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PREFACE

A MATHEMATICIAN unacquainted with tensor calculus is

at a serious disadvantage in several fields of pure and
applied mathematics. He is cut off from the study of Rieman-
nian geometry and the general theory of relativity. Even in
Euclidean geometry and Newtonian mechanics (particularly the
mechanics of continua) he is compelled to work in notations
which lack the compactness of tensor calculus.

This book is intended as a general brief introduction to tensor
calculus, without claim to be exhaustive in any particular
direction. There is no attempt to be historical or to assign credit
to the originators of the various lines of development of the
subject. A bibliography at the end gives the leading texts to
which the reader may turn to trace the development of tensor
calculus or to go more deeply into some of the topics. As treat-
ments of tensor calculus directed towards relativity are compar-
atively numerous, we have excluded relativity almost completely,
and emphasized the applications to classical mathematical
physics. However, by using a metric which may be indefinite,
we have given an adequate basis for applications to relativity.

Each chapter ends with a summary of the most important
formulae and a set of exercises; there are also exercises scattered
through the text. A number of the exercises appeared on exam-
ination papers at the University of Toronto, and our thanks are
due to the University of Toronto Press for permission to use them.

The book has grown out of lectures delivered over a number
of years by one of us (J.L.S.) at the University of Toronto, the
Ohio State University, the Carnegie Institute of Technology.
Many suggestions from those who attended the lectures have
been incorporated into the book. Our special thanks are due to
Professors G. E. Albert, B. A. Griffith, E. J. Mickle, M.
Wyman, and Mr. C. W. Johnson, each of whom has read the
manuscript in whole or in part and made valuable suggestions for
its improvement.

J. L. SYNGE
A. ScHILD
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CHAPTER 1
SPACES AND TENSORS

1.1. The generalized idea of a space. In dealing with two
real variables (the pressure and volume of a gas, for example),
it is a common practice to use a geometrical representation.
The variables are represented by the Cartesian coordinates of
a point in a plane. If we have to deal with three variables, a
point in ordinary Euclidean space of three dimensions may be
used. The advantages of such geometrical representation are
too well known to require emphasis. The analytic aspect of the
problem assists us with the geometry and vice versa.

When the number of variables exceeds three, the geome-
trical representation presents some difficulty, for we require a
space of more than three dimensions. Although such a space
need not be regarded as having an actual physical existence,
it is an extremely valuable concept, because the language of
geometry may be employed with reference to it. With due
caution, we may even draw diagrams in this “‘space,” or rather
we may imagine multidimensional diagrams projected on to
a two-dimensional sheet of paper; after all, this is what we do
in the case of a diagram of a three-dimensional figure.

Suppose we are dealing with N real variables a, 2%, . . . , .
For reasons which will appear later, it is best to write the
numerical labels as superscripts rather than as subscripts. This
may seem to be a dangerous notation on account of possible
confusion with powers, but this danger does not turn out to be
serious.

We call a set of values of %, 2, ..., %" a poini. The vari-
ables x1,22,..., x” are called coordinates. The totality of points
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corresponding to all values of the coordinates within certain
ranges constitute a space of N dimensions. Other words, such
as hyperspace, manifold, or variety are also used to avoid con-
fusion with the familiar meaning of the word “space.” The
ranges of the coordinates may be from — o to + , or they
may be restricted. A space of N dimensions is referred to by
a symbol such as Vy,.

Excellent examples of generalized spaces are given by
dynamical systems consisting of particles and rigid bodies.
Suppose we have a bar which can slide on a plane. Its position
(or configuration) may be fixed by assigning the Cartesian co-
ordinates x, y of one end and the angle 6 which the bar makes
with a fixed direction. Here the space of configurations is of
three dimensions and the ranges of the coordinates are

— o <<¥<+ o, ~0o<y<+ o, 0£6< 2.

Exercise. How many dimensions has the configuration-space
of a rigid body free to move in ordinary space? Assign co-
ordinates and give their ranges.

It will be most convenient in our general developments to
discuss a space with an unspecified number of dimensions N ,
where N 2> 2. It is a remarkable feature of the tensor calculus
that no essential simplification is obtained by taking a small
value of V; a space of two million dimensions is as easy to
discuss (in its general aspects) as a space of two dimensions.
Nevertheless the cases N = 2, N = 3, and N = 4 are of par-
ticular interest: N = 2 gives us results in the intrinsic geo-
metry of an ordinary surface; N = 3 gives us results in the
geometry of ordinary space; N = 4 gives us results in the
space-time of relativity.

The development of the geometry of Vy is a game which
must be played with adroitness. We take the familiar words
of geometry and try to give them meanings in Vy. But we must
of course remember that N might be 3 and Vy might be our
familiar Euclidean space of three dimensions. Therefore, to
avoid confusion, we must be careful to frame our definitions
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so that, in this particular case, these definitions agree with the
familiar ones.

A curve is defined as the totality of points given by the
equations

1.101. x"= fr(u) (r=1,2,... N).
Here u is a parameter and f* are N functions.
Next we consider the totality of points given by

1.102. " =f(uu...,uM) (r=1,2,... N),
where the u's are parameters and M < N. This totality of
points may be called V), a subspace of Vy. There are two cases
of special interest, namely M = 2and M = N — 1. Either of
these might be called a surface, because if N = 3 they both
coincide with the familiar concept of “‘surface.” It seems, how-
ever, that Vy_; has the better right to be called a surface,
because it has (for any N) the fundamental property of a
surface in ordinary space, viz. it divides the neighbouring por-
tion of space into two parts. To see this, we eliminate the
parameters from 1.102. Since M = N — 1, the number of
parameters is one less than the number of equations, and so
elimination gives just one equation:

1.103. F(, 2. .0 2Y) = 0.
The adjacent portion of Vy is divided into two parts for which
respectively F is positive and negative. Vy _,isoften called a
hypersurface in Vy.

Other familiar geometrical ideas will be extended to Vy as
the occasion arises.

Exercise. The parametric equations of a hypersurface in Vy
are

x1= a cos !,

x?= a sin u! cos u?,

x%= @ sin %! sin u? cos %%,
o -1
x" = asin 4! sin 4?sin 4. .. sin u

= @ sin 4! sin %2 sin %2, . . sin 4" ~2 cos &V 1,
sin ¥ 1,

N -2
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where ¢ is a constant. Find the single equation of the hyper-
surface in the form 1.103, and determine whether the points
(}4,0,0,....0),(0,0,0,...0,2q) lie on the same or opposite
sides of the hypersurface.

Exercise. Let Us and W, be two subspaces of V. Show that
if N = 3 they will in general intersect in a curve; if N = 4 they
will in general intersect in a finite number of points; and if
N > 4 they will not in general intersect at all.

1.2. Transformation of coordinates. Summation conven-
tion. It is a basic principle of tensor calculus that we should
not tie ourselves down to any one system of coordinates. We
seek statements which are true, not for one system of coord-
inates, but for all.

Let us suppose that in a Vy there is a system of coordinates
!, x%, ..., x". Let us write down equations

1.201. =, 2., %) (=1,2,...,N),

where the f’s are single valued continuous differentiable func-
tions for certain ranges of x1, &2, . . .,x". These equations assign
to any point «*, x?, . . .,x" a new setof coordinatesx’}, 2, ... x’V.
The Jacobian of the transformation is

oo
ox! axN
10202. J’ = LY ’
x'N ax'~y
rwuRRRE pw
or, in a briefer notation,
, ox'"
1.2030 J = a: 1]

the rangesr,s = 1, 2,..., N being understood. We shall sup-
pose that the Jacobian does not vanish. Then, as is well known
from the theory of implicit functions, the equations 1.201 may
be solved to read
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1.204. =g (x%2...,¢Y) r=12,...,N).
Differentiation of 1.201 gives

N 9x'r
1.205. dx'T = Y E—;dx’ r=1,2,...,N).
s=10%

Thus the transformation of the differentials of the coordinates
is a linear homogeneous transformation, the coefficients being
functions of position in Vy. We shall return to this trans-
formation presently, but first let us introduce two notational
conventions which will save us an enormous amount of writing.

Range Convention. When a small Latin suffix (superscript
or subscript) occurs unrepeated in a term, it is understood to take
all thevalues 1,2, ..., N, where N is the number of dimensions
of the space.

Summation Convention. When e small Latin suffix is re-
peated in a term, summation with respect to that suffix is under-
stood, the range of summation being 1,2, ..., N.

It will be noticed that the reference is to small Latin suf-
fixes only. Some other range (to be specified later) will be
understood for small Greek suffixes, while if the suffix is a
capital letter no range or summation will be understood.

To see the economy of this notation, we observe that 1.205
is completely expressed by writing

’r

dax?®
Repeated suffixes are often referred to as ‘‘dummies’ since,
due to the implied summation, any such pair may be replaced

by any other pair of repeated suffixes without changing the
expression. We have, for example,

1.206. dx't = dx*.

ara b & = a,-kbk.

This device of changing dummies is often employed as a useful
manipulative trick for simplifying expressions.

In order to avoid confusion we make it a general rule that
the same suffix must never be repeated more than twice in any
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single term or product. If this cannot be avoided, the sum-
mation convention should be suspended and all sums should be
indicated explicitly.
Exercise. Show that
(ant+ str+ aort)x'x oyt = 3a,-.gx'x sy,

Exercise. 1f ¢ = a,x"x*, show that

0 0%

ox" = (a'0+ a‘lf) x" x"dx* = a'rn+ Qyy.

Simplify these expressions in the case where a,,= a,,.

Let us introduce a symbol &, called the Kromecker delta;
it is defined by
1.207. S =1lifr=s,
& =0ifr 5.

Exercise. Prove the relations
aty=a gy
& brij = baije

It is evident that 9x"/dx* =4}, or equivalently

dx" ax'® 5

ox'® dx*

From this we may derive an identity which will be useful later.

Partial differentiation with respect to x? gives (since the
Kronecker delta is constant)

x"  x'™ox'™ 9x I’

1.208.

1209 Gomaxrs 9x7 ox* T ox" oxramt =
Ix’e
If we multiply across by 3. * Ve get
%' ¥ix"  9x'™Ix'm ax'¢

1.210. 3%PIxt + IX'™Ix'® 3xP 3x* dxT 0.
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We may of course interchange primed and unprimed symbols
in the above equations.

Exercise. If Af are the elements of a determinant A4, and B}
the elements of a determinant B, show that the element of the
product determinant AB is 4;B}. Hence show that the pro-
duct of the two Jacobians

ox"

ax'*

i

ax'" ‘

7= ' dax?

9
is unity.

1.3. Contravariant vectors and tensors. Invariants. Con-
sider a point P with coordinates x" and a neighbouring point Q
with coordinates x" dx". These two points define an infini-

—>

tesimal displacement or vector PQ; for the given coordinate
system this vector is described by the quantities dx", which
may be called the components of this vector in the given co-
ordinate system. The vector dx" is not to be regarded as “free,”
but as associated with (or attached to) the point P with co-
ordinates x".

Let us still think of the same two points, but use a different
coordinate system x'*. In this coordinate system the com-

—>
ponents of the vector PQ are dx’"; these quantities are con-
nected with the components in the coordinate system x" by
the equation

/r
ox*

as in 1.206. If we keep the point P fixed, but vary Q in the
neighbourhood of P, the coefficients dx’"/dx* remain constant.
In fact, under these conditions, the transformation 1.301 is a
linear homogeneous (or affine) transformation.

The vector is to be considered as having an absolute mean-
ing, but the numbers which describe it depend on the coor-
dinate system employed. The infinitesimal displacement is the

1.301. dx'" = dx?*,
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prototype of a class of geometrical objects which are called con-
travariant vectors. The word *“‘contravariant” is used to dis-
tinguish these objects from “‘covariant” vectors, which will be
introduced in 1.4. The definition of a contravariant vector is
as follows:

A set of quantities T", associated with a point P, are said to
be the components of a contravariant vector if they transform, on
change of coordinates, according to the equation

ax'r

ax*’
where the partial derivatives are evaluated at P. Thus an infini-
tesimal displacement is a particular example of a contravariant
vector. It should be noted that there is no general restriction
that the components of a contravariant vector should be in-
finitesimal. For a curve, given by the equations 1.101, the
derivatives dx"/du are the components of a finite contravariant
vector. It is called a fangent vector to the curve.

Any infinitesimal contravariant vector T may be repre-

sented geometrically by an infinitesimal displacement. We have
merely to write

1.302. I'"=T:

1.303. dx" = TT.
If we use a different coordinate system x'*, and write

1.304. dx'm = T,

we get an infinitesimal displacement. The whole point of the
argument is that these two equations define the same displace-
ment, provided T are the components of a contravariant vector.
If T and T’ were two sets of quantities connected by a trans-
formation which was not of the form 1.302, but something
different, say, T'r = T*9x*/dx'", then the connection between
the dx" of 1.303 and the dx’" of 1.304 would not be the trans-
formation 1.301 which connects the components of a single
infinitesimal displacement in the two coordinate systems. In
that case, dx" and dx’* would not represent the same infini-
tesimal displacement in Vy.
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This point, has been stressed because it is very useful to
have geometrical representations of geometrical objects, in
order that we may use the intuitions we have developed in
ordinary geometry. But it is not always easy to do this. Al-
though we can do it for an infinitesimal contravariant vector,
we cannot do it so completely for a finite contravariant vector.
This may appear strange to the physicist who is accustomed
to represent a finite vector by a finite directed segment in
space. This representation does not work in the general type
of space we have in mind at present.

Exercise. Show that a finite contravariant vector determines
the ratios of the components of an infinitesimal displacement.
(Consider the transformation of the equation dx"= 6T, where
6 is an arbitrary infinitesimal factor which does not change
under the transformation. Alternatively, show that the equa-
tions T7dx*— T*dx"= 0 remain true when we transform the
coordinates.)

We now proceed to define geometrical objects of the contra-
variant class, more complicated in character than the contra-
variant vector. We set down the definition:

A set of quantities T are said to be the components of a con-
travariant tensor of the second order if they transform according
to the equation

/" ox'*
x™ Jx® °

It is immediately obvious that if U* and V" are two contra-
variant vectors, then the product UTV* is a contravariant
tensor of the second order.

The definitions of tensors of the third, fourth, or higher
orders will at once suggest themselves, and it is unnecessary
to write them down here. But going in the opposite direction,
we notice that a contravariant vector is a contravariant tensor
of the first order, and this suggests that there should be a
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contravariant tensor of zero order, a single quantity, trans-
forming according to the identical relation

1.306. T'=T.

Such a quantity is called an invariant; its value is independent
of the coordinate system used.

Exercise. Write down the equation of transformation, anal-
ogous to 1.305, of a contravariant tensor of the third order.
Solve the equation so as to express the unprimed components
in terms of the primed components.

1.4. Covariant vectors and tensors. Mixed tensors. Let
¢ be an invariant function of the coordinates. Then

3¢ _ ¢ ox*
X't AxtoxT
This law of transformation is rather like 1.301, but the partial
derivative involving the two sets of coordinates is the other
way up. Just as the infinitesimal displacement was the proto-
type of the general contravariant vector, so the partial deri-
vative of an invariant is the prototype of the general covariant
vector. We define it as follows:

A set of quantities T, are said to be the components of a co-
variant vector if they transform according to the equation

dx®

1.402. IT.=T, 6_x"' .
It is a well-established convention that suffixes indicating con-
travariant character are placed as superscripts, and those indi-
cating covariant character as subscripts. It was to satisfy this
convention that the coordinates were written x” rather than x,,
although of course it is only the differentials of the coordinates,
and not the coordinates themselves, that have tensor character.

There is no difficulty in defining covariant tensors of various
orders, the covariant vector being a tensor of the first order.
Thus for a tensor of the second order we make this definition:

1.401.
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A set of quantities T,, are said to be the components of a co-
variant tensor of the second order if they transform according to
the equation

ax™ dx®
" ox'Tdx'*"
Having set down definitions of contravariant and covariant

tensors, definitions of mixed tensors suggest themselves. Sup-
pose a set of quantities T}, transform according to

1.403. Tl = Tm

1.404 o 3x'" 9x* dx?

e s T gum gxl 8 g't

We would say that they are the components of a mixed tensor
of the third order, with one contravariant and two covariant
suffixes.

In adopting for the Kronecker delta the notation &, we

anticipated the fact that it has mixed tensor character. Let
us now prove this, i.e. let us show that

 OXT 0x®

” 9x™dx’'*’

where 8’7 is unity if r = s and zero if » > s. Holding m fixed
temporarily, and summing with respect to #, we get no con-
tribution unless » = m. Hence the right-hand side of 1.405
reduces to

1.405. 8 =5

ox'T dx™
ox™ax'*’
and this is equal to &7; thus the truth of 1.405 is established.
The importance of tensors in mathematical physics and
geometry rests on the fact that a tensor equation is true in all
coordinate systems, if true in one. This follows from the fact
that the tensor transformations are linear and homogeneous.
Suppose, for example, that we are given that T,,= 0; it is an
immediate consequence of 1.403 that 7”,,= Qalso. More gen-
erally, if we are given
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1.406. An" Bnn
then
10407. ;.= B"-'.

Let us now consider what may be called the transitivity of
tensor character. We shall speak of covariant tensors of the
second order for simplicity, but the results hold quite gener-
ally. Let there be three coordinate systems: x", ', x’’". Sup-
pose that a set of quantities T, transform tensorially when
we pass from the first to the second set of coordinates, and
also when we pass from the second to the third. These two
transformations combine to form a “product” transformation
from the first set of coordinates to the third. If this trans-
formation is tensorial, then we say that the tensor character
is transitive. To establish this transitivity, we have to prove
the following statement:

Given that
, Ix™ Ix™
1.408. T} = Toan s
and
ax'™ ox'™
1-409- T',: = T,’nnm axll. 1
then
”m n
1.410. T:; = Tmn ga” o

This is easy to show, and is left as an exercise.

A tensor may be given at a single point of the space Vy,
or it may be given along a curve, or throughout a subspace,
or throughout Vy itself. In the last three cases we refer to a
tensor field, if we wish to emphasize the fact that the tensor is
given throughout a continuum.

Exercise. For a transformation from one set of rectangular
Cartesian coordinates to another in Euclidean 3-space, show
that the law of transformation of a contravariant vector is
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precisely the same as that of a covariant vector. Can this
statement be extended to cover tensors of higher orders?

1.5. Addition, multiplication, and contraction of tensors.
Two tensors of the same order and type may be added together
to give another tensor. Suppose, for example, that A, and B,
are tensors, and that the quantities C7, are defined by

1.501. Co= A5+ By.

Then it is easy to prove that C], are the components of a tensor.
A set of quantities A,, (not necessarily components of a

tensor) is said to be symmetric if

1-502. Afl = A any
and skew-symmetric or antisymmelric if
1.503. A" = —4 are

If the quantities have tensor character, the property of sym-
metry (or of skew-symmetry) is conserved under transforma-
tion of coordinates. This follows from the fact that

An"' Aan An+ Alf
are themselves tensors, and so vanish in all coordinate systems,
if they vanish in one.

These remarks about symmetry apply equally to contra-
variant tensors, the subscripts being replaced by superscripts.
They do not apply to a mixed tensor A; the relationship
A} = A} does not in general carry over from one coordinate
system to another.

The definitions of symmetry and skew-symmetry may be
extended to more complicated tensors. We say that a tensor is
symmetric with respect to a pair of suffixes (both superscripts
or both subscripts) if the value of the component is unchanged
on interchanging these suffixes. It is skew-symmetric if inter-
change of suffixes leads to a change of sign without change of
absolute value.

The following result is of considerable importance in the
application of tensor calculus to physics: Any tensor of the
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second order (covariant or contravariant) may be expressed as the
sum of a symmetric tensor and a skew-symmetric tensor. This is
easy to prove. Let us take a contravariant tensor A4 for illus-
tration. We have merely to write

1.504. Are= (A4 A+ (A — A7),
each of the two terms on the right is a tensor—the first is
symmetric and the second skew-symmetric.

Exercise. In a space of four dimensions, the tensor A4,,; is
skew-symmetric in the last pair of suffixes. Show that only
24 of the 64 components may be chosen arbitrarily. If the
further condition

Ant+ Actr'l‘ Atn= 0
is imposed, show that only 20 components may be chosen
arbitrarily.

Exercise. If A™ is skew-symmetric and B,, symmetric, prove
that

A™B,,= 0.
Hence show that the quadratic form ;%% is unchanged if a;;
is replaced by its symmetric part.

Let us now consider the multiplication of tensors. In adding
or subtracting tensors we use only tensors of a single type, and
add components with the same literal suffixes, although these
need not occur in the same order. This is not the case in
multiplication. The only restriction here is that we never
multiply two components with the same literal suffix at the
same level in each. (This general rule may be broken in the
case of Cartesian tensors, to be discussed in chapter 1v, but
this exception is unimportant.) These restrictive rules on add-
ition and multiplication are introduced in order that the results
of the operations of addition and multiplication may them-
selves be tensors.

To multiply, we may take two tensors of different types
and different literal suffixes, and simply write them in juxta-
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position. Thus, suppose 4,, and B are tensors of the types
indicated. If we write

1.505. C:’;" = AfCB:‘I

then these quantities are the components of a tensor of the
type indicated. This follows immediately from the formulae
of tensor transformation.

Such a product as 1.505, in which all the suffixes are dif-
ferent from one another, is called an outer product. The inner
product is obtained from the outer product by the process of
contraction, which we shall now explain.

Consider a tensor with both contravariant and covariant
suffixes, such as T7;,. Consider the quantities T7,,, in which
there is of course summation with respect to m in accordance
with the summation convention. What is its tensor character,
if any? We have

Ix'™ Ix? 9x* Ix*
1.506. Tn, = Tg,,,.a? Pt

Putting » = m, and using 1.208, we obtain

Ixt Ix®
1.507. Tms= T, P
In fact, the tensor character is that of B,,, covariant of the
second order. We have here comtracted with respect to the
suffixes m, n (one above and one below), with the result that
these suffixes become dummy suffixes of summation and no
longer imply any tensor character.

The general rule is as follows: Given a mixed tensor, if we
contract by writing the same letter as a superscript and as a sub-
script, the result has the tensor character indicated by the remaining
suffixes.

Applying contraction to the outer product 1.505, we get
the inner products

A"ISB:' ’ A'"IB:"
each of which is a covariant tensor of the second order.
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The process of contraction cannot be applied to suffixes at
the same level. Of course, there is nothing to stop us writing
down the expressmn 43,,; but it has not tensor character, and
so is of minor interest, since our object is to deal (as far as
possible) only with tensors.

Lxercise. What are the values (in a space of N dimensions)
of the following contractions formed from the Kronecker delta?

%, 8308, S8,

1.6. Tests for tensor character. The direct test for the
tensor character of a set of quantities is this: see whether the
components obey the law of tensor transformation when the
coordinates are changed. However, it is sometimes much more
convenient to proceed indirectly as follows.

Suppose that 4, is a set of quantities which we wish to test
for tensor character. Let X be the components of an arbitrary
contravariant tensor of the first order. We shall now prove
that if the inner product A.X" is an invariant, then A, are the
components of a covariant tensor of the first order. We have, by
the given invariance,

1.601. 4. X" = A)X',
and, by the law of tensor transformation,
1.602 X=X o

. . ax. L]

Substituting this in the right-hand side of 1.601, rearranging,
and making a simple change in notation, we have

)X--o

Since the quantities X' *® are arbxtrary, the quantity inside the
parentheses vanishes; this establishes the tensor character of
A, by 1.402.

The above example is illustrative of the indirect test for
tensor character. The test is by no means confined to the case

1.603. (A s




§1.6 TEsTS FOR TENSOR CHARACTER 19

of a tensor of the first order, nor is it necessary that an invar-
iant should be formed. It is, however, essential that there
should enter into the test some quantities which are arbitrary
and are known to have tensor character.

Exercise. 1f X, Yr are arbitrary contravariant vectors and
ar,X"Y* is an invariant, then a,, are the components of a
covariant tensor of the second order.

Exercise. If X,,is an arbitrary covariant tensor of the second
order, and A7"Xn, is a covariant vector, then A™ has the
mixed tensor character indicated by the positions of its suffixes.

The following case is of some importance. Suppose that a,,
is a set of quantities whose tensor character is under investi-
gation. Let X* be an arbitrary contravariant vector. Suppose
we are given that a¢,,X"X* is an invariant. What can we tell
about the tensor character of a,,?

We have

106040 G"X'X. = a'r‘X"X'.

o gmgn 2T O

= Gre x™ ax» '
and so

( x'T 9x’*
-_ ., — myn

1.605. Cmn= Crey o s ) XmXr= 0.

This quadratic form vanishes for arbitrary X*, but we cannot
jump to the conclusion that the quantity inside the parentheses
vanishes. We must remember that in a form d,,X™X" the co-
efficient of the product X'X? is mixed up with the coefficient
of X2X1; it is, in fact, b13+ bs1. Thus we can deduce from 1.605
only that

, 9x'T 9x'* , 0x'T 3x'*
1.606. @Cpmpt CGam= a n'(-;;‘; ax® Q'ra ‘ax_n ox™*

The trick now is to interchange the dummies 7, s in the last
term; this gives
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dx'" ox’*
dx™ x™ *

1-607. amn+ anm= (a,"O+ a' "')

This establishes the tensor character of amp+ @nm. If we are
given that ams and @’ms are symmetric, the tensor character
of ams follows, and we obtain this result: If a,,.X"X* is invar-
iant, X' being an arbitrary contravariant vector and a,, being
symmetric in all coordinate systems, them a,, are the components
of a covariant tensor of the second order.

1.7. Compressed notation. The range convention and
the summation convention, introduced in 1.2, save a great deal
of unnecessary writing. But still more can be done to improve
the symbolism. In the present section we shall discuss a “‘com-
pressed notation.” This notation certainly simplifies the proofs
of some results, but it is questionable whether it is advisable
to adopt it as standard notation. On the whole, it has seemed
best to introduce the present notation as a sample of what can
be done in the way of smoother notation, but to revert, in the
subsequent parts of the book, to the notation which we have
used up to the present.

Suppose we have a space of N dimensions. Let x" be a
system of coordinates, small Latin suffixes having the range
1,2,..., N. Let * be another system of coordinates, small
Greek suffixes also taking the range 1, 2, ..., N. At first sight
this appears to be an impossible notation, violating the funda-
mental rule that one mathematical symbol shall not denote two
different quantities at the same time. We ask: What does x!
mean? To which of the two systems of coordinates does it
belong? The answer is: Never write x!, but (x")mm1 Or (%°),=1
according to whether you wish to denote the first or the second
coordinate system. This is clumsy, but does not spoil the
notation for general arguments, in which we do not require to
give numerical values to the suffixes. As long as the suffix
remains literal, the fact that it is Latin or Greek tells us which
coordinate system is involved.
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We now denote partial differentiation by 9, so that

0 2
“oaxt' 9T axt
Further, let us write
1702. Xi= 04", Xi= 0,4, Xo= 8.%°, Xo= 3%,
so that obviously

1.703. Xi=18, XX:=20,.
The following are tensor transformations expressed in this
notation:
Tr= T°X], T = T*X3,
T.= T X7, T,=T.X;,
1.704. T,,= T,X; X5,
Tiooim = To 0m X0 . XomX0 . XO8,
The last line in 1,704 is the general formula of tensor trans-

formation.
It is convenient to use the following notation for second

derivatives:

1.701. or

1.705. 3X; = X = s = Xl
In this notation the equation 1.210 reads
1.706. Xt + XnXe X X5 = 0.

Exercise. If A,,is a skew-symmetric covariant tensor, prove
that B,,:, defined as

1.707. Brot = 34 o+ 3.4+ atAru
is a covariant tensor, and that it is skew-symmetric in all pairs
of suffixes.

When calculations become complicated, notational devices
become of real importance as labour-saving devices, and to
keep the bulk of formulae under control. It sometimes happens
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that more than two coordinate systems are involved. There
are two methods of handling such situations.

The first plan is to break up the Latin alphabet into groups
such as (abcde), (fghij), (klmno), ..., and assign a group to
each coordinate system. Thus, coordinates for the first co-
ordinate system would be denoted by x4, . . .,x*, for the second
#/,...,4%, and so on. Using X as the base letter for partial
derivatives, we would then have formulae such as the following:

1.708. X =8, }=§i. X3x{ = Xxg,
X

T/0 = TbXIX§, TH = Tebxkx!

The second plan is to use one alphabet, but to put a sign
on the suffix indicative of the coordinate system involved.
Thus, coordinates for the first coordinate system would be
denoted by %7, x™, x*, . . . , for the second by «*, x™, v ...,
for the third by =™, ™, 2", ..., and we would have for.
mulae such as the following:

r
;’fn, XXM = X0,

1.700.  XI=35., T =

rlml = I‘an;'Xr, , Z.yllmll = P’X:’X’;"'

SUMMARY I
Contravariant tensor:
T"”” = I"" a.x_’m ?ﬂ
" 9x®

Covariant tensor:
ox”T dx*
T’mn = Tr

*ox'™ 9x's "

Mixed tensor:

ox’™ Ix*
" =177 .
f oxT ox's
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Invariant:
T =T.
Kronecker delta:
5 { =1ifr=s,
*1=0ifr #s.
EXERCISES I

1. In a V, there are two 2-spaces with equations
x'= fr(ul, u?), x"= g"(u*, ut).
Prove that if these 2-spaces have a curve of intersection, then
the determinantal equation
ax"
ou’
is satisfied along this curve.

=0

2. In Euclidean space of three dimensions, write down the
equations of transformation between rectangular Cartesian
coordinates x, ¥, 8, and spherical polar coordinates r, 8, ¢.
Find the Jacobian of the transformation. Where is it zero or
infinite?

3. If X, Y, Z are the components of a contravariant vector
for rectangular Cartesian coordinates in Euclidean 3-space,
find its components for spherical polar coordinates.

4. In a space of three dimensions, how many different
expressions are represented by the product AR, BXC;,? How
many terms occur in each such expression, when written out
explicitly?

