

where 8's is an element of the surface S which bounds the

volume V. On the other hand the three rectangular com-

ponents of 'P{n)i^^'''^ are

P(„)i('".«) = SP/ cos {xj, n) {i, j = 1, 2, 3) (32)
j

where n is the outside normal to S.

We note that the first integral in (31) contains derivatives

with respect to the time t of the linear and surface deformations

inside the body. To show this, we place

Xi = Xi^ + X,-(a;iO, a:2°, a^3°, (* = 1, 2, 3) (33)

where X,- is the infinitesimal displacement starting from the

initial point Xj" (* = 1, 2, 3); for t = 0, Xi = x^. It follows

that

. = f. (34)

Let us place now X,- = -rj, whence v* = X,- {i = 1, 2, 3) and
ot

further write the classical notations

_ d\i _ 6X2 _ 3X3

^*~a^o' y'~df' ^'~d^'

_ _ 6Xi 5X2 _ _dXi dXs _ _d\2 dXs
• (35)

Except for an infinitesimal, we may write xi instead of x^ (i = 1,

2, 3). We may therefore replace in (35) Xi° by Xj. It follows

that (cf. (31))
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dxidxx

dX2 dxi *

dXidX2 ^^ dXi
= z.

(36)

the dot over Xx, Vy,
••• indicating a partial derivative with re-

spect to t.

By definition we shall say that

X
.ay*

S2P,.i('».'')— 5't; {i,j = 1,2,3)
V i j OXj

(37)

is the elastic power of electrostriction.

As the velocity v^ {i = 1, 2, 3) of the system is assumed

infinitesimal, we may, to a first approximation, apply Maxwell's

equations governing the electromagnetic field for bodies at

rest. We recall that formulas (25) give us a means of going

over from Maxwell's field to ours supposed at rest. To attain

the conservation of pure electromagnetic energy in our gen-

eralized Maxwell field it is enough to go back to Equation (609)

of the author's "Theorie mathematique de I'electricit^".^

Among the different powers entering into this equation, we

retain only the power of electromagnetic hysteresis.

Let us assume now that

Hi = ^ei/Bj, Hi = SMy'By {i,j = 1, 2, 3). (39)

If W denotes the density of localized electromagnetic energy,

then we shall have for the localized energy of the whole system

J W8'v = hf\(H ' B) + (R- B)\8'v

= \ f XX(ei/BiBj + M,/B,-Bi) 8'v a, j = 1, 2, 3). (40)

Paris, Gauthier-Villars, 1925.
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The integral (38) can now be written

-X(-rr 8'v (41)
ot Jb,b

where the indices B, B denote that the partial derivative with

respect to t is taken leaving Bi and B,- {i = 1, 2, 3) constant.

We shall have

X(fL^''-iX-(t'^.«^+'#B..B^aV (42)

Let us suppose, finally, that the density W is only a function

of the angular and linear deformations Xx, •••
2/a- The integral

(38) may be written

Jv\dtjB,B Jvl\dXx/B,B \d2Jy/B,B \dzjB,B

./dW\ . ,/dW\ . ,(dW\ .1,, ,„,
\dXyjB,B "^ \dljjB.B \dZx/B,B J

Finally let us assume, as our fundamental hypothesis, that the

elastic power of electrostriction (37) is equal to the power of

electromagnetic hysteresis (38). We have just seen that this

power may be expressed by (43) ; equating then (37) and (43)

gives at once the electrostriction tensor P^-i('»'«) (i, j = 1,2,3)

\ dXx Jb;b
'

\ dyy Jb,b' \ dz^ Jb,b

\dXyjBfi
'

\dyz}B,B

dZx/BiB

(44)

We thus obtain the classical formulas of Maxwell, Hertz, and
Lorentz, extended to any gravific field. It will be noticed that

we have not modified the purely electromagnetic tensor T«^(*).



LECTURE 9

Applications to Restricted Relativity

Definition— Einstein's mass law— Restricted relativity for polar-

izable conductive matter in uniform rectilinear motion— The electro-

magnetic tensor and the mechanical forces in Maxwell's field.

Restricted relativity, so-called, is the theory obtained from

the preceding considerations by neglecting the gravific field,

that is, by assuming that the space-time is that of Minkowski.

