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Foreword

The concepts of derivative and integral are basic for the
calculus. They are not elementary; in any systematic text-
book on calculus the presentation of these concepts is prece-
ded by the theory of real numbers, the theory of limits, and
the theory of continuous functions. This preliminary proce-
dure is necessary to formulate the concepts of derivative and
integral in sufficiently universal form, to be applied to the
widest possible class of functions. If, however, we restrict
ourselves to a comparatively narrow class of rational func-
tions and utilize the illustrative language of graphs, we can
present the concepts of derivative and integral in a few
pages, sufficiently accurately and at the same time pithily.
And this is the purpose of the pamphlet intended for a wide
circle of readers; the knowledge of secondary school students
is sufficient to insure understanding of everything that will
be discussed.



1. Graphs

Though we assume that the reader is conversant
with graphs, we shall anyway remind the basic points.

Let us draw two mutually perpendicular straight lines,
one horizontal and one vertical, and denote by O their
intersection point. The horizontal line will be referred to as
the axis of abscissas and the vertical line—as the azis of ordi-
nates. The point O divides each line into two semi-axes,
a positive and a negative one; the right-hand semi-axis of
abscissas and the upper semi-axis of ordinates are called
positive, while the left-hand semi-axis of abscissas and the
lower semi-axis of ordinates are called negative. We mark
the positive semi-axes by arrows. Now the position of each
point M on the plane can be defined by a pair of numbers.
To do this we drop perpendiculars from the point M onto
each of the axes; the perpendiculars will cut on the axes the
segments OA and OB (Fig. 1). The length of the segment OA,
taken with the sign “+4" if A is located on the positive semi-
axis and with the sign*“—" if it lies on the negative semi-
axis, will be called the abscissa of the point M and will be
denoted by z. Similarly, the length of the segment OB (with
the same rule of signs) will  be called the ordinate of the
point M and denoted by y. The numbers, z and y, are called
the coordinates of the point M. Each point on the plane is
determined by coordinates. Points of the abscissa axis have
the ordinate equal to zero, while the points of the ordinate
axis have zero abscissa. The origin of coordinates O (the
point of intersection of axes) has both coordinates equal to
zero. Conversely, if two arbitrary numbers x and y of any
signs are given, we can always plot, and this is very impor-
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tant, exactly a unique point M with the abscissa z and the
ordinate y; to achieve this we have to lay off the segment
OA = z on the abscissa axis and to erect a perpendicular
AM = y (signs being taken into account); the point M will
be the one sought for.

Let the rule be given which indicates the operations that
should be performed over the independent variable (denoted
by z) to obtain the value of the quantity of interest (deno-
ted by y).

Each such rule defines, in the language used by mathema-
ticians, the quantity y as function of the independent variable x.
It can be said that a given function is just that specific rule
by which the values of y are obtained from the values of z.

For instance, the formula

1
V=11

indicates that to obtain the values of y we have to square
the independent variable z, add it to unity and then divide
unity by the obtained result. If « takes on some numerical
value z, then by virtue of our formula y takes on a certain
value yo. The values z, and y, define a point M, in the plane
of the drawing. We can then replace x, by another number z,
and calculate by the formula the new value y,; the pair
of numbers z,, y, defines a new point M, on the plane. The
geometric locus of all points of the plane, whose ordinates
are related to abscissas by the given formula, is called the
graph of the corresponding function.

Generally speaking, the set of graph points is infinite so
that we cannot hope to plot all of them without exception by
using the foregoing rule. But we shall not have to do that.
In most cases a certain moderate number of points is suffi-
cient for us to be able to realize the general shape of the
graph.

The method of plotting a graph “point-by-point” consists
just in plotting a certain number of graph points
and in joining these points by as smooth a curve as
possible.

As an example we shall consider the graph of the function

\

1
V=13= (1)
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Let us compile the following table

z 0 1 2 3 —1

y 1 172 | 15 1/10 1/2

1/5

1/10

The first line lists the valuesofz = 0,1, 2, 3, —1, —2,—3.
As a rule, integral values of z are more useful for calcula-
tions. The second line lists the corresponding values of y
calculated by formula (1). Plotting the corresponding
points on the plane (Fig. 2) and connecting them by a smooth

curve, we obtain the graph (Fig. 3).

The rule of plotting a graph “point-by-point” is, as we
have seen, extremely simple aud requires no “science”.
Nevertheless, it may be for this very reason that blind
adhering to this “point-by-point” rule may be fraught with

serious errors.
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Let us plot “point-by-point” the curve specified by the
equation

1
Y=@=—12 )

The table of z and y values corresponding to this equation
is as follows

z 0 1 2 3 —1 —2 -3

] 1 1/4 [ 1/121] 1/676 1/4 1/121 | 1/676

The corresponding points on the plane are plotted in
Fig. 4 which is very similar to Fig. 2. Connecting the plotted
points with a smooth curve we obtain the graph (Fig. 9).
It may seem that we could put the pen away and feel satis-
fied: the art of plotting graphs has been grasped! But for the
sake of a test let us calculate y for some intermediate value
of z, for example, for 2 = 0.5. After performing the calcula-
tions, we obtain an unexpected result: y = 16. This is in
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Fig. 6 Fig. 7

striking disagreement with our graph. And we cannot gua-
rantee that calculation of y for other intermediate values
of z—and their number is infinite—will not produce even
greater discrepancies. Unfortunately, the method of tracing
the graph “point-by-point” proves rather unreliable.

We shall discuss below another method of graph plotting
which is more reliable in the sense of safeguarding us from
surprises similar to one we have encountered above. Using
this method we shall be able to plot the correct graph of
Eq. (2). In this method—let us term it, for instance, “by
successive operations”—we have to perform directly in the
graph all the operations which are written downin a given
formula, viz. addition, subtraction, multiplication, divi-
sion, etc.

Let us consider a few simplest examples. We shall plot
a graph corresponding to the equation

y=2 3)

This equation expresses that all points of the curve of inte-
rest have equal abscissas and ordinates. The locus of the
points for which ordinates are equal to abscissas is the
bisectrix of the angle between positive semi-axes and of the
angle between negative semi-axes (Fig. 6).