5. If A is an invariant in Vy, are the second derivatives
924
3x"0x*

6. Suppose that in a V3 the components of a contravariant
tensor field 7™* in a coordinate system x” are

™= 1 T2= 0.
=0 ™= 1.

the components of a tensor?
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Find the components 7'™* in a coordinate system %', where
x=(x1)2, 2= (222,

Write down the values of these components in particular at

the point x'= 1, x2= 0.

7. Given that if Tpmar, is a covariant tensor, and

T mars Tmmr'_‘ 0

in a coordinate system x?, establish directly that
T’mnn"" T’mncr= 0

in any other coordinate system x’¢.

8. Prove that if 4, is a covariant vector, then
04, 04,
ax* 9x"
is a skew-symmetric covariant tensor of the second order.
(Use the notation of 1.7.)

9. LetxT, 2", y7, " be four systems of coordinates. Examine
the tensor character of 8x"/dy* with respect to the following
transformations: (i) A transformation x"=f" (&!, ..., "),
with y” unchanged; (i) a transformation y*= g"(3%, . . ., %),
with x" unchanged.

10. If x7, y", 2" are three systems of coordinates, prove the
following rule for the multiplication of Jacobians:
ax™| |dy"
ay®
11. Prove that with respect to transformations

. i I

 — C' .xl'
where the coefficients are constants satisfying
Cermc = 5::

contravariant and covariant vectors have the same formula
of transformation:

A'r= C,-.A', Alr= CnAo-




Exercises 1

12. Prove that
2 1 |97 Oy 0w
ox" dx*| oOx"ox™ ay""

13. Consider the quantities dx"/d¢ for a particle moving in
a plane. If x* are rectangular Cartesian coordinates, are these
quantities the components of a contravariant or covariant
vector with respect to rotation of the axes? Are they com-
ponents of a vector with respect to transformation to any
curvilinear coordinates (e.g. polar coordinates)?

14. Consider the questions raised in No. 13 for the accel-
eration (d*c"/dz?).

15. It is well known that the equation of an ellipse may be
written
ax®+ 2hxy + by*= 1.
What is the tensor character of a, %, b with respect to trans-
formation to any Cartesian coordinates (rectangular or ob-
lique) in the plane?

16. Matter is distributed in a plane and 4, B, H are the
moments and product of inertia with respect to rectangular
axes Oxy in the plane. Examine the tensor character of the set
of quantities 4, B, H under rotation of the axes. What notation
would you suggest for moments and product of inertia in order
to exhibit the tensor character? What simple invariant can be
formed from 4, B, H?

17. Given a tensor Smar skew-symmetric in the first two
suffixes, find a tensor fy,r skew-symmetric in the last two suf-
fixes and satisfying the relation

- f mar—+ f nmr = Samr-
Answer: f,..m- = %(— Smm- - Snmu+ Snfm)]-




CHAPTER 11
BASIC OPERATION S IN RIEMANNIAN SPACE

2.1. The metric tensor and the line element. We shall
lead up to the concept of a Riemannian space by first dis-
cussing properties of curvilinear coordinates in the familiar
Euclidean space of three dimensions. Suppose that y!, 42, 3
are rectangular Cartesian coordinates. Then the square of the
distance between adjacent points is

2.101. ds?= (dy')*+ (dy?)2+ (dy®)2.

Let x!, x?, x* be any system of curvilinear coordinates (e.g.
cylindrical or spherical polar coordinates). Then the y's are
functions of the ’s, and the dy’s are linear homogeneous func-
tions of the dx’s. When we substitute these linear functions in
2.101, we get a homogeneous quadratic expression in the dx’s.
This may be written

2.102. s’ = Qmadxmdx™,

where the coefficients a,,, are functions of the x’s. Since the
@mn do not occur separately, but only in the combinations
(@mn+ @nm), there is no loss of generality in taking am, sym-
metric, so that @Gmp= CGpm.

No matter what curvilinear coordinates are used, the dis-
tance between two given points has the same value, i.e. ds (or
ds?) is an invariant. If we keep one of the two points fixed and
allow the other to vary arbitrarily in its neighbourhood, then
dx” is an arbitrary contravariant vector. It follows from 1.6
that am, is a covariant tensor of the second order. It is called
the meiric tensor, or fundamental tensor of space.
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Exercise. Take polar coordinates 7, 6 in a plane. Draw the
infinitesimal triangle with vertices at the points (r, 6), (r+dr, 6)
(r, 0 + d8). Evaluate the square on the hypotenuse of this
infinitesimal triangle, and so obtain the metric tensor for the
plane for the coordinates (7, 6).

Exercise. Show that if x'=r, x2= 0, x3= ¢, in the usual no-
tation for spherical polar coordinates, then

an= 1, A= 72, agz= 72 sin? 0,
and the other components vanish.

Suppose now that we draw a surface in Euclidean 3-space.
According to the method of Gauss, we may write its equations
in the form

2.103.  y'=fi(at, &%), ¥2 = fi(xt, &%), P = Fi(x', &%),

where x!, x? are curvilinear coordinates on the surface, The
square of the distance between two adjacent points on the
surface is again given by 2.101, and we may use 2.103 to trans-
form this expression into a homogeneous quadratic expression
in the dx’s. This expression may be written in the form 2.102,
but the range of the suffixes is now only 1,2, and not 1, 2, 3 as
before. Tt follows that @, is again a covariant tensor; it is the
metric tensor of the surface, which is itself a space of two
dimensions,

Exercise. Starting from 2.103, show that

9y 3y 09" 8y | 9y’ 8y

x™ dx™  9x™ x™  9x™ ox™

and calculate these quantities for a sphere, taking as curvi-
linear coordinates on the sphere x'= 4!, x2= 42,

QGmn

The differential expression which represents ds?® may be
called the metric form or fundamental form of the space under
consideration. It may also be called the square of the line
element.

What has been explained in the preceding argument is basic
in the application of tensor calculus to classical geometry and
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classical mathematical physics. But we have in mind the exten-
sion of these ideas to spaces of higher dimensionality. There-
fore we shall not pause here to develop the immediate impli-
cations of what we have done, but rather use it as a source of
suggestion for generalization. As a basis for generalization, let
us summarize our result as follows:

In ordinary space, or on a surface in that space, the square
of the line element is a homogeneous quadratic Jorm, and the co-
efficients of that form, when written symmetrically, are the com-
ponents of a covariant tensor of the second order.

We now pass to a general space of N dimensions, discussed
in 1.1. Consider two adjacent points P, Q in it. Does there
exist something which may be called the distance between P
and Q? Although the basic ideas of tensor calculus originated
with Riemann, he himself was a little confused on this essentjal
question. He apparently thought that the concept of distance
was in rinsic in a space. We know now that this is not the case.
We can develop a logically consistent theory of a non-metrical
space, in which the concept of distance never enters. If there
is to be a measure of distance in a space of N dimensions, it is
something that we must put in for ourselves. The question now
before us is this: How shall we define distance in Vy to satisfy
the following criteria?

(i) The definition should give a comparatively simple
geometry;

(ii) The definition should agree with the ordinary defin-
ition in the particular cases where the space is ordinary
Euclidean space, or a surface in that space.

These criteria are best satisfied by using the italicized state-
ment above as the basis of definition. But a little caution is
necessary if we are to make our definition wide enough to
include the space-time of relativity. Thus, without introducing
the word “‘distance,” we lay down the following definition of a
Riemannian space:

A space Vy is said to be Riemannian if there is given in it a
metric (or fundamental) covariant tensor of the second order,
which is symmetric.
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If we denote this tensor by amas, we may write down a metric
(or fundamental) form

2.104. D = Amadx™dx®.
This form is, of course, invariant.

We might proceed to define the *“distance” between ad-
jacent points by means of the equation ds*= ®. However, with
a view to relativity, we must admit the possibility of an im-
portant difference between the form 2.104 and the form we
encountered in Euclidean space. In Euclidean space the form
2.102 is positive-definite; this means that it is positive unless
all the differentials vanish. In other words, the distance be-
tween two points vanishes only if the points are brought into
coincidence.

We shall not impose on the form & the condition that it
shall be positive-definite. We shall admit the possibility of an
indefinite form, such as & = (dx)? — (dx?)?, which vanishes if
dil= dx®. Then for some displacements dx" the form & may
be positive and for others it may be zero or negative. If
& = 0, for dx" not all zero, the displacement is called a null
displacement. Forany displacementdx” which is not null, there
exists an indicator ¢, chosen equal to +1, or —1, so as to
make b positive. We may use this indicator to overcome a
difficulty in the definition of distance arising from the in-
definiteness of the form. We define the length of the displace-
ment dx* (or the distance between its end points) to be ds, where

2.105. dst= &b = eamnadx™dx®, ds > 0.
We define the length of a null displacement to be zero. Thus,
in a Riemannian space with an indefinite metric form, two
points may be at zero distance from one another without be-
ing coincident

It is most important to note that Riemannian geometry is
built up on the concept of the distance between two neigh-
bouring points, rather than on the concept of finite distance.

2.2. The conjugate tensor. Lowering and raising suffixes.
From the covariant metric tensor ama We can obtain another
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tensor, also of the second order, but contravariant. Consider
the determinant
a1y Gz ... @y
2.201. a= lanml —1821 G ... apy .

..........

aN1 8n2 ... GNN
We shall suppose, here and throughout, that g is not zero. Let
A™" be the cofactor of am, in this determinant, so that
2,202, AmrA™* = @,nA*™ = §a.

This follows from the ordinary rules for developing a deter-
minant. Now let us define a™® by the equation

mns
2.203. amn = A7%
a
It follows from 2.202 that
2.204. Ama™ = 8,
and, similarly,
2.205. Grma®™ = .

Since @ma is symmetric, it is obvious that a™® is symmetric also.

Note that 2.204, or 2.205, might be regarded as a definition
of ¢™*, since either of these sets of equations determines these
quantities uniquely. Let us take 2.204 and multiply both sides
by A¥r; then

2.206. askame = Ak
by 2.202. Thus
A’“

2.207- ab‘ = —_— [
a

which is the same as 2.203. We obtain the same result from
2.205 on multiplication by A™, This proves our assertion.

We are now ready to investigate the tensor character of
a™®. For this purpose we introduce a contravariant tensor g™®
which in one particular system of coordinates ", say, coincides
with a™*. Then
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2.208. Amrd™® = 8.
This is obviously a tensor equation and therefore holds in any
other system of coordinates x'"; thus

2.209. @ @™ = 5.
Comparing this with
2.210. &' ma’™® = 65,

which, as we have seen, determines a'™ uniquely, we have
a'™ = g’ Thus a™ and ™" coincide in all coordinate sys-
tems. The latter being a tensor by definition, it follows that
a™ is a contravariant tensor of the second order. It is said to be
conjugate tO @ms, the fundamental tensor.

Exercise. Show that if amn= 0 for m % n, then
1 1

al=—, a2=—,...,a%=0,...
an 127

Exercise. Find the components of a™ for spherical polar co-
ordinates in Euclidean 3-space.

Having now at our disposal the covariant fundamental
tensor and its contravariant conjugate, we are able to introduce
the processes known as the lowering and raising of suffixes.
We shall in future refrain from writing a subscript and a super-
script on the same vertical line; in vacant spaces we shall write
dots, thus: T77,.

Take a tensor T™,,, and write

2.211. Snre = Gnm T7ys

this has the tensor character indicated. The tensor S has been
generated from the tensor T by lowering a suffix. We may raise
a suffix by means of a™":

2.212. U™, = ™ Snrs-

It is easy to see that this tensor U is precisely the original
tensor T. This suggests that in the processes of lowering or
raising suffixes we should retain the same principal letter.
Thus we write 2.211 in the form
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2.213. Tare = GamT™,,.

Exercise. Find the mixed metric tensor a,*, obtained from
@mn by raising the second subscript.

Before we introduced the metric tensor of Riemannian
space we recognized a tensor as a geometrical object—a thing
which had different representations in different coordinate
systems, but at the same time an existence of its own. The
tensors 7™* and T'ma were entirely unrelated; one was contra-
variant and the other covariant, and there was no connection
between the one and the other. The use of the same basic letter
T in both implied no relationship. But in a Riemannian space
these two tensors are essentially the same geometrical object;
if we know the components of one, we can obtain the com-
ponents of the other. In most of the physical applications of
tensor calculus, the space is Riemannian; a physical object
(e.g. stress in an elastic body) is represented by a tensor, and
we can suit our convenience as to whether we express that
tensor in contravariant, covariant, or mixed form.

We shall now establish a useful formula for the derivative
of the determinant a. Let us forget the assumed symmetry of
@mn, SO that @y, and anm are regarded as independent quan-
tities. Then a is a function of the N? quantities @un, and from
the expansion of the determinant it is evident that

da
2.214. = ag™®,
aamn
or
I¥]
2.215. Ina = a™
aamn
Hence
I?] ad 0Qpn 0Qmn
J— = = gmn
2.216. ax,lna ( aamlna) ot = O o !

which is the formula required. If a is negative, the same equa-
tion holds with —a written for a.

Exercise. Prove that a,,,a™* = N.
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2.3. Magnitude of a vector. Angle between vectors. To
find the magnitude of a vector in ordinary space, we square
the components, add, and take the square root. This simple
plan does not work in a general space for a very good reason:
the result obtained by this process is not invariant, i.e., it
depends on the coordinate system employed.

If the space has no metric, there is no way of defining the
magnitude of a vector. But if a Riemannian metric tensor Gma
is given, the definition is easy. The magnitude X of a contra-
variant vector X' is the positive real quantity satisfying

2.301. X2= egma X™X",
where ¢ is the indicator of X" (see 2.1). For a covariant vector
we take, instead of 2.301,

2.302. Xt= ea™XmXn.

Obviously there will be null vectors, i.e. vectors of zero magni-
tude, if the metric form is indefinite. We note that the defin-
ition 2.105 defines ds as the magnitude of the infinitesimal
vector dx”.

Exercise. Show that in Euclidean 3-space with rectangular
Cartesian coordinates, the definition 2.301 coincides with the
usual definition of the magnitude of a vector.

Suppose we are given a curve with equations

2.303. x"= x"(u),

where u is a parameter. If we write "= dx"/du, an infinitesimal
displacement along the curve is

2.304. dx"= p"(u)du.

The length of this displacement is

2.305. ds = [eamnp™p™)} du,
where e is the indicator of dx"; the length of the curve from
u = uy tou = ug is
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]
2.306. s = [[camap™p"] du.

Exercise. A curve in Euclidean 3-space has the equations
x'= a cos u, x*= a sin u, ¥*= bu,

where #!, x2, x® are rectangular Cartesian coordinates, % is a
parameter, and a, b are positive constants. Find the length
of this curve between the points # = 0 and % = 2r,

What is the length of the curve with these same equations,
between the same values of %, if the metric form of the 3-
space is

(dx')* +(da?)? — (d?)??

Consider your result for the cases where ¢ is greater than,
equal to, and less than b.

Unless we are dealing with a null curve, for which s = 0,
we may take s as parameter along the curve. The finite vector
p"= dx"/ds has the same direction as the infinitesimal dis-
placement dx* along the curve, i.e., it is a fangent vector. More-
over, its magnitude is unity, since

2.307. Lmndx™dx® = ds?,
and so

dx™ dx®
2.308. ea,,.,.-a i 1.

Any vector with unit magnitude is called a unit vector. Thus
dx"/ds is the unit tangent vector to the curve.

Let us now consider the angle between two curves, or, what
is the same thing, the angle between two unit vectors, tangent
to the curves. Difficulties arise if we attempt to define angle
in a space with an indefinite line element. Accordingly we shall
confine ourselves here to a space with a positive-definite line
element. We might write down a formal definition of angle,
but it is more interesting to develop it as a natural general-
ization from familiar concepts.
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Consider, in Euclidean 3-space, two curves issuing from a
point 4. Let B and C be points on them, one on each; join B
and C by a curve (Fig. 1). We shall consider a limit as B and C

Pl

F16. 1. Angle between curves in Riemannian space.

both tend to 4 ; it will be assumed that the curve joining B
and C maintains a finite curvature during this process. It is
then easy to see that the angle 6 between the curves satisfies
the equation

AB*+ AC*— B(C?
2AB.AC ’

where AB, AC, BC indicate arc-lengths.

The above equation is set up in such a way that it can be
taken over into Riemannian N-space as a definition of angle.
Two things remain to be done: first, to turn 2.309 into a usable
formula; secondly, to show that the angle § defined in this way
is real.

Suppose that Fig. 1 now refers to Riemannian N-space,
Let the coordinates be as follows:

2.309. cos § = lim

A....... x7,
B....... x4+ £,
C el X+ 9"
The principal parts of the squares of the small arcs are
A.32 = amnsﬂ‘ E” y

AC?* = aman™n"

BC? = ama(g™— 7™)(E*— 7").
Since we are interested only in principal parts, it is not neces-
sary to allow for the change in the metric tensor on passing
from A to B or C; we consider amn evaluated at 4. The formula
2.309 gives
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P
2.310. cos § = lim-—=> ~ |
AB.AC
The unit tangent vectors to the two curves at 4 are

2.311. X*= lim ¢/AB, Y"= lim 4"/AC.

Hence the angle 6 between two curves (or the angle between any
two unit vectors at a point) satisfies

2.312. cos 0 = gy, X™Y™,

This equation determines a unique angle 0 in the range (0, =),
provided the right hand side does not exceed unity in absolute
value. We shall now show that this condition is fulfilled in a
space with positive-definite metric form.

From the assumed positive-definite character, we have

2.313, Bmn(X™+ EY™) (X + EV®) > 0;

here X7 and ¥~ are any unit vectors, and % any real number.
Multiplying out, we get

2.314. Bt 2kamXm P 1 3 0
or

Since this holds for arbitrary %, and % may be chosen to make
the first term vanish, it follows that

2.316. [ @mnXmY™| < 1.

This proves the required result.

In a space with an indefinite metric form, 2.312 may be
used as a formal definition of angle, but the definition is not
of much use since the angle turns out to be imaginary in some
cases. However, whether the metric form is definite or inde-
finite, we adopt as definition of perpendicularity or orthogonality
of vectors X”, ¥ the condition

2.317. GuaX™Y? = 0.
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Exercise. Show that the small angle between unit vectors
Xr and X'+ dX* (these increments being infinitesimal) is
given by

0? = apadX™dX".

2.4. Geodesics and geodesic null lines. Christoffel sym-
bols. In Euclidean 3-space a straight line is usually regarded as
a basic concept. But if we wish to build up Euclidean geometry
from the Euclidean line element, there is no difficulty in defin-
ing a straight line; it is the shortest curve between its end
points.

We carry over this definition into Riemannian N-space in
a modified form. The modification is suggested by considering
a surface in Euclidean 3-space. In general, this surface contains
no straight lines; nevertheless, there are on it certain curves
analogous to the straight lines of space. They are curves of
stationary length, or geodesics (great circles on a sphere). This
idea of stationary length, rather than shortest length, is what
we carry over into Riemannian space as a basis of definition: 4
geodesic is a curve whose length has a stationary value with respect
to arbitrary small variations of the curve, the end points being held
fixed.

In the notation of the calculus of variations, a geodesic
joining points 4 and B satisfies the variational condition

B
2.401. BJ‘ ds = 0.
A

Our next task is to find the differential equations of a
geodesic, using the technique of the calculus of variations.
We shall use an argument valid whether the metric form is
definite or indefinite.

Consider the equations

2.402. x"= x"(u, v).

If we hold v fixed and let u vary, we get a curve. Thus 2.402
represents a singly infinite family of curves, v being constant
along each curve.
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A singly infinite family of curves joining common end
points A, B may be represented by equations of the form
2.402. There is no loss of generality in supposing the para-

Fi6. 2. Family of curves with common end points.

meter u so chosen that « has the same value (u;) for all the
curves at 4, and the same value (u;) for all the curves at B
(Fig. 2). The length of any curve of this family is

B
2.403. L= j ds
A

- J (Gmnp™™) du,

where p*= 9x"/du is a tangent to the curve and e its indicator.
We shall suppose that all the curves have the same indicator.
For shortness let us write

2.404. W = Gap™p™.
Then 2.403 reads
u2
2.405. L=1| (wldu.
%
This length is a function of v, and its derivative is
U2
2.406. L =J ."-(ew)*du.
dy “, dv
Now w is a function of the x’s and the p’s; hence
3 ) ox" . @ op”
2.407. —(ew) = — (ew)' =+ L (ew)? 2 .
av( ) ax’( ) dv ap’( ) 0y
But

r
2.408. %—-————
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and so, if we substitute from 2.407 in 2.406 and integrate
by parts, we get

%2

L[S
2.400. — a1),() ]m

- j (Gazg @'~ 5 *) 5, au.

We may also express this result in terms of infinitesimals.
The change in length 6L when we pass from a curve v to a
neighbouring curve v 4 v is

U2

L iéa _[a( iar
2410, oL = b = %" ew)? dx

U1

_a.. 3 r
J- (6u o ) — 5 () )5’° du,

r

ox
2.411. oxT = —ov.
dv

where

This last differential is the increment in x™ on passing from a
point on the curve v to the point on the curve v + v with the
same value of %. Since the points 4 and B are fixed, 6x"= 0
there, and so the first term on the right hand side of 2.410
disappears; thus we have

2.412. I( 7n 6p"( ew)t — ,(ew)*)ax'du;

we have replaced a/au by d/du, since there is now no chance
of confusion.

If the particular curve v is a geodesic, the integral in 2.412
vanishes for variations 8x" which are arbitrary, except at the
end points (where they are zero). It follows from the funda-
mental lemma of the calculus of variations* that the equations

*R. Courant, Differential and Integral Calculus (Blackie, London and
Glasgow, 1936), 11, p. 499.




40 RIEMANNIAN SPACE

i}
: y 2 i _
2.413. (ew) Py (ew)*=0

dudp’
are satisfied at all points on a geodesic. These are called the
“Euler equations” of the variational problem. It is easy to
see that they may be written

ia'w ow 1 dw dw

dudp” 3" 2wdudp
So far the parameter u has been arbitrary. Let us now
choose it equal to the arc-length s along the geodesic, so that

2.414.

5 | e d_xr — m 3 d—z‘.{ 0
2-41 . u = S, - ds ? w = amn P p = e, du = .
The differential equations of a geodesic now read
2 ddw odw

-416. dsdp®  oxT

To obtain a more explicit form, we substitute for w. This
gives

d aa’m' mpn
2.417. 7 (2armp™) — o PP = 0,

or

dp™  dam 0mn

2.418. a'”'—ds— + a;p"‘p" -1 pwe

By a mere rearrangement of dummy suffixes, we have iden-
tically

pm n— 0.

0Grm 0arm 0ar,
—pmun . 1 T —_— msn
2.410. 3on PP ‘2<axn+ax~'>i’f"
and so the equations of a geodesic may be written
m

2.420, Grm % + [mn, r] pmpn= 0,

where
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aam Grn  0Cmn )

2.421. [mn, r] = %( ax” -

This expression [mn, 7] is called the Chr'istoffcl symbol of the
first kind.
The Christoffel symbol of the second kind is defined as

2,422, { r } = g™ [mn, s.
mn

If we multiply 2.420 by a", we obtain another form for the
equations of a geodesic:

ap” r
2.423. =+ { o }» pmpt =0,
In more explicit form, this reads

a*x r | dx™dx™
2.424. dst {mn} s ds = (.

We have now found the differential equations of a geodesic
in three different forms, as shown in equations 2.416, 2.420,
and 2.423 or 2.424. In the discussion we have tacitly assumed
that the curve under consideration has not a null direction at
any point on it; if it had, we would have ds = 0, and the
equations would have become meaningless. But, as we shall
see in equation 2.445, by taking a different approach, we can
define curves analogous to geodesics, but with ds = 0.

As regards the amount of information necessary to deter-
mine a geodesic, we note that the equations 2.424 are differ-
ential equations of the second order. A solution x7(s) is deter-
mined uniquely if we are given initial values of x" and dx"/ds.
In geometrical language, this means that a geodesic is deter-
mined if we are given a point on it and the direction of the
tangent at that point; in this respect, as well as in its stationary
property, a geodesic resembles a straight line in Euclidean
3-space.

Exercise. Prove the following identities:

2.425. [mng] = [nm,r], [rm,n]+ [rn, m] = 0amn/0x".
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Exercise. Prove that

2.426. [mn,r]) = a,.{"fn}.

In 2.414 we obtained the differential equation of a geodesic
in terms of an arbitrary parameter ». This equation may be
reduced to a form analogous to 2.424, or we may obtain the
result directly from 2.424 by transforming the independent
variable from s to «. In this way we get

d*xr r ) dx™dx® dx"
2.427. du? { mn }E du " “du’
with
d*u du \?
2.428. A= —d—s2 (:i-;)

Since the right-hand side of 2.427 is a vector, so is the left-hand
side.* We may therefore say that on a geodesic, no matter
what parameter % is used, the vector

a’x* r )| dx™dx®
2.429. du? + { mn} du du
is codirectional with (or opposed to) the tangent vector dx"/du.
Conversely, if we are given that along a curve C the vector
2.429 is codirectional with (or opposed to) the vector dx"/du,
and if further dx"/du is not a null vector, then C must be a
geodesic. This may be proved without difficulty by starting
with 2.427, in which M is a known function of «, and defining s
by the relation

2.430, s = I (cxpj )\(-w)d'w)dv,

o
%0, ¥p being constants. No matter what values these constants
have 2.424 is satisfied, and by adjusting the constant v, we can
ensure that amn(dx™/ds)(dx™/ds) = = 1 along C, so that s is
actually the arc length.

*This tells us that it is a vector when calculated for a geodesic, In 2.437
we establish its vector character for any curve.
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The fact that we can put the equations of a geodesic into
the form 2.427, where (%) is an arbitrary function, enables
us to discuss the possibility of drawing a geodesic through two
given points. Let the points be x"= ¢" and x"= b". Let us
choose # = x¥, and assign to Greek suffixes the range 1, 2, . . .,
N — 1. Then the last of 2.427 gives

Wy dr (N \a [y
)‘_{pv}dede+2{yN}de+{NN '

and the other equations read

K ax? p | 3% dx” 9l p dx” p
(dx¥)2 ~ L w fdc¥ dx T “ \ uN de_{NN :

Here we have (N — 1) ordinary differential equations, each
of the second order, and their solution will contain 2(N — 1)
constants of integration. The conditions that we should have
x* = a¢* when x¥ = ¢¥, and x” = " when " = »" are 2(V — 1)
in number. Hence we may form the general conclusion that it
is possible to draw at least one geodesic through two given
points, but of course this argument is suggestive rather than
convincing. We can also approach the question through the
variational principle, seeking the curve of shortest length
connecting the given points. However, difficulties occur here
in the case of an indefinite metric, since any two points can
be joined by an indefinite number of curves of zero length. We
shall not pursue further the question of the existence of a
geodesic joining two given points. When we have occasion to
use this construction, we shall assume that it can be done.
The importance of stationary principles, such as that used
in defining a geodesic, was recognized long before the tensor
calculus was invented. Such a principle is invariant, in the
sense that no particular coordinate system is mentioned in
stating the principle. Hence the differential equations obtained
from the principle must share this invariant character. If the
equations 2.416 are satisfied by a certain curve for one co-
ordinate system, then they must be satisfied for all coordinate
systems. This suggests (but does not, of course, prove) that
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the left-hand side of 2.416 has tensor character. Let us examine
this question in a slightly more general form.

Consider a curve x"= x"(x), where % is some parameter,
not necessarily the arc-length. Write p"= dx"/du, and w =
Amnp™p", Where amy is the metric tensor. Define f, by

2.431 2 —"d" 9w v
R Fr= Gu ap")_ax"

We ask: Isf, a tensor?
We know that p" is a contravariant vector, and so

r

2.432. pr=p'*

ax'*’
Hence, if we regard p" as a function of '™ and x'™, we have
pr  ox
2.433. o = 0
Then

ow  dwdp* ow ox’

2.434.

aplr apcaplr = apcaxlr'
and
ws. () _f(omyim o _gu i
2.435. du\op’*/  du\adp*/ ax’r " 3p*ax'™ox’" du °
Further

dw Ow dx* dw Ip*
2.436. @=5’;a—x;;+a—£;-a—x7;

To evaluate 3p*/9x'" we use 2.432, with a change of suffixes.
Then subtraction of 2.436 from 2.435 gives

ox*®
2.437. 2 ( fr =13 x,,)
dw d%x* dx'™ dw %t
T 9ptdx'™x'T du apJ’ ox'x'™
Hence f, is a covariant vector.
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The transition from 2.416 to 2.420, 2.423, and 2.424 is a
formal process which holds equally well when an arbitrary
parameter % is employed instead of s. Hence

d’x™ dx™ dx™
2.438. fr= am o +mm, 1] 2
is a covariant vector, and
d’xr r | da™dx"
2.439. =77 + {mn} Tn dn

is a contravariant vector.

It may be noted that, in proving the tensor character of
fr defined by 2.431, no use was made of the actual form of w.
All we needed to know about w was that it was an invariant
function of the x’s and the p’s.

Let us now establish an important property of the differ-
ential equations

d (@ ) dw
2.440. a\ap) "= "
Multiplication by " gives (since p"= dx"/du)
d ( a'w> dp" dw dx'@
P 5pr) T dwopt T duox

The last two terms together give dw/du, and so 2.441 may be
written

2.441.

2.442. (p'a—P—,— -w) 0;

hence

2.44 "?-2 — w = constant
443. ap" .

This is a first integral of the equations 2.440. If we now put
W = Cmnp™Pp", we get
2.444. W = Amap™P™ = constant.

If we put 4 = s in 2.440, we get the equations of a geodesic;
then, as we already know, the constant in 2.444 is ¢, the in-
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dicator of the direction of the geodesic (¢ = =+ 1). But if we
start a curve with a null direction, so that w = 0, and if this
curve obeys the differential equations 2.440, then the con-
stant in 2.444 has the value zero; the curve has a null direction
at each of its points. Such a curve is a geodesic null line. Its
differential equations read

445 it r \@nder
2.445. du? + mn § du du ~ '
with the particular first integral
2 st dm do

044 . amn du du =

To sum up: A geodesic null line is a curve which, for some
parameter u, satisfies the differential equations 2.440, or equi-
valently 2.445, with the particular first integral 2.446.