We have seen that the observer S will write Equation (6),

Lecture 2,

5s2 = -8x^ - 8y^ - hz^ + c" W^ (1)

where, for purposes of simplification, the bar over s, x, •• has

been dropped. We have also seen in Lecture 2 that by means

of the Lorentz transformation given by Ecjuations (56) and

(57), Lecture 2, the observer S' will write

5s2 = - bx"^ - 8y'^ - hz'- + c2 U"". (2)

Restricted relativity enables us to go over from the measure-

ments obtained by S to those obtained by S' , or conversely.

We have already studied in Lecture 2 this problem for the

measurement of length and of time.

Einstein^ has shown that the variancy of velocity gives a

simple explanation of the rigorous Fizeau law which expresses

the partial drag of waves in a moving medium. From the

variancy of electric and magnetic forces in the Maxwell-Lorentz

field he inferred Doppler's formula and stellar aberration and

from the variancy of the mixed electromagnetic tensor in the

same field he obtained the law of reflection of light on a mirror

moving with uniform velocity in a straight line. In Lecture 6

we have shown that the observer S' will obtain 5m* as the

» A. Einstein "Annalen der Physik," Vol. 17, 1905.

85



86 THE MATHEMATICAL THEORY OF RELATIVITY

measure of mass at rest with respect to himself. Thus we may-

place 8m* = 8m'. The observer S will obtain 8m as the

measure of this mass in uniform rectilinear motion at the ve-

locity V with respect to him. By Equation (46), Lecture 6,

we have here •

V 8m = c 8m' (3)

where

V = c Vl - {v/cy (4)

and thus we obtain at once the law of variation of mass due to

Einstein,

8m = 8m'[l - (v/cy]-i. (5)

Let us recall that 8m' is obtained by S' from a measurement
of mass at rest with respect to himself.

We have shown^ by the same synthetic method how it is

possible to derive from Equations (69), Lecture 7, the dynamics

of the electron and also the significance of the longitudinal

and the transversal mass of the electron.

Starting from the general equations of the electromagnetic

mass gravific field, Lecture 8, we shall give a synthetic theory

of the electrodynamics of matter in uniform rectilinear motion

in Minkowski's field. For this purpose we consider an observer

S' in a Minkowski field who takes measurements on matter

at rest with respect to himself. In Equations (23) to (28) of

Lecture 8 we place g^' = ^22' = gss' = — 1, Qu = ^ and all

the other Einstein potentials equal to zero. Let us recall that,

as all these measurements are obtained by &' , we have to accent

all the formulas (23) to (28) of the preceding lecture. By-

means of the Lorentz transformation and the variancy of these

symbols we shall obtain at once the measurements taken by
aS, with respect to whom matter is in rectilinear uniform motion

at a velocity v. This is the general method. To illustrate

the procedure we shall write explicitly the electromagnetic

mixed tensor obtained by *S

' T. De Bonder, "La gravifique einsteinienne, " §84 and §85.
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T^iWi = I (H.B, - HyBy - HA + H,Bx - H,B, - K,B,)\

T,(e)2 = 1 ^HyBy - HA - HA + H,B, - H,B. - H,BJ
7^3«^ = I {HA - HAx - HyBy + HA - H,B. - H,B,)

r3(e)2 = T2ie)Z = 1 (i/^^^ +H^ + H,B, + H.B.)

T,(en = T,(e)z = 1 (^^5^ + 2^^j5^ + H3. + H,B,)

^4^1 = -c^TiW^ =
I
(^^H, - H^Yly + 53,B,

T4(''^2= -02^2^4=
I
(//.H,

5.B,)

^*Hj + B^Ba; — B^^

(6)

r4(e)3 = -02^3(^)4 =
I
(J^,H, - ^,H, + B,By - ByB,)

T^W4 = ^{B- H -hBH)

If there is an applied force H" then we must write in the pre-

ceding formulas (6) instead of H the vector H — H'^. It is

interesting that in the Minkowski field the electromagnetic

tensor T/ {i, j = 1, 2, 3) of the most general Maxwellian field

is always symmetric. To obtain the mechanical force due to

electromagnetic forces in such a field we have only to sub-

stitute the preceding tensor (6) in Equation (12), Lecture 8.