The graph corresponding to the equation y = kz with
a coefficient £ is obtained from the foregoing graph by
multiplying each ordinate by the same number k. Let us set,
for example, £ = 2; each ordinate of the foregoing graph

11



Fig. 8 Fig. 9

must be doubled, so that as a result we obtain a straight
line rising more steeply (Fig. 7). With each rightward step
along the z-axis the line rises two steps up along the y-axis.
By the way, this enables us to perform readily the plotting
on squared paper. In the general case of the equation
y = kx with an arbitrary & a straight line is obtained. If
k > 0, then with each rightward step the line will rise %
steps up along the y-axis. If £ << 0, the line will descend.
Consider the formula
y=kzx+b 4)

To plot the corresponding graph we have to add to each
ordinate of the already known line the same number b. This
will shift the straight line y = kz as a whole upward in
the plane by & units (for b > 0; if b << 0 the original curve
will naturally be shifted downward). As a result we shall
obtain a straight line parallel to the original one;it does
not pass any more through the origin of coordinates but
cuts on the ordinate axis the segment b (Fig. 8).

The number %k is called the slope of a straight line y =
= kx + b; we already mentioned that this number & shows
by what number of steps the straight line moves upward per
each rightward step. In other words, k£ is the tangent of
the angle between the direction of the z-axis and the straight
line y = kz + b.

The equation
y =k (@ — 20+ yo (4"

corresponds to the straight line with the slope k; it passes
through the point (zry, y,) (Fig. 9), since setting r = z,
gives y = y,.

12
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Thus, the graph of any first-degree polynomial in z is
a straight line which is plotted according to the aforesaid
rules. Let us pass over to the second-degree polynocmials.

Consider the formula

y =a ()
It can be presented in the form
y=y;, where y;=z

In other words, the required graph will be obtained if each
ordinate of the already known line y = z is squared. Let
us find out what this should produce.

Since 02 = 0, 12 =1, (—1)? = 1, we obtain three refe-
rence points 4, B, C (Fig. 10). If x > 1, then 2? > z; there-
fore to the riglit of the point B the curve will be above the
bisectrix of the quadrant angle (Fig. 11). If 0 <2 < 1,
then 0 << a? << «; therefore the curve between the points 4
and B will be under the bisectrix. Moreover, we state that,
as it approeaches the point 4, the curve will enter an angle

bounded above by theline y = kz (however small k) and
below by the z-axis; indeed, the inequality 2% << kz is
satisfied for all x << k. This fact means that the sought-for
curve is tangent to the abscissa axis at the point O (Fig. 12).
Let us move now leftward along the z-axis from the point .
We know that the numbers —a and +a when squared give

3-742 13



Fig. 12 Fig. 13

the same result a®. The ordinate of our curve will therefore
be the same both for x = +a and for 2 = —a. In geometri-
cal terms this means that the graph of the curve in the left-
hand semi-plane can be obtained by reflection relative to
the ordinate axis of the curve already plotted in the right-
hand semi-plane. We obtain the curve which is called the.

parabola (Fig. 13)
Now, following the same procedure, we sketch a more

complicated curve
y = az? (6)

and a still more complicated one
y=az*+ b (7)

The first of these curves is obtained by multiplying all
ordinates of parabola (5)—we shall refer to it as a reference
parabola—by a number a.

If a > 1 the curve will be similar to (5) but will rise
more steeply (Fig. 14).

If 0 << a <1 the curve will be less steep (Fig. 15), and
when a << 0 its branches will turn downward (Fig. 16).
Curve (7) will be obtained from curve (6) by shifting it
upward by a segment b if b > 0 (Fig. 17). If b << 0, we
have to shift the curve downward (Fig. 18). All these curves
are also called parabolas.

14
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Consider now a more complicated example of plotting
graphs by means of multiplication. Let the problem be to
plot the graph of the equation

y=z@—1)@E—-2) (-3 ®)

Here we have the product of four multipliers. Let us plot
each of them separately: all of them are straight lines paral-
lel to the bisectrix of the quadrant angle and cutting the
segments on the ordinate axis (see Fig. 19)

0, —1, -2, -3

At the points 0, 1, 2, 3 of the z-axis the sought-for curve
will have the ordinate O since the product is equal to zero
if at least one of the factors is equal to zero. At other points
the product will differ from zero and its sign can easily be
found by considering the signs of the co-factors. Thus, all
factors are positive to the right of the point 3; hence, the

16
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product is positive too. Between the points 2 and 3 one
of the multipliers is negative and therefore the product is
negative. Two of the multipliers are negative between the
points 1 and 2, so that-the product is positive, etc. We
obtain the following distribution of signs (Fig. 20). Tq the
right of the point 3 all multipliers will increase as z increa-
ses, so that the product will increase greatly at that. To the
left of the point O all multipliers increase their negative
values and the product (which is positive) also rises steeply.

Now it is not difficult to sketch the general shape of the
graph. (Fig. 21).

So far we only used the operations of addition and multi-
plication. Now we supplement them with division. Let us
plot the curve

1 \
y=11z )
To do this we shall plot separately the graph of the numera-
tor and that of the denominator.

The graph for the numerator
y =1

is the straight line parallel to the abscissa axis at the distan-
ce 1 from it. The graph of the denominator

Y, =2*+ 1
is a reference parabola shifted upward by 1. The two graphs
are shown in Fig. 22.

Let us divide each ordinate of the numerator by the cor-
responding (i.e. taken for the same z) ordinate of the dcao-

47
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minator. If x = 0 then y, = y, = 1, whence y = 1. For
z 7 0 the numerator is less than the denominator and the
quotient is less than unity. Since both the numerator and
the denominator are always positive, the quotient is posi-
tive too; hence, the graph is enclosed within a band between
the abscissa axis and the line y = 1. When z increases
without limit, the denominator also increases without
limit while the numerator remains constant; therefore the
quotient approaches zero. All this results in the graph of the
quotient shown in Fig. 23. The curve thus obtained is the
same as that plotted point-by-point (Fig. 3).

In the method of graphical division special role is played
by those values of £ with which the denominator becomes
zero. If this isnot accompanied by the numerator also turn-
ing zero, the quotient becomes infinite. To realize the
meaning of this expression let us plot the curve

=1 (10)

x

We already know the graphs of both the numerator and the
denominator (Fig. 2%). For £ =1 we have y, =y, = 1,
whence y = 1. For £ > 1 the numerator is smaller than the
denominator and the quotient is less than 1, similarly to
the foregoing example, infinite rise of z results in the quo-
tient approaching zero and we obtain the part of the curve
corresponding to the values z > 1 (Fig. 25).

Let us consider now the range of z values between 0 and
1. When z approaches zero from the side of 1, the denomina-
tor approaches zero while the numerator remains equal to 1.
Therefore the quotient increases without limit, exceeding

19
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however large number, given sufﬁciently small values
of z, and we obtain the branch going off to infinity (Fig. 26).
If £ << 0 the denominator and consequently the whole

quotient become negative. The general shape of the graph °
is presented in Fig. 27.