If we change the parameter from % to v, where v is some
function of u, the equations 2.445 and 2.446 become respec-
tively

d’x" y ) dx™dx™ dx”

2.447. dv? {mn }'Jv_ﬁ = dv’
with

d% do\?

A= - d_u2 (@) '

and

dx™ dx®
2.448. Gmn rr 2 =0

By suitable choice of the parameter v, N can be made any pre-
assigned function of v. Hence, sufficient conditions that a
curve be a geodesic null line are that the quantities

2.449. dv? +{mn dv dv

be proportional to dx"/dv and that 2.448 hold.
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Exercise. The class of all parameters %, for which the equa-
tions of a geodesic null line assume the simple form 2.445, are
obtained from any one such parameter by the linear trans-
formation

u = au + b,
a and b being arbitrary constants.

Like a geodesic, a geodesic null line is determined by a
point on it, and the direction of its tangent there; but of course
this direction must be a null direction. The geodesic null line
is important in relativity; it represents the history of a light
pulse in space-time.

Exercise. Consider a 3-space with coordinates %, ¥, 2, and a

metric form ® = (dx)?+(dy)2— (d2)%. Prove that the geodesic

null lines may be represented by the equations
x=auta, y=bu+b, z=cu+c,

where u is a parameter and a, @/, b, ¥/, ¢, ¢’ are constants which

are arbitrary except for the relation a*+ 52— ¢2= 0.

2.5. Derivatives of tensors. We saw in 1.4 that the partial
derivative of an invariant with respect to one of the co-
ordinates is a covariant vector. One might think that the
partial derivative of any tensor is itself a tensor. That is not
so (cf. Exercises I, No. 5). But by adding certain terms to
the derivative we obtain a tensor. This is a very important
idea in tensor calculus, and we shall devote the present section
to it. First we shall see how the Christoffel symbols transform.

In 2.4 we saw that f*, where

dxxT r dx™dx®
2.501. fr= +{ }—

T du? mn§ du du’
is a contravariant tensor. From this fact itis easy to deduce
the law of transformation of the Christoffel symbols. We have

ox'r

2.502. fir = f*

oxt”
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Now
2.503 d*x* d [ 9x* dx'™
e dut ~ du\ ax'™ du
ox® dix'™ %x* dx'mdx'n
= ax'm du? 0x"™3x'™ du du '
and so
d?*x*dx'T A%t Ax'T 9%t dx'™dx'®
2.504. —

du? 9x* ~ du? +5?8x”"6x”‘ du du*
Thus 2.502 gives
dx'™ dx'n

2.505. A’:’”_du—la = 0,
where we have written for brevity

r !
2.506. Al = { }

mn
s ) 0x'" 9x? 9x? Ix'T 9%
- { pqf 9x* 5™ 3x™ ~ 3x® o™ ox/n"

Obviously 4,,,= A,, and these quantities are independent
of dx'"/du. Hence A},= 0, and so we have the formula of
transformation for the Christoffel symbols of the second kind.

2.507 r )’ s ai" Ox? dx? o't 9%
e mnf — \pqfax*ax™ax'™ T gx* ax'mox™
In the notation of 1.7, this reads
r "
2.508. { :y} = {mn}xgx’:x, + XX/,

Exercise. Prove that the Christoffel symbols of the first kind
transform according to the equation

, Ix? 9x? Ix* ax?  J%x¢
2:500.  [mn, v = 129,515 5m 3 T 924 3. grmagre

or, in the notation of 1.7,
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2.510. [, p] = [mn, r1 X0X3X, + 6, XX,

It will be noticed that neither Christoffel symbol is a tensor;
the first terms on the right-hand sides of the equations of
transformation are those of tensor transformation, but the last
terms spoil the tensor character.

We are now ready to discuss the differentiation of tensors.
We shall start with a contravariant vector field 7, defined
along a curve x"= x"(#), and prove the following result:

T'he absolute derivative 8T* [5u of the vector T”, defined as

oT* dT" { , } dx®

2.511. E;=:i;+ mn TmTi;’

is itself a contravariant vector.
This is easily shown by using the formulae of transforma-
tion of the vector T and the Christoffel symbols. We find

8T'*  8T*ox'r dx™ ( 't x*  dx'TIx'? ax’f‘)

w  moxt 1 dm
and this vanishes by 1.210; this establishes the tensor char-
acter of 677 /bu.

If the vector T satisfies the differential equations
6T dTT { r } dx"

o = du T \mnf T aa =0

along a curve, then the vector T7 is said to be propagated
parallelly along the curve. If the space is Euclidean 3-space
and the coordinates are rectangular Cartesians, the Christoffel
symbols vanish, and 2.512 reduces to d77/du = 0; in this par-
ticular case, parallel propagation implies the constancy of the
components, i.e. the vector passes through a sequence of par-
allel positions, using the word “‘parallel” in the ordinary sense.
Referring to 2.424, we note that the unit tangent vector to a
geodesic is propagated parallelly along it: in symbols
8 dx"
dsds
The fact that there exists a tensorial derivative of a contra-
variant vector suggests that the same might be true for a co-

ou  ou axt Ix™Ix" + 3x'73x'% 3x* %™ Ox™

2.512.

2.513. 0.
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variant vector. This is correct, and we can easily find the form
of this derivative indirectly as follows. Let T, be a covariant
vector field, defined along a curve x*= x"(x), and let S” be a
contravariant vector which is propagated parallelly along the
curve, and therefore satisfies 2.512. Then T,.S" is an invariant,

d
and so is 7 (T,S7). But

dT'Sr Tﬁf
> T,

(2T fm g N

“\du  \rnf " ™du N
Now, at any point of the curve, S” may be chosen arbitrarily;
hence, by the test of 1.6, it follows that

6T, 4T, m dx®
2.515. du  du {m} ™ du
is a covariant vector. We call it the absolute derivative of T,.

The equation for parallel propagation of a covariant vector
is 8T, /6u = 0.

This method opens up the possibility of defining the abso-
lute derivative of any tensor given along a curve. We have
merely to build up an invariant by multiplying the given tensor
by vectors which are propagated parallelly along the curve.
Consider, for example, the tensor T',,. We build up an invariant
T,.S"U* and differentiate. We find at once, on using the equa-
tions of parallel propagation for S™ and U”, that

5 Tr. dTr. m - dx' m dx"
2.516. du _ du {rn} Tome du {sn Tom du
is a covariant tensor of the second order; we call it the absolute
derivative of T,,.
Applying the same method, we obtain the following defini-

tions of the absolute derivatives of contravariant and mixed
tensors of the second order:

d
2.514. E; (TrS ) =
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5 7 6T" dT" r 1“1»3‘2.6:.’ s Trmﬂc:
2.517. au_du+mn du+mn du’

8T7, dT7, dx® dx®
2.518. —'=-—'+{ ’ }T"' —’—‘——{m}r.',,.i

Su du mn “*du sn du ’

There is no difficulty at all in applying the same method to
tensors of any order.

Exercise. Find the absolute derivative of T7 .

In order that the absolute derivative of a tensor may have
a meaning, the tensor must be given along a curve. If it is
given throughout a region of space, we may define the covariant
derivative of a tensor in the following way. Let us start with
a contravariant vector, for which the absolute derivative is as
in 2.511. For any curve traversing the region in which the
vector is given, we have

go. T (Ul )i
2.519. du  \9x» mn du’

Now the left-hand side is a contravariant vector ; dx®/du is also
a contravariant vector, and it is arbitrary. Hence by the tests
of 1.6, the coefficient of dx*/du is a mixed tensor. We write it

aT"
2.520. T'p=pat {":n } ™,

and call it the covariant derivative of T".*

The same method may be applied to obtain, from the abso-
lute derivative, the covariant derivative of any tensor. The
plan is so obvious that we shall merely write down the results
for a covariant vector and for tensors of the second order:

oT
2.521. Tr'n = — —{m}va

ax™ m
. eTm , s
20522- Tf In = ax" + {mn TMI + {mn} Trm’

*Other notations are T” », T", n, VaT", and D,T".
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aTn
2.523. Tf.ln = ax - {::} ng - {:’;} Trm,

oT”
2,524. T.rc[u =—5x7‘+{”:n}Tmo _{Z}Tfm-

The formulae for covariant derivatives are fundamental in
tensor calculus, and it is useful to remember them. This is easy,
if we observe the way in which they are built up. The formula
for the covariant derivative of a general (mixed) tensor of any
order may be split into three parts:

(1) The partial derivative of the tensor.

(2) A sum of terms, each prefixed with a plus sign and
corresponding to one of the contravariant suffixes of the tensor.
This suffix is taken off the original tensor and put into the
upper line of the Christoffel symbol occurring in the term. It
is replaced in the tensor by a dummy, which is also inserted in
the lower line of the Christoffel symbol. The vacant space in
the Christoffel symbol is filled with the suffix of the x with
respect to which we differentiate.

(3) A sum of terms, each prefixed with a minus sign and
corresponding to one of the covariant suffixes of the tensor.
These terms are formed in very much the same way as those
in (2), the guiding principle being that of taking a suffix from
the tensor and putting it into the Christoffel symbol at the
same level.

Here is the formula for the covariant derivative of the most
general tensor:

Kl
2,525, Tpiiim, = a, +{ }T‘;’;, s S

+{r"‘}T'1 'm—lq —{Slﬂ} qs, ’m_.'.
{ap ™
Sup

A very important special case of 2.523 is that in which
T,s= G4 the metric tensor. We find

‘n -1g°
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0y,
2.526. Qroit = a_x"' - {Z}am - {;’;}am

aara
= o0
= 0.
The covariant derivative of the meiric tensor vanishes.

- [rt,s] — [str]

Exercise. Prove that
2.5270 8;" = 0, a"lt = 00

For the sake of completeness we define the absolute and
covariant derivatives of an invariant to be the ordinary and
partial derivatives respectively. If T is an invariant,

8T dT oT

2.528. % = du' D=5z

An important difference between the covariant derivative
and the partial derivative should be noticed. Suppose we have
a tensor Ty, Consider the quantities

T
Tl’]r ) _ax—r .

The partial derivative can be calculated if we know the com-
ponent T, as a function of the coordinates. But we cannot
calculate the covariant derivative unless we know all the com-
ponents. Thus, partial differentiation is an operation which is
applied to a single quantity; covariant differentiation is an
operation which is applied to a whole set of quantities.
Absolute and covariant differentiation obey the following
basic laws of elementary calculus: (i) the derivative of a sum
is the sum of the derivatives. (ii) The derivative of a product
UV is the sum of two products: the product of U and the
derivative of V, and the product of ¥ and the derivative of U.
The first is obvious, from the definitions of absolute and
covariant derivatives. The second is not so immediate. But
there is no difficulty (only length of writing) in giving a
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straightforward proof. We shall not give such a proof here,
because the next section will provide us with a new approach
which cuts out the need for long calculations.

The rule for differentiating a product, together with the
fact that the covariant derivative of the metric tensor van-
ishes, implies that the order of the operations of lowering (or
raising) a suffix and of differentiating can be reversed. For
example,

2.529. Trn mjt = (a'n Tf,.‘m)]t = Qrgit Tsnm + ay, Tf?m]t

= a,,Tf?,,,,;.
This means that it is immaterial whether we differentiate the
covariant, contravariant or one of the mixed representations
of a tensor.

Exercise. Prove that

d myn 2 )\miy
2.530. ds (amnk )\) = 4dmn s !

where A" is any vector field given along a curve for which s is
the arc length.

Exercise. Without assuming (ii) above, prove that
2-531. (TrS.)|”= PlaS.’l‘ TTS.'”.

As a general rule, Christoffel symbols are clumsy to handle
in explicit calculations, and we avoid their use whenever pos-
sible. Thus, the vector f, is easier to compute from 2.431 than
from 2.438 or 2.439. We shall illustrate this by making explicit
calculations for a Euclidean 3-space with spherical polar co-
ordinates

xl=r, x2= 0, x°= ¢.
The metric is

2.532, ds? = (dx')?+ (x'dx?)*+ (x! sin x? dx?)?,
and consequently the metric tensor is
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2.533. a11= 1, asa=(x!)?, ass=(x!sin x?)?,
Gss= @s1= G13= 0.
Then the function w occurring in 2.431 is

2.534. w = (p1)*+ (x1p?)2+ (x! sin x? p)?,
and so 2.431 read explicitly

= 2 (- st wein 2 1,
2.535. fo= Ez: ((x1)%p?) — sin x? cos x? (x1p%)%,

a
fa= 7 (@ sin 229,

where pt= dx'/du, p*= dx*/du, p*= dx*/du. After performing
the differentiations, we have

d2x1 2 . d 2
fi= i x‘(j—'::) — x!(sin x?)? (ﬁ) .

d%? dxt dx2
2.536. fs —(xl)z‘—- — (x')? sin x? cosx’(d ) + 2%l — du du’
d?x® dx? dx®
fs = (x*sin x2)2 T + 2(x1)?sin x2cos xza-;%
oxt o zdx‘dx‘
+ (sin %) dudu’

Comparing these expressions with 2.438, and noting that the
coefficient of (dx'/du)(dx?/du) in f, say, is [12, 2] 4 [21, 2] =
2[12, 2], we immediately read off the Christoffel symbols of
the first kind. The complete table of all non-vanishing symbols
of the first kind is as follows:

[mn, 1] ¢ [22,1] = — «t, (83, 1] = — «t (sin x%)?;
2.537. [mn,2]: [33, 2] = —(x')?sin x? cos x?,
" [12, 2] = &

[mn, 3] : [23, 3] =(x*)?sin x2 cos x?,
[31, 3] = «* (sin x’)ﬁ/
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Noting that
1 1

) § 22 — ——— 38 - ——
af=1, a% = )2 ¥ T (et sin 222
2.538.
a®= gil= g2= (),
we can derive from 2.537 the Christoffel symbols of the second
kind. However, we shall illustrate a more direct method of
obtaining them. This method is useful since we often require

the{”:n}but not the [mn, r], as, for instance, in the compu-

tation of the curvature tensors which are discussed in the
following chapter.

Since f*= g™"f,, we can immediately obtain the ™ from
2.536. In the special, but important, case of an “orthogonal”
metric (Gma = 0 when m 5 n), the f™ are obtained by dividing
the corresponding expressions for the f,, by the coefficient of
the second order derivative. Thus we have

d2xl dx2\?2 ) dx3\2
fi=nfi = i x‘(a) — x!(sin x’)‘*’(@) ,

S0, po JL_ T @\ 2amde
2.539. f"’—(x”-duz-—smx cos*\ 7o )t 53a T’
fs d’x® dx?dx® 2 dx3dx!

=— _ a— = 4 =7
£ T (! sin x?)? dut T2 ootz du du +x1 du du

Comparing these expressions with 2.439, we read off all
non-vanishing Christoffel symbols of the second kind:

1 . 1 = — 4l 1 = — 4l(a] 2)2.
{mn} ) {22} % {33} #* (sin 2%)%;
2 . 2 = — sin x2 2 = .]_'. .
2.540. {mn} ) {33} sin & cos %, {12} Tl

{13} {2?%.} = cot %, {;;1}=$
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Exercise. Compute the Christoffel symbols in 2.540 directly
from the definitions 2.421 and 2.422. Check that all Christoffel
symbols not shown explicitly in 2.540 vanish.

Returning to a general Riemannian space, let us note a
short cut for calculating the contracted Christoffel symbol

{ " } Using 2.216, we have
m

n
2.541. 2 {m} = 2a*®[rn, m]
m 0Qrm 9Cmn 0arn
=a (8x" oxt ax"‘)
0 mn
= o™ ax'
ad
= é;;lna,
or
n 9 - 1 9
2.542. {m} = 5;;111 Va = Toar Vva,

assuming that the determinant a is positive. If a is negative,
2.542 holds with a replaced by —a.

Exercise. Show that for the spherical polar metric 2.532, we
have In v/a = 2 In x'+ In sin %2, and

nl_ 2 (n n

The result 2.542 leads to a useful formula for the ‘‘diver-
gence’ T™, of a vector T". By 2.520 we have

aT* (p
20544' T‘“'n +{ }I‘ﬂl

T 9x® mn

o= (Li -)
= T\ Ve Vo) T

or
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1
2.545. ™, \/a ax" (vaT™).

Here we have assumed a positive; if ¢ is negative we replace
it by —a.

Exercise. Show that for spherical polar coordinates

14
2.546. T”,,,=—26—r r2T )+E—0£(sm0T’)+

Obtain a similar expression for the “Laplac1an” AV of an
invariant V defined by

av
2.547. AV = (a’”" —,,,)
8x Ino

2.6. Special coordinate systems. Tensor calculus gives
us a symbolism which avoids reference to particular coordinate
systems. This “democratic principle’ is, in fact, the idea under-
lying the whole subject. Nevertheless there are occasions when
special coordinate systems prove very useful. To think of
Euclidean 3-space for a moment, the formalism of tensor cal-
culus applies to the most general curvilinear coordinate system;
but there are many occasions when it is much simpler to work
with rectangular Cartesians. In a general Riemannian Vy there
exists no system of coordinates as simple as rectangular Car-
tesians. But there are several systems with certain simplifying
properties, and these we shall now discuss.

First we shall consider local Cartesians. The terms in the
general form & = @,,dx™dx® which contain dx! are

a13(dxY)2 4 2a10dx'dx?+ 2a15dx'dnd . . .+ 2a,ydxidx”.

Let us assume that a,; is not zero.* Then this expression differs
from

[dxl+—dx2+ + —dx ]’

*See Appendix A,
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by certain terms which contain dx?, . . .,dx", but do not contain
dx'. Thus we may write

2.601. ® = ¥ + &y
where ¢; = = 1, to make ¢ a;; positive,

_ a a
2.602. ;= \/elaul:dxl 2 .. +—1—-Nde:|,
Q11 a1

and ®, is a homogeneous quadratic form in dx?, ..., dx", the
coefficients being functions of %, x2, . . ., x".
Applying the same process to ®;, and so on, we finally get

2.603. P = 61‘1’12 + 62‘1’22 + + GN‘I’N 9
whereeacheis &= 1and each ¥isa d1fferent1al form of the first
degree, as in 2.602; we may write

2.604. Y= bmndx™.
In the general case, it is impossible to integrate these differ-
ential forms; we cannot obtain a set of coordinates y, such that
the differentials of these coordinates are given by 2.604.

But let us fasten our attention on a point O with coordinates
a’; let us write

2.605. Ym = (bmn) o (x” - an) ’

the subscript O indicating evaluation at the point O. Then, by
2.603 and 2.604, we have at O

2.606. P = eldy12+ ngygz"'. . .+ ENdyNz.

To sum up: It ¢s possible to choose coordinates so that the metric
form reduces to 2.606 at any one assigned point of space. Such
coordinates are called local Cartesians.*

The next special coordinates to be discussed are Riemannian
coordinates. Let x™ be a general coordinate system and let a”
be the coordinates of a point O. Consider the family of geo-
desics drawn out from O; each geodesic satisfies the differential
equation

*See Appendix A,
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d*xr r ) dx™ dx®
2.607. 25t + {mn}d_s a = (.

Let p be the unit tangent vector at O to one of these geodesics.
Then by 2.607, we have at 0

d"’x'_ 7 I
st = —{mn}p %

déx" ,
2.608. is = Alpns ™™ P2,

where

SRR NS FNSITERY
2.609, Almne = — ax'{mn}+2{si’}{m”}.

There are similar but more complicated expressions for the
higher derivatives. Consider a point P on the geodesic at a
distance s from O. Its coordinates may be written in the form
of power series in s:

r — LT r __ r men
2.610. x"=aqa" 4+ sp %S’{mn}P P
+ & SA map™p Pt + . ...

The coefficients are of course evaluated at O.
We define the Riemannian coordinates of P to be
2,611, x'T=sp",
where s is the arc length OP and p" is the unit tangent vector

at O to the geodesic OP. The Riemannian coordinates of O are
therefore x'"= (.

The first thing to show regarding Riemannian coordinates
is that they form a regular system in the neighbourhood of 0,
ox’
'
infinite. Substitution from 2.611 in 2.610 gives

i.e. we are to show that the Jacobian l is neither zero nor

2,612, x"= g™+ x'T— *}{ mrn}x""x"‘+%A,'m,..x”“x”‘x"+ e

and so



§2.6 RIEMANNIAN COORDINATES 61

ax" r ,
2.613. s = T A E
Thus at O the Jacobian is
ax" ,
2.614. =% =1

and in the neighbourhood of O it is neither zero nor infinite.
We shall now prove the fundamental property of Rieman-
nian coordinates: At the origin of Riemannian coordinates, the
Christoffel symbols of both kinds and the first-order partial deri-
vatives of the metric tensor all vanish.
Consider the geodesics drawn through O, the origin of
Riemannian coordinates. Along each of them the equation

a*x'r r )/ dx'™dx'"

ds? {mn} ds ds
is satisfied, Here the primed Christoffel symbol is calculated
for the metric tensor a;, corresponding to the Riemannian co-
ordinate system x’". Now substitute from 2.611 in 2.615, re-
membering that p" is constant as we pass along the geodesic
since it represents a quantity calculated at the fixed point O.
It follows that

2.615. =0

r ! mas
2.616. {mn} " =0

along the geodesic. Therefore at O, where the ratios of the p’s
are arbitrary (corresponding to the arbitrary direction of the
geodesic there), we have

7
2.617. { r } = 0.
mn

Hence, by 2.426 and 2.425, we have

da’
2.618. lmn, 7} = 0, ax’,",” =0

at 0. This establishes the result italicized above. Note that
2.617 and 2.618 hold only at the point O, and not elsewhere.
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We recall from 2.5 that the absolute and covariant deriva-
tives differ from their leading terms (ordinary or partial deri-
vatives) only by the addition of certain terms each of which
has a Christoffel symbol as a factor. It follows immediately
that at the origin of Riemannian coordinates absolute and co-
variant derivatives reduce to ordinary and partial derivatives.

This is a very useful result. Let us use it to prove the state-
ment regarding the absolute and covariant derivatives of pro-
ducts, made (but not proved) in 2.5 (p. 53). One particular
case will serve to show the method.

Consider the statement

2.619. (T" Srm)[t = T"|g Sm + T" S""I“
At present, we do not know whether it is true or not. However,
we recognize that each side is a tensor, and the equation must
be true in all coordinate systems, if it is true in one. Let us fix
our attention on some arbitrary point 0. Take Riemannian
coordinates with O asorigin. At O, the tentative equation 2.619
becomes a statement connecting partial derivatives instead of
covariant derivatives. We know this statement to be true from
elementary calculus. Therefore the general statement 2.619
is true.

The above argument is typical of the way in which Rieman-
nian coordinates may be used to avoid a great deal of tedious
calculation with Christoffel symbols.

Exercise. Prove that if a pair of vectors are unit orthogonal
vectors at a point on a curve, and if they are both propagated
parallelly along the curve, then they remain unit orthogonal
vectors along the curve.

Exercise. Given that \' is a unit vector field, prove that
)\'| gx" = 0 and XrXrl s = 0.
Is the relation A\ ,A* = 0 true for a general unit vector field?

We proceed now to another special coordinate system—
normal coordinates or orthogonal trajectory coordinates. Rieman-
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nian coordinates have certain analogies with Cartesian co-
ordinates: normal coordinates have some resemblance to spher-
ical polars, but neither analogy is to be pressed too far.

Consider a singly infinite family of surfaces, i.e. subspaces
of (N — 1) dimensions, in a Riemannian N-space. Their equa-
tions may be written

2.620. x" = frlut, ut, ..., u" "1 C),

where the #’s are parameters defining the position of a point
on a particular surface, and Cisa parameter which is constant
over each surface. If we eliminate the #’s and solve for C we
get a single equation of the form

2.621. Fix, %2, ..., x~) = C.

This single equation represents the whole family of surfaces,

the value of the constant C determining the particular surface.
For an infinitesimal displacement in one of these surfaces

we have

2.622 oF dx® = 0

R =

If we define

2.623. X, = -a—F Xm = gmn —
" gx™? x*’

the equation 2.622 may be written

2.624. Gmn X™dx® = 0.

According to 2.317, this expresses the orthogonality of the
vector X' and any infinitesimal displacement in the surface.
In fact, the vector X" (defined in 2.623) is a normal vector to
the surface.

We now seek the orthogonal trajectories of the family of
surfaces 2.621, i.e. a family of curves cutting the family of
surfaces orthogonally. At each point an infinitesimal displace-
ment dx" along such a curve must have the direction of X".
Thus it is a question of solving the ordinary differential
equations
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2.625 d X
e dx¥ — Xx¥
forx',...,x""! in terms of the remaining coordinate x”.

Under very general conditions these equations will have a
solution with a sufficient number of constants of integration
to give one curve through each point of space. In brief, a singly
infinite family of surfaces in Riemannian N-space possesses a
family of orthogonal trajectories.

In the above argument the coordinate system was general.
We shall now see how a normal system of coordinatesis defined.
We start with a singly infinite family of surfaces. We define
¥ to be a parameter which is constant over each surface. On
one of the surfaces weset upa coordinatesystem #1, . . . , x¥ =1,
We shall use the convention that Greek suffixes have the range
1 to N — 1; thus we refer to these coordinates as x°.

x®= const,

(x' x2x3)

F16. 3. Normal co-ordinates in 8-space,

The coordinates of any point P in space are now assigned
in the following way. The coordinate 2" has the value belong-
ing to the surface passing through P. We pass along the ortho-
gonal trajectory which passes through P until we meet the
surface on which x* are assigned. We attach to P the values
of x* corresponding to the intersection of the orthogonal tra-
jectory with this surface (Fig. 3).
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Consider now two vectors at any point. One vector X" is
tangent to the orthogonal trajectory and the other ¥~ is tan-
gent to the surface of the family. Since the coordinates x*
remain constant as we pass along the orthogonal trajectory,
we have

2.626. X*= 0.

Since x" remains constant as we move in one of the surfaces,
we have

2.627. YV = 0.

But from the basic property of orthogonal trajectories, these
two vectors are orthogonal, so that gmeX™Y"™= 0. By virtue
of 2.626 and 2.627 this reduces to

2.628. an, XYY" = 0.
Since XY does not vanish and ¥” are arbitrary, we deduce that
2.629. aNp = Oa

This is the characteristic property of normal coordinate sys-
tems. The metric form is

2.630. & = a,dx"dx’+ ayn(dx")?

Exercise. Deduce from 2.629 that
2.631. a¥* =0, a"¥ = 1/ayy.

On any one of the surfaces (which is itself a Vy_) the
metric form is

2.632. & = a,do*de’.

The coefficients are functions of the coordinates x* and also
contain x? as a parameter. Since the surface is a Riemannian
space, it will have its own tensor technique, which is related
to the tensor technique of the parent N-space but is not to be
confused with it. In the tensor calculus of the surface we con-
sider only transformations of the coordinates x*, instead of the
whole set x".

If we write down the symbol a*°, what do we mean by it?
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Either it stands for the conjugate of the tensor a,, in Vy_,, or
it stands for some of the components of the conjugate of the
tensor a,, in Vy. If these two things were different from one
another, the notation would be confusing. Actually they are
the same, as we shall now see.

To make it quite clear what we are doing, let a’*° be the
conjugate of a,, in Vy_,, and a* be some of the components
of the conjugate of a,, in Vy. Now, as in 2.204,

2.633. Ama™* = 3},

and if we take » and s in the range 1,..., N —1, this gives
2.634. aMpam = 5:,

or, by 2.629,

2.635. a,a" = §.

These equations determine ¢*°. But

2.636. a,0" =8,
and these equations determine a’*°. Hence

2.637. a'""’ = a*’,
which is the required result.

The next question is this: Do the Christoffel symbols of
V-1 coincide in value with the Christoffel symbols of Vy
when the indices of the latter lie in the range1,..., N — 1?
It is easy to see that they do; we have (indicating the symbols
for Vy_, with a prime)

’ p \/ P
2.638. (v, ) = [wr, p], { ;w} = { w }
As for the other Christoffel symbols in V,, we have

da
2.639. [pN,c]=[oN,p]l = — [pe, N]= %Eﬁ”’

6aNN
Lo, N = —[NN, 6l = 4552, (NN, N) =475
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=%apuaa';‘;" N}=__]_'_§f_%’
ox po 2ayy 0%
N _ 1 aaNN p = — 1 g aGNN'
Np 2a‘NN ox’ ! N N 2 Ix"
N 1 aaNN
{N N - 2aNN axN )

Consider a set of quantities T3 which transform according
to the tensor law

, ox* Ix”
2.640. T = T,,,.ng,m
if we transform the coordinates x!, #2,..., x" ~!, without

changing x". We shall refer to the set of quantities T4 as the
components of a subtensor. Since the transformation is of the
form

2 = (..., 2",

2.641. V= xN,

we have
ox’* ax'N ax'N
i =0 o =% F= L

2.642. 9x° ax axN
= O gm0 g = L

It follows that if we split up a tensor T, of Vy into the groups
of components

Tpo' TpN’ TNp’ TNN’
then, for the transformations 2.641,

T, is a covariant subtensor of the second order,
T,n, Ty, are covariant subvectors,
Tuwn is a subinvariant.

Let us look into the covariant differentiation of subtensors
with respect to the metric form a,dx“dx”. We shall denote
this type of differentiation with a double stroke. We shall
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illustrate by examining the covariant derivative of a covariant
subvector. Then, remembering 2.638,

aT, y
2.643. Tﬁ“ﬁ = W - }T.y.

af
Now
aT, m
2.644. T.‘p=axp‘-{aﬁ}T’n
N
= T.,,,,—{ aB }TN'
and so, by 2.639,
1 aa,p

2.645. T, = Tuup + %m Ty

aa,,
ax’

= Tallﬁ + 3 TV,

We also have

2.646- TNI¢ = axa —{NG}Tm

and
2.647. Tan =:§3—{:;V' Twm
- AT
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Exercise. Show that

a
2.648. T“M = Ta||p+ %a““ x‘;:TN,

. wo 0TV 1 0.,
2.649. ™, =~ 2o +

ax dxN 2ayy 9x* '
aT* da e aaNN
2.650. T'n =55+ }a” ax'}v’T'—%a“ 3 v,

The above relations hold for a normal coordinate system.
There is a special type of normal coordinate system, namely,
a geodesic mormal coordinate system. This will be described
below, but first we must establish an important property of
geodesics.