We obtain

F„w = cS^^ (7)
i dXi ^ '

because all the g^jj^ vanish in the Minkowski field. We recall

that in this field ^—g = c. In the special case of the Maxwell-

Lorentz field, that is, if there are neither polarization nor con-

duction currents, then the force per unit of volume given by

(7) becomes

Fi'«) = chl,-\-'^^{vyll, - y,H,)l

F^^^^ = cp|^//,+^(t;,H, - t',H,)]

F3W = cp|^//,+i(t;,H, - Vyn^A

(8)

These formulas may also be derived from (51), Lecture 7,

bearing in mind the values given in Equations (25) and (26),
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Lecture 8. The complete calculation of the force by using

(6) and (7) would be very interesting. Finally let us note that

F4(*) = -cp(v^H^ + VyHy + v,H,) (9)

which may also be written

F4(^) = - (F/^)?;, + W^hy + F3Wy.) (10)

and may be interpreted physically as the work of the electro-

magnetic force per unit volume and unit time.

To pass from the measurements obtained by the observer S'

with respect to whom matter is at rest, to the measurements of

*S with respect to whom matter is in uniform rectilinear motion,

we shall use the following relations which are derived from the

Lorentz transformation. For the mixed electromagnetic tensor

we have

y,wi = /32( J'lW'i — - 7'4(«)'4 _ _ J'^W'l) *

\ c" c J

TT^e)z = T^m = ^(r^ievz _ JL r^^^^A
J (11)

T^(eH = -1 T^^fc)! = ^2r3^^(.)/4/l_^^\ _ 1^
(7'4W'4_ f^Wl)

T^m = - i T^^^^^ = dT^^'^'^ + ^ ^2<*''A

T^m = _ 1 T4W3 = dTz''^'^ + I
Ts'^^'A

where we have placed

(12)

N/-Q'
The same relations hold for all the mixed tensors which have

been used in this field. For instance the coefficients which were
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introduced in Equation (20), Lecture 8, to generalize the electric

and magnetic conductivities and the electric and magnetic

susceptibilities change in the way indicated by relations (11)

when we pass from the observer S' to the observer S.

The foregoing examples are sufficient to show that the method

is quite general and that we have obtained restricted relativity

of the most general kind of matter.



LECTURE 10

Relativistic Quantization

Quantization of the point electron— Continuous systems— Quan-
tization in space-time and in space and time.

Let US go back to the fundamental formula (40) of Lecture 7

and apply it to the case of a point electron defined by the two
constants r^*") and t'-^K This constancy along a trajectory is

expressed, from Equations (24) and (29) of Lecture 7, by the

following invariant relations

:

If we place

T(m)

M = br (2)
T («)

it follows that fx is also invariant. We note that

because

W^ = gafiU^u^ = 1. (4)

Equation (40), Lecture 7, may now be written

_ A(^(e)C/) =0. (5)
OXcc

We now introduce the Lagrangian function

L = UW'+U (6)

hence the Hamiltonian variables

Pa =^ = MWa + <l>a (« = 1, "•, 4). (7)

90
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Using Xa, Pa and s as variables, the Hamiltonian function

H = -L -\- XpaU" (8)
a

will be written

H = ^ (j.W\ (9)

Replace now the w^'s by their values from (7). By (4) we

obtain Jacobi's equation

where S is Jacobi's function. We know, besides, from Jacobi's

classical theory that, by (9),

§=-H = -i,. (11)

Substituting in (10) we have

We have just seen that
fj,

is an invariant along a trajectory

in space-time. Integrating (11) we obtain

S = —^fj.s + Soixi, X2, Xi, Xi). (13)

Place

kS = log rp (14)

by (13) we have
_k

lA = e ^''Vo (15)

where

From (14), (11) and (15) follows immediately that

and
drP_

dr„-~2dl («=1. -.4). (18)

ds
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Substituting in (12) we obtain

Note that J is an invariant for all changes of variables Xi, •••,2:4

and that s' = s.