Y

Fig. 28

Fig, 29
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Now we are ready to tackle the y
problem of plotting the curve dis-
cussed at the beginning of this
section

1
V=G@a—1p (11)

We shall first plot the graph of
the depominator. The curve y, =
= 322 is the “triple” reference pa-
rabola (Fig. 28). Subtraction of
unity means shifting the graph by
one unity downward (Fig. 29). The
curve intersects the z-axis at two
points which can easily be found
by setting 3z* — 1 equal to zero:

z,, =+ VYV 1/3= 4 0.577... . Let
us square the obtained graph. The
ordinates of the points z; and z,
will remain equal to zero. All other ordinates will be
positive and the graph will be located above the abscissa
axis. At the point z = 0 the ordinate will be equal to
(—1)2-= 1, and this is the maximum ordinate within the
interval from z, to z,. Outside this interval the curve will
steeply rise upward on both sides of the plot (Fig. 30).
The graph of the denominator is thus plotted. The dotted
line in the same drawing shows the graph of the numera-
tor y, = 1. Now we only have to divide the numerator by
the denominator. Since both the numerator and the denomi-
nator are always positive, the quotient will be positive and
the whole graph will be located above the abscissa axis.
For £ = O the numerator and the denominator are equal,
and their ratio is equal to 1. Let us move rightward from
point O along the abscissa axis. The numerator remains
equal to 1 while the denominator decreases; consequently,
the quotient increases from its value 1. When we reach the
point x, = 0.577..., the denominator becomes equal to
zero. This means that by this moment the value of the
quotient will go to infinity (Fig. 31). To the right of the
point z, the denominator will rapidly change in a reverse
way from the value 0 to 1 and then will grow unboundedly.
The graph of the quotient, on the contrary, will return from
infinity to 1, will intersect the line y = 1 at the same point

Fig. 30

4-742 21
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as the graph of the denominator, and will then approximate
without limit to zero (Fig. 32).

The pattern on the left-hand side of the ordinate axis
will be the same (Fig. 33). .

We have marked on this graph the points corresponding
to integer values z = 0, 1, 2, 3, —1, —2, —3. These are
the very points which we selected while plotting the graph
“point-by-point” in page 10. But the trueshape of the graph
differs considerably from that given in Fig. 5.

We see that in reality the curve does not decrease smoothly
from the value 1 (for x = 0) to the value 1/4 (for £ = 1) and
to still smaller values, but instead goes up to infinity. Here
we can also locate the point with the coordinates z = 1/2,
y = 16 which could not be forced onto the former, erroneous
graph but fits perfectly the new, correct graph.

We have discussed the simplest operations which can be
performed with graphs. More precisely, we started off with
the simplest equation y = z and then used the four arithme-
tic operations: addition, subtraction, multiplication and
division. A

The functions y (z) obtained as a result of such operations
are presented in the form of a quotient of two polynomials

_ P(z) _ apgtayrH-...4-anz"
V@) =G = BoF bzt .. Fonam

22



Pig. 83

and are referred to as the rationa! foneticrs of the variable z.
(Other functions exist as welil in the caleulus but even their
definition requires a daveloped thesry of real numbers;
therefore in the present pamphlat we shall restrict the dis-
cussion to rational funcuioms aniyv.))

For those readers whn bhecame interested in plotting
graphs “by successive operations”™ we suggest here several
problems for practize and seif-checking.

Problems

Plot the graphs of the followingz equations:
t.y=224+24+1.2.y=a2@®—1).3.y =22z — 1).

4, y=xz@—1)% 3. y = — .

z—1

Recommendation. In Problem 5 it is advisable to zoparate aa
integer component:

T 1
z—-1—1+z—1
22 z3
6. y=$__1. 7. y=z_1.

4* 23



Recommendation. Separation of the integer component will also
be useful in Problems 6 and 7.

8. y =j:V;.

Recoinmendation. Square root of z exists when z > 0* and does
not exist when z <<0.

9. Yy = il/—1 — -'132.
How can it be proved that the resulting curve is the
circle?

Recommendation. The exact definition of a circle should be recal-
led and then the Pythagorean theorem applied.

10. y = +)/ 1+ 22
Prove that as z— oo the branches of this curve approach
infinitely closely the bisectrices of the quadrant angles.

Récommendation. Vm—x = ———— T—T—,lz—z-*_; .

. y ==+ ::Vz2(1 —1z). 12, y =+ 221 — =z
. - 1=z — z2/3(1 — x)2/3,

13. y - 4y =21 —2)

2
Solutions to all problems are given in pp. 48-50.

2. Derivatives

The method of plotting the graph “by successive opera-
tions” enables us to obtain the general picture as to the
character of the function variation. But these methods
become inadequate to solve certain more precisely formula-
ted problems. For example, the curve of a graph (Fig. 34)
having dropped down to a certain value y,, which corres-
ponds to the abscissa z,, starts rising; the corresponding
function y (z) is said to have a local minimum at the point x,.
The concept of the local mazimum has similar meaning; we
say that the function y = y (z) has a local maximum at the
point x, if its graph rises as z increases up to the point z,
and then begins to slope down (Fig. 35). The question is,
what are the exact values of z, and y,?

* This statement is not seli-evident at all but requires for its
substantiation a well developed theory of real numbers. Its proof
can be found in any good textbook on calculus. Here it is only neces-
sary, having assumed the existence of the root, to plot its graph.

24
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It is easy to imagine a specific situation in which such
a problem would arise. For instance, let the graph of Fig. 34
plot the cost of one ton of some product as function of daily
consumption of electric energy. Low daily consumption of
energy will mean very slow production of one ton of the
product, and the existence of permanent expenditures (cost
of manpower, etc.) will result in high cost per ton of the
product. High daily consumption of energy will shorten
the time of production of one ton of product but the cost
per ton will be increased due to the rise in the cost of the
energy consumed. This cost per ton will be minimum at
a certain value of the daily energy consumption; we are
naturally very much interested to know what this minimum
cost should be and what daily consumption of energy it
corress%)onds to. Below we shall discuss a similar problem
(p. 32).

To obtain an exact answer to the question on the position
of the point of local minimum new methods are required,
which lead us into the field of the calculus called the diffe-
rential calculus.