" Let us take a surface Vy_; in Vy, and draw the geodesics
normal to Vy—1. Let us measure off along all these geodesics
the same length. The points so obtained give another surface

F1G6. 4. Construction of geodesic normal coordinate system.

Vy—1 (Fig. 4). The essential fact we wish to prove is this:
Al the geodesics normal to Vy_, arealso normal to Vy_,.

Let P, Q be adjacent points on Vy_, and let P/, ¢ be the
points where the geodesics through P, Q cut Vy—_;. Let us look
back to the formula 2.410. It is a formula for the variation in
the length of a curve when the curve receives a small displace-
ment. When it was obtained in 2.4 we had in mind curves with
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common ends points, but actually this condition was not used
in obtaining the formula in question. In applying the formula
to the case now under consideration, we put 8L = 0, since
PP'= QQ’ by construction. Further, the integral on the right
hand side vanishes because PP’ is a geodesic. Thus we have

a ‘ U2
—— n o—
2.651. [ap" (ew)?ox :L = 0,
where 6x” at # = u, represents the infinitesimal displacement
PQand éx" at u = u, represents the infinitesimal displacement
P'Q’. Let us take the parameter « equal to the arc length along
the geodesics. Then 2.415 hold, and 2.651 reduces to

P/
2.652, [a"mpm 8x":| = 0.
P

Here p™ is the unit tangent vector to the geodesic. But the
contribution from P vanishes, since the geodesics cut V-1
orthogonally. Hence

2.653. (@map™5x™) pr = 0.

Since 8x" is an arbitrary displacement on Vy_j, it follows that
the vector p" is perpendicular to Vllv-..l; the result is proved.

We now define a geodesic normal coordinate system as
follows. We start with an arbitrary surface Vy_; and assign
over it a coordinate system x°. To assign coordinates to an
arbitrary point, we draw through the point the geodesic which
cuts Vy_ orthogonally. The first N — 1 of the coordinates
are defined to be the coordinates of the point where this geo-
desic meets Vy_;; the last cordinate xV is the arc length of
the geodesic.

It is clear that the geodesic normal coordinate system is a
special case of the normal coordinate system, and so all the
relations given above hold good. But there are other simpli-
fications. As we go along a parametric line* of ¥ we have

*A parameiric line is a curve along which only one coordinate changes.
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2.654. ds® = GNGNN(de)z,
where ey is the indicator of the parametric line. But dx¥ = ds,
by the definition of x”. Hence

2.655. ANN= €N, GNN= €N
These equations are additional to 2.629 and 2.631. Equations
2.639 hold, of course, for a geodesic normal system, but there
are some obvious simplifications since the derivatives of ayy
vanish.

For a geodesic normal coordinate system, the metric form
is
2.656. & = a,dx"dx” + en(dx™)2.

Exercise. Write down equations 2.643 to 2.650 for the special
case of a geodesic normal coordinate system.

The special types of coordinates considered above—local
Cartesians, Riemannian coordinates, normal coordinates, and
geodesic normal coordinates—all exist in a general Riemannian
space of N dimensions. Let us now consider orthogonal coor-
dinates for which the parametric lines of the coordinates are
perpendicular to one another at every point. For an infini-
tesimal displacement dg;)x" along the parametric line of !,
we have

d(l)x’ = dmx‘ = sl = d(l)xN= 0,
and for an infinitesimal displacement d(;x" along the para-
metric line of x2, we have
d(g)xl = d(z)x3 = .. = d(z)xN = 0.
The condition of orthogonality
a,.,.d(l)x"‘d@)x” = 0
reduces to
aud(l)xld(z)x’ = 0,
and so ap= 0. Taking into consideration the other pairs of

parametric lines, we see that the coordinate system is orthogonal
if, and only if,
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2.657. Gmn= 0 for m = n,
The corresponding metric form is

2.658. & = ex(hidx') +es(hada?)?+. . .+ ey(hydx™)?,
where the ¢’s are 41 or —1 and the A’s are functions of the
coordinates.

Orthogonal coordinates do not exist in a general Rieman-
nian space of N dimensions, and consequently they cannot be
used in general arguments. They do exist, however, in special
types of space, and in particular in Euclidean 3-space, where
polar coordinates, confocal coordinates, and other orthogonal
systems are familiar. They also exist in special types of
Riemannian 4-space occurring in the general theory of rela-
tivity. In such cases they have distinct advantages when de-
tailed computations are required, since the conditions 2.657
reduce the number of components of dm, from IN(N + 1) to
N, so that in V, we have only 4 components instead of 10.

2.7. Frenet formulae. With any point on a twisted
curve in Euclidean 3-space there is associated an orthogonal

triad consisting of the tangent, principal normal, and binormal,
and two numbers, the curvature and the torsion. We shall
now extend these ideas to the case of a curve in a Riemannijan
space of N dimensions.*

Let

2.701. xT = x"(s)

be the equation of the curve, s being the arc length measured
from some point on the curve. Then

2.702. A= s

is the unit tangent vector, and we have

*We shall use an indefinite metric form, but we shall for simplicity
exclude the possibility that any of the vectors encountered has a null-
direction. We shall also exclude the possibility that any of the curvatures
vanishes. However, these possibilities will be discussed after the general
formulae have been set up.
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2.703. Cma\™A\* = ¢,
where ¢ is the indicator of the direction of the tangent. Differ-
entiation gives, by 2.530,

o\
2.704. M= 0,
és

which shows that §\"/8s is perpendicular to the tangent. The
unit vector N,” codirectional with 8\7/8s is called the unit first
normal, and the magnitude of §A"/ds is called the first curva-
ture k). Thus we have

r

2.705. —5; = kA" enAmar)”®= 1,

where ¢(;) is the indicator of N\;,". This is the first of the Frenet
formulae. -

Let us now define a unit vector \g," and a positive invariant
k(2 by the equations

Ny”

2.706. —; " = k@l — emrmN, €@ @adre®=1,

where ¢ is the indicator of \,". This vector " is perpen-
dicular to both A" and A\)"; for we have, by 2.706, on multi-
plication by \,, M), respectively,

»

M
2.707. kMg \a = 48;')\»4- ey KM@ "Mys = 0,

since A\(yy" is a unit vector perpendicular to A\". In the first of
these equations we may put

5)\(1)” \n

2.708. 3s Ap = — X(x)“g = — €1)K(1)

so that the stated perpendicularities follow. The vector )"
is called the unit second normal and k) is called the second
curvature.®

Let us next define a unit vector A" and a positive
invariant kg, by the equations

*Sometimes called forsion.
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2.709. =55 = x@d@’ — cncaramdn’s calamie® = 1,

where ¢3, is the indicator of A 3", It is easily proved in the same
way that A" is perpendicular to all three vectors A, AT, and
Mg";itis called the wnit third normal and K(3) is called the third
curvature.

Consider the sequence of formulae

Y . ,
2.710. =5 =" = kundan"— €ar —n€wr —1kar -1 a2

)\(o)' = )", It(o) = 0, é(o)= €,

€ -1 M- Mag—ps = 1,
M=12...)
in which there is no summation with respect to repeated capital
letters. These formulae for M = 1, 2, and 3 coincide respec-
tively with 2.705, 2.706, and 2.709. It is easily proved by
mathematical induction that the whole sequence of vectors
defined by 2.710 are perpendicular to the tangent and to one
another. The vectors A", A»)", . . . , are the unit first, second,
- » normals, and the invariants g, k@, . . . , are the first,
second, . . ., curvatures of the curve.

It would appear at first sight that the formula 2.710 defines
an infinite sequence of vectors. This cannot be the case, how-
ever, because at a point in Vy we can draw only N mutually
perpendicular vectors. Therefore 2.710 with M = N cannot
yield a vector \y," with non-zero components. In fact, we
must have k= 0, so that for M = N 2.710 reads

Ny -1” ’
2.711. s T T S -2) € -1 K =1) My —)"-

This equation terminates the sequence.
The complete set of Frenet formulae may be written

A " . ,
2.712. T T KonMan"— €ar—2€u- 1Rs-1)Mu—-2"

€r-1) My—1)* dag—yn = 1, (M =1,2,..., N),
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where we define
2.713. Moy’ = N, k) =0, xvy = 0.

Exercise. For positive definite metric forms, write out ex-
plicitly the Frenet formulae for the cases N = 2, N = 3, N=4.

In the above discussion it was assumed that the successive
curvatures could be determined with non-zero values. But there
is no reason to suppose that this will necessarily be the case.
The equation 2.705 gives

, o

2.714, K1) = €q1)Gmn s o5 ' €1 = = 1.

If 5A7/6s = 0 (which means that the curve is a geodesic), then
kqy= 0. Even though the separate components do not all
vanish, we shall have k)= 0 if §A"/és is a null-vector. (This
can occur only with an indefinite metric form.) In either case,
2.705 fails to define the normal vector A", and so the pro-
cedure breaks down. If we get past the first stage with «,> 0,
it may happen that k= 0, and the procedure breaks down
at the second stage. In such cases we have a truncated set of
Frenet formulae. Let us illustrate by the case where x;,> 0,
k2> 0, k3= 0. Then the Frenet formulae are

ONT

s i’

ak(l), r r
2.715. os k)@ — ek,
35 = — €)X )y’

Other normal directions remain undefined, but we can fill in
a complete set of mutually perpendicular vectors by taking
at a point on the curve unit vectors A3, . . ., Ay—1)” mutually
perpendicular and perpendicular to A, Ay, and A" If we
subject A, ..., Ay-1" to parallel propagation along the
curve, the set of N — 1 vectors remain unit vectors, mutually
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perpendicular and perpendicular to the vectors A, Ao, A
The formulae 2.712 are satisfied with

K@3) = K(4)= ce T KN = 0.

Exercise. In a Euclidean space Vy, the fundamental form is
givenas & = dx"dx®. Show that a curve which has k2= 0 and
k)= constant satisfies equations of the form

x"= A" cos ks 4+ B sin xqys + C”,
where A7, B, C" are constants, satisfying
ATAT = B'Br =—1,, 4'BT = 0,
K1)
so that A" and B are vectors of equal magnitude and perpen-
dicular to one another. (This curve is a circle in the N-space.)

SUMMARY 11
Metric form:
D = Guadx™dx®, ds®= eamndx™dx®.
Metric tensor and conjugate tensor:
=0y A™*=a"" @n,a™ = 8:.

Magnitude of vector:

X2 = € am”XmX no
Condition of orthogonality:
CmnX™Y2 = 0.

Raising and lowering suffixes:
X" =a™X,, Xmn=am X"
Christoffel symbols:

mr OQGnr O0Amn r | _ o ]
[mn,r] = %(ax., +ax"‘ = ) {mn = a"[mmn, s].
Geodesic:
EJ‘ds = 0,
d dw dw dx"
= 0’ P' = '] w = am"pmpa‘

ds a_p" ox" ds




Summary 11
d2x" dx™ dx™ — o @d_x_”
ds? { }ds ds = 0 s s T
Geodesic null line:
de™ d® damdxt
du’ mn} dudn = O O™ E

Absolute derivative:
8Tr dTT dx®
{m} T %

— e e
=

ou du mn '’
T, 4T, (m &
du  \mf ™du’

Covariant derivative:

aT" aT,
Te= 6x'+{ ™ Tns 3?—{1'3 T

ar.l‘ = 0, arclt = 0, 6;"=00
Local Cartesians:
$ = Cl(dyl)z-l‘ eg(dyg)z‘l‘. . .+ GN(dyN)2 at Origin.

Riemannian coordinates:

[mn, r] = 0, {m’n} =0,
Normal coordinate system:
& = g,dx"dx” + ayy(dx™)2.
Geodesic normal coordinate system:

® = a,dx"dx’ + ey(dx™)z.

First normal N\," and first curvature «(;, of a curve:
dx" , N’

s = Mol T = fora cprosre)” = L

mn * o
- 0 at origin.

7
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EXERCISES II

1. For cylindrical coordinates in Euclidean 3-space, write
down the metric form by inspection of a diagram showing a
general infinitesimal displacement, and calculate all the
Christoffel symbols of both kinds.

2. If a,, and b,, are covariant tensors, show that the roots
of the determinantal equation

IXarg"' bf'l = 0

are invariants.
3. Is the form
dx*+ 3dxdy 4+ 4dy*+ dz?
positive-definite?
4. If X7, Y7 are unit vectors inclined at an angle 6, prove
that
8in? § = (GrmBan— Grelmn) X'V X" Y™,
5. Show that, if 6 is the angle between the normals to the
surfaces #!= const., x*= const., then
au
cos § = \/auazz .

6. Let x', x?, x® be rectangular Cartesian coordinates in
Euclidean 3-space, and let x!, x2 be taken as coordinates on a
surface x*= f(x!, x?). Show that the Christoffel symbols of the
second kind for the surface are

{ r — f "f mn

mnf 14 fofy’

the suffixes taking the values 1, 2, and the subscripts indicating
partial derivatives.

7. Write down the differential equations of the geodesics
on a sphere, using colatitude § and azimuth ¢ as coordinates.
Integrate the differential equations and obtain a finite equation

Asinfcos¢ + Bsinfsing + Ccosbd = 0,
where 4, B, C are arbitrary constants.
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8. Find in integrated form the geodesic null lines in a V,
for which the metric form is
(dxt)*— R¥(dx*)*+(dx*)"],
R being a function of x! only.

9. Show that, for a normal coordinate system, the Chris-
toffel symbols

[PN’ “]9 [Po'v N}, [pN, N]s [NN: N}

(o} 4 83

Nof oo} VN Np NN

have tensor character with respect to transformations of the
coordinates 1, ..., x" "%

10. If 9, ¢ are colatitude and azimuth on a sphere, and we
take
xl= @ cos ¢, x*= 0 sin ¢,
calculate all the Christoffel symbols for the coordinate system
!, x* and show that they vanish at the point § = 0.

11. If vectors T and S, undergo parallel propagation along
a curve, show that 7S, is constant along that curve.

12. Deduce from 2,201 that the determinant ¢ = |ama
transforms according to
ox"
ax'*

13. Using local Cartesians and applying the result of the
previous exercise (No. 12), prove that, if the metric form is
positive-definite, then the determinant a = |a.s| is always posi-
tive.

a'=aJ*J =

14. In a plane, let x, x? be the distances of a general point
from the points with rectangular coordinates (1, 0), (—1, 0),
respectively. (These are bipolar coordinates.) Find the line

element for these coordinates, and find the conjugate tensor
a™,

15. Given ® = amadx™dx™, with a13= as2= 0 but a;3 >0,
show that ® may be written in the form
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d = (‘I’l’— Q‘I’g’-l- @g N
where &, is a homogeneous quadratic form in dx?, dxs, . . . dx,
where € = =+ 1 such that ez;3> 0, and where
V1= (2e812) " [ a1a (dx! + dx?) + @1+ @) dx® + . . .
+ (@1n+ azy)dxV ],
V3= (2¢a12) 7} [313(— dx'+ dx?)+ (313 — Gan) da® + .. .
+ (@iv— azy) dxV .
16. Find the null geodesics of a 4-space with line element
ds*= e v(dx*+ dy*+ ds*— dp),
where v is an arbitrary function of x, Y, 2, L.
17. In a space Vy the metric tensor is @m,. Show that the

null geodesics are unchanged if the metric tensor is changed
t0 Omn, Where dma = Y@ma, ¥ being a function of the coordinates.

18. Are the relations
T Irs = T |ary
Trlak = Trlku
true (a) in curvilinear coordinates in Euclidean space, (b) in a
general Riemannian space?

19. Consider a Vy with indefinite metric form. For all
points P lying on the cone of geodesic null lines drawn from
O, the definition 2.611 for Riemannian coordinates apparently
breaks down. Revise the definition of Riemannian coordin-
ates so as to include such points.




CHAPTER I11

CURVATURE OF SPACE

3.1. The curvature tensor. The idea of curvature is
simple and familiar in Euclidean geometry. A line is curved if
it deviates from a straight line, and a surface is curved if it
deviates from a plane. However, it is usually possible to dis-
cover whether or not a surface is curved by purely intrinsic
operations on the surface. Let us think of the simplest of curved
surfaces—a sphere. Imagine a two-dimensional being who
moves in the spherical surface, and cannot perceive anything
outside that surface. The operations he performs consist solely
of measurements of distances (and hence angles) in the surface.
From their geodesic (shortest-distance) property he can con-
struct the great circles on his sphere. If he measures the angles
of a spherical triangle formed of great circles, he finds that the
sum of the angles is greater than two right angles. This result
tells him that his two-dimensional region is not a plane.

This simple example illustrates our point of view in dis-
cussing the curvature of Riemannian space. Curvature is re-
garded as something intrinsic to the space, and not as some-
thing to be measured by comparison of the space with another
space. Nor do we think of the Riemannian space as necessarily
embedded in a Euclidean space, as we are tempted to do when
we discuss the intrinsic geometry of a sphere.

In creating a geometrical theory of Riemannian N-space,
we have to generalize our familiar concepts in two ways. First,
we have to pass from three to N dimensions; secondly, we have
to consider the possibility of an intrinsic curvature, such as is
found in a surface drawn in Euclidean 3-space.
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We define flatness as follows: 4 space is said to be flat if it
is possible to choose coordinates for which the metric form is*

3.101. ® = a(dx')+ e(dx?)+ ... + ey(dx™)2,
each e being +1 or —1.
A space which is not flat is called curved.

Exercise. Explain why the surfaces of an ordinary cylinder
and an ordinary cone are to be regarded as “flat” in the sense
of our definition.

Our next task is to develop a test to tell us whether a given
space is flat or curved. By “given space” we mean a space in
which the metric form &= amadx™dx" is given. The question
is: Can we, or can we not, by transformation of coordinates
reduce @ to the form 3.101?

We attack this question by means of the formulae for
covariant derivatives given in 2.5. Let T, be an arbitrary
covariant vector field. Its covariant derivative is given by

2.521:

30102- T'lﬂ = an_{ p } Tp.

dx™ rm
This is a covariant tensor of the second order, and we can
obtain its covariant derivative by means of the formula 2.523.
In writing a second-order covariant derivative, we omit all
vertical strokes except the first: thus

0T rim q q
3.103. T,-,.m = ax’i - { rn } Tq]m - { mn } Tr|qo

Interchanging m and #» and subtracting, we get (since

Lat-{.ah

*It should be clearly understood that a space Vy is flat only if it is pos-
sible to reduce ® to the form 3.101 throughout Vy. Every space is elemen-
tarily flat in the sense that it is always possible to reduce ® to the form
3.101 at a single assigned point. This was done in 2.606.
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3. 104. Tr mn— 4 rinm

2(EZ-{ A -
P
ox™ rm ax™ am
_ 8 foT, _§ » q (aTq_ P} )
5'57"(6_ {n}T)+{m} e lanf’*
The partial derivatives of the components of T, cancel out,
and we get

3.105. Tr|mn_ Tr|mn= R.,man
where

s _ O s|_9d4s
3-1060 R.mn— 5;;{ r n} ax“

+{rpn}{pin}_{rm}{pn}

Now T, is an arbitrary covariant vector and the left-hand side
of 3.105 is a covariant tensor of the third order. It follows from
the tests of 1.6 that R’ymn has the tensor character shown. It
is called the mixed curvature tensor.

Exercise. What are the values of R’,mq in an Euclidean plane,
the coordinates being rectangular Cartesians? Deduce the
values of the components of this tensor for polar coordinates
from its tensor character, or else by direct calculation.

Let us now suppose that a vector field T7(%, v) is given over

a 2-space Vi with equations x"= x"(u4,v), immersed in a
Riemannian Vy. By taking absolute derivatives along the
parametric lines of % and v respectively, we obtain the vector
fields

8Tr oI

ou' 0w
These fields may in turn be differentiated absolutely, yielding
fields

o R S Y S

]

812 ' oSudv’ dvdu o0t
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If we were dealing with the usual partial differentiation oper-
ators (9/du, 3/dv), the order in which the operators are applied
would be a matter of indifference, i.e.

2T T
dudy  dvdu’

(We say that these operators commute.) However, the result
3.105 might lead us to suspect that the operators (6/6u, 5/6v)
do not commute in general. A straightforward calculation,
based on 2.511, leads to
3.107. A oo

ou dv
Thus the operators (5/6u, §/6v) do not commute in general.

The formulae 3.105 and 3.107 are important.

We are now in a position to give a partial answer to the
question raised above regarding the flatness of a space. If the
space is flat, then there exists a coordinate system such that
3.101 is true. But then the Christoffel symbols vanish, and
hence by 3.106 all the components of the curvature tensor
vanish. Hence the conditions

3.108. Rfmn = 0

are necessary for flatness. These conditions are also sufficient,
but we shall postpone the proof of this to 3.5.

A word with regard to the structure of the formula 3.106
will help if we wish to remember it. The curvature tensor
involves derivatives of the metric tensor up to the second order
and the expression 8.106 starts with differentiation with respect
to the second subscript. Noting the relative heights of the
suffixes, we have then no difficulty in remembering the first
term. To get the second term, interchange m and #. The first
Christoffel symbol in the third term is the same as that in the
first term, except that s is replaced by thedummy p; the rest
of the term then fits in uniquely so as to preserve the heights
of unrepeated suffixes and to show the repeated suffix once as
a superscript and once as a subscript. To get the last term,
interchange m and #. It is, of course, unwise to attempt to
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remember too many formulae, but the curvature tensor plays
such an important part in tensor calculus that it is worth while
paying special attention to it.

The mixed curvature tensor has some symmetry properties.
First, it is skew-symmetric in the last two subscripts:

3.1009. Rfrmn= - Rfrum-
Secondly, it has a cyclic symmetry in its subscripts:
3.110. R",—,,.,,,+ anmr+ anrm = 0.

These results are easy to show from 3.106. The work may be
shortened by using Riemannian coordinates with origin at the
point in Vy under consideration. Then the Christoffel symbols
vanish, and

4 s d s
3.1110 Rfrmﬂ,— 5;‘{,”}—% rm}.

This formula holds only at the origin of the Riemannian co-
ordinates.

We may lower the superscript of the mixed curvature tensor
in the usual way, and get the covariant curvature tensor, or
Riemann tensor.

3-112- Rpmn = ap.Rfmn.
A little manipulation with Christoffel symbols leads to the
formulae

0 9
3.113. Resmn = E;;[sn, 7] — é;;[sm, 7]

+{ sﬁn}[m’i’] —{fn}lm, 21,

Roumn = %( % |, 0%Gem _ Oarm _ e )
dx*9x™  9xT9x® Jx*9x™  OxTox™
+ a?? ([rn, p] sm, gl —[rm, p] [sn, g])-
The covariant form of the curvature tensor has the symmetries
already given for the mixed form, but it has others. It is skew-
symmetric with respect to its first two subscripts, and sym-

3.114.
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metric with respect to its two pairs of subscripts. All the sym-
metry properties are listed as follows:

3.115. erm= _Rcmm anu= -anm ern= Rmnrﬂ
3.116. Rrwm"l‘ Rmm'l" erm = 0.

Exercise. Show that in a V, all the components of the co-
variant curvature tensor either vanish or are expressible in
terms of Riass.

How many independent components has the tensor Ryymn?
We cannot answer this question by simply counting the equa-
tions 3.115 and 3.116, because they overlap. We reason as
follows. By the first two of 3.115 a component vanishes unless
r # s and m # n. Denote by (rs) a combination r, s, with »
and s distinct and with no consideration of order. The number
of (rs) is

M = }N(N - 1),

N being the number of dimensions of the space. There is of
course the same number of combinations (mn). If the first two
of 3.115 were the only conditions on Rysmn, we would have
M? independent components. But the last of 3.115 cuts down
this number by the number of combinations of J/ things taken
2 at a time, viz. §M(M — 1). Thus if the three relations of
3.115 were the only identities, we would have for the number
of independent components

3.117. MA—3M(M—1) =3 M(M+1)=4N(N— 1)(N*~N+2).
Turning to 3.1186, it is easy to see that unless 7, s, m, n are all
distinct the identity is included in 3.115. F urther, we get only
one identity from a given combination. Thus 3.116 give a
number of new identities equal to the number of combinations
of N things taken 4 at a time, i.e.

1
3.118. 2—4N(N = 1)(N - 2)(V - 3).
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Subtracting this number from 3.117, we get this result: The
number of independent components of the covariant curvature
tensor in a space of N dimensions is

1
3.119. — N*}(N2—1).
12 )

The following table shows how rapidly the number of inde-
pendent components increases with N:

Number of dimensions of space 2 3 4 5
Number of independent compo-
nents of Rysmn 1 6 20 50 .

In addition to the relations 3.115, 3.116 satisfied by the
covariant curvature tensor, there are certain identities satisfied
by its covariant derivative. Consider the covariant derivative
of 3.114, calculated at the origin of Riemannian coordinates;
it is the same as the partial derivative, i.e.

3.120.,

R -1 0%arn %Gem %rm _ 0%an
remm 9%'9x9x™ = Ox'dx’9x®  Ox'dx°9x™  Ox'dx"Ix™
Permuting the last three subscripts cyclically, and adding, we

obtain

3.121. ann|t+ chntlm"- Rn‘m[ﬂ= 0.

This is a tensor equation, and so it is true in general, since it
is true for one particular coordinate system. The subscript r
may be raised in the usual way, giving

3.122. K amat+ R e R stmpn= 0.

This is known as the Bianchi identity. It may also be derived
from 3.106, using Riemannian coordinates.

Exercise. Using the fact that the absolute derivative of the
fundamental tensor vanishes, prove that 3.107 may be written
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*T, 8T, _
oudy  dvbu
where T is any covariant vector and 77 = a®T,.

3.123.

3.2. The Ricci tensor, the curvature invariant, and the
Einstein tensor. We may contract the mixed curvature tensor
3.106 and so obtain a covariant tensor of the second order

3.201. Rem= R*,mn,
or equivalently

3.202, Rim= a**R ,rmn.
It follows from the identities 3.115 that Ry, is a symmetric
tensor. It is called the Ricci tensor.

By 3.106 we have

3.203.

R_a n _6 n
™ oam\rnf  gen\rm

Now, by 2.541,

3.204.
assuming @ to be positive, and so

3.205.

& pl o, 2fn e
Rm=%6x,axmlna—%{rm}axplna—ax'{f m}+{’ ”}{Pm}.

If a is negative, 8.205 holds with a replaced by —a. This form
makes the symmetry of the Ricci tensor obvious.

Taking its symmetry into consideration, the number of
independent components of the Ricci tensor in a space of N
dimensions is $N(N + 1). Thus there are 3 components if
N = 2, 6 components if N = 3, and 10 components if N = 4.
In the case N = 2 (e.g. in the intrinsic geometry of a surface
in Euclidean 3-space) we have
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3.206. Rui= 0®Rs113, Riz= a2Re121, Raz= a" Rz
But, for N = 2,

a a a
3.207. =22 gu_ 22 g
a a a
and so
3.208 Ru_Ru_Re_ _ R

an Gz Qg a
Thus, in a 2-space, the components of the Ricci tensor are
proportional to the components of the metric tensor. This is
not true in general in spaces of higher dimensionality.
The curvature invariant R is defined as

3.200. R = ¢™Rmn= R
It follows from 3.208 that for N = 2 we have

3.210. R= — -2-R1212-
a

This result, like 3.208, is restricted to two-dimensional space.
This shows that familiarity with the properties of curved sur-
faces in Euclidean 3-space is not of much assistance in under-
standing the properties of curved spaces of higher dimension-
ality—there are too many simplifications in the case N = 2.

There is an identity of considerable importance in the
theory of relativity, which is obtained from the Bianchi identity
in the form 3.121. We multiply that equation by a™a*™; this
gives

3.211. a*™ R emt— @*™Rogym— @™ Roy= 0.
(Use has been made of the skew-symmetry of Rrsma with re-
spect to the last two subscripts.) This may be written

30212. R“— 2R’,“[ﬂ = Oi
or
3.213. (R”g - %5’:R)[n= 0.

The Einstein tensor G*; is defined by
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Thus 3.213 may be written

3.215, G%yn = 0;

this may be expressed in words by saying that the divergence of
the Einstein tensor vanishes.

3.3. Geodesic deviation. Imagine a two-dimensional
observer living in a two-dimensional space. He wants to explore
the properties of his space by measuring distances. From the
property of stationary length he is able to construct geodesics.
What can he find out by following one geodesic? Not very
much. We are so used to thinking of 2-spaces as surfaces im-
mersed in a Euclidean 3-space that we are inclined to think of
the geodesics of a 2-space as curved lines (e.g. the great circles
on a sphere). But when we consider a 2-space in itself there is
no master curve with which to compare a geodesic of the 2-
space; the idea of the curvature of a geodesic disappears—
indeed we regard the geodesic as the “straightest” curve we
can draw in the 2-space.

Thus, as our two-dimensional observer travels along a
geodesic, he has nothing interesting to report, except for one
possibility: the geodesic may meet itself, as a great circle on
a sphere meets itself. This is a property of the space “in the
large,” i.e. it does not belong to the domain of differential
geometry.

Much more interesting results are obtained if the observer
considers not one geodesic, but two. Suppose that these two
geodesics start from a common point and make a small angle
with one another. Consider two points, one on each geodesic,
equidistant from the common point; we shall call such points
“corresponding points,” How does the small distance between
corresponding points vary as we move along the geodesics?
This is the problem of geodesic deviation, and if we can solve it
we get a good insight into the nature of the space.

Think, for example, of the application of the method of
geodesic deviation to a plane and to a sphere. In a plane, the
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distance between corresponding points on the two geodesics
(straight lines) increases steadily, being in fact proportional
to the distance from the common point of the two geodesics.
In a sphere, the distance between corresponding points on the
two geodesics (great circles) increases at first, but after a while
it has a maximum value, and then decreases to zero. Thus the
study of geodesic deviation enables us to distinguish very
simply between a plane and a sphere.

Exercise. Would the study of geodesic deviation enable us to
distinguish between a plane and a right circular cylinder?