Now let us apply the following quantization rule:^ The
variational derivative of the left-hand member of the Jacobian

Equation (19), with respect to rp, shall vanish. Explicitly

8

b^lf

(jV-g) =

where

A = A _ V ^

^ ^
....^,(^jj ^.,g)l

(20)

(21)

After performing the indicated partial differentiations we
finally obtain

15, , av
-o^'A « /3

dsdXff

+ ,4^+2[^-.,^=0 (22)

where

n^^ =

D =

1 ^ d / . ^^P\

1 ^ d ,

— g a 'J^a
p

F = S2(/°
«/3

(a, ^ = 1, ..., 4)

(23)

In (22) replace the derivatives of ^ with respect to s by their

values,

1^=-*^* l? = ^*w (24)

1 T. De Bonder and F. H. van den Dungen, "La quantification d^dnite

de la gravifique einsteinienne, " Comptes-Rendus, July 5, 1926.
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whence

n^ - 2 k2Zg'^<l>JJ^ - kDrl^ + (F - ix^)k'^ = 0. (25)

From the invariance of r^*"^ and t^^^ with respect to every

change of the variables xi, •••, x^, we have

M =
-(e) (26)

where wi* and e* are respectively the mass and the charge of the

point electron at rest in a Minkowski field.

Substituting in (25) we obtain the fundamental quantization

equation of the 'point electron:

U>P -2 fc2Sr^</)„|^ - kD^p +(f - ^^'Vv = 0. (27)

We note that D = is the generalization of Maxwell's com-

plementary equation. By way of example we consider the case

where H does not involve the time t explicitly. We then place

It^^ ^^^^

where E is the total energy of the electron^ including its mass

energy m*c^. By (14)

dt e*
^ (29)

and by (29) we may also eliminate the derivative of \p with

respect to t in the fundamental equation (27). We thus obtain

^ 1 l^^( u
2kc/^ e%( e*(j)i\ 3

. ,

(30)

^ The value (—Ec) is given by the second term of Equation (89), Lec-

ture 7.
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where

F = ^•Lgi^4>i4>j (f,j = l, 2, 3). (32)
t j

Let us now go over to the more special case of Minkowski's field

and of the electrostatic field. We have then ^i = </»2 = 03 =0,

-TT- = 0. Equation (30) becomes then

A^A + (^)V [{E - Vy - {chn*y] = (33)

where

F=^^ (34)

We recall that we have here, by (31),

^^-v'^-Pal +i +1
and Equation (33) may also be written^

AiA + (^)V [(e -Vy + 2{e- V)c''m*] = (36)

where

e = E - m*c\ (37)

To a first order of approximation (36) may be written

^^P + 2(^Ychn*(e - V)i^ = 0. (38)

For (38) to become identical with Schrodinger's equation^, we

merely have to place

?=^ (^«)

1 This is the result obtained in our note in Comptes-Rendus, Oct. 11,

1926.

2 E. Schrodinger, Ann. d. Physik, 79, 361/376, 1926; see Equations (5)

(23) and (24). Also Ann. d. Physik, 79, 489 and 734; 80, 437, 1926.
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where h is Planck's constant. Explicitly Schrodinger's equa-

tion (38) may be written in rectangular coordinates,

We have thus shown that the quantization of the -point electron

can he deduced from Einstein's gravijic theory by means of an

absolute extremal.

This method may also be applied to continuous systems as

follows •} Let us consider a holonomic system of / degrees of

freedom and place

Xa = Xa(Xi, X2, X3 , X4
] Ql, ", Qf) (41)

where Xa represents an event in a given reference system and

xj the same event in another reference system such that xj
stays constant when the proper time s increases by ds. We have

therefore dxj = 0, and finally qi, •••, q/ are functions of s.

We place

K*=^ (<^ = 1, ...,/) (42)

for the generalized contravariant velocity, and besides, we
introduce the variation 8' such that 8'qi = •• = b'qj = and

8's = 0. The 8'xi ••• 8'x4 are, in general, non-vanishing. We
have now,

TF2 = vsg^^^V/c^ = 1 (<^,^ = 1, -, /) (43)
<t><i'

where

^«/ =
ff l;^^'^ («' ^ = 1' •••' 4). (44)

We shall have, besides,

U = 2(/>«*/c* (45)

where

* T. De Bonder, Journal of Mathematics and Physics, Vol. V, No. 4,

June, 1926; Comptes-Rendus, June 7, 1926.
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Place

^"^
ds\dH:^l \dqj

and

(47)

(48)

(49)

We readily show that

and

Our fundamental Equations (40), Lecture 7, furnish therefore

the corresponding equations for a continuous system of/degrees

of freedom,

Tq^'" 6'r("^) + Cq/ 5't(«) = (51)

where

8't(^) = N 8'xi d'x2 8'x38% and d'r^'^ = a S'xi S'xz d'xs b'x^. (25)

These notations have already been defined by (23) and (28) of

Lecture 7. We note that as in (3)

dW—- Ci W^) =

(52')

^'j{m)

and (51) may also be written

From (41) follows that

5V-) = n|;^5V- 5V and 5V«) = (r^, 5V - SV-
d(r

)

Ci.T j

(54)
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From the invariancies expressed by (24) and (29) of Lecture 7,

we may assume that S't^*"' and 5't<*^ depend on a;/, •••, x^ only.