The idea of solving the suggested problem is as follows.
A tangent straight line can be drawn at each point of the
graph y (x). The tangent straight line at the point A of
the y (z) graph (Fig. 36) is defined as the line o passing
through the point A in such a way that the curve y () itself,
as it approaches the point A, enters into any no matter
how small angle with the vertex in 4, containing the straight
line @, and remains inside it. (In Sec. 1 the abscissa axis
was said to be tangent to the reference parabola in just this
sense.) An arbitrary straight line f passing through the
point A is called the secant for the graph y (z); an angle
with the vertex in 4 and the bisectrix §, into which the curve
in the vicinity of the point A does not enter, can always be

25



indicated for a secant not coinciding with the tangent
(Fig. 37). We shall denote the slope of the tangent at the
point (z, y) by k = k (z). This function %k (z) is called the
derivative of the function y (z). (Later we shall prove that if
y (z) is a polyncmial, then k (z) is also a polynomial, and
if y (2) is a rational function, then & (z) is a rational func-
tion too, and shall present precise rules for the calculation
of k (z).) Let us assume the function % (z) as already found
for the specified function y (z). At the sought-for point of the
local minimum (zg, y,) the tangent line a must be horizontal
[reductic ad absurdum (the proof by contradiction): we
have seen that the curve y = y (z) must enter into the angle
however small containing the line a; if the line a is oblique,
we can construct a small angle with o as its bisectrix,
whose sides have slopes of the same sign (Fig. 36) and,
consequently, the curve y = y (z) cannot have a local mini-
mum at (z;, Yo)]. Therefore, at the point 2 = z, of the local
minimum, k (x¢} = 0. Thus we have the equation

k(z) =0

Generally speaking, this equation can have several solu-
tions. Each of them defines the point (z,, y,) on the curve
y = y () at which the tangent is horizontal; we must find
all these solutions and among them single out that which is
of interest to us. Thus, once the function k (z) is known, the
problem is reduced to sclving the algebraic equation.

We shall now pass te plotting the function k (z). First
of all let y = z* be our reference parabola. We want to

B
)
Y F
-3
A d A
|
]
tYe
|
|
1 x
0 lo 0
Fig. 3¢ Fig. 37
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find the slope of the tangent at the point (z4, y,) of this
parabola.

Let us denote by Az and Ay the increments of the abscissa
and ordinate of the parabola when we move from the point
(29, Yo) to the point (z,, y,) in its vicinity:

x, =zo+ Az, Yy, =yo+ Ay
(Fig. 38). Since
Yo=25, Yo+ Ay=(zo+ Az)?
we find by subtraction that
Ay = 2z,Ax"+ (Ax)?

Let us draw a secant line through two points (z,, y,) and
(zy, y,) (Fig. 39). Its slope is obviously equal to

A

Ki-=2xo+m

and its equation in the complete form is (see Eq. (4'))
y = (22 + Az) (z — z0) + Yo (12)
Let us reduce Az down to zero (Fig. 40). Secant (12) corres-
pondingly rotates around the point (z,, y,) and, when Az
becomes zero, takes the position described by the equation
Ytan = 220 (z— Zo) -+ Yo (*)
This straight line, resulting from secant rotation, is the
sought-for tangent to the parabola y = z* al the point (x4, Y)-
Let us prove this statement. The equation of the curve

y = 2% can be rephrased in the form
Y = Yo+ 27y (z — 2) + (z — 70)* =
= Yo + (22 + (2 — 20)] (z — )
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thus it is apparent that with small deviations of z from r,
the curve passes within the angle however small, formed by
the straight lines

Yy = Yo+ (22 & &) (x — x,)

which is what will be the case if we assume that —e <<
<z — zy << e. Since the straight line (+) lies within this
angle for any ¢, then according to the above stated definition
it is the sought-for tangent.

The slope of the tangent proved to be equal to 2z,; thus,
the derivative of the function y = z?% is

k(z) = 2z

Let us see what we obtain by this method for a function
y = P (z), where P (z) is the n-th degree polynomial

P@)=ay+ax+ ...+ aa" (13)

We again connect by the secant the point (24, y,), at which
we have to draw the tangent, with a closely located point
(ro + Az, y, + Ay) of the curve. We obtain

Yo + Ay = P (zo + Az) =

=|z, + a; (o + AZ) + .. .+ a, (zo + A2)" (14)

Let us denote by &, any sum of terms containing Az to the
first and higher power, by &, any sum of terms containing Az

to the second and higher power.
Since

Yo=ao+ a1 Zo+ ... +anTy
28



we obtain by removing the brackets in Eq. (14) by the
Newton formula* and by subtracting Eq. (13) from Eq. (14)

Ay=(a;+2ax0+ ... +na,a;™") Az J-¢, (15)
Further on, the slope of the secant is obtained by dividing
Ay by Az. Since &, : Az = g, its expression has the form

Ay -
K;—za,—l—Zazxo—{— et nanay gy

The complete equation of the secant is as follows:
y=(as+2a,zo+ . .. + na a4 &) (x —2) -+ Yo

When we assume that Az = 0, &; becomes zero and we
obtain the equation of the tangent

Ytan = (a1 + 28270+ . - . 4 nayzg™Y) (T — T0) + Yo
Consequently the expression for the slope of the tangent
line is

k=a;+4 2a,x9+ ... +nazay™? (16)

When z, is fixed, &k is a number; if z, is varied, this number

will also vary and we shall obtain the function giving the

values of corresponding slopes of tangents to the curve

y = P (z) at its various points. As we already said, this

function is the derivative of P (z); it is denoted as P’ (x).
The obtained formula can be written in the form

D' (2)=ay+2a,x4 ...+ naa™1! (16")

The rule of forming P’ (z) out of P (z) is quite simple:
in the sum (13) each z* is replaced by kz*-1.

In particular, the derivative of a constant (i.e. of a func-
tion which for all values of x takes on the same value y = a,)
is equal to,0. In this case, however, this is also obvious
geometricaﬁy: the tangent to the plot of the function y = q,
is horizontal at each point!

Returning to the general case, we shall emphasize the
equality stemming from Eq. (15):

Pz + Az), P(x)+ P (2) Az + ¢, (17)

* The Newton formula: for any k¥ and any u and v

(utvp=ur 4 .'Il‘_ uk-1y %_Q uk-2y2

k(k—1)(k—2)

k(k—1) k
R=3,3 L. — T u2ph-24  yph-1 R
+ 123 uh=3p3 4+ .. 4 T v =+ T uvh-1_L pk,
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Let us consider a similar problem about a tangent for
the general rational function

P (z)

where P (z) and Q (r) are polynomials.
Using Eq. (17) we obtain
_P(zot+Azx)  P(xp) + P’ (z0) Azey
Wt M= T~ P T O @ e e, (1Y)
Subtracting Eq. (18) from Eq. (19), we obtain
Ay=P (z0) +-P’ (z0) Bztep P (z9) _
Q (z0) + Q' (z0) Az+e2  Q (20)
— [P’ (z0) Q(z0) — Q' (%0) P (70)] Az {2y (20)
Q (z0) [Q (z0) + Q" (z0) Az +e5]
Hence the slope of the secant is
Ay _ P’ (29) Q(z0) — Q' (z0) P (z0) 124 1)
Az T Q% (=) &4

The complete equation of the secant takes the form
P’ —Q' p
y= (IO)Q(IO)Q2 80)(2)) (o) + &4 (2 — 2o) + Yo

Let us assume that Q (z,) %= 0 and Az = 0, we obtain
the equation of the tangent

P’ (29) @ (20) — Q' (z0) P (20)
QUL i,

Ytan =

The slope of the tangent when z = z, is thus equal to
' __ P (z0) Q (z0) — Q' (z0) P (z0)
Y (x) =

Q2 (zo)
This formula gives the rule for calculating the derivative
of the quotient TR
P\ PQ—QP
(7)=—= (22)

Let us consider several examples of applying all the
obtained formulas.