To introduce the idea of geodesic deviation as simply as
possible, we have talked about a 2-space. The same idea applies
in Vy, and we shall now develop basic formulae for this general
case.
Consider a singly infinite family of geodesics in Vy, forming
a V.. Let 4 be a parameter varying along each geodesic of the
family, and let v be a parameter constant along each geodesic
of the family, but varying as we pass from one geodesic to
another. The equations of V3 may be written

3.301. x"= x"(u, v);
the geodesics are the parametric lines of % in V.

Let us make the parameter % more precise in the following
way. Draw a curve 44’ in V; (Fig. 5) cutting the geodesics

F16. 5. Geodesic deviation.

orthogonally, and let % be arc-length measured along each
geodesic from A A4’. Then, since the curves v = const. are geo-
desics in Vy, we have all over V,, by 2.513,

3.302. % . o,
P
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where p"= 9x"/du; p" is the field of unit tangent vectors to the
geodesics, satisfying the equation

3.303. Cunp™Ppt= + 1,

Consider two adjacent geodesics of the family, C and ¢’,
with parameters v and v + dv. We shall say that points P on C
and P’ on C’ are corresponding points if they have equal values
of u, i.e. are equidistant from the cross-curve 44, Let " be
the infinitesimal vector PP, so that

r o Ox"
dy

In setting up the geodesic normal coordinate system in 2.6, we
had occasion to compare two adjacent geodesics. With a slight
change in notation to suit the present case, the equation 2.653
may be written

3.305. Amnp™ "= 0;
the equation holds at the point P. This equation tells us that

3.304. 7 dv.

the deviation #" is perpendicular to C. Equation 3.305 may
also. be written /

aIx™ ox®
3.306. Amp — — =0
e du dv

This equation holds all over V,, since P may be any point
on V,.
Let us now see how »" changes as we pass along C. We have

r r
3.307. o _ 3 ( 9% ) dv,
ou ou \ oy

since dv is a constant for the pair of geodesics, C and C’.
Now

& Ix"T  o%T r Ix™ox® & Ox"
308, —— =__ = ,
3 ou 8y  Oudv +{ mn) v du &y ou

and so 3.307 may be written

on™ _ 8p"
3.3090 —_— T — dvo
ou ov
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| We take the absolute derivative of this equation with respect
to %, and use 3.107. Thus

2T r
3310, T o8

ou® ou dv

_f o’ arm X"
= (8—;—6‘;'{‘ H:mnp P E)dv-
The first term on the right-hand side vanishes by 3.302. Re-
arranging the terms, and replacing % by s (arc length along
the geodesic) we obtain the equation of geodesic deviation

| 821)'
3.311. — 4+ R mnp*n™p® = 0.
os?
We recall that 4" is the infinitesimal normal displacement to
the neighbouring geodesic, and p" is the unit tangent vector to
the geodesic.

Equation 3.311 contains N ordinary differential equations
of the second order for the N quantities 4". These equations
determine 5" as functions of s if the initial values of 4" and
dn"/6s (or dn"/ds) are given.

Exercise. For rectangular Cartesians in Euclidean 3-space,
show that the general solution of 3.311is n"= A"s + B", where
A7 BT are constants. Verify this result by elementary geometry.

3.4. Riemannian curvature. The great charm of class-
ical geometry lies in the interplay of visual intuition and pre-
cise analytical arguments. In passing to a Riemannian N-
space, much of the intuition must be left behind. But it is
worth an effort to seek to build up in this general geometry at
least a shadow of that type of thought which has proved so
powerful in the differential geometry of ordinary surfaces. To
this end the curvature tensor itself is of little use. The concept
of Riemannian curvature is much more helpful. Since we wish
our definition to be applicable to a space of indefinite metric
form, we must first clear out of the way some preliminaries
connected with indicators.

-
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Let X" and ¥ be two vectors, given at a point. Write

3.401. Z'= AX"+ BY",

and let 4, B be invariants which take arbitrary values. We
say that the vector Z" so defined is coplanar with X* and Yy,
The totality of infinitesimal displacements in the directions
defined by these vectors Z" determine an elementary 2-space at
the point.

Suppose now that X and ¥* are orthogonal unit vectors
with indicators ¢(X) and ¢(¥) respectively. Let Z* and W be
two more unit vectors, orthogonal to one another and coplanar
with X" and ¥7; let their indicators be «(Z) and (W) respec-
tively. We shall prove* that

3.402. «(X)e(Y) = (Z)e(W).
We have

3.403. ZT= AXTp BY", Wr= A'X B'Yr,
and hence

(Z) = amaZ™Z%= A%(X)+ B2%(Y),
(W)= amW™W*= A"%(X)+ B%(Y).
We have also

304040

3.405. 0 = GmaZ™ W™= (X)AA'+ «(V)BB'.
Consequently

3.406.  e(Z2)e(W) = [e(X)A%+ e(Y)BY[e(X)A"*+€(Y)B"]
—[e(X)AA4'+ «(Y)BB']?
= ¢(X)e(Y)(AB’'— A’B):.
Since the indicators are each =+ 1, it follows that 3.402 is true,
and also

3.407. AB'— A’'B = 41,
We now define the Riemannian curvature associated with an
elementary 2-space Vs to be the invariant

*This may also be easily proved by Sylvester's theorem (see Ap-
pendix A).
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3.408. K = X)e(Y)Rrema XY XY™,
where X", Y* are orthogonal unit veclors in Vs and «(X), «(Y)
their indicators.

Let us show that K does not depend on the particular pair
of orthogonal unit vectors chosen in Vs. If 27, W are two other
orthogonal unit vectors, the corresponding Riemannian curv-
ature given by 3.408 is

3.409. K'= (Z)e(W)RyemnZ W Z"W™.
To compare this with 3.408, we use 3.402 and 3.403. Using the
symmetry equations 3.115, we easily obtain

3.410. RremnZ'W*Z™W*=(AB’'— A’BYRremaX" V' X"Y™,
and by virtue of 8.407 we have K'= K, as required.

It is sometimes advisable to express K in terms of any two
vectors in the elementary 2-space, rather than a pair of ortho-
gonal unit vectors. If £, 4" are any two vectors in the elemen-

tary 2-space, then

- Rromak 0" 1°
(@puBar — Gpolqu)EP 7" 7"
To prove this we write

3.412. '=AX"+ BY", "= A'X"+ B'Yr
where X, V" are orthogonal unit vectors in the elementary
2-space. The numerator in 3.411 becomes
(AB'— A’BY*R,;maX"Y*X™ Y™,
and the denominator becomes
«(X)e(Y)(AB'— A’B)%
The truth of 3.411 is then evident.

When the given manifold is of two dimensions (N = 2),
the elementary 2-space at a point is unique. Thus, with any
point of a Vj there is associated a unique Riemannian curva-
ture K. If this V, has a positive definite metric, we can set up
here a connection between the formalism of tensor calculus and
a familiar concept of differential geometry. Let us recall that a
surface (V) in Euclidean 3-space has two principal radii of

3.411. K

D
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curvature,* say R; and R,. The Gaussian curvature of this
Vz is

_ 1

" RiR,’

The great contribution of Gauss to differential geometry was
his proof that G can actually be expressed in terms of intrinsic
properties of the surface, without reference to the 3-space in

which it lies. He established, in fact, a result which may be
stated as follows:

3.414. G = lim E/S.
S>o0

Here S is the area of a small geodesic quadrilateral, and E the
excess of the sum of its angles over four right angles,

Now suppose that we take a vector in Vs and propagate
it parallelly (cf. equation 2.512) round the sides of a small
geodesic quadrilateral. On completion of the circuit, the vector
will have undergone a small change which, as will be seen in
3.5, is given by equation 3.519. From this formula it is not
hard to calculate the small angle through which the vector has
been turned: it turns out to be KS, where K is the Riemannian
curvature and S the area of the quadrilateral.} But under
parallel propagation along a geodesic, a vector makes a con-
stant angle with the geodesic; following the vector round the
small quadrilateral, it is easy to see that the angle through
which the vector has turned on completion of the circuit is E,
the excess of the angle-sum over four right angles. Hence

3.415. KS = E.
Comparison with 3.414 gives K = G: for a V3 with positive
definite metric, the Riemannian curvature is equal to the Gaussian
curvature, defined by 3.414.
The above geometrical interpretation of the Riemannian
curvature K holds only in a space of two dimensions with a
*Ct. C. E. Weatherburn, Differential Geometry, 1 (Cambridge University

Press, 1939), Sect. 29,
{See equation 3.533.

3.413. G




§3.4 RIEMANNIAN CURVATURE 97

positive definite metric. To get an interpretation in Vy, we
refer to the equation of geodesic deviation 3.311. Let u" be the
unit vector in the direction of the deviation 7, and let 5 be the
magnitude of »", so that

3.416. 1= ", Cmap™p® = €(n).
Let us substitute this in 3.311; we get

d*n ., odn W W Mt =
3.417. ¥ +2ds§+nasg+an.mpn 0,
where p" is the unit tangent vector to the geodesic from which
the deviation #" is measured. Now from the second of 3.416
we have
m m 2,,m

3.418. pmu™ = (), umi”— = 0, Suim 07 #msi = 0.

8s os os os?

Hence, if we multiply 3.417 across by ur, we get

6;"; + ne(p)e(w)K = 0,
S

where K is the Riemannian curvature for the 2-element de-
fined by #" and p". Let us suppose that the two neighbouring
geodesics involved in the geodesic deviation start from a com-
mon point O, and let s be measured from O. Then >0 as
s> 0, and so by 3.419 we have

d?y
3.419. _— r
) 7 +

3.420. tim &1 _ o,
s>0 ds?

Now return to 3.417 and let s tend to zero. On account of 3.420
and the fact that dn/ds does not tend to zero at O (if it did, the
geodesics would not separate at all), we deduce

3.421. lim %% _
>0 §s

Hence, by 3.418,

. 2
3.422. lim 4, &¥ _ o,
>0 3s?
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We return to 3.419, divide by 7 and let s tend to zero, This
gives

3.423. lim 1% _ _
>0 n ds?

where e is the indicator of either geodesic (the same for both

since they are adjacent) and K is the Riemannian curvature

corresponding to the 2-element defined by the two geodesics.
Suppose now that we expand 7 in a power series in s, the

distance from the common point of the two geodesics. If we

define 6 by

b

3.424. g = lim 27
§9>»0 ds

it is easy to see that the expansion takes the form

?

3.425. n=0(s—}eKs*+...).
This formula gives us an insight into the geometrical mean-
ing of the sign of K. For simplicity, take a space with positive

K <0

F16. 6. Behaviour of diverging geodesics, relative to the sign of €K,

definite metric, so that ¢ = 1. The quantity 6, defined by 3.424,
is the small angle between the two geodesics at their common
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point—this follows at once from the formula 2.309 which de-
fines angle. Thus the term s on the right of 3.425 represents
the deviation with which we are familiar in Euclidean space.
When we bring the next term into consideration, we see that
a positive Riemannian curvature implies a convergence of the
geodesics, and a megative Riemannian curvature a divergence
(convergence and divergence being interpreted relative to the
behaviour of straight lines in Euclidean space).

The behaviour of the geodesics relative to the sign of X
is shown in Fig. 6.

3.5. Parallel propagation. We shall now discuss some
questions connected with parallel propagation. By definition
(cf. equation 2.512) a vector with contravariant components
T is propagated parallelly along a curve x*= x"() provided
the following equation is satisfied:

3.501. " _ .

ou
If T,= a;mIT™, then 3.501 is equivalent to
3.502. 8T,

ou

Reference may be made to 2.511 and 2.515 for the definition
of the operator 8/éu.
Let us now investigate how the result of parallel propa-
(1),
),
(1

A C,
F1G. 7. Parallel propagation of vector from A to B along different paths,
Ci and G.
gation of a vector depends on the curve along which the pro-
pagation is carried out. Let 4, B (Fig. 7) be two pointsin Vy,
and C,, C: two curves joining them. On each of these curves
let us take a parameter % running between the same limits
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u1, us for both curves. We may then write as the equations of
the two curves

3.503. Ci: x"= f"(u), Ci: x'= g (W), w1 <u < u,

with 4 = 4, at 4 and » = u, at B. Let us take any vector
(T7)o at A and propagate it parallelly to B, using first the
curve C; and secondly the curve C, as path of propagation.
Let the resulting vectors at B be (T7); and (T7), respectively,
We seek to evaluate the difference

3.504. (AT")g=(T")s—(T"),.

Let us construct a continuous family of curves joining 4
and B, the curves C; and C, being members of the family.*
Let the parameter % vary between the same limits %1, %3 for
all these curves; and let v be a parameter which is fixed on
each curve, and varies continuously from v = v, 0n C; to v =9
on Cy. Then the equations of the family may be written;

3.505. x" = h'(u,v),

U1 S 4 < U,

7115 9K 0
We may also regard 3.505 as the equations of a Vs on which
u and v are coordinates. Note that

3.506. B (u, v1) = fr(u), h'(u,vs) = g'(u),
R (w1, v) = fi(u) = g"(uy),
h'(ug, ”) = fr (ui) = g’(ul)!

and hence

3.507. % _o
/]

for # = u; and for u = u,.

*This can always be done if Vy is simply connected (like an infinite
plane or the surface of a sphere). But if Vy is multiply connected (like the
surface of an infinite cylinder or a torus), it is possible to join 4 and B by
curves which cannot be continuously transformed into one another. Curves
which can be so transformed are called reconcilable. We shall understand
that the curves C;, C; are reconcilable,
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Starting with the vector (T7), at 4, let us propagate it
parallelly along all the curves v = constant. This gives us a
vector field T"(u, v) over Vs, single-valued except possibly at
B. This field satisfies

30508- —_—= 0’

and consequently

2
3.500. L
dvdu
Furthermore, we have
r
3.510. g— = 0 for u = u,,
oy

since 77 is independent of v at A, and 3.507 holds. We now
take a second vector Y,, choosing it arbitrarily at B, and pro-
pagating it parallelly back along the curves v = constant to 4.
This defines a vector field Y,(%, v), satisfying

3Y, _
ou

3.511. 0

over V.
Consider the invariant 7" Y,. Since Y, is single-valued at B,
we have

3512, (AT"(Y9)p = I (5‘1’) (T°Y,) )“_ s

3
=J (”T’ v.) dv
n\ &0 %= %1

This last integrand may be written

3.513. <5T' Y,) = (ff Y,) + r’ i(aT' Y,) du.
oy % =u1 oy o =y %, Ou\ oy

The first term on the right vanishes, by 3.510. The second term
reduces as follows, use being made of 3.511 and 3.107:
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3.514.

e a 6 “’6’
(T y Vgu = [T
Iul au( év ) “ J.“I dudy Yidu

hall F o 4 x™ dx®
= — R pn TP =
J-m(m -pmn du dv Yedu.

The first part of the integrand vanishes by 3.509. When we
substitute back through 3.513 in 3.512, we get

3.515.  (AT")5 (¥))s =” YR o T? 252 8 i,
ou dv

the double integral being taken over the 2-space V, between
the curves Ci and Ci. This formula gives us the effect of path on
the result of parallel propagation, since (Y,)p is arbitrary.

We shall use this result to investigate the effect of propa-
gating a vector parallelly around a closed circuit. Still using
the same notation and Fig. 7, we have at B the three vectors

(T7)1y (T7)s, Y.

We recall that the first two of these vectors are the results
of parallel propagation of (T), at 4 along C; and C; respec-
tively. Let us propagate these three vectorsbackalong C; to A4.
Now it is obvious from the form of the equations of parallel
propagation that if we propagate a vector parallelly along a
curve from 4 to B, and then propagate it parallelly back along
the same curve from B to A, we arrive back at 4 with precisely
the same vector as we started with. Let us denote by (7T")+
(ATr)4 the vector obtained by propagating the vector (77),
around the circuit formed of C; and C, reversed. Then, under
parallel propagation back along Cj, the three vectors mentioned
above come to 4 with the values

(T')O"l‘(AT')Ar (T')Ov (Yr)mz
the final notation being used to indicate that ¥, has been pro-
pagated along C; to A. Since parallel propagation does not
alter the invariant 7Y, it follows that

3.516. AT (Y pre= — (AT7)p(Yy)s.
For the right-hand side of this equation we have the expression
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3.515, and so, in a sense, 3.516 gives an evaluation of the effect
(AT), of parallel propagation around a closed circuit. How-
ever, we can improve the statement by noting that we can
choose (Y,) 4,2 arbitrarily, provided we then determine Y, at
B by parallel propagation along C;. With this in mind, let us
restate our result as follows:

Let A be any point in Vy and Via 2-space passing through A
(Fig. 8). Let C be a closed curve on Vs, passing through A, with

Fi1G. 8. Effect of parallel propagation round closed circuit Ci + C,, illust-
rating equation (3.517).
ath of propagation of I'* shown -- - -- -
Path of propagation of ¥r shown......

a certain sense indicated on it. Let B be any other point on C,
joined to A by a set of curves lying in Vs. Let (Y,)o be chosen
arbitrarily at A, propagated parallelly to B along C, but against
the assigned sense of C, and then propagated parallelly from B
back towards A along the given set of curves. Then, as a result of
parallel propagation around C in the assigned sense, any vector
T™ assigned at A receives an increment ATT satisfying

3.517. AT".(Y.)o= — J' J YR pmaT? 220 9% gy,
ou dv

the double integral being taken over the part of Vs bounded by C.
If the circuit C shrinks toward zero size, the principal part
of the preceding integral may be written

3.518. —(Y,).,” R prnT? 50 9%" e,
ou v
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Since (¥,), is arbitrary, we see that for an infinitesimal circuit
in the form of an infinitesimal parallelogram with adjacent
edges dyx", d(»x", the infinitesimal increment in 7" may be
written

3.519. AT = —pr,,,,,T”d(l)x"'d(g)x“.
We draw an important conclusion from 8.515. If R ,pn=0,

the integral vanishes. But (V) is arbitrary; therefore (AT") g =
0. In words, if the curvature tensor vanishes, then the result of
parallel propagation of a vector is independent of the path of pro-
pagation. Equivalently, if the curvature tensor vanishes, a
vector is unchanged by parallel propagation around a closed
circuit. It is easily seen that these statements apply to both
contravariant and covariant vectors.

We recall the definition of a flat space given in 3.1. (cf.
equation 3.101). In that section we saw that the condition
3.108—the vanishing of the curvature tensor—is necessary for
flatness. We shall now show that that condition is also suffi-
cient, i.e. if the curvature tensor vanishes, then there exists a
coordinate system such that the metric form is as in 3.101.
But first we need to prove the following theorem:

If Ripma= 0 1in Vy, a vector (T,)o assigned at a point A
defines a vector field T, throughout Vy by parallel propagation no

B
matter what paths of propagation are used. T henJ Tpdx™, where
A

B is any second point in Vy,is independent of the path of integ-
ration joining A to B.

The truth of the first sentence in this theorem has already
been established. To prove the second statement, we take two
curves C; and C; joining 4 and B, and fill in a family of curves
as in 3.505 and Fig. 7. For any one of these curves (v=constant)
we write

Uz 3 ox™
3.520. I(v) = J‘ T ndx® = r T,.a— du.
%1 % U

Then
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3.521. Q=J i(T "_"_)du
dy

n
« 09 ou
Uz n Uz n
LN +J 7,22 4,
w 0v du w0V Ou

Now 6T,/6v = 0, since T, is propagated parallelly along all
curves in Vy. Also, using 67T,/éu = 0, we have
3 ox™ J’ w8 9x®

%3
3.522. '[ Th———du = Tp——du
w00 0u 0 ou 0y

us n U2
=J i(T"E)du =[Tnai] =0,
w OU 0y 0y

since dx"/dv = 0 at 4 and at B. Therefore dI/dv = 0, and so
I(v) is independent of v. Consequently the integral has the
same value for C; and Cq; the theorem is proved.

In a Vy with R/ pma= 0 we shall now set up a system of
coordinates for which the fundamental form is as in 3.101
We take a point 4, and at 4 we take a set of NV orthogonal unit
vectors X (mys. At A these satisfy

3.523. a"’X(m)pX(,.)q = Emm

where Epnp= 0 for m # n, and En,= ¢, for m = n, ¢, being
the indicator of the vector X*,). We define throughout Vy
N vector fields by parallel propagation of X (myr. Then the
relations 3.523 are satisfied throughout V. We define at any
point P

P
3.524. Yr = J- X(,),.dx".
A

As we have seen above, the value of y, at P is independent of
the choice of the curve of integration AP. Therefore, for an
arbitrary infinitesimal displacement of P we have

3.525. dy, = X (r)ndx”o
and so
3.526. 99 = Xy

ox®
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Hence by 3.523,

3.527. a?? % % = E
dxP 9x1?

We may use y, as a system of coordinates in Vy. Let b,,, be

the corresponding fundamental tensor, and 3™ its conjugate

tensor. But the latter is a contravariant tensor, and so, by the

law of tensor transformation,

mne

3.528. prn = gra PImO¥n

0x? dx?
From this it easily follows that b, = Enn, and so the metric
form is

mne

3.529. P = El(dyl)z-i— Gz(dy2)2+. .o GN(dyN)z.
But this is of the form 3.101. Thus we have proved that the
conditions R pmn= 0 are sufficient for flatness.

It remains to clear up a point in connection with equation

3.415. We wish to show that, if N = 2 and the metric form is
positive definite, a vector is turned through an angle KS after
parallel propagation around a small rectangle of area S.
Let P be any point, and N, u" two perpendicular unit vectors
at P. Let us construct a small rectangle, two sides of which
emanate from P in the directions of A" and u". If the lengths
of these sides are dsyy, ds(s), respectively, we may put, in 3.519,
d(l)x"'= )\mdS(l), d(z)x”= p."dS(z). Then dS(1)dS(2)= S, the area
of the rectangle (or, to be precise, its principal part), and
3.519 may be written

3.530. AT"= — R pmnTPA™u®S.

Since the angle between two vectors is unaltered by parallel
propagation, we can compute the angle through which 77 is
turned by taking 7" = \'. Then, multiplication of 3.530 by ,,
gives, on account of 3.408,

30531. p:rAI‘f: KS.
Hence, since u, "= u,A"= 0, we have
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3.532. ur(T7+ ATT) = KS.

The magnitude of a vector is unchanged by parallel propa-
gation; hence the magnitude of 77+ AT is the same as that
of N, viz. unity. If 6 is the angle through which 7T is turned,
counted positive in the sense of passage from A" to uf, then
u(T7+ AT)= cos (3 # — 6) =sin 0, and so, replacing sin
by 8, since we are interested only in the principal part, we have
3.533. 6 = KS,

the required result, from which 3.415 follows.

SUMMARY III

Non-commutative property of covariant differentiation:
Tymn— Trnm= RirmnTs.
Non-commutative property of absolute differentiation:
2T 1T ox™ 9x™

=2 = RaT? %

dudy  dvdu A Y ™
Parallel propagation round a small circuit:
AT’ = —Rf .,,.,.T'd(l)x’"d(z)x”.

Mixed curvature tensor:

s o) {0
AT

Covariant curvature tensor:
Roum = %( Farn | Faem _ 3rm _ G’am)
8
dx®9x™  OxTIx®  O0x%0x™  OxTIx™

+ a?¥([rn, pllsm, g1 — [rm, pl[sn, q)).

Identities:
Rrwm = "Rsrmm Rramn= _Rranmy ern:‘ Rmnru

chmﬂ"l‘ erns+ ancm'—' 0.
Number of independent components in Vy: {5 N2(N2— 1),
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Conditions for flatness: R, mn= O.
Bianchi identity:

R smnt+ R entim+ R stmin= 0.

Ricci tensor:
er:" Rmr"_' R?mm

02 P 9
=1 Ing— 1 2
2aac'az:c"'na 2{’m}6x’lna
O fmn b n
_ax“{rm} + {r n }{mp}
Einstein tensor:

G* = R — %5?R, G?qn = 0.

Geodesic deviation:
5217'
g + Rimanp™n®p™ = 0.
Riemannian curvature:
K = e(X)e(V)R; ymn XTVXM Y™
R, amnE N °E™ 0"
(@pular— Bpolqu)EPniEvn® ’

Spherical excess: E=KS.

EXERCISES III

1. Taking polar coordinates on a sphere of radius a, cal-
culate the curvature tensor, the Ricci tensor, and the curvature
invariant.

2. Take as manifold V, the surface of an ordinary right
circular cone, and consider one of the circular sections. A
vector in V, is propagated parallelly round this circle. Show
that its direction is changed on completion of the circuit. Can
you reconcile this result with the fact that V, is flat?
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3. Consider the equations
(Rmn— 0a,,.,.)X“= 0,

where Ry, is the Ricci tensor in a Vy(IV > 2), @ma the metric
tensor, 9 an invariant, and X™® a vector. Show that, if these
equations are to be consistent, # must have one of a certain
set of N values, and that the vectors X" corresponding to
different values of 6 are perpendicular to one another. (The
directions of these vectors are called the Ricci principal direc-
tions.)

4. What becomes of the Ricci principal directions (see
above) if N = 2?

5. Suppose that two spaces Vy, V’y have metric tensors
Qmny @' mn such that a’mp,= kGma, where k is a constant. Write
down the relations between the curvature tensors, the Ricci
tensors, and the curvature invariants of the two spaces.

6. For an orthogonal coordinate system in-a V; we have
ds?= au(dxl)’ + am(dxz)’.

Show that

1 1 a( 1 aazg) é] ( 1 aa;u)]

R =—31__ | _~{ —_ "% ) |

o *Va [axl Ve axt + x2\/a ox?

7. Suppose that in a V; the metric is

ds?= (hidx')?-+ (hodx?)24 (hsdx®)?,

where ki, he, ks are functions of the three coordinates. Cal-
culate the curvature tensor in terms of the A’s and their deri-
vatives. Check your result by noting that the curvature tensor
will vanish if %, is a function of x! only, k. a function of x2 only,
and ks a function of % only.

8. In relativity we encounter the metric form

® = e*(dx")*+ €*[(dx?)?+ sinZc2(dx®)?] — " (dx%)?,

where a and 4 are functions of x! and x* only.
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Show that the complete set of non-zero components of the
Einstein tensor (see equation (3.214)) for the form given above
are as follows:

G = e (=1 —Fm) +%,
G} = 6—“(—i'—-%—'yu—%'n’-i—71+%a1+%a171)
+e7 (Fau+ fald — §am),

3
G} = G2,

L. 1
Gi = e (—f+3m)+e”,
Gy = —¢'G{ = — % as

The subscripts on a and v indicate partial derivatives with
respect to x! and x%.

9. If we change the metric tensor from @ms t0 @mn—+ bmn,
where b, are small, calculate the principal parts of the incre-
ments in the components of the curvature tensor.

10. If we use normal coordinates in a Riemannian Vy, the
metric form is as in equation 2.630. For this coordinate system,
express the curvature tensor, the Ricci tensor, and the curva-
ture invariant in terms of the corresponding quantities for the
(N — 1)-space x" = const. and certain additional terms. Check
these additional terms by noting that they must have tensor
character with respect to transformations of the coordinates
xl, %2, ..., N,

11. Prove that
¥ ﬂ|m»= Tm“pum
where T™® is not necessarily symmetric.

12. Prove that the quantities
2

gy L

mn, re MT 18
2a 6x° ox* [a(a™a am'a™)]

can be expressed in terms of the metric tensor and its first
derivatives.




CHAPTER 1V
SPECIAL TYPES OF SPACE

4.1. Space of constant curvature. A general Rieman-
nian space of N dimensions is bound to remain somewhat
elusive as far as geometrical intuition is concerned. It is only
when we specialize the type of space that simple and inter-
esting properties emerge. We shall devote this section to spaces
of constant curvature, passing on in the next section to the
more specialized concept of flat spaces.

We lead up to the idea of a space of constant curvature by
defining an 7sofropic point in a Riemannian space. It is a point
at which the Riemannian curvature is the same for all 2-
elements. This means that the quantity K in 3.411 is inde-
pendent of the choice of the vectors £, #". So, if we define the
tensor Tyemn by the equation

4,101. Tirsmn= Rrgmn— K (arm Qapn— Qrn acM)v
we have

4.102. T romnE™ ™% = 0.

This is an identity in £", 4", and so

4.103. Tromn-t Tongrn+ T ramet Tmnre= 0.

On examining 4.101, we see that the tensor Tysma satisfies
the same identical relations 3.115, 3.116 as R,,ms- Thus

4.104. T remn = — Tcrmn = —T, rsam = Tmm‘u

4.105. Tromn+ Trmns+ Trnsm= 0.

From the equations 4.103, 4.104, and 4.105 it is possible to
show that T',ms vanishes. This is done in the following steps.
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First, by 4.104, we may change 4.103 to

4.106. Tramn-l- Trnma= 0’
and, by 4.105, this may be changed to

40 1070 Tr.mn - Trmsn - Trsnm = O’
or
4.108. 2T rsomn— Trmen= 0.

Interchanging m and s, and adding the resulting equation,
we get

401090 Tramn+ Trm‘n= 0-

Adding this to 4.108, we get Tyyms= 0. Thus, it follows from
4.101 that at an isotropic point the Riemannian curvature satisfies

4.110. K(a'rm Cagn=— Qrn aam) = erm

Since a V, is isotropic (although in a rather trivial sense), the
equation 4.110 holds throughout any V.

Exercise. Deduce from 4.110 that the Gaussian curvature of
a Vs with positive-definite metric is given by

G = R1212
@11G23—0a12°

Now wa come to a remarkable theorem, due to Schur:
If a Riemannian space Vy(N > 2) is isotropic at each point in
a region, then the Riemannian curvature is constant throughout
that region. In brief, isotropy implies homogeneity.

The proof of this theorem is based on 4.110, valid at each
isotropic point, and Bianchi’s identity in the form 3.121. We
wish to deduce from 4.110 that K is a constant. Covariant
differentiation of 4.110 with respect to x* gives

4.111. K‘t(arm Qgn= Gyrn asm) = Rramn|h

since the covariant derivative of the metric tensor vanishes.
Permuting the subscripts m, =, ¢ cyclically, and adding, the
right-hand side disappears by 3.121 and we have
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4.112. Kt (@rm Gen = Grn Gom)

+ K|m(arn Qst — Gyt asn)

+ Kin(@rt Gam — Grm Gg)= 0.
Multiplication by a™ a** yields

But N > 2, and so K= 0; but this is simply dK/dx*= 0 and
so K is a constant. Schur’s theorem is proved.