Then (53) may be written

d /dL*\

-(^) = " (* = i.-,y) (55)

where

L* = /"(i W^ b'r^"^^ + f/ 5't(«)) (56)

and the integral is taken over the whole continuous system.

If we introduce the generalized momenta

= {—) (57)

and the Hamiltonian function

H* = -L* - lp^*K^, (58)

we shall have the 2/ canonical equations of the continuous

system

dq^ dH* dp4,* dH*
ds 6p0*

'

ds dq^
(4>=l,..;f). (59)

The quantization of continuous systems will be carried out by
appljdng to the H* given by (58) the same method as was ap-

plied at the beginning of this Lecture to the quantization of the

point-electron. The only difficulty in given cases arises from

the integration (56) and this owing to the four dimensional

5't('«) and S't'^K

By the definitions already given, we have, as in (31),

where the notations have already been defined by (48) and (54)

of Lecture 7.

To a first approximation it might be assumed that 5't^«' is 8e*

multiplied by c/v, v being a universal constant having the

diniensions of frequency (time to the power minus one). This
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constant will thereafter disappear in the course of our calcula-

tions.

We may avoid the difficulty arising from the integration

(56), extended over a, four dimensional region, by reconsidering

in space and time the problem of the continuous system. For

this purpose we place

Xi = Xi{xi, X2, xs; qi, gz, •••,
2f) {i = 1, 2, 3) (61)

where {xi, X2, X3, Xi = t) define an event and Xi, x^, xz are

invariants with respect to the time t. We shall have then

dxi /dt = (i = 1, 2, 3). Finally gi, •••, qf are functions of t

defining the state of the system at the instant t. We place

^='t (0 = 1,2, ...,/). (62)

The points of the system at the instant t are defined by Xx\

X2, X:i. We thus have to consider the infinitesimals h'xi

{i = I, 2, 3); besides 5'^ = b'qi = ... = 5'^/ = 0. It follows

that
(r7s\2 / / /- = S S g^^*q^q'^ + 2 2) g^*q^ + gu (63)

where

g,,* = l:l:g,j^^, sr,* = lg,,^. (64)
i=ij=i oq^dq^ ,=1 oq^

We may prove, as before, that Equation (81), Lecture 7, furnishes

the fundamental equations of continuous systems in space and

time

/'[A^'^c' 8m* + .4/ 8e*] = (<^ = 1, .-, /) (65)

where

^^-=1©-® v=|(f)-(f). m
The symbols 5m*, 8e* are defined by (54) and (48), Lecture 7;

the invariancy of these equations is indicated by (55) and (49)

of the same Lecture. By (61) we have

^^^* =Tri^^^ 5'xi' 8W 8'x,', 8e* = p^^ 8W b'x^' 8'x,'.
V o(x) d\x )

(67)
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These expressions being invariant with respect to t, we may
assume that they can be expressed by means of the parameters

xi', X2, Xs, only, independently of qi, •••, q/; q\ •••, qf.

Equations (65) become then

where

l(i)-(i)=° (. = ..2,...,/) (68)

L = A^c^Sm* + U*8e*], (69)

the integral being extended to the whole continuous system at

the instant t considered. If we introduce the generalized

momenta

P4, =(l) (™)

the Hamiltonian function

H = -L + 2p^5« (71)

and assume that H does not involve t explicitly, then H is an
invariant of the canonical equations of motion of the system.

By analogy with (89), Lecture 7, and with (28) of this Lecture,

we place

-H = cE = c{e + c^m*), (72)

By Jacobi's equation

H+f=0 (73)

we shall have

whence

dt

~= cE = c{€-\- c^m*) (74)

^ = cEt-\- So{xi, X2, xs). (75)

To quantize^ these systems it is only necessary to follow the

procedure indicated at the beginning of this Lecture. This

^ The details will be found in our paper: "Contribution a la quantifica-

tion relativistique," Bull. Ac. Roy. de Belgique, Oct. 9, 1926.
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method leads to the solution of the quantization of the un-

charged pure mass rotator, of the rigid polyatomic molecule

and of the electron rotating uniformly about an axis.