1. What two positive numbers, whose sum is equal to ¢,
yield the maximum product?

This problem has an elementary algebraic solution. Not
resorting to this solution, we shall use our general method.

30



If one of these numbers is £ and the other is ¢ — z, we must
find the maximum of the function

P(r) =z(c—1x) = —2*+ cz
We have
P (x)y =—=2x+c
and, setting the derivative equal to zero, we find the solution
T =c2, c¢c—zx=2c/2

The next problem, though similar to the first in its form,
has no elementary solution.

2. What two positive numbers, whose sum is equal to ¢,
have the following property: the cube of the first number
times the square of the second yields the maximum possible
value?

Here we must find the maximum of the function

P(x) = 2° (c —x)* = x° — 2ca* + %23

We know that the derivative of the function must be zero
at the point of the maximum.
We calculate the derivative

P’ (x) = Sz* — 8cx® + 3c%a?
Setting it equal to zero, we have an obvious solution z = 0.
Seeking solutions for z = 0, we have to solve the quadratic
equation
522 — 8cx + 3c2 =0
Its solution is

3 4o+ 16c—15c __4e+c
ZLy, g == 5 =3

Thus the tangent to the graph of the functicn y = P (x)

is horizontal at the points z;, = 0, z, = %c and z; = ¢c.

The values of r, and z; yield zero for the value of P (z)
while z, yields a positive value P (z,) = (3/5)3(2/5)%>.
Hence, the numbers sought for are x, == 3¢/5, ¢ — z, = 2¢/5.

3. At what angles does thecurvey = P (z) =z (z — 1) %
X (x—2) (x —3) (see Fig. 21) intersect the z-axis?
Obviously, we shall mean by the angle between the axis and
the curve the angle between the axis and the tangent to the
curve (at the point of intersection of the curve with the
axis).
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Solution. Removing the brackets we obtain
y = x* — 62® 4+ 112% — 6z
whence according to Eq. (16')
y = 4a® — 1822 4 22z — 6

The curve y = P (z) intersects the z-axis at the points
0, 1, 2 and 3. Successive substitution in the above formula
yields

YO =—6,y1=2y@=-2y0@ =6
These numbers are slopes of tangent lines at the points
indicated, i.e. the tangents of the angles in question.

4. At what points will the tangent line to the curve of
Problem 3 be horizontal?

The slope of the tangent line at the points where it is
horizontal is zero. Setting the expression for the derivative
equal to zero, we obtain the equation

4o — 1822 + 222 — 6 =0

This equation has an obvious solution z, = 3/2 (from the

drawing, on the basis of symmetry arguments). Taking out
the factor x — 3/2 we obtain

4o — 1822 4+ 222 — 6 = 4 (x — 3/2) (x® — 3xr + 1)
Now it remains to solve the quadratic equation z? — 3z -
+ 1 = 0. The solution yields

32V 1541418,

T2, 3=
The corresponding ordinates can easily be calculated:

w=3-3(-2)(-7)=%

_3+V5 1+xV5 —1x+V5 —3xV5 _
Ya.3="3 2 S R

G
= 3—9(—1)=—1

5. We know that velocity of a motor ship is expressed as
function of the cost of fuel consumed per hour, p roubles,
by the formula

p+1 (23)
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This formula is illustrated by the
graph (Fig. 41). The graph agrees
with a natural assumption that
at the beginning, i.e. at compa-
ratively low expenditures for
fuel, the velocity of the motor
ship increases in proportion to "0 P
the increase in fuel consumption,
then the rate of velocity increase
slows down, and no rise in fuel supply can force the
ship to move faster than certain limiting velocity c.

Aside from expenditures for fuel there are permanent
expenditures that take ¢ roubles per hour. What should the
velocity of steaming from the port A to the port B, located
at a distance of s kmfrom 4, be to realize the minimum cost
of the cruise?

Solution. Let v be the velocity and 7 = s/v the time of
travelling. Cost of fuel is calculated as follows: cost per hour
is obtained by inverting formula (23)

v

pP=1:= (24)

and total cost P is then found by multiplying Eq. (24) by
the time T =s/v; P=c—_§;. Permanent expenditures Q

Fig. 41

come to qT = qg. The total expenditure R is equal to
. _ s s 1 q
R~P+Q_c-—v+q7—s(c-—-v +7) (25)
The graph of this function is of the form shown in Fig. 42.
To find the velocity v corresponding to the minimum total
cost, we set the derivative of R over v equal to zero
.R’(v):s(———1——— g )=0

(c—v)2~ &

Whence
VP —q(c—v)? =0, 1? =q((c— v
o=Vl —v =V~ Vi
V= Hl-/lq/E ¢ km/h (26)
* One solution, corresponding to the equation
v=—V1q(—v)

is rejected as meaningless, since the right-hand side is negative (v <c).
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Substituting Eq. (26) into Eq. (25), we find also the total
expenditures for the most economical cruise:

R=s(U+VDE+VD

6. What is the tangent to the curve y = 2% for x = 0?

We have y’ = 3z%, which for z = 0 obviously yields
y' = 0, so that the z-axis is the tangent (Fig. 43).

We see that in this case the tangent passes from one side
of the curve onto the opposite side: when z > 0 the curve
is above the tangent while for z << 0 it goes under the tangent
line. The points of the graph at which the tangent line
passes from one side of the curve to the other are called the
points of inflecticn (Fig. 44). Thus, the same value z = 0
determines the point of inflection for the family of curves

y=Cz®+ z

for various values of C (Fig. 45).
Indeed, we have y' (0) = 1, so that the equation of the
tangent line drawn through the point (0, 0) takes the form

Ytan=1%
therefore the difference
Y—Ytan=C23
alters sign when we pass from negative to positive values of x.
Let us state the problem of finding the inflection point
of the graph of a given function y = f (z).