A space for which K is constant (with respect to choice of
2-element at a point, and therefore by Schur’s theorem with
respect to choice of point) is called a space of constant curvature.
The basic relation for a space of constant curvature is, as in
4.110,

4.114. R"mﬂ = K(arm Qsn— CQrn as‘m):

where K is the constant curvature.

It will be observed that in the proof of Schur’s theorem we
found it necessary to assume N > 2, and were led to 4.114
with K a constant. As already seen, 4.114 holds everywhere
in any Vs, K being in general not a constant, but a function
of position.

Exercise. Prove that, in a space Vy of constant curvature K,
4.115. Rmn= _(N - I)Kamn, R == _N(N - I)K.

The study of geodesic deviation in a space of constant
curvature is interesting. We go back to the general equation
of geodesic deviation 3.311 and substitute, by 4.114,

4.116. R,’ amn = K(&,f,a am 6;‘1 OM)’
Noting that the unit tangent vector p* is perpendicular to the

deviation vector 7", so that @,.p*n™= 0, we see that the
equation of geodesic deviation reduces to

82y
4.117. — 4+ eK9" = 0,
os?

where ¢ is the indicator of the tangent to the geodesic.
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This is not as simple an equation as might appear at first
sight. We recall that 3%"/ss? is a complicated thing, involving
Christoffel symbols and their derivatives. So any hope of
treating 4.117 as a linear differential equation of the second
order with constant coefficients seems over-optimistic. How-
ever, a simple device enables us to do this very thing. We
introduce a unit vector field X, propagated parallelly along
the geodesic, so that §X,/6s = 0. If we multiply 4.117 by X,,
with of course the usual summation convention, the resulting
equation may be written

2
4.118. LX) + KXo = 0.
ds?
The general solution of this is

4.119a. X,9"= A sin sv/eK + B cos sV eK, if K > 0,
4.119b. X,y"= A4s+ B, if K =0,

4.119c. X,n"= A sinh sA/—eK + B cosh s/ —eK,ifeK <0,

where A and B are infinitesimal constants.

Consider now two adjacent geodesics drawn from a common
point, from which we shall measure s. For s = 0, we have
n"= 0, and so the above equations become

4.120a. Xq'= A sin sv/eK, if eK > 0,
4.120b. Xq"=A4s, if K =0,
4.120c. X.m"= A sinh s/ =K, if K < 0.

There is a remarkable difference between 4.120a and the other
two equations. For 4.120a we find X,n"= Owhen s = 7/4/k,
but for the other equations X" vanishes only for s = 0. Since
X may be chosen arbitrarily at any one point of the geodesic,
it follows that #n"= 0 in the case 4.120a when s = x/V/eK.
Thus, if eK > 0, two adjacent geodesics issuing from a point
tntersect again at a distance
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4.121. §=—x

from the initial point.

Exercise. By taking an orthogonal set of N unit vectors pro-
pagated parallelly along the geodesic, deduce from 4.120a that
the magnitude 4 of the vector 3" is given by

4,122. n = C|sin sv/e&K |,
where C is a constant.

Let us investigate the consequences of the result expressed
in 4.121, assuming that the metric form of the space of constant
curvature is positive-definite, so that ¢ = 1, and that the space
is of positive constant curvature (K > 0). Consider the family
of all geodesics drawn out from a point O. Any two adjacent
geodesics of this family intersect at a distance

4.123. s =—_.

VK

It follows that all the geodesics drawn out from O meet at a
common point (say 0’). From 4.122 it follows that the small
angle at which two adjacent geodesics separate at O is

4.124. X = (d_"_) = CVK,
ds/s=0

and the angle at which they meet at 0’ is
4.125. x,= —("—

ds )s- x/VK = C\/I_{'

Thus x = x’. Hence it follows that, since all geodesics issuing
from O fill all possible directions at O, all the geodesics coming
in at O’ fill all possible directions at O’. If we continue on any
one of these geodesics, we shall arrive back at O after travel-
ling a further distance =//K.

The situation described above is familiar in the case of a
sphere. All geodesics (great circles) drawn from a pole O meet

dn
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again at the opposite pole 0’. The geodesic distance 00’ is
/K = xR, if R is the radius of the sphere. But in a space
of positive constant curvature a remarkable thing may occur
of which we are not warned by our familiarity with the geo-
metry of the sphere. The point O' may be the point O itself. To
distinguish the two cases, the following terms are used:
Point O’ different from O: the space isantipodal (or spherical).
Point O’ coincident with O: the space is polar (or elliptic).
A mere knowledge of the line element or metric form does
not tell us whether a space is antipodal or polar. It is a pro-
perty “in the large.” Given the metric form, we can find by
direct calculation whether this form is positive-definite and
whether the space is of positive constant curvature. If it is,
then the space is either antipodal or polar, but we cannot tell
which without further information.

F16. 9a. Antipodal, or spherical, F16. 9b. Polar, or elliptic,
2-space. 2-space.

To make the concept of a polar space more real, let us
consider a model of such a space. The simplest model of an
antipodal space is a sphere constructed in ordinary Euclidean
space of three dimensions (Fig. 9a). Let us slice this sphere
along the equator, throwing away the northern hemisphere
and retaining the southern hemisphere. Let us agree that points
A, B (Fig. 9b) at the ends of an equatorial diameter shall be
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regarded as identical. Then a geodesic (great circle) coming up
from the south pole O to A jumps across to B and continues
from B to O. All the geodesics (great circles) drawn out from
O return to O, and do not intersect until they get back there.

We shall now use the idea of geodesic deviation to find an
expression for the fundamental form in a 3-space of positive
curvature K. We shall assume the metric form to be positive-
definite.

Since any such Riemannian space is infinitesimally Eucli-
dean, we can fix the initial direction of a geodesic OP issuing
from a point O by means of the usual polar angles relative to
an orthogonal triad at O (Fig. 10). Further, we can appeal to
Euclidean geometry to get an expression for the small angle x
between two adjacent geodesics OP, OQ with directions (9, ¢),

F1G. 10. Line element PQ, in a 3-space of constant curvature.

(0 + db, ¢ + do) respectively. The value is
4.126. x = (@4 sin®dgn)’.
This follows from the fact that this expression represents the
distance between adjacent points on a unit sphere in Euclidean
3-space.

Let us attach to P the coordinates 7, 8, ¢, where 7 is the
geodesic distance OP, and to the adjacent point Q the co-

ordinates r + dr, 8 + df, ¢ + d¢. Let PN be the perpen-
dicular dropped from P on the geodesic OQ. Then
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4.127, ON = OP =7, NQ = dr, NP = 7,

where 7 is the magnitude of the geodesic deviation. By 4.122
we have

4.128, 1 = Csin (#/R), R = 1//XK,

R being the “radius of curvature” of the space. As in 4.124,
the angle x is C/R. Comparison with 4.126 gives

4.120. C = R(d6*+ sin%de?)}.

From the infinitesimal right-angled triangle PNQ we have
PQ*= NQ*+ NP2

Hence, denoting by ds the infinitesimal distance PQ, we have

r

R
This is the expression in polar coordinates for the line-element or
metric form of a space of positive constant curvature 1 /R2. We
note thatif » = R and dr = 0, then ds = 0. This means that
points at the common distance # = xR from O have zero dis-
tance between them, i.e. they are coincident. This meeting
point of the geodesics drawn from O is the pole opposite to O
if the space is antipodal, or the point O itself if the space is
polar.

4.130. ds*= dr*+ R? sin2< )(d02+ sin20dg?).

Exercise. Examine the limit of the form 4.130 as R tends to
infinity, and interpret the result.

4.2. Flat space. In 3.1 we defined a flat space, and saw
that the vanishing of the curvature tensor is a necessary con-
dition for flatness. In 3.5 we saw that this condition was also
sufficient for flatness. This means that if the curvature tensor
vanishes, it is possible to choose coordinates y, so that the
metric form may be written, as in 3.529,

4,201, ® = e1(dy1)’+ ex(dy2)*+. . .+ ex(dyn)?
where the ¢’s are 41 or —1. The presence of these ¢'s is a
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nuisance notationally, so we resort to the subterfuge of intro-
ducing coordinates which are imaginary when the correspon-
ding €'s are negative. We write

4.202. z1= Vey, #21= Veys ..., sx= Vexyn,
and obtain

4.203. Pd = dz,dz,.

Any system of coordinates for which & takes this form will be
called homogeneous. In the Euclidean plane or 3-space rectang-
ular Cartesian coordinates are homogeneous coordinates; but
no imaginary coordinates occur in those cases because the
metric form is positive-definite. In the space-time manifold of
relativity one of the four homogeneous coordinates is imag-
inary, as shown in 4.230 below.

If we look back to the argument by which 3.529 was ob-
tained, we see that there was considerable arbitrariness in the
way the coordinates y, were defined. It is obvious, in fact, that
infinitely many systems of homogeneous coordinates exist in
a given flat space. We shall now show that a linear trans-
formation

4.204. Zm= AmnZn+ Am,

transforms homogeneous system 2, into another homogeneous
system z, provided the coefficients of the transformation satisfy
certain conditions.

Exercise. Show that a transformation of a homogeneous
coordinate system into another homogeneous system is nec-
essarily linear. (Use the transformation equation 2.507 for
Christoffel symbols, noting that all Christoffel symbols vanish
when the coordinates are homogeneous).

The coordinates 2, are homogeneous if and only if

4.205. ® = dz, dz,,.
But from 4.204 we have
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4.206. dz,dz,, = A mpAmdzydz,,

and & is given by 4.203 since 2, are homogeneous. We deduce
that z, are homogeneous if and only if

4.207. AmpAmdd2,42, = A2md2m,
identically in the ds’s. We can write

4.208. Azmdom = 8pqdz,dz,,

where 6, is the Kronecker delta defined in 1.207, with both
suffixes written as subscripts for reasons which will appear
later. Since the quadratic form on the left of 4.207 is to be
identical with the quadratic form on the right of 4.208, and
since the coefficients are symmetric in p and ¢, we obtain, as
necessary and sufficient conditions for the homogeneity of z,

4.209. AmpAmq = 8pq.

A linear transformation 4.204 whose coefficients satisfy 4.209
is said to be orthogonal. We may state this result: Given one
homogeneous coordinate system z., all other coordinate systems z,
obtained from z. by an orthogonal transformation are also homo-
geneous. Conversely, if a linear transformation carries one homeo-
geneous coordinate system into another homogeneous coordinate
system, the transformation is necessarily orthogonal.

Exercise. 1If 2,, 3, are two systems of rectangular Cartesian
coordinates in Euclidean 3-space, what is the geometrical
interpretation of the constants in 4.204 and of the orthogon-
ality conditions 4.209?

We shall now prove a useful theorem: If A n, satisfy 4.209,
they also satisfy

442100 AP"AW = 8pqo

To prove this, we multiply 4.204 by 4,,, and use 4.209. This
gives

4.211. AmpZy, = 2p + AmpAm,

which may be written
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40212. zp= Ampz,,”’l- A;’ A; = —AmpAm.
Hence
4.213. d2,d2p = AmpAnpdz,dey.

But since 4.209 is satisfied, by assumption, the transformation
is orthogonal and so

4.214. dzpds, = dz,d3) = Smnd2nd%,

identically, and hence, by comparison of 4.213 and 4.214, we
obtain AmpAnp = 8ma, which is 4.210 in different notation.
The result is established.

The Jacobian of the transformation 4.204 is the deter-
minant | Amy |- (Refer to 1.202 for the definition of the Jaco-
bian.) By the rule for the multiplication of determinants we
have

lAmnl2= |Amu| : ' Aral = IAmnAmaI = |6m| = 1.

Hence | Amn] is either +1 or —1. We shall call an orthogonal
transformation @osztwc* or negative according as the Jacobian
is +1 or —1. There is a notable difference between the two
types of transformation. A positive orthogonal transformation
may be regarded as the result of the application of an infinite
number of infinitesimal transformations, each positive ortho-
gonal, starting from the identical transformation 2Z), = Zm. At
each stage, the ]acobian of the resultant transformation is +1.
Such a procedure is impossible in the case of a negative ortho-
gonal transformation, because the Jacobian of the identical
transformation is +1, and it cannot change to —1 in a con-
tinuous process. The positive orthogonal transformation cor-
responds to a translation and rotation of axes in the Euclidean
plane or 3-space. A negative orthogonal transformation cor-
responds to a translation and rotation of axes, followed by the
reversal in direction of an odd number of axes, i.e., a reflection.
Let us now consider geodesics in a flat space. Using homo-
geneous coordinates, we see that the fundamental tensor is

*4Positive” transformations are also called proper.
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4.215. Gmn = Smn.

Since these values are constants, all the Christoffel symbols
vanish, and the differential equations 2.424 of a geodesic
reduce to

2.
4.216. Pz _ g
ds?
Integration gives
4.217. B g = ars + Bs.
ds

The constants a, are not independent of one another. We have
d2mdzm= eds?, where ¢ is the indicator of the geodesic, and
hence

4.218. AmGym = €.

In a general curved space, the determination of the geo-
desic distance between two points requires the integration of
the differential equations of the geodesic. In general thiscannot
be done explicitly, and so the concept of the finite distance
between two points plays a very minor role in the geometry
of curved spaces. In flat space, on the other hand, the differ-
ential equations of a geodesic are already integrated in 4.217.
An explicit expression for finite geodesic distance follows easily.
If we pass along a geodesic, giving to the arc length s a finite
increment As, we have, from the last of 4.217 and from 4.218,

4.219, Az, = a,As, Az,Az, = eAst.

Thus the finite geodesic distance As between two points in flat
space is equal to the square root of the absolute value of the sum
of the squares of the finite coordinate differences Az,.

The fact that the differential equations of a geodesic can
be integrated as in 4.217 makes the geometry of a flat space
very much simpler (and richer in interesting results) than the
geometry of a curved space. Many terms familiar in ordinary
Euclidean geometry in three dimensions can be given signi-
ficant and simple definitions in a flat space of N dimensions.
We shall now make some of these definitions.
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A straight line is defined as a curve with parametric equa-
tions of the form

4.220. zr = A + By,
where the A’s and B’s are constants and # is a parameter.
For such a curve we have

4.221. dz,= A, du, eds®= dz2,dz,= A, A.dud,
ds = Ved A du.
Unless 4,4,= 0, it follows that dz,/ds is constant; hence 4.216
is satisfied, and so the straight line is a geodesic. If A,A,= 0,
it follows from 2.445 and 2.446 that the straight line is a
geodesic null line. Thus the totality of straight lines includes
all geodesics and all geodesic null lines.
A plane is defined by the equation

4.222, Anza+ B = 0,

where A4, and B are constants. It is easy to see that this surface
(itself a space of N — 1 dimensions) has the familiar property
of the plane in Euclidean 3-space, viz., the straight line joining
any two points in a plane lies entirely in the plane.

A plane may also be called an (N — 1)-flat. This name
suggests the definition of an (VN — 2)-flat, an (N — 3)-flat, and
soon. An (N — 2)-flat is defined as the totality of points whose
coordinates satisfy the fwo linear equations

4.223. Anzn + .B = 0, ann + D = 0.
An (N — 3)-flat has three equations, and so on.

Exercise. Show that a one-flat is a straight line.

A sphere is defined by the equation

4,224, Zn%n = * R?,

R being a real constant, called the radsus of the sphere.If the
metric is positive definite, the 4 sign must be chosen in 4.224.
If the metric is indefinite either sign may be chosen, and there
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exist two families of spheres; these spheres have the unex-
pected property of extending to infinity.

In developing the geometry of a flat space of N dimensions,
one naturally tries to carry over the familiar theory of three-
dimensional Euclidean geometry as far as possible. A warning
is not out of place regarding some possible properties of a flat
space of IV dimensions:

(1) The metric form may not be positive definite. In such
cases we find points which are at zero distance from one
another, but which are not coincident.

(2) The number of dimensions may be greater than three.
In such cases a 2-flat, although in some ways analogous to the
Euclidean plane, does not divide the space into two parts.

(3) The space may be topologically different from Eucli-
dean space. For example, we can have a flat 2-space which has
the topology of a torus; such a 2-space has a finite area.

Inany serious discussion of flat spaces, the possibilities (1)
and (2) must be considered. The situation (3) is extremely
interesting, but we shall not discuss it further. In what follows
we shall suppose that the space has Euclidean topology. This
means that the coordinates y,, for which the fundamental form
is as in 4.201, take all values from — o to + «, and that to
each set of values of y, there corresponds one distinct point.

Let us briefly consider a flat space of three dimensions with
an indefinite metric form reducible to

4.225. & = dyf 4 dy2 — dy3.
The corresponding homogeneous coordinates are

4.226. 21= Y 32 = Y2, 23 = 'I:ys.

Turning to the general equations 2.445 and 2.446 for geodesic
null lines, we see at once that the geodesic null lines drawn
from the origin have the equations

4,227, 2= A, A,A, = 0.
Hence all points on this family of geodesic null lines satisfy an
equation which may be written in either of the following forms:
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4.228. Zn =10, 2+ 9 — =0
Comparing the former equation with 4.224, we recognize that
this surface is a sphere of zero radius. However, on account of
the indefinite character of the metric form, it does not consist
of a single point, like a sphere of zero radius in Euclidean space.
The second equation of 4.228 shows that this surface is a cone;
it is called a null cone. It extends to infinity, since the equation
is satisfied by y1= 0 and any equal values of y; and ys.

There is of course a null cone with vertex at any point; we
took the vertex at the origin for simplicity in obtaining 4.228.

It is possible to make a model of the null cone 4.228 in
Euclidean 3-space. Let y, be rectangular Cartesian coordinates
in Euclidean 3-space. The null cone then appears as in Fig. 11.

Y3

FUTJURE

PRESENT

Y, PAST

F1G. 11. The null cone in space-time.

It is a right circular cone, with a semi-vertical angle of 45°.
In using this model we must bear in mind that the Euclidean
line element dyi+ dy3+ dy3 of the Euclidean space in which
we make the model has no significance in the geometry for
which the metric form is 4.225.

In the special theory of relativity, space-time is a four-
dimensional space with an indefinite metric form, reducible to
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4.229, i + Ay} + dy — dy?

by suitable choice of coordinates. Of the four real coordinates
¥, the first three are rectangular Cartesian coordinates in the
physical space of the observer, and the fourth ¥4 is ct, where ¢
is the constant velocity of light and ¢ is the time as measured
by the observer. The homogeneous coordinates are

4.230. 21= Y1, 82= Y3, Z3= Y3, 2= 1y,= icl.

The imaginary character of 2, explains the introduction of the
concept of “imaginary time” into the theory of relativity. It
is merely a notational convenience, in order that we may use
homogeneous coordinates.

A point in the space-time manifold is called an event. The
history of a free particle is represented by a geodesic, and the
history of a light ray is represented by a geodesic null line.
Rays of light issuing in all spatial directions from an event
give us a null cone, which therefore represents a light wave,
Since space-time has four dimensions, a null cone cannot be
represented in a Euclidean 3-space, as in Fig. 11. However, if
we consider only events occurring in a single plane in the
observer’s space, the corresponding space-time manifold has
only three dimensions, and the representation is possible. It
is clear from Fig. 11 that this null cone divides space-time into
three portions, which are called the past, the present, and the
future, relative to the event represented by the vertex of the
null cone.

Exercise. Show that the null cone with vertex at the origin in
space-time has the equation

4.231. i+ ¥+ 95— =0
Prove that this null cone divides space-time into three regions
such that

a. Any two points (events) both lying in one region can
be joined by a continuous curve which does not cut the null
cone.
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b. All continuous curves joining any two given points
(events) which lie in different regions, cut the null cone.

Show further that the three regions may be further classified
into past, present, and future as follows: If 4 and B are any
two points in the past, then the straight segment AB lies
entirely in the past. If 4 and B are any two points in the
future, then the straight segment A4 B lies entirely in the future.
If A is any point in the present, there exists at least one point
B in the present such that the straight segment AB cuts the
null cone.

4.3. Cartesian tensors. Contravariant tensors were de-
fined in 1.3 and covariant and mixed tensors in 1.4. The defini-
tions were based on the formulae of transformation of the
components corresponding to a general transformation of the
coordinates x'* = f7(x, x2,. . ., "), asin 1.201. These definitions
did not involve the metrical geometry of the space in which
%'t and x" are coordinates. However, the geometry appeared
quickly in Chapter 11, and the tensor concept proved of great
service in the study of Riemannian space. Although special
coordinate systems were introduced in 2.6, they were used only
for special purposes.

But when we came to the study of flat spaces in 4.2, we
found it advantageous to use homogeneous coordinates because
in terms of them the metric form was particularly simple. As
long as we keep to homogeneous coordinates, the transforma-
tions involved are not general transformations, but orthogonal
transformations, as expressed in 4.204 and 4.209. For the dis-
cussion of flat spaces it is therefore wise to review our defini-
tions of tensors. To avoid confusion, we keep the word *‘tensor”’
(unqualified) to denote quantities transforming according to
the laws set down in Chapter 1 when the coordinates undergo
a general transformation, and define as Cartesian tensors quan-
tities which transform according to the same laws when the
coordinates undergo an orthogonal transformation, i.e. when
we pass from one set of homogeneous coordinates to another.
In accordance with the notation used in the present chapter,
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homogeneous coordinates will be denoted by z,, and the ortho-
gonal transformation, with the relations between the coeffi-
cients, will be written

4.301. T = Amnzn + Amy AmpAmg = 8pq

In using the transformation laws of Chapter 1 for Cartesian
tensors we are of course to substitute z for x in the partial
derivatives, and depress the superscripts on the x’s so that
they become subscripts on the z's,

We use the word “Cartesian” because homogeneous co-
ordinates in a flat space are analogous to rectangular Cartesian
coordinates in a Euclidean plane or 3-space, and indeed reduce
to rectangular Cartesians when the space reduces to the
Euclidean plane or 3-space.

In order to qualify as a fensor, a set of quantities has to
satisfy certain laws of transformation when the coordinates
undergo a general transformation. This is a much more strin-
gent condition than that which we impose on a set of quan-
tities in order that it may qualify as a Cartesian tensor; in the
latter case only orthogonal transformations are involved. Con-
sequently, every lensor is a Cartesian tensor, but the converse is
not true. (This is an abuse of language comparable to the fol-
lowing: “All horses are black horses, but the converse is not
true.” To avoid it, we might call the tensors of Chapter 1
“complete tensors.” A simpler plan is to regard the expression
“Cartesian tensor” as a single noun, not divisible into “Car-
tesian’’ and ‘“‘tensor.”)

Let us now investigate Cartesian tensors more closely. As
in 4.212, the transformation 4.301 may be written

4.302. Zn = Amns;, + A).
From 4.301 and 4.302 we obtain

0% A, = 0zn

azn az’m

This relation leads to a remarkable simplification in the theory
of Cartesian tensors. For Cartesian tensors there is no distinction

between contravariant and covariant components. To establish

4.303.
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this, consider the transformation formula 1.305 for a contra-
variant tensor of the second order. With the change from x
to z noted above, this reads

o' 28’
02m 02
By 4.303, this may be written

4.304. T're =Tm"

4.305. Tes — mn O%m 92n
07,02 4

But this is the formula 1.408 for the transformation of a
covariant tensor of the second order, viz.

’ 02m 02

4.306. Tre= Tmn 5;’3 @1’ .

Similar results hold for mixed tensors and tensors of other
orders. In every case the law of transformation remains unchanged
when a subscript of the tensor is raised or a superscript lowered.
Consequently there is no point in using both superscripts and
subscripts when dealing with Cartesian tensors. We shall use
subscripts exclusively, and the words “contravariant” and
“covariant” disappear. We have already anticipated this plan
in writing the Kronecker delta in the form &mn, and also in
writing the coordinates z, with a subscript. If we restrict the
orthogonal transformation 4.301 by deleting the constant 4.,
the coordinates z, are themselves the components of a Car-
tesian tensor of the first order, i.e. a vector. If we restore the
constant A, this is no longer true, but the finite differences
Az, of the coordinates of two points are the components of a
Cartesian tensor.

Since the metric form in a flat space is

4.307, ® = dzmdsm,
the metric tensor is
4.308. Omn= Omn.

The conjugate tensor, previously written a™", is seen without
difficulty to be precisely ams itself, i.e. the Kronecker delta.
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Thus the artifice of lowering and raising suffixes, introduced in
2.2, ceases to have any significance, because the artifice now
involves merely multiplication by the Kronecker delta, which
does not alter the tensor at all.

Since @, are constants, all Christoffel symbols vanish, and
the elaborate formulae for the differentiation of tensors (see
2.5) become extremely simple. The situation may be summed
up by saying that ordinary or partial derivatives of Cartesian
tensors are themselves Cartesian tensors. There is therefore no
point in retaining the notations

8T,

s Trslm;
ou

we shall write instead

daT,

du '’
using a subscript m, preceded by a comma, to denote partial
differentiation with respect to the coordinate z,,.

A word of warning may be given here. It may be desirable,
in dealing with a flat space, to use coordinates other than
homogeneous coordinates, just as we frequently use polar co-
ordinates in a plane. Once we abandon homogeneous coordin-
ates, we must revert to general tensors. In fact, the technique
of Cartesian tensors is available only when both the following
conditions are fulfilled:

Trc, my

(i) The space is flat.
(i) The coordinates are homogeneous.

In 4.2 we saw that there are two types of orthogonal trans-
formations—positive transformations with [Amn| = +1, and
negative transformations with |[Ama| = —1. We are about to
introduce tensors which are Cartesian tensors in a restricted
sense, i.e. they obey the tensor laws of transformation with
respect to a positive orthogonal transformation, but not with
respect to a negative one. We shall call such quantities oriented
Cartesian tensors.
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Let us start with the simplest case—a flat space of two
dimensions. Consider the permutation symbols* emn defined by

en= 0, en= 1,

en= —1, €= 0.

These quantities do not involve any coordinate system, any
more than the Kronecker delta does. Nevertheless, it is profit-
able to associate them with a coordinate system z,. The per-
mutation symbols associated with another coordinate system
¢, will be marked with a prime (¢/ms), but will be defined by
the same formulae 4.309. Let us test ema for tensor character by
seeing whether the equation

4.309.

0% 025
4.310. re= emnzr
is true.
By 4.302, the right-hand side of 4.310 may be written
emnA rmd en
or, by 4.309,

ArlA 82 Ar2A- 8l
Explicitly, the values of these quantities are as follows:
r=1,s5s=1; Aud— Adpdn= 0;
r=1,5s=2; Andsn— Apdn= lqul ;
r=25=1; Andn— Andu= — |45 ;
r=2,5=2; Ando— Andau= 0.
If the orthogonal transformation is positive (as we shall now
suppose), we have |44l = 1. Then the four components of
the right-hand side of 4.310 are equal respectively to the four
components of the left-hand side of that equation, as given by
4.309. Therefore, in a space of two dimensions emn are the com-
ponents of an oriented Cartesian tensor.
In a space of three dimensions permutation symbols emnr
are defined by the following conditions:

(@) emnr= 0 if two of the suffixes are equal.

*For a general discussion of the permutation symbols, compare 7.1.
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(ii) emnr= 1if the sequence of numbers mn is the sequence
123, or an even permutation of the sequence,

(iii) emnr= —1 if the sequence of numbers mns is an odd
permutation of the sequence 123.

Thisdefinition tells us that the non-zero components of e,,,,
are as follows:

4.311. €123= €231= €312= 1, €139= €a13= €39 = —1.

We shall now show that ey, are the components of an oriented
Cartesian tensor, that is,

02m 02, 02
4 — m n r .
4.312. € stu = Emnr (E -a-z—,t a—'z’—u
This can be proved directly as we proved 4.310 in two dimen-
sions but the work is tedious to write out. We therefore adopt

a more general method. Consider the equation

4.313. |44 = emnrdimAsnds;

it is true, because the right-hand side consists of products of
elements of the determinant IA,,q| » one element from each row,
with the proper sign prefixed according to the algebraic rule
for the expansion of a determinant. Now if we permute the
suffixes 1 and 2 in the right-hand side of 4.313, forming the
expression

4.314. fmm'A 2mA lnA 3ry

we have the expansion of the determinant formed from
|4, by interchanging the first and second rows. Therefore
the expression 4.314 is equal to — |4,,| . If we make further
permutations of the suffixes 123, the resulting expression will
be equal to |4, if the total number of permutations of the
suffixes 123 is even, and it will be equal to — |4 »a| if the total
number of permutations is odd. Therefore the expression

4.315. e,,,,,,.A omA mA ur

is equal to |4 5| if stu is an even permutation of 123, and equal
to — |4, if stu is an odd permutation of 123. Moreover, the
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expression 4.315 vanishes if two of the numbers stu are equal
to one another, for then we have the expansion of a deter-
minant with two identical rows. These statements establish
the identity of the expression 4.315 with the expression
€stu| 4 q|, and so we have

4.316. €otu|lApg| = emnrd smAinAur.

This is a purely algebraic result for any set of quantities
A pna. Let us suppose that these quantities are the coefficients
of a positive orthogonal transformation, so that |4,, |= 1.
Since the permutation symbols are defined by the same rules
for all coordinate systems, we may write €, = € 54, and so

4.317. élatu= emm-A cmAln ury

which is the same as 4.312. Therefore in a space of three dimen-
sions the permutation symbols emn, are the components of an
oriented Cartesian tensor.