Equation (25) may be generalized as follows for relativistic

continuous (four dimensional) systems:

f d\J/ r T^'"^^!

where

T«P0^ =fg%^5'T^-^\ t'^^Q^
=J4>^*8't^^>, (0,^= 1, -, /) (77)

r(m> = C8't"^\ t^') = C b'r^'\ (78)

D^ = ^2/-rV3p2P^.^], (79)

Q = ^Q^Q'^, Q* = SP-^^Q^, (80)

P is the determinant of P^^, k is Schrodinger's constant 2 iri/ch

and e* the electronic charge. The universal constant e* has

been introduced so that in the limiting case of the electron

(m*, e*), our generalized Equation (76) may reduce to Equation

(25). It is enough to note that the g,^'s become the XaS {a =
1, •••,4), P^rf, becomes Qap, Qt" goes over into 0", Q^ into ^^ (a, /S =
1, •••, 4), and, above all, that r^^) Jr^^) becomes m*c^/e*.

The relativistic meaning of the generalized Schrodinger

equation is then that this equation alone is equivalent to the

system of two equations in S:

[5] = n5 = (81)

where aS is a real Jacobian function and where we have placed

n>s=-7i=s/-rv=P2P*^|^l ' (83)
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for Equations (83) are equivalent to the single imaginary

equation

nS + iK[S] = (84)

where i^ is a real constant, K = 2 ire*/ch.

If now in (86) we introduce the function \p defined by

S=^logrP (85)

we obtain immediately our generalized Equation (76). The

magic power of Schrodinger's equation and its generalization

arises, therefore, first from the fact that it merges both Equa-

tions (83) into a single equation, and, second, from its being

linear in d\(//dq^, while the first of our equations is quadratic

md\l//dq4, {4> = 1, -,/).

The relation between statistical mechanics and our relativ-

istic quantization is quite interesting. A permanent ensemble

of continuous systems is one for which

A.
ds,

fV-P8qi -
8qf

= const. (86)

the integral being taken over any configuration manifold gi, •••,

qf (with 5s = 0). But since

K^=^ (<t>
= l,-,f) (87)

the equation of " continuity " of configuration may be written

2_!_(V3p.*)=0. (88)

But we have Maxwell's generalized complementary equation

2^(V:rpQ.)=o (89)

and since o-,„ —r-^r and o-g . /, are independent of qi, •••, g/;

K^, •••, K^ ior our continuous systems, we have

dq^ dq^
= (90)
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hence, adding together (92) and (93), we obtain

Since

V^=rp
.(e)

SP*^(t('»)k^ + T^'^Q^)\ = 0. (91)

p^ = r^-^/c^ + r(^^Q^, P^ =||, (92)

we have, substituting in (95),

_ _ , V^Tp 2P0^ 1^1 = (93)

which is our D'Alembertian wave equation. ^

If to this equation we join the generalized Jacobian equation

[aS] = (83), we have already shown above how it is possible

to deduce our relativistic quantization from these two equations.

Relativity is thus able, not only to furnish quantization, but

even to show that it is a consequence of the condition of "per-

manence of statistical ensembles.^

In (85) we have implicitly assumed that the modulus (or

amplitude) of yp is constant. In the general case where the

modulus ^ of i/' is variable it is still possible to deduce the funda-

mental equation (76) from our theory applied to electronic or

molecular systems having internal stresses which as a whole

form a permanent luminous source. The modulus A is nothing

but the potential A of the internal stresses P^ which enter in

Equation (11) of Lecture 8 by placing^

Pi A

Einstein's gravific theory furnishes, therefore, the physical

interpretation of the function \p. Owing to its marvelous

generality, our gravific theory embraces the whole quantization

problem.

1 T. De Bonder, Comptes-Rendus, Feb. 21, 1927, Bull. Ac. Roy. de

Belgique, March 7, 1927.

2 The text of this lecture has been considerably altered since its eriginal

presentation on May 19, 1926. See reference on p. 95 for the original text

of this lecture.

3 For the details of the calculations see T. De Bonder, Bull, de I'Ac. R.

Belgique, April 2, 1927.
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