As can be seen from Fig. 45, if the curve passes from the
position “below the tangent” into that “above the tangent”
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as z increases, then its slope y° (x) on both sides of the point
of tangency is greater than o2xactly at this point:

y'(2) > ¥ (x0)
T =X,

Similarly, if the curve passes from the position “above the
tangent” into the “below-tangent” position as z increases,
then y’ (z) on both sides of the tangency point is less than
exactly at this point:

y' (@) <y (x0)
T 7=z,

In the first case the inflection point is that of a local mini-
mum of the function y’ (z), and in the second case—that of
a local maximum of this function. To find these points we
must first calculate the derivative of the function y’ (z).
The function (y’ {z))’ is called the second derivative of the
function y (x) and is denoted as y” (z). Our next step is to
find the solution of the equation

y" (@) =0

Abscissas of all inflection points sought for are contained
among the solutions to this equation. (“Superfluous” solu-

Fig. 45
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-2/ -1 x |0

Fig. 48
tions, not determining positions of inflection points, may
-also appear; of course, such solutions must be rejected*.)
7. Let us find the inflection points of the curve y = Ty

(Fig. 46). The figure prompts us to the conclusion that there
must be two such points, situated symmetrically relative
to the ordinate axis. We shall find them using the foregoing
rules.

We have
' 2z -
V= —aTor
U S AN (1 —|—x2)22—2.t (4£+4$3) - 622 —-2
y=U)=— (A ta2) R U]

Setting the equation for y” to zero, we obtain two solutions:
.'131'2::th=:|:0.577 “ o

We see that the differential calculus makes it possible
to solve by means of a unified general method a wide variety
of problems not solvable within the framework of the ele-
mentary mathematics. This is what makes the differential
calculus a powerful mathematical tool.

Problems

15. What is the height-to-base diameter ratio fora (cylind-
rical) can of a given volume, which requires minimum of
metal for its production?

* For example, we have for the function y = z%:
y = 41, y" = 1222
when z = 0 we obtain
y (@) =0
however, this point is not the inflection point of the curve y = zA,
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16. Square picces are cut cutwfa
square sheet of iron at its eocnars aand

the sheet is then bent alaug the [T~ ——~—-
dashed lines, so that the sheetis eon- '
verted into a hox opencd ifrom above !
(Fig. 47). At what size of the removed ,'
square pieces will the volums of

the box be maximal?
17. The formula for the derivative

of the functicn y = V.Wx) is Fig. 47
‘_ ' (z)
T wie

Having assumecd this formula to be valid, solve the following
problem. Ahouseisatadistance ofkkm from a (straight) road
(Fig. 48). A person has to walk to the road and then drive
to the town which is at a distance (measured along the
straight line) of s km from the house. The speed of the pedest-
rian is u and the speed of the car is v. Find the shortest
route.

- Fig. 18

18. How large should a sector cut out of a circle with the
radius R be so that the funnel rolled out of the remainder
would have maximum holding capacity?

Numerous problems involving derivatives and their
application to various fields of mathematics, physics, etc.
can be found in popular books of problems.

3. Integrals

How should we define the area of a plane figure bounded,
in the general case, by a non-rectilinear contour? Let us
start with the following premises:
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1. The area of a rectangle with sides a and b is equal to ab.

2. Areas of equal (i.e. coinciding when suporposed) figures;
are equal. /

3. If the figure @ is composed of figures @,, ..., O,
then its area is equal to the sum of areas of figures @, . . ., D,.

Hence it follows that the areas of homogeneous figures are
equal. Furthermore, a triangle with thebasea and height 2
can be so cut that a rectangle can be constructed with sides
a/2 and k (Fig. 49); whence the area of the triangle is ka/2.
Finally, the area of any polygen can be calculated as the
sum of areas of triangles composing this pelygon (Fig. 50).

4, The area of the figure @ is smaller than that of any
polygon enclosing it, and greater than that of any polygon
enclosed by it (Fig. 51).

There is a theorem -according to which the one-to-one
correspondence can be set between each plane figure @, bounded
by a not too complicated contour, and a number S (@), referred

o~

Fig. 50 Fig. 51
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Fig. 52

to as the area of the figure @, so that the conditions 1-4 are
satisfied. (The precise statement and the proof of this theorem
are too complicated to be presented here; exhaustive discus-
sion of these problems can be found in Lebesque’s monograph
“On measurement of quantities” (“Sur la mesure des gran-
deurs”, Geneve, Paris, 1956).

In any case, in the indicated sense the area exists for any
figure whose contour is composed of finite arcs of graphs of
rational functions. Assuming this theorem, we shall discuss
the problem of calculating the area of the figure @ (curvi-
linear trapezoid) bounded below by a segment of the
z-axis from z = a to x = b, above by the curve y = f (x)
(as usual, f (z) is a rational function), and at the sides by
straight lines parallel to the y-axis and passing through the
points x =a, z = b (Fig. 52).

Let us take a number z, located within the range from a
to b, and state a similar problem as regards the determina-
tion of the area of the figure @ (z,) which differs from the
figure @ in that its right-hand side is formed by a vertical
line passing not through the point b, but through z,. The
value of this area depends on the position of the point z,,
i.e. is the function of the argument z, and defined on the
whole segment a < z, << b, we shall denote this function
by S (z,). It is obvious that S (a) = 0 and that S (b) is the
sought-for area of the figure @. We can approximately trace
the graph of this function; in the given case its shape is simi-
lar to that shown in Fig. 53.

If the right-hand abscissa z, of the figure @ (z,) is increa-
sed by Az, =z, — z,, the area gains an increment
ABDEC = AS (Fig. 54) which is formed by the area of the
rectangle ABDC = yAxz, and by the area of the curvilinear
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triangle CDE. The latter area does notexceed AyAzy;*
and consequently, in accordance with the foregoing notation
it can be denoted by &,Ax,.