The definition of the permutation symbols is immediately
extended to cover the case of a space of N dimensions. In Vy
the permutation symbol has N suffixes,

Gmlm' s eemyy
and vanishes unless they are all different from one another.
It is equal to 41 or —1 according as the number of permu-
tations required to transform myms...my into 12... N is
even or odd. There is no difficulty in extending the above proof
to establish that the permutation symbolsin Vy arethe components
of an oriented Cartesian tensor. It is obvious that the product
of two permutation symbols is a Cartesian tensor which is not
oriented. Any permutation symbol is, of course, skew-sym-
metric in any pair of suffixes. For example, in four dimensions

€mnrs = ™ €mras = Emanr.
Exercise. In a space of two dimensions prove the relation
4-318- €mp€mqg — 5PQ'

On account of the depression of all suffixes to the subscript
position for Cartesian tensors, contraction is carried out at the
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subscript level. Thus, if X, is a vector, X, X, is an invariant.
So also is X,,n, the divergence of the vector X a If Xpand v,
are two vectors, then X, Y, is an invariant, the scalar product
of the vectors. Further, if T, and Smn are two tensors, then
Une= T, mnOms

is a tensor. Similar remarks apply to oriented Cartesian tensors.
For example, ennrémar is an invariant; its value is 6.

Quantities familiar in ordinary vector theory can be recon-
structed with great ease in the present notation, which has
five advantages over the ordinary notation. These advantages
in most cases outweigh the slightly greater brevity of the
ordinary notation. The advantages may be listed as follows:

1. The notation is explicit, i.e., it shows each component
instead of using a single symbol to denote a vector.

2. The vector or invariant character of the expressions is
immediately obvious to the eye.

3. The notation covers tensors as well as vectors.

4. There is no restriction to a positive definite metric form
or line element.

5. Extensions to spaces of more than three dimensions are
easy.

The treatment of oriented Cartesian tensors involving
permutation symbols is particularly interesting. The vector

product Py, of two vectors X,, and ¥,, in three dimensions is
defined by

4.3190 Pm = emann Yro
The analogous formula for two dimensions is

4.320. P = eunXmVy;

this tells us immediately that X,¥;— X,V is an oriented
Cartesian invariant. Equation 4.320 suggests a formula in
three dimensions

4321, P = eupneXm¥YrZ,.
This is the mixed triple product of three vectors; the formula
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tells us at once that it is an oriented Cartesian invariant, since
it is formed by contraction from oriented Cartesian tensors.

It is interesting to see what happens to the idea of the
vector product when we pass to a space of four dimensions.
The following formulae suggest themselves:

4.322. P = emnrsXm¥VnZ,W,,
4.323. Py = emnrsXnYrZs
4.324. Pun = emnrs XY,
4.325. Ponr= emnrsXs.

Equation 4.322 gives us the four-dimensional analogue of the
mixed triple product; it tells us that the determinant formed
from four vectors is an oriented Cartesian invariant. Equa-
tions 4.323 and 4.324 give us two extensions to four dimensions
of the familiar vector product 4.319. In 4.323 a vector is formed
from three given vectors; in 4.324 a skew-symmetric tensor is
formed.

Exercise. Write out the six independent non-zero components
of P, as given by 4.324.

The operator curl is important in ordinary vector analysis.
In a space of three dimensions the curl of a vector field is de-
fined by the formula

4.326. Y = ennrXrine
In two dimensions the analogous formula is

4.327. Y = emmem,

yielding an invariant. In four dimensions the analogous oper-
ation applied to a vector field yields a skew-symmetric tensor
of the second order:

4.328. Yon = €mnrsXsore

The following relation is very useful for the treatment of
continued vector multiplication in three dimensions:




136 FLAT SPACE

4.329. €nrs€mpq = Orpdag — Orglsp.

This may be verified by writing out all components numer-
ically, but the following procedure is a little shorter: The left-
hand side is zero unless the numbers 7, s are distinct and ®, 9
is a permutation of (r, s), viz. p =7, g = s or p=s,q=r.
In the former case the left-hand side is 1, and in the latter case
— 1. Precisely the same remarks apply to the right-hand side,
and thus 4.329 is established.

Exercise. Translate the well-known vector relations
AXBXC)=B((A.C)— C(A-B),
VXWVXV)=V(V-:V)— vV,

into Cartesian tensor form, and prove them by use of 4.329.

4.4. A space of constant curvature regarded as a sphere
in a flat space. An ordinary sphere can be regarded in two
different ways. First, as a surface in Euclidean space of three
dimensions, its curvature being put in evidence by the fact
that a tangent line at any point deviates from the surface.
Secondly, as a 2-space, without consideration of any points
other than the points in the 2-space itself. In this case the
curvature is put in evidence by measurements made entirely
in the surface, these measurements showing that the angle-sum
of a geodesic triangle exceeds two right angles.

We think of an N-space of constant curvature primarily as
amanifold in itself. Wedonot think of going out of the manifold,
as we do when we step off an ordinary sphere into the sur-
rounding Euclidean space. However, we now inquire whether
it is not possible to consider a space of constant curvature as a
surface embedded in a flat space of one more dimension, just as
an ordinary sphere is embedded in Euclidean 3-space.

Let us take a flat space ¥V with metric form which reduces
to

4.401. ® = dzndz,,
for homogeneous coordinates z,. The equation
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4.4020 an,. = C
defines a sphere Vy_; in Vy, C being a constant. This equation
may be solved for z2y:

4.403. 2y= C — 3,3,
(Greek suffixes have the range of values 1,2,..., N — 1.) For
any infinitesimal displacement in Vy_; we have

4.404. zydzy = — 3,ds,,
and so the metric form of Vy for a displacement in Vy_;

iS

4.405, ® = dz,dz,+(day)?
= dz,dz,+ 2,ds,24ds,/8%N
= a,dsz,ds,,
where
P
4.4060 a r= 6 y L *
[ [ + C " pzp

The coordinates z, are N — 1 coordinates in the manifold
Vy—1; 8,, is the metric tensor of that manifold. It is not hard
to calculate the Christoffel symbols of Vy_; for this system
of coordinates. Direct computation from 2.421 with Greek
suffixes gives

Sy 4 EEE
C— 2z (C—s5s3,)
Consider the point P on the sphere with coordinates z,= 0,
zy = C!. Denoting values there with the subscript 0, we have

(auv 0= 0w

4.407. [pr, ol =

4.408. (v, plg= 0,

(—a— [ww, p]) =C"0u,8,0*
aZ, 0

Hence, by (8.113) with Greek suffixes, we have for the
Riemann tensor of Vy— at P
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4.409. Roow) o= C (3,68, — 8,45,,)

= CYa,.0,,~ Cpoy,) o
Comparison of this result with 4.110 shows that P is an iso-
tropic point of Vy_, with Riemannian curvature C! at that
point. This has been proved only for a special point P with

coordinates z,= 0, 2y = C!. However, by means of an ortho-
gonal transformation

4.410. Zm = AmnZn. AmpAmg = pq

the coordinates of any point on Vy_; may be given these
values. (The situation is essentially the same as if we were
dealing with an ordinary sphere in Euclidean 3-space. We
could rotate the axes of rectangular Cartesian coordinates so
that two of the coordinates of any assigned point P on the
sphere become zero.) It follows that every point of Vy_; is an
isotropic point with Riemannian curvature C-. Since the
radius R of the sphere is defined by R?= C, we have this result:
A sphere of radius Rin a flat Vy is itself a space of N—1
dimensions with constant Riemannian curvature 1/R2.

SUMMARY IV

Space of constant curvature K:
Resmn= K(armacn - arna'am);
"
— 4 eKnT = 0,
e + eKn
dst=dr?+R? sin? (%) (d6* + sin? 0 d¢), K=1/Re.

Flat space with homogeneous coordinates:
® = dz.dz,.
Orthogonal transformation:
2 = ApnZn + Am, AmpAmg = 8pq;
Zm = Anmz”; + A"'u ApmAqm = dpq.
(Positive transformation if |A,,.,.| =1.)
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Cartesian tensors:
Tn,': = Tmngz—?éz—? = TmnArmA- e
9z, 9z
Scalar product: XaYn. Divergence: Xa,n.
In three dimensions:
Emrs€mpg = 5rp8 g — 3'4168?'
Vector product: ennrXnYr. Curl: emnrXrin.

EXERCISES IV

1. Show that, in a 3-space of constant negative curvature
—1/R? and positive-definite metric form, the line element in
polar coordinates is

dst= dr*+ R?sinh? (%) (d624- sin®de?).

2. Show that the volume of an antipodal 3-space of positive
definite metric form and positive constant curvature 1/R? is
272R3, (Use the equation 4.130 to find the area of a sphere
r = constant in polar coordinates. Multiply by dr and inte-
grate for 0 £ 7 =R to get the volume.) What is the volume
if the space is polar?

3. By direct calculation of the tensor R,sms verify that
4.130 is the metric form of a space of constant curvature.

4. Show that if Vy has a positive-definite metric form and
constant positive curvature K, then coordinates y” exist so that
dst = BT
(1 + % Ky"y")?
(Starting with a coordinate system x", which is locally Carte-
sian at O, take at any point P the coordinates

F r_2_ 1
¥y P _\/Ktan (7 '\/K)s
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where p" are the components of the unit tangent vector
(dx"/ds) at O to the geodesic OP and r is the geodesic distance
OP.)

5. Show that in a flat Vyy the straight line joining any two
points of a P-flat (P < N) lies entirely in the P-flat.
6. Show that in four dimensions the transformation
51 = z1cosh ¢ + 4z, sinh ¢,
2 =23, 33 = %,
% = —ig; sinh ¢ + 2z, cosh ¢,
is orthogonal, ¢ being any constant. Putting 2;= %, gs= Y,
23= 2, 2,= 1ct, tanh ¢ = /¢, obtain the transformation con-
necting («', ¥/, #', #') and (x, y,2,¢). Thisis the Lorentz transfor-
mation of the special theory of relativity.

7. Prove that in a flat space a plane, defined by 4.222, is
itself a flat space of N — 1 dimensions.

8. Show that in a flat space of positive-definite metric form
a sphere of zero radius consists of a single point, but that if
the metric form is indefinite a sphere of zero radius extends to
infinity.

9. Prove that in two dimensions
€mn€pg = Ompdng — Omgbnp.

10. If, in a space of four dimensions, Fp, is a skew-sym-

A
metric Cartesian tensor, and Fp, is defined by

A
Fun= ‘% L Rp— rey
prove that the differential equations

an-r"l" Fnr.m+ Frmm= 0

may be written
A

F, mnn= 0.
11. Write out explicitly and simplify the expressions
F, mnl mny  Emnral oy rey
where Fp, is a skew-symmetric oriented Cartesian tensor.
What is the tensor character of these expressions?
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12. Show that in a flat space with positive-definite metric
form all spheres have positive constant curvature. Show that
if the metric form is indefinite then some spheres have positive
constant curvature and some have negative constant curva-
ture. Discuss the Riemannian curvature of the null cone.

13. Show that in any space of three dimensions the per-
mutation symbols transform according to

, 0x® dx* Jx* 7 = ax'?

e'mnr= €stu — ’ =\l
x'™ dx'™ Ix'T ax?
or
ox'™ dx'® dx'" _ | 9P|
ox® ox* oz~ |9x®
Using the result of Exercises II, 12, deduce that in a Rieman-
nian 3-space the quantities nms,r and n™*" defined by

Nmnr = emnr'\/av v = emnr/\/a! a = lam‘ ’
are components of covariant and contravariant oriented tensors
respectively.

’ -—
€mnr = €stu

14. Translate into Cartesian tensor form and thus verify
the following well known vector relations:

V-(¢V) = ¢v-V 4 V.V,

VX(@V) = ¢VXV — VXV¢,

v-(UXV)= V.(vX0) — 0(VXV),
VX(UXV)=V-VU — U-vwWW+ Uv-V—-Vv.T,

V (U- V)= U.9V 4+V.VvU +UX(VXV)+VX(VXT),
V- (VXV) =0,

VX(VXV) = VvV — V¥,

V.r = 3,

vXr = 0,

Vvt =V,

where r is the vector with components equal to the Cartesian
coordinates 21, 22, 2;.

15. Prove that
€amn€ars—t €ams€anr = €amr€ans.




CHAPTER V

APPLICATIONS TO CLASSICAL DYNAMICS

5.1. Physical components of tensors. Tensor calculus
came into prominence with the development of the general
theory of relativity by Einstein in 1916. It provides the only
suitable mathematical language for general discussions in that
theory. But actually the tensor calculus is older than that. It
was invented by the Italian mathematicians Ricci and Levi-
Civita, who published in 1900 a paper showing its applications
in geometry and classical mathematical physics. It can also
be used in the special theory of relativity, which is that simpler
form of the theory of relativity covering physical phenomena
which do not involve gravitation. Thus tensor calculus comes
near to being a universal language in mathematical physics.
Not only does it enable us to express general equations very
compactly, but it also guides us in the selection of physical
laws, by indicating automatically invariance with respect to
the transformation of coordinates.

The present chapter is devoted to the use of tensor calculus
in classical mechanics. The “space” of classical mechanics is
a Euclidean space of three dimensions. In choosing a system
of coordinates, as a general rule it is best to use rectangular
Cartesians. If we restrict ourselves to these, the only trans-
formations we have to consider are orthogonal transformations.
If we further restrict ourselves to axes with one orientation
(say right-handed axes), the Jacobian of the transformation
is 4+1. The tensors which present themselves are then oriented
Cartesian tensors, and the equations of mechanics are tensor
equations in that sense.



§5.1 PrYSICAL COMPONENTS 143

On the other hand, if we are dealing with problems in which
certain surfaces play an important part, it may be advisable
to abandon Cartesian coordinates in favour of other systems
in which the equations of the surfaces in question take simple
forms. Thus, if a sphere is involved, spherical polar coordinates
are indicated; if a cylinder is involved, cylindrical coordinates.
In order to take into consideration all possible systems of curvi-
linear coordinates, it is wise to forget that we are dealing with
a flat space and consider general transformations of coordinates
as in 1.2. With respect to such transformations the entities of
mechanics (velocity, momentum, and so on) behave like ten-
sors in the general sense, and the equations of mechanics are
tensor equations in the general sense. To help in distinguishing
rectangular Cartesians from curvilinear coordinates, we shall
write 2z, (with a subscript) for rectangular Cartesians, and x”
(with a superscript) for curvilinear coordinates., The Latin
suffixes have the range of values 1, 2, 3, since we are dealing
with a 3-space.

Consider any familiar vector, such as the velocity of a
particle. If we use rectangular Cartesians z,, we may denote
its components by Z,. We recall that as long as we restrict
ourselves to rectangular Cartesians, the contravariant com-
ponents of a vector are the same as the covariant components.
Thus we are entitled, if we like, to write Z'= Z,. The quan-
tities Z, are called the physical components of the vector along
the coordinate axes.

If we now introduce curvilinear coordinates x', we may
define a contravariant vector X" and a covariant vector X, by
the transformation formulae (cf. 1.302 and 1.402)

5.101. x=2z%%, x,= 2,%:.

02, 0xy
These quantities are called the contravariant and covariant com-
ponents of the vector in question for the coordinate system x".
We do not use the word “physical’’ in connection with these
components, because in general they have no direct physical
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meaning; indeed they may have physical dimensions different
from those of the physical components Z,.

So far we have considered the physical components of a
vector along the coordinate axes, and also its contravariant
and covariant components for a curvilinear coordinate system.
We shall now introduce a third set of components, namely, the
physical components in assigned directions, and, in particular,
the physical components along the parametric lines of ortho-
gonal curvilinear coordinates.

Let x* be a curvilinear coordinate system with metric tensor
@ma. Let X" be the vector whose components are under dis-
cussion, and let \" be an assigned unit vector. We define the
physical component of the vector X™ in the direction of \* to be
the invariant @m,X™\". By the usual rules for raising and
lowering suffixes, we have

5.102, AmaX™A\® = X"\, = X,A%,

Let us now introduce rectangular Cartesians 2, and see what
this definition means. Let Z, and {, be the components of X"
and A" respectively in this coordinate system. Then, since the
expressions in 5.102 are invariants, we have

5.103. X"y = Z%p = Zatn.
But Z,{, is the scalar product of the vectors Z, and ¢,. It is,
in fact, the projection of Z, on the direction of {,, and so is
the component of Z, in that direction, the word *“component”
being used in the sense commonly understood in discussing
the resolution of forces, velocities, and other vectors in mech-
anics. Thus the invariant @.,X™\" represents the physical
component of X' in the direction of A" in the usual sense of
orthogonal projection.

Now suppose that the curvilinear coordinates x" are ortho-
gonal coordinates, so that as in 2.658 the line element is

5.104. ds?= (hidx')2+ (hodx?)2+ (hsdx®).
Let us take the unit'vector A" in the direction of the parametric
line of x!, so that
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5.105. M= dxl/ds, N\t= 0, N= 0,
Since it is a unit vector, we have

5.106. 1 = amaN™\"= h2(N)3,
and so

5.107. N= 1/h,.

Lowering superscripts by means of the metric tensor of 5.104,
we have also

5.108. )\1= h1, )\z= 0, )\a= 0.

Hence, by 5.102, the physical component of the vector X
along the parametric line of x* is X/k, or £, X*. Collecting sim-
ilar results for the other parametric lines, we have the following
result: For orthogonal curvilinear coordinates with line element
5.104, the physical components of a vector X" are

5.119, Xi1/hy, Xo/hay, Xs/hs,
or equivalently
5.110. XY, hoX2, haX3.

Let us now consider the components of a tensor of the
second order. We start with rectangular Cartesians 2,, then
pass to general curvilinear coordinates x", and finally specialize
these to orthogonal coordinates. Usually in mechanics the
components Z,, for Cartesians 2, present themselves first. We
call them the physical components along the coordinate axes.
Then for curvilinear coordinates x™ we define contravariant and
covariant components by the transformation equations

Xmao gre0X" %", 9xMoxT
5.111. 02, 02, 92, 33,
_ 02, 02,
Xum— er axmgg'

We can define mixed components also, using the fact that for
a Cartesian tensor it is permissible to push a suffix up or down:

m m
s.112, xmy= 77,30 % _ g O O

——

© 8z, Ox™ ™ 9z, ax"
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Next, we introduce two unit vectors (which may coincide),
with contravariant components A\, y" in the curvilinear co-
ordinates, and define the physical component of the tensor along
these directions to be the invariant

5.113. XmnAN™u™,

Finally, taking x" to be orthogonal curvilinear coordinates, we
select the unit vector A" along a parametric line, and the unit
vector u’ along the same parametric line or along another.
We obtain from 5.113, by the same type of argument as we
use for a vector, nine physical components along the parametric
lines. These physical components are expressed in terms of
covariant components as follows:

Xu/H, X12/hrhs, X1s/hihs,
5.114. Xa1/hoh, Xoo/H, Xas/hohs,
Xs1/hsh,, Xas/hshs, Xss/h.

In terms of contravariant components they are as follows:

KX, hiha X2, hihs X3,
5.115. hah X2, r X%, hohs X%,
hsh X3, hshe X2, h3 X,

The procedure set out above is logical. It enables us to pass
from the physical components along coordinate axes to contra-
variant and covariant components in curvilinear coordinates,
and finally to physical components along parametric lines of
orthogonal coordinates. However, the procedure may be con-
siderably shortened by making proper use of the tensor idea.
To illustrate this, we shall now consider a simple fundamental
problem.

Problem: To obtain, for spherical polar coordinates (r,6, 9),
contravariant and covariant components of velocity, and also
the physical components along the parametric lines.

Taking 2, to be rectangular Cartesians, and putting x'= ¢,
x?= 0, x*= ¢, we have the transformation
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2= «x! sin x2 cos x?,
5.116. ze= x! sin x? sin %,

23= x! cos x2.
The physical components of velocity along the coordinate
axes are

5.117. Ve = ds./dt.

Let v" and v, be the contravariant and covariant components
of velocity. The formulae 5.101 tell us that
. ox" _ v 9%,

5.118. v V.‘—az—‘, U= P

To carry out these computations we need the 18 partial deri-
vatives 9z,/dx" and 9x"/dz,, to be calculated from 5.116. We
sidestep this complicated calculation in the following way.
We look at the formula 5.117, and ask ourselves: Is there any
simple contravariant or covariant vector which reduces to
dz,/dt when the coordinates are reduced to rectangular Car-
tesians? The answer is immediate: dx"/d¢ is such a contra-
variant vector. So we boldly write

5.119. " = dx"/di,
and justify this statement as follows. Equation 5.119 is a tensor
equation, and so it is true for all coordinate systems if it is true
for one. But it is true for rectangular Cartesians by 5.117, since
V, and 9" are different representations of the same vector, and
so also are dz,/dt and dx"/dt. Therefore 5.119 is true, in the
sense that it gives the values of v demanded by 5.118.

To get the covariant components v,, we introduce the metric
tensor @ma. The line element in spherical polars is

5.120. ds? = dri+ r%d6%1 r2sin? 0 d¢®
= (dx')?+ (x'dx?)?+ (x* sin x? dx®)?,

and so
5.121, 811 = 1, asa=(x1)? as=(x'sin x%)3,
Ama= 0 for m = n.
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Lowering the superscript in the usual way, we get

501220 vr'_- amvma
or explicitly, from 5.119,

5.123.  vi= dx'/dt, va=(x')dx?/dt, vs=(x' sin x?)%dx*/ds.
Once we have seen our way through this reasoning, we may
shorten the work by omitting the symbols 3, and %" and working
entirely with r, 8, . We reason as follows: The contravariant
components of velocity are the time-derivatives of the co-
ordinates as in 5.119, and so

5.124, o= dr/dt, v*= d9/dt, v*= d¢/dt.

(Note that only the first component has the dimensions of
velocity—length divided by time; the other two components
have the dimensions of angular velocity.) The line element is
as in 5.120, so that

5.125. an= 1, Ag2= 1’2, ags= 72 sin? 9,
Cma= 0 for m # n.

On lowering the superscripts in 5.124, we get the covariant
components

5.126. v1= dr/dt, vo= r’d0/dt, vs= r*sin? 0 d¢/dt.
Comparison of 5.104 and 5.120 gives

5.127. h1= 1, hg= 7, hs= r Sil’l 0.
Hence, by 5.110, the physical components of velocity along
the parametric lines of spherical polar coordinates are

5.128. v.= dr/dt, vy= rd6/dt, v,= r sin 0 d¢/dt.
These components are easily checked by considering the com-
ponents of a general infinitesimal displacement along the para-
metric lines. Note that v,, v, v, all have the dimensions of
velocity.

The preceding problem has been discussed at some length
to show how tensor ideas are actually used. Tensor theory
sets up a logical but clumsy procedure. Then, by a little judi-
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cious guessing, usually very easy, we short-circuit tedious com-
putations, and arrive quickly at the required answer. We appeal
to tensor theory to justify the guess and hence the answer.

5.2. Dynamics of a particle. Our purpose is to discuss
the dynamics of a particle using general curvilinear coordinates
%" in ordinary Euclidean space. The plan is to write down
tensorial expressions which reduce to known quantities when
the curvilinear coordinates reduce to rectangular Cartesians.

As we have already seen, the contravariant components of
velocity are

5.201. o = dx"/dt.

Acceleration is commonly defined as the time-derivative of
velocity. However, dv"/d¢ are not the components of a tensor,
and so cannot represent acceleration in curvilinear coordinates.
Instead, we write tentatively for the contravariant compo-
nents f* of acceleration

5.202. fr= dv"/ét,

where 8 indicates the absolute derivative as in 2.511. We verify
that this is correct, because the expression on the right is a
vector which reduces to dv"/d¢ when the coordinates are rect-
angular Cartesians.

Let us now carry out an important resolution of acceler-
ation into components along the tangent and first normal of
the trajectory of the particle, using curvilinear coordinates.
If ds is an element of arc of the trajectory, then the unit tan-
gent vector is

5.203. M= dx*/ds.

Let »* be the contravariant components of the unit first normal
and « the curvature of the trajectory (reciprocal of the radius
of curvature). Let us recall the first Frenet formula 2.705,

5.204. BN/os = w'.
Let ams be the metric tensor for the curvilinear coordinate
system x", and let v be the magnitude of the velocity, so that
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5.2050 vz = am" ”’nvu - v”vﬂ.
Then
2
5.206. o = g, P _ (ﬂ) ,
dt dt dt
and so, by 5.204,
r r
5.207. = i(ﬁ“i ‘ﬁ) =2 o)
ot & \ ds di ot
é ds dy
=— (O\N)— = v— \" 4 %",
3 (A7) 7 v s + ko

Thus the acceleration is resolved into a component v dv/ds along
the tangent and a component xv? along the first normal.

The Newtonian law of motion tells us that the product of
the mass and the acceleration is equal to the applied force.
Treating the mass as an invariant, we write tentatively

5.208. mfr = Fr

as the equation of motion of a particle, Fr being the contra-
variant component of force. This is correct, because it is a
tensor equation which reduces for Cartesian coordinates to
the law stated above in words.

The question now arises: How are we to express 5.208 in
a form suitable for integration, in order that the motion under
a given force may be determined? In 5.1 we saw how to cir-
cumvent tedious transformations in computing contravariant
and covariant components of velocity. The left-hand side of
5.208 presents no difficulty, since it can be computed from
5.202. In fact, the explicit form of 5.208 is

r 8 n
5.209. m (dzx + { r }-d—x- di) =
ae sn) di dt
in contravariant form. In covariant form, 5.208 reads
50210. Mfr = F ry

or, explicitly,
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d*x* dx*®dx®
o . 8 " T m W1 = F,.
5.211 m(a T + [sn, 7] = )

Referring to 2.431 and 2.438, we get, after a change in nota-
tion, an alternative (and very important) form of 5.210,
namely,

5.212. mfy = —— — — = F,,
fr dtoxT dx"
where
5.213. T = ymayaPit, %P= dx?/dt.

We note that T = }ms?, the kinetic energy of the particle.
The equation 5.212 is called the Lagrangian equation of motion.
It was obtained by Lagrange long before the invention of the
tensor calculus.

However, the question still remains whether F" or F, must
be computed from the physical components of force along the
coordinate axes of Cartesians by transformations of the type
5.101. Happily, a short-cut can be found here also. Consider
the differential expression

5.214. dW = Fgadx*,

where F, is the covariant force and dx" an arbitrary infini-
tesimal displacement. This expression is clearly an invariant.
If the curvilinear coordinates become rectangular Cartesians,
dW is the work done in the displacement corresponding to dx”.
But since the expression is invariant, its value is the same for
all coordinate systems. Hence the device is to calculate the
work done in an arbitrary infinitesimal displacement corres-
ponding to increments dx” in the curvilinear coordinates, and
read off the coefficients in the linear differential form repre-
senting the work. These coefficients are the covariant com-
ponents F,. The contravariant components may then be found
by raising the subscript by means of the conjugate tensor a™":
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5.215. F* = qg™F,.
If the particle has a potential energy V, a function of its posi-
tion (as it has in many physical problems), then the procedure
is simpler still. For, in that case,
— aV.

ox"
This is justified by the tensor character of this equation, which
states (if the coordinates are rectangular Cartesians) that the
force is the gradient of the potential energy, with sign re-
versed—the well-known relation by which in fact the potential
energy may be defined.

Let us now consider the dynamics of a particle which is
constrained to move on a smooth surface S. We choose in
space a system of curvilinear coordinates x* such that the
equation of S is x= C, a constant. Then x° (Greek suffixes
having the range 1, 2) form a system of curvilinear coordinates
on S. The motion of the particle must satisfy the general

5.216. F, =

equations of motion, for which we have the three equivalent
forms 5.209, 5.211, and 5.212, F* or F, being the total force
acting on the particle, i.e. the resultant of the applied force
and the reaction which keeps the particle on the surface. Let
us concentrate our attention on the formula 5.212. Since x*=C
throughout the whole motion, we are to put

5.217. = C, = 0, ¥* = 0,

the dots indicating differentiation with respect to the time.
It is easy to see that, for the first two components of 5.212, it
is a matter of indifference whether we make the substitutions
5.217 before or after carrying out the differential operations
required in 5.212. With the substitution 5.217, we get

5.218. T = }ma,px"x",
and the equation of motion is

5.219. 43T _ T
dtox* 9x®

Here F, is such that F, dx* is the work done in an infinitesimal

a*
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displacement on the surface. If the surface is smooth, the
reaction is normal to the surface, and does no work in such a
displacement. Consequently F, may be computed from the
work done by the applied force alone. The quantities F, are
called the covariant components of intrinsic force.

The surface S is itself a Riemannian space of two dimen-
sions, with metric form

5.220. ds? = adx"dx’.
The motion of the particle on .S defines the vectors
dx* o°
5.221. c = =2
== T %

where the -operation is performed with respect to the metric
tensor a,g. We call v the intrinsic velocity (contravariant com-
ponents) and f* the intrinsic acceleration (contravariant com-
ponents). If we want covariant components, we can get them
by lowering the superscripts in the usual way with a,4.

The Lagrangian form 5.219 of the equations of motion may
be transformed at once into either of the following forms:

5.222. mf*= F*, mf,= F,.

The following important conclusion may be drawn: Given
the metric form 5.220 for a smooth surface, and the vector F,
(or F*) of intrinsic force, the study of the motion of the par-
ticle on the surface may be carried out intrinsically, i.e., with-

out reference to the Euclidean 3-space in which the surface is
embedded.

Exercise. If u® are the contravariant components of a unit
vector in a surface .S, show that u°f, is the physical component
of acceleration in the direction tangent to S defined by u®.

Let us pursue further the dynamics of a particle moving
on a smooth surface S, treating the question from the intrinsic
standpoint. Considered as a curve in S, the trajectory has two
Frenet formulae (cf. 2.712):
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5.223,

Here the Greek suffixes have the range 1, 2; \* is the unit
tangent vector in S; »* is the unit first normal; and x is the
first curvature. These formulae must not be confused with the
Frenet formulae of the trajectory in space, of which there are
three. To avoid confusion, we have written x for the curvature
of the trajectory considered as a curve in S, to distinguish it
from x, the curvature of the trajectory in space which appeared
in 5.204. The curvature x is a measure of the deviation of the
curve from a tangent geodesic in S; it is usually called the
geodesic curvature.

If we carry through in S the transformation made in 5.207
for space, we get

5.224. f* = v‘ﬁ’x* + s,
ds

Thus the equations of motion 5.219 may be written

5.225, m(vg—v)\“ + Ew) - P
S
If, in particular, there is no applied force, we have F*= 0,
Multiplying 5.225 first by A, and secondly by »,, we obtain

dy -
5.226. v— = 0, kvt = 0.
ds

Assuming that the particle is not at rest, we have v 0, and
therefore ¥ = 0. Since this implies that the curve is a geodesic,
we deduce the following result: Under no applied force, a par-
ticle on a smooth surface moves along a geodesic with constant
speed.