Thus

S (zy) — S (xg) = {y -+ &) Az

The equation of a sccant of the graph of the curvey = S (),
passing through the points (x,, S {z;)) and {(z,, S (z;)) is

S(z9—S ‘
y—5 (@) =22 @) — (g () ) (7—70)

Assuming here, as before, that z;, = x4, we obtain the

equation of the tangent at the point (r,, y,):
y — 8 (x5) = y {x,) {z — zy)
The slope of the tangent is thus equal to y {(z,). But the
slope of the tangent to the graph of the function y = S (2)
at the point with the abscissa x, is, as we know, the deriva-
tive of the function S () for z = z,. Thus, we obtain the
equality
S" (xg) = Y (xo)

Therefore, to find the function S (x) we have to find the func-
tion whose derivative is y (z), i.c. to perform an operation

* We assume that the function y increases (or decreases) in the
range from z, to z,; for the rational function y this interval can always
be chosen sufficiently small for this condition to be satisfied.
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reciprocal to differentiation and called integration. Any
function F (z) whose derivative is y (z) is called the anti-
derivative of y (x), or the integral of y (z). Let us note that
if we have determined one of the antiderivatives F (z)
of the function y (z) then any other function of the type
F (z) + C (where C is constant) is suitable as an antideri-
vative of the same function y (z) since the derivative of
a constant is zero. As we have mentioned, the sought-for
function S (z) drops to zero when z = a. Therefore, having
cetermined an antiderivative F (z), we can write for the
unknown constant C the equation

S (@) =F (@) + C =0, whence C = —F ()

Finally, having found the antiderivative function F (z}, we
shall write the sought-for equation in the form

S () =F () — F'(a)
and, in particular,
S () =F (b) — F (a) (4))

which gives the solution of our problem or, more precisely,
the solution is reduced to the problem of determining the
antiderivative of a given function f (z).

To make possible the application of the general result (27)
obtained above we must be able to determine the antideri-
vative. If the function y = y(x) is a polynomial

y=ao+a1x+‘...+anz"

then one of the antiderivatives can easily be written, viz.:

F(x)—a0x+ai + +an n+1 (28)

Therefore, no substantial difficulties are encountered in
calculations of arcas of figures bounded (above) by curves
of the type y = P (z), where P (x) is a polynomial.

Let, for example, y = y (z) be a linear function (Fig. 55)
varying on the segment ¢ < z <C b from the value p to the
value ¢:

y=p+4—(z—a)
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Fig. 55

According to Eq. (28), one of its possible antiderivatives
is of the form

—a)2 —_—
Fo)=po+ 250 1L

According to Eq. (27) we have
S(b)=F(b)—F(a)=pb+(b—a)2__£:_P_)_pa=

=0 (p+452) =00 (257)

which is identical to the formula for the area of a trapezoid
in elementary geometry. In particular, for areas of arectangle
and triangle (particular cases of a trapezoid) we also obtain
the formulas of elementary geometry.

However, the method of integration enables us to calculate
areas of many non-elementary figures. Let us consider some
additional examles.

1. Let us calculate the area OAB (Fig. 56) of the curvili-
near triangle bounded below by the segment 0 < z<Ca
of the z-axis, on the right by the ordinate z = a and above
by the curve y = Cz". The antiderivative of the function
y =2a" is

F(z)=z""/(n+1)

therefore according to Eq. (27):
antl on+t an+t a-Cam
S@=Cog—Comg=Corr=7r1
The number Ca™ is the length of the segment AB. Therefore

the area of interest, S (a), is 1/(n + 1) -th fraction of the
circumscribed rectangle OABC.
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2. Let us calculate the areas S;, S, and S, (Fig. 57) boun-
ded by the curve y = z(z — 1) (z — 2) (x—3) and by the seg-
ments of the z-axis from 0 to 1, from 1 to 2, and from 2 to 3.

Here we have

y=~P@) =zt — 623+ 1122 — 6z
and its antiderivative is
z8 113 622
F(z)"—"s—— A + 3 2
Whence

S=F()—F(O)=g—3+4+5 —3=—2.

The minus sign indicates that the area S, lies below the
z-axis. Then

9 1

Sz—F(2)—F(1)_-——24+_3-_12+%F=_3%
and, finally,

So=F@)—F@)=22 28199 o7, L3

The last result coincides with S;; this could be predicted
on the basis of symmetry.

3. Let us calculate the area S (Fig. 58) under the curve
y = 1/2® between the lines z = 1 and 2 = N, where IV is
a large number. The antiderivative of y (z) = 1/a? is,

Y

Ch-—----=--; B

Fig. 56 Fig. 57
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Fig. 58
obviously, F (z) =—(1/2}, and we oktain
S=F(N)y—F({)y =1 — 1N (29)

It is interesting that ot the NV however large, this area is
smaller than 1. Formula (29} indicates that it is logical to
assign to the whole infinitely stretched figure, bounded helow
by the z-axis, above by the curve y = 1/2%, on the left by
the segment of the line x = 1 and not bounded ¢n the right-
hand side, a finite area, namely the area equal to 1.

We see that calculus of integrals based on the calculus
of derivatives enables us to solve in 2 unified manner a num-
ber of problems on areas, which cannot be solved by means
of elementary mathematics. However, the problem of area
calculation is a comparatively particular preblem, only one
realizatlion of the general problem of finding the antideriva-
tive function from its derivative. But many problems in
mathematics, mechanics, physics, chemistry, biclogy are
reduced te this general problem; the integral caleulus makes
it possible to selve Ly means of a general method a great
number of problems with most varied specific conditions but
with common mathematical essence (for instance, calcula-
tion of energy required for launching a satellite; finding the
law that governs radicactive decay; quantitative aunalysis
of the course of a chemical reaction or of proliferation of
bacteriaj. Not being alsc able to describe here all these
attractive applications we advise the reader to pay atten-
tion to a monograph by G. Phillips “Differential equa-
tions”, containing a wide variety of problems concerning
diverse fields of science and technology and requiring appli-
catien of the integral calculus.

4. More careful approach will be necessary in the example
to follow. The subject is the area & under the same curve
y = 1/a? between the lines £ = a and = = b > a (Fig. 59).
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Using the same techniques we Y
obtain
1

S=F@b)—F(@)=a—1

If ¢ and b are of the same
sign, the result is positive;
this is quite natural since the
curve y = 1/xz® is situated
above the z-axis. If, howe-
ver, a and b have opposite
signs, a << 0 and b > 0, the
result unexpectedly turns out
negative which contradicts
the geometric pattern. The
reason is that our application
of rule (27) to the antideri-
vative has been only formal.
In reality rule (27) has definite . ©
limits as to its application Fig. 59

beyond which it is invalida-

ted; unfortunately, here we cannot even indicate precisely
these limits since the necessary statements would require
the concepts that are not introduced yet.

Besides, more attentive analysis reveals “white spots”
in integration of rational functions. Indeed, antiderivatives
of certain rational functions can be obtained from the
equality

( 1 _ m
(z—a)m ) — T @—amtl
stemming from general formula (22). Namely, for the expres-

sion
y(:t) (x—a1)2+(z—a2)3+ +(z_a )m+1 (30)
the antiderivative can be given by the formula
___ bk by o bm
F(z)= z—ay 2(x—a)2 ' m(z—ap)™

However, it is not every rational function that can be
reduced to form (30). For instance, the antiderivative of the
function 1/x cannot be obtained in this way. Actually the
function 1/x has its antiderivative but not only is it non-
rational, it even does not belong to a class of elementary
functions which are studied in high school, While in the
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case of differentiation we do not leave the class of rational
functions if we start within the class, the reverse operation,
viz. integration, necessarily introduces new types of func-
tions. And analysis of these functions calls for quite diffe-
rent general approaches and for absolutely different level
of analytical techniques than those we applied throughout
this short review.

Therefore, to master properly the techniques of the diffe-
rential and integral calculus one has to study the prelimi-
nary sections of calculus treating real numbers, limits and
continuity. These sections contain the necessary fundamen-
tals enabling one to deal with a very wide class of functions
that goes far beyond the class of rational functions discussed
in this book.

There are many excellent textbooks in which the funda-
mentals of the calculus are presented.* We hope that begin-
ners among our readers who after reading this pamphlet
will be interested in the possibilities of the differential and
integral calculus will find an opportunity for a more tho-
rough acquaintance with mathematics which is so useful
to other fields of science, and through them to all humanity.

Problems

19. Calculate the area bounded above by the curve
y = z* + 1/2?, below by the z-axis, and on the right and
left by vertical lines intersecting the z-axis at the points
a = 1/2 and b = 2, respectively (Fig. 60).

Fig. 60

* For instance: V. I. Smirnov “A Course in advanced mathematics”,
v. 1; G.M. Fikhtengolts “Fundamentals of calculus”, v. 1; A. Ya. Khin-
chin “Concise course of calculus”; R. Kurant “A Course in differen-
tial and integral calculus”, v. 1,
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Fig. 61 Fig. 62
20. Calculate the area between two curves (Fig. 61):
y =cz™, = =dy"
Recommendation. Use Example 1 of Sec. 3.

21. Calculate the area bounded above by the line
z -+ y = 2 and below by the parabola y = 2% (Fig. 62).

Recommendation. Express the area in question as the difference
between two areas bounded on both sides by vertical lines.

22. The velocity gained by a falling body in the time ¢
elapsed after falling began is equalto gt (g = 9.81 m/s?).
What is the distance covered by the body during this time?

Recommendation. Velocity is the derivative of the displacement
with respect to time.



Solutions to Problems
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Fig. 63. To problem 1

Fig. 65. To problem 3
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Fig. 64. To problem 2
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Fig. 66. To problem 4

Fig. 67. To problem 5



Fig. 69. To problem 7
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Fig. 71. To problem 9
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Fig. 70. To problem 8

Fig. 68. To problem 6
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Fig. 72. To problem 10 Fig. 73. To problem 11
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Fig. 74. To problem 12 Fig. 75. To problem 13
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Fig. 76. To problem 14

15. The height of the can must be equal to its diameter.
16. The sides of the removed squares make up 1/6 of the side of
the whole square.
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17. The sine of the angle between the path of the pedestrian and
the normal to the road must be equal to u/v, provided this ratio does

not exceed
—_—
V(3)
s

Otherwise the shortest route is the path covered on foot along
the straight line towards the town.

18. a=2u]/—-§- radian == 93°.

19. S = 33/8.

n44 m41
20, S=cl""mgt-mm (1

St 1)
nt+1 m+1/°
21. § = 9/2.

22. s = (gt)2/2.
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THE KINEMATIC METHOD IN
GEOMETRICAL PROBLEMS
by YU.I LYUBICH, L.A. SHOR

When solving a geometrical problem it is help-
ful to imagine what would happen to the ele-
ments of the figure under consideration if some
of its points started moving. The relationships
between various geometrical objects may then
become clear graphically and the solution of the
problem may become obvious.

The relationships between the magnitudes of seg-
ments, angles and so on in geometrical figures
are usually more complicated than the relation-
ships between their rates of change when the fig-
ure is deformed. Therefore, in solving geomet-
rical problems one may benefit from a “theory
of velocities”, i.e. from kinematics.

This little book uses a number of examples to
show how kinematics can be applied to prob-
lems of elementary geometry, and gives some
problems for independent solution. The neces-
sary background information from kinematics
and vector algebra is given as a preliminary.

The book is based on lectures given by the au-
thors for school mathematics clubs at the Kharkov
State University named after A.M. Gorky. It is
intended for high school students.



SOLVING EQUATIONS IN INTEGERS

This book is devoted to one of the most interesting branches
of number theory, the solution of equations in integers.

The solution in integers of algebraic equations in more than
one unknown with integral coefficients is a most difficult
problem in the theory of numbers. The theoretical importance
of equations with integral coefficients is quite great as they
are closely connected with many problems of number theory.
Moreover, these equations are sometimes encountered in
physics and so they are also important in practice. The ele-
ments of the theory of equations with integral coefficients

as presented in this book are suitable for broadening the
mathematical outlook of high-school students and students
of pedagogical institutes. Some of the main results in the
theory of the solution of equations in integers have been
given and proofs of the theorems involved are supplied when
they are sufficiently simple.



THE REMARKABLE CURVES
by A.I. MARKUSHEVICH

This small booklet has gained considerable popularity
among mathematics enthusiasts. It is based on a lec-
ture delivered by the author to Moscow schoolboys

in their early teens, contains a description of a circle,
ellipse, hyperbola, parabola, Archimedian spiral, and
other curves. The book has been revised and enlarged
several times in keeping with the demands from readers,
but the characteristic style of the book, which is de-
monstrative and lucid rather than deductive and dry,
has been retained.

The booklet is intended for those who are interested in
mathematics and possess a middle standard background.



AREAS AND LOGARITHMS
by A.I. MARKUSHEVICH

The book offers a geometric theory of logarithms, in
which (natural) logarithms are represented as areas of
various geometrical shapes. All the properties of loga-
rithms, as well as methods of their calculation, are
then determined from the properties of the areas. The
book also introduces the most simple concepts and
properties of integral calculus, without resort to the
concept of a derivative.

The book is intended for all mathematics enthusiasts,
particularly schoolchildren.






4 Little Mathematics Library
| oSO

| G.E.SHILOV

CALCULUS
OF RATIONAL
FUNCTIONS

s e e em————

Mir Publishers - Moscow




ol
The pamphlet “Calculus of Rational Functions” dis-
cusses graphs of functions and the differential and
integral calculi as applied to the simplest class of
functions, viz. the rational functions of one variable.
It is intended for pupils of the senior forms and
first-year students of colleges and universities.
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The pamphlet "Calculus of Rational Functons" discusses
graphs of functions and the differential and integral calculi
as applied to the simplest class of functions, viz. the rational
functions of one variable. It is intended for pupils of senior
forms and first year students of colleges and universities.
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