As another special case, suppose that the vector F* in the
surface is perpendicular to the trajectory and of constant
magnitude C. Then we may write

5.227, F* = G,
Substituting in 5.225, we easily deduce
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dv
v —_—
ds
The first equation tells us that the speed is constant; the second
equation then tells us that « is a constant. This means that
the trajectory is a geodesic circle on the surface. (On a sphere,
for example, a geodesic circle is a circle in the ordinary sense,
but not in general a great circle. On a general surface, a
geodesic circle is not necessarily a closed curve, nor is it the
locus of points equidistant from a fixed point.)

Emphasis is again laid on the essential similarity between
the dynamics of a particle moving on a smooth surface and the
dynamics of a particle moving in space. It is true that there
is one dimension less for the surface, and it is a curved space,
not a flat one. However, these differences are not noticeable
in the tensor formulation of the equations of motion. This
formulation shows us how easily we might set up a dynamical
theory for a particle moving in a curved space of three or more
dimensions. However, the theory of relativity has introduced
a fundamental difference in our concept of time, which makes
¢ unsuitable as an independent variable in equations of motion.

In relativity we deal with a Riemannian 4-space (space-
time). The equations of motion of a particle are

5.228. 0, mxv? = C.

5.229. m—= X,
os

where m is an invariant (the proper mass of the particle), A"
is the unit tangent vector to the trajectory in space-time, ds
is an element of arc as defined by the metric of space-time,
and X' is a vector in space-time corresponding to force in
Newtonian mechanics; it is called the force 4-vector.

Exercise. Show that in relativity the force 4-vector X” lies
along the first normal of the trajectory in space-time. Express
the first curvature in terms of the proper mass m of the par-
ticle and the magnitude X of X",

Let us return to the dynamics of a particle in Euclidean
3-space. Let 2, be rectangular Cartesians, o, the components of
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velocity of a particle along the coordinate axes, and F, the
components of force along the coordinate axes. We define the
vector moment of the force about the origin to be the vector

5-230. Mr = ermnz"‘Fn-

(For the permutation symbol, see 4.311.) With this is associ-
ated the skew-symmetric tensor moment

5.231- Mf‘ = er.“Mn = sz. - stro

In the same way the vector of angular momentum h, and the
tensor of angular momentum h,, are defined by

5.232. h,= MeErmnZmUn,

5.233. hre= €renhn= m(z,9,—~ 2,9,),

where m is the mass of the particle. If we differentiate these
equations, remember that the acceleration is fr= dv./dt, and
use the equation of motion 5.208, we obtain the following
equivalent forms for the equation of angular momentum for a
particle:

02340 —_— = M
5 7 r

It is to be noted that now we are tied down to rectangular
Cartesians. The extension of 5.234 to curvilinear coordinates
involves complications into which we shall not go. This arises
from the fact that actually fwo points are invoived—the par-
ticle itself and the origin about which the moments are taken.
It is only relations involving a single point and its immediate
neighbourhood that can be translated easily into curvilinear
coordinates.

M,,.

dh, dh,,
or
dt

5.3. Dynamics of a rigid body. It is usual, in discussing
the dynamics of a rigid body, to use a good deal of physical
intuition derived from our experience with motions in space.
Such methods, especially those which employ vector notation,
are successful in leading us quickly and easily to the differ-
ential equations of motion. However, the use of spatial intui-
tion obscures the deeper mathematical structure of the argu-
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ment, and so fails to open up new trains of thought. The
situation is parallel to that in geometry. The study of Eucli-
dean geometry of three dimensions by methods based on our
spatial intuition does not lead on to new ideas; but once we
introduce the analytic method, the possibility of discussing
space of higher dimensionality is opened up.

Let us then study the dynamics of a rigid body in N-
dimensional flat space; we have only to put N = 3 in order to
recover the familiar theory. We shall use homogeneous co-
ordinates z,.

Rigidity of a body implies the constancy of the distances
between the particles which compose the body. Consider two
points P® and P®® with coordinates 2, and 2, respectively.
The square of the distance between them is

5.301. ( P(1) P(z))z= (z,,.(l) — z,,."’)(zm“’ - z,,.(z)).

If the body undergoes an infinitesimal displacement in time dt,
the coordinates of a point in the body change from 2z, to
2.+ dz,, where dz,= (ds,/dt)dt. In view of the rigidity of the
body, differentiation of 5.301 gives

5.302. (&n® — 22?D)([d2n® — d2.?) = 0.
Obviously, if this condition is satisfied for every pair of points,
the displacement is a possible one for a rigid body.

The simplest infinitesimal displacement of a rigid body is
a translation, which is described mathematically by writing

5.303. dz, = a.dt,
where a, are the same for all points of the body. When we
substitute

5.304. dz, 0 = a,dt, dz,? = a,dt

in 5.302, the equation is satisfied. This verifies that the infini-

tesimal translation satisfies the condition of rigidity.
Consider now an infinitesimal displacement which leaves

unmoved the particle of the body which is situated at the

origin (2,= 0). If this is a rigid body displacement, the dis-
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tance of any point from the origin remains unchanged, and so
it follows from 5.302 that

5.305. RdzP =0, zPdz?@= 0,
When these are used in 5.302, we get
5.306. 20dz® 4 2@dz0 = 0,

In a continuous motion of a rigid body, with the origin fixed,
the displacement dz, of a point with coordinates 2, is

5.307. dz,= v,(21, 23, . . . ; 1)di,

where v, is the velocity at time ¢ of the particle at z,. Then
5.306 may be written

5.308. 00@ 4 P90 = 0,
Noting that v} (the velocity atz?) is independent of the point
20, we obtain by differentiation

o vy

" 39zWaz®

Since 7 may be chosen arbitrarily in the body, without
changing the choice of z{, and the partial derivative is inde-
pendent of 29, it follows that the partial derivative vanishes,
Therefore v is a linear function of 2. But it vanishes at the
origin. Therefore it is a homogeneous linear function, and,
dropping the superscript (1), we may write

5.309.

50310- vf= - wrﬂgzmo
The coefficients w,» are independent of the coordinates, i.e.
they are functions of ¢ only. But as in 5.305, we have

5.311. 2,9,= 0,

and so

5.312. WrmZrZm= 0,

From this it follows that w,, is skew-symmetric:
5.313. Wy = =— W gre

From 5.310 and the vector character of v, and s, (for trans-
formations which do not change the origin), it follows that Wrs
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is a Cartesian tensor of the second order. It is called the angular
velocity tensor. It is clear that if v, is given by 5.310 with oy,
arbitrary but skew-symmetric, then the corresponding motion
satisfies the condition of rigidity. Let us sum up as follows:
If a rigid body rotates about the origin as fixed point, the velocity
of any point z, is given by equation 5.310, in which the coefficients

w,, are skew-symmelric functions of the time.

Exercise. Show that if a rigid body rotates about the point
2,= b, as fixed point, the velocity of a general point of the
body is given by

5-314- v,-= - wrm(zm— bm).

Let us now put N = 3 and introduce the angular velocity
vector

5.315. @r= ¥ €rmnOmn.

Obviously this is an oriented Cartesian tensor. It is easily
seen that the angular velocity tensor is expressed in terms of
the angular velocity vector by

5.316. Wrs= €rsnWne
Explicitly, the relations are

5.317. W= Wy, W= W31, WI= W12
In terms of the angular velocity vector, 5.310 becomes

5.318. Uy = €rmn®WmZn,

which is the vector product of the vectors w, and z,. If we put
2,= B, in 5.318, it is clear that v,= 0, no matter what value
9 may have. Thus, in addition to the origin, a line of points
in the body is instantaneously at rest, given by the equation

5.319. 2, = Oy,
This line is called the instantaneous axis.

So far we have considered only the kinematics of a rigid
body. As a basis for dynamics let us take D’Alembert’s prin-
ciple in the form
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503200 sz"dz” = EF”dZQo
Let us now return to N-space. The repetition of the suffix
implies summation over the range 1, 2, ..., N. The sign 2 indi-

cates a different summation, viz., a summation over all the
particles of the rigid body. In 5.320, m is the mass of a typical
particle, f, its acceleration, F, the external force acting on it,
and dz, an infinitesimal displacement (called a virtual displace-
ment) which is arbitrary except for the condition that the dis-
placements must not violate the conditions of rigidity of the
body. The internal reactions of the body do not appear, since
they do no work in such a system of displacements. The virtual
displacements are not necessarily those which actually occur
in the motion of the body in time dz.

First, take ds, to be the displacements corresponding to an
infinitesimal translation. This means that dz,= da,, where da,
are the same for all the particles, but otherwise arbitrary.
Then 5.320 may be written

5-321. (men-_ EFn)@” = 0,
and it follows that

5.322. Zmf, = ZF,.

These are the equations of motion Jor translation. They may
also be written

5.323. é—i [Zmv,] = ZF,,

or, in words, the rate of change of the total linear momentum is
equal to the total external force.

Next, let us take dsz, to correspond to an infinitesimal
rotation about the origin. This may be done by writing, as in
5.310,

5.324. dgp= — "Ianzzn
where 9 is an arbitrary infinitesimal invariant, and Q,,, an
arbitrary skew-symmetric tensor. Substitution in 5.320 gives
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5.325. QnpZ(Mfn2p) = Qnp=Frsy,
and hence, since Qu, is arbitrary,

5.326. Em(fasp— fo2n) = Z(Fnsp— Fp2a).
We now introduce the tensor moment of forces M,;, and the
tensor of angular momentum k,,, defined by (cf. 5.231, 5.233)

5-327. an= z(anp'_' zPF“), hn’= zm(z”vp_ ZP”n)-
Since v,= ds,/dt, fr= dv./dt, equation 5.326 may be written
d

5.3280 Ei h“p = Mﬂpo

Thus for a rigid body in N dimensions, turning about a fixed
point the rate of change of angular momentum is equal io the
moment of external forces about the origin.

To compute the angular momentum, we use 5.310, where
wem is the angular velocity tensor of the body. Then

50329. hnp = Zm(w,.qzqu— ‘l’pqzqz”)
= J nprgWrgs

where

5.3300 J“prq = Em(&,"z?zq— 6prz1|zq)o

This may be called the fourth-order moment of inertia tensor.
The equations of motion 5.328 now may be written

5.331. d%(f,.mwm) = Mnyp.

Let us see what becomes of this formula when N = 3. If
we use 5.316, define the moment vector, as in 5.231, by M,=
} €snpMnp, and multiply 5.331 by % €,ap, We get

d
5.332. d—t (Iyw) = M,
where
5.333. I gg== % J nprg€rqt€ anp.

On substituting from 5.330, this becomes
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5.334. I.‘= Emeptqep .nZan,
or, by 4.329,
5.335. Lot= 84Zmze8,— Zmz 2,

Explicitly, we have

Iy= EM(Z§ + 8:), Iag= Em(z§ + Z:), Tgs= EM(?.?-I-Z:),

5.336. Toy= Iya= — Zmzesy, Ig = Iiy= — Emz;zl,
Iis= Isy= — Zmz;z2,,
which will be recognized as the usual moments and products
of inertia, the latter with signs reversed. The symmetric tensor
I, is commonly called the moment of inertia tensor. It is inter-
esting to see how the three-dimensionality of space effects the
reduction from the fourth-order tensor J, nprq to the second-
order tensor I,;.
The equations 5.332 may also be written

5.337. dh./dt = M,,
where
5.338. h = % € amnhmn-

We note that the components Japre (and I,;) depend on
the coordinates of the particles of the body, and so are func-
tions of ¢. This makes the equations of motion difficult to use,
and we have recourse to moving axes, which we shall now
discuss.

5.4. Moving frames of reference. A moving rigid body
may be used as a frame of reference. Consider a rigid body (S')
turning about a fixed point O, and let 2 be rectangular Car-
tesian coordinates relative to axes which are fixed in S, but
moving in the space .S in which axes z, have been chosen.
Then any particle has two sets of coordinates, z, relative to
axes fixed in S and ¢ relative to axes fixed in S’. We choose
both coordinate systems to have a common orientation and
a common origin at O. Between the two sets of coordinates
there exist formulae of transformation, which (with the assoc-
iated identities) may be written
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4 ’
5.401. 2, = A rmZm, 2y = AmrZm
AmpAmg= 350 ApmAgm = dpq
The coefficients A nn are the cosines of the angles between the
two sets of axes; they are functions of the time &.

A moving particle has two velocities; a velocity relative to

S and a velocity relative to §’. The velocity relative to .S has

components v, = 2,on the z-axes,and the velocity relative to

S’ has components v, = 3, on the z’-axes. We may have occasion

to describe velocity relative to S’ by its components on the

g-axes, or velocity relative to S by its components on the z’-

axes, and there is possibility of confusion. This will be avoided

by the following notation:

2 =9,(S) = components on z-axes of velocity relative to S,
v,(S’) = components on z-axes of velocity relative to S,
v'(S) =components on z'-axes of velocity relative to .S,

2= v.(S")= components on z’-axes of velocity relative to 5.

In passing from v.(S) to v,(S), we are merely transforming

a vector from one set of axes to another. Since vectors trans-

form like coordinates, it follows from 5.401 that

5.402. v:'(S) = Armvzl(s) = Armzzn

9:(S") = Am¥p(S)= Amrim-
Indeed, we may, if we like, regard these equations as defining
2.(S) and v,(S") as functions of ¢, once Aums, %, and 2, are given
as functions of ¢. These last three functions are, of course, not
independent, since the relations 5.401 exist. We have in fact

5.403. é: = Amimt+ firmzfm Ze= Amrﬁ:n'l" Amrz,,m
If we multiply the first of these by 4,,, we get

5.404. 9,(S") = vp(S)+ Arp4 rmZm.
Similarly, from the second of 5.403,

5.405.  9,(S) = tp(S)+ AprAmzn
Equations 5.404 and 5.405 give the transformation of velocity
on passage from S to S’ (or vice-versa) as frame of reference.
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We shall now find out what the coefficients in the above trans-
formations mean in terms of angular velocity.

If we follow a particle fixed in &, its coordinates z, are
constant and ,(5") = 0. Hence, by 5.402, v(S")= 0, and so
by 5.404

504060 vp (S) = - A rp&4. rmzm.

Comparison with 5.310 shows that the angular velocity tensor
of § relative to S may be written

5.407. , @pm(S’y S)= ArpA rm:

the notation indicates that we are considering the angular
velocity of S’ relative to .S. This tensor may also be referred
to the z’-axes; by the formulae of tensor transformation, we
have

5.408. w(S', S) = A.,,Am_w,,,,,(S', S)

= anAt?tAm

= Ath sme
We may check the skew-symmetry of the right-hand sides of
5.407 and 5.408 by differentiating the identities in 5.401.

By virtue of the expressions given above for angular velo-

city, the formulae 5.404 and 5.405 for transformation of velo-
city on change of frame of reference may be written

5 409 vP(S’)= v?(S) + wi’”ﬂ(s'! S)z""

+409. 93(S) = 03(S)+ wrn(S") )z
Relative to &, the original space S may be regarded as a
rotating rigid body. Since we have several angular velocities

to consider, it will avoid confusion if we set down our notation
methodically.

Axes of Angular
Symbol reference velocity of relative to
wrs(S', ) 3 S S
wr (S, S) 4 S S
wre (S, S’) z S S’
wn(S, S) 4 S S’
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To find the angular velocity of S relative to .S’, we follow
a particle fixed in S. Then we have 2, constant and v,(S) = 0,
and consequently 9,(S) = 0. Then, by 5.405 and 5.408,

—, A prA mrz;;

= wpm(S, S)z,.
But it follows from 5.310 that for a particle fixed in S and
observed by §’

5.410. ,(S")

5.411. 15(8") = — wpm(S, Sz,
Comparing this with 5.410, and remembering that z,, are arbi-
trary, we see that

5.412. Cl’z')m(S,; S) = - “’;m(sr S,)'
Similarly
50413o wpm(S,, S) = - wpm(S, S’)o

In words, the angular velocity of S’ relative to S is the negative of
the angular velocity of S relative to S’. It is understood that both
are referred to the same axes, z or 2.

If N =3, we may introduce angular velocity vectors by
5.315; it follows from 5.413 that

5414. (5, S) = —w(S, ), W}(§,S)= —uw(S, ).

We started with a *‘fixed space” S, and introduced a moving
rigid body S’. But, as we have seen, we can regard S’ as‘‘ fixed,”
and think of the motion of S relative to it. The two angular
velocities are the same except for sign, and there appears to be
a complete equivalence in the sense that either frame may be
used to describe motions, and neither is to be preferred above
the other. It is true that this equivalence is complete as far as
kinematics is concerned. But the two frames are not equivalent
when it comes to dynamics. If we suppose that S is a New-
tonian frame, in the sense that the motion of a particle relative
to it is governed by Newton’s laws of motion, the same will
not be true of §/. We proceed to investigate this.
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Using S and §’ to denote the two frames of reference as
above, and assuming S to be Newtonian, the equation of
motion of a particle of mass 7 under the action of a force F, is

5.415. mf(S) = F,,
if components are taken on the z-axes. Here f, denotes acceler-
ation. If we take components on the z’-axes, the equation reads
5.416. mfy(S) = F].
Note that the symbol in parentheses is .S, not .5’, because it is
acceleration relative to the Newtonian frame of reference S

which must appear in the equation of motion.
We proceed to transform 5.416; by 5.402 and 5.409

5.417.  f.(S) = v.(S5)
d
= 7[4non(9)]

d
= 2 (A [0S+ 0n(S", 21}

= Aufn(S)+ Aume [on(S) + w0pn(S, Szl
F Amrsgm (S, )2yt Amrwg (S, S)pa(S).
We multiply by 4 ,, and obtain by 5.408

5.418. A ufe(S) = £1(S") + wps (S, N 2a(S") + w0y (S, S)z1]
+ @as(S’, S)zp+ wps (S, Sz, (S).

The left-hand side is the same as f{(S), i.e. components on

#’-axes of acceleration relative to S, and so the equation of

motion 5.416 may be written

5.419. mfl(S) = F/+ C!+ G,

where the last two symbols are defined by

C; = m[w},(S' S)+ wim(S, Swnm(S, S)] 24,

G = 2mw,(S', S)va(S").

Thus Newton’s law of motion (mass times acceleration equals

force) does not hold when the rotating body S’ is used as frame
of reference; it is violated by the presence of the two vectors

5.420.
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C! and G/ in 5.419. But, following a common practice, we may
regard S’ as Newtonian provided we add to the real force F;
fictitious forces C (called centrifugal force) and G. (called
Coriolis force).

Since 5.419 is a vector equation, we may take components
on the g-axes, and write

5.421. 'mfc(s’) = F,+ C,+ G,
where C, and G, are as in 5.420, but with the primes deleted

from «’, ', and 2’. The indicationsof frames of reference remain
unchanged.

Exercise. Deduce immediately from 5.420 that the Coriolis
force is perpendicular to the velocity.

Exercise. Show that if N = 3 and ! (S’, S) = 0, then the
centrifugal force may be written

5.422. C{= mw,(S', S)uy(S’, S)z; — mwa(S’, S)z,05(S’, S).
Deduce that C|} is coplanar with the vectors }(S’, S) and 2/
and perpendicular to the former.

Let us now consider the dynamics of a rigid body §’ turning
about a fixed point O under the action of external forces. We
have already obtained the equations of motion 5.331, but they
are not in useful form because the components J,,r, change
with time. We shall transform to .§’; this will overcome the
difficulty, since 2; are constants, and hence J,,,, are constants,
by 5.330. We note that in 5.331 wrq= wrq (S, S).

Let us multiply 5.331 by 4,,4s5; then we have

5.423. Aandip % [AendapTionw'so(S', S) ) = Mg
Remembering the relations in 5.401, and also 5.408, this gives
50424. ‘;b'q dit w:q(S,l S)

+ J. :drq(‘sacaduabv'l' 5bd‘scu3av)°’:q(slv Sw, (S, S) = M.
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These are the equations of motion of a rigid body in N -dimensions,
referred to moving axes. They are non-linear equations, with
constant coefficients.

Exercise. Taking N = 3, show that 5.424 may be reduced to
the usual Euler equations:

d
5.425. Iua—tw'l(S’, S) — (Tea— Lig) w2 (S', S) w (S, S) = M},
and two similar equations.

5.5. General dynamical systems. Let us consider a
dynamical system the configurations of which are determined
by N generalized coordinates x"(r = 1, 2, . .., N). Particular
examples are (a) a particle on a surface (N = 2), (b) a rigid
body which can turn about a fixed point, as in the preceding
section (N = 3), (c) a chain of six rods smoothly hinged to-
gether, with one end fixed and all moving on a smooth plane
(N = 6). Since the Cartesian coordinates of each particle are
functions of the generalized coordinates, the components of
velocity of each particle are linear homogeneous functions of
the quantities £, the coefficients being functions of x*. The
kinetic energy T of the system is the sum of the kinetic energies
of the particles which compose it; hence T is expressible in the
form

5.501. T = 1amnt™i® (Gnm= Gmn).
The coefficients are functions of the generalized coordinates.
The kinetic energy of a system has the same value at any
instant, no matter what generalized coordinates are used. Thus
T is an invariant under transformation of the generalized co-
ordinates, and since %" is an arbitrary contravariant vector,
the coefficients ams are the components of a covariant tensor
(cf. 1.607).
Let us now think of a configuration-space Vy, in which each
point corresponds to a configuration of the dynamical system,
the correspondence being one-to-one. Since the quantities x
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specify a configuration, they specify a point in Vy;in fact, they
form a coordinate system in Vy.

Two adjacent configurations or points determine an invar-
iant quadratic form

5.502. ds?= ampdx™dx™.

Thus the configuration-space Vy is Riemannian, with the
metric form 5.502. The kinetic energy of a particle is positive
if the particle is moving, and zero if it is at rest. Hence T is
positive if any particle of the dynamical system is moving, and
zero if the whole system is at rest. The system is at rest if, and
only if, all the quantities £7 vanish. It follows that the form
5.502 is positive definite. We note that this form may be written

5.503. ds* =2Tad.

To distinguish it from other possible metric forms in the con-
figuration-space, we call 5.502 the kinematical metric form or
line element squared, since it does not depend on the forces
acting on the system.

Exercise. Assign convenient generalized coordinates for the
three systems (a), (§), and (c) mentioned at the beginning of
this section, and calculate the kinematical metric form in each
case.

When the system consists of a single particle moving in
space or on a surface, the kinematical line element ds is simply
the geometrical line element of space or of the surface, multi-
plied by the square root of the mass of the particle. In these
simple cases, the configuration space is not essentially different
from the geometrical space in which the particle moves.

With appropriate terminology, the kinematics of a general
dynamical system may be made remarkably analogous to the
kinematics of a particle. We define the generalized contravariant
velocity vector by

r

E.

5.504. v=35" =
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The covariant components are

5.505. Uy = Gpe?°.

[t is not convenient to define acceleration as the ordinary time-
derivative of velocity, because that process does not yield a
vector. Instead, we use absolute differentiation as defined in
2.511. We define the generalized contravariant acceleration vector
by

5.506. E

. . = 6t .
The covariant components are
5.507. fr = Qe S

As the dynamical system moves, it passes through a se-
quence of configurations. Correspondingly, the point in con-
figuration-space describes a curve or trajectory, with equations
of the form

5.508. x" = g'(d).

We may also use the arc-length of the trajectory as parameter;
then the equations are of the form

5.509. xT = h'(s).
Let A" be the unit tangent vector to the trajectory, so that
5.510 N o= dx’
. . hand ds .
Then

P LI _deTds | ds
5.511. == dl A p7e

Let v be the magnitude of the velocity vector, so that
5.512. 22 = Apmat™", v 2 0.

Then, substituting from 5.511,

5.513 = QmaA™\" (d_s)’=(£i_§)’ v=és
e e dt at/’ at’

and 5.511 gives
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5.514. v = UN,

Hence we have the result, familiar in the kinematics of a par-
ticle, but now seen to be true for a general dynamical system:
The velocity vector lies along the tangent to the trajectory, and its
magnitude is equal to ds/dt.

Turning now to acceleration, we have from 5.506 and the
Frenet formula 2.705

v o dy 7 ONT
5.515. fr= T () =W e
-d—v kf vzalz -d_z-} Xr szvf
T dt + 8s +

where we have written « for the first curvature of the trajectory
and »" for the first normal. Since dv/dt =(dv/ds)(ds/dt), we
have the following alternative forms for the acceleration vector:

dy dy
5.516. fr= 32)\'-{- " = V7 P T

As in the kinematics of a particle, we may state for a general
system: The acceleration lies in the elementary two-space con-
taining the tangent and the first normal to the trajectory, and has
the following components:

dy dy

along the tangent: z 'L

along the first normal:  xv2.

Let us now consider the dynamics of the system under the
action of prescribed forces. The generalized covariant force vector
X, is defined by the equation

5.517. X, dx" = dW,

where dW is the work done by the forces in an arbitrary infini-
tesimal displacement dx". Since dW is invariant, and dx* con-
travariant, it is evident that X, is indeed covariant, as anti-
cipated in the definition. The contravariant components are
given by
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5.518. XT=a"X,.
If the system possesses a potential energy V, thendW = —dV,
and

oV

50519. X" = _5;’.0

It is interesting to note that the contravariant components of
velocity and the covariant components of force appear most
naturally in setting up the terminology for a general dynamical
system,

We shall now find the equations of motion of a general
dynamical system in terms of the generalized coordinates and
generalized forces. Suppose that the system consists of P par-
ticles. Denote the mass of the first particle by m;= m; = m;,
and its rectangular Cartesian coordinates by 2,, 25, 2;. For the
second particle, denote the mass by m = ms= m,, and the
rectangular Cartesian coordinates by 24, 25, %. And so on.
Denote by Z,, Zs, Z; the components of force acting on the
first particle, by Z,, Zs, Zs the components of force acting on
the second particle, and so on. Then, withholding the sum-
mation convention for Greek suffixes, the equations of motion
of all the particles are contained in the formula

5.520. M2, = Z,, a=1,2,... 3P.
Now z, are functions of the generalized coordinates x", and
so the kinetic energy of the system is

9z, 03,
“9x" ox*
Comparing this with 5.501, we have for the metric tensor

5.521. T=1% Z‘,maz = lzm L XT%e,

93, 03,
® %" ox®
The symbol ¥} means summation with respect to a fora = 1,2,

» 3P. Applying the definition 2.421, we find for the Chris-
toffel symbols of the first kind

5.522. Qrs = Zm
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5 0%, %
.523- ['svt] = ?ma axraxc axt.
We have
5.52 2&‘. s o _afﬁ : "L 62 8,
.524. 2 =6x‘v' g, = ax‘ +8x'6x‘v vt
and hence by 5.523
5.525. Z ~%. = ar9® + [st,r] 0%

m“ ax"

SAREARS

= a,”f' = f'.
If we multiply the equations of motion 5.520 by 8z°/dx" and
sum with respect to a, we get

5.52 e = e
-526. 2 gur®e = Zgprte

From 5.525 the left-hand side is equal to the acceleration f,.
As for the right-hand side, the work done in an infinitesimal
displacement corresponding to increments dx" in the gener-
alized coordinates is

5.527. AW = X¥Zdz, = }] Z, 6_x" dx".

Comparing this with 5.517 and remembering that dx" are
arbitrary, we get

50528- 2 Xr.

¢ 6x'
Hence the equations of motion of a general dynamical system are

5.529. fr=X,or fr=Xr;
in words, acceleration equals force.

It follows from 2.431 and 2.438 that the acceleration may
also be written in the form
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g 500 a(sTy _or
R Fr=ai\awr) "ax’
consequently the equations of motion may be written

d ( aT) oT
5.531. 7\ oz P X,
These are Lagrange's equations of motion for a general dynamical
system. If the system is conservative, so that X,= — aV/ox",
than 5.531 may be written in the form
5.532 i(§£>—-‘E 00 L=T-1YV.

o8 dt\oxr) axr ' T 7 T
Exercise. Establish the general results
dy

5.533. v = X\, = X',

Deduce that, if no forces act on a system, the trajectory is a
geodesic in configuration-space and the magnitude of the
velocity is constant.

Lines of force in configuration-space are defined as curves
which have at each point the direction of the generalized force
vector X*. Their differential equations are

5.534. dx" = 6X",

where 0 is an indeterminate infinitesimal. We assign a positive
sense to the line of force by making 6 positive. If the system
possesses a potential energy V, it is easy to see that the lines
of force are the orthogonal trajectories of the equipotential
surfaces V = constant; the positive sense on the line of force
is the sense for which V decreases.

It is easy to throw 5.517 into the form

5.535. dW = X ds cos ¢,

where X is the magnitude of the generalized force, ds the
magnitude of the displacement, and ¢ the angle between the
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displacement and the positive sense of the line of force. It is
then evident that, if we consider all infinitesimal displacements
of constant magnitude ds, the work dW is a maximum if the
displacement is taken in the direction of the positive sense of
the line of force, and a minimum if the displacement is taken
in the opposite sense.

In dynamical systems of physical interest it often happens
that the lines of force are geodesics in configuration-space.
When this is the case, the system, if started properly, will
travel along a line of force. We shall now prove that f the
system is started with velocity tangent to a geodesic line of force,
the trajectory will lie along that line of force.

To prove this, let us look again at the equation of motion
5.529. Usually we think of the force X, as prescribed, and
regard the problem as that of determining the trajectory by
solving a set of differential equations. We recall that f, is an
abbreviation for a function of the coordinates and their first
and second derivatives with respect to the time. But we can
look at the equation the other way round. We can think of the
motion as prescribed, and the equation as one which determines
the force under which this motion takes place. If motion and
force are both prescribed, and the equation is not satisfied, it
will be possible to satisfy it by introducing an extra force Y,
given by

5.536. Y,= fr— X,,
for then we shall have
5.537. fr = Xr+ Yr,

which is of the form 5.529 with X, replaced by X,+ ¥,.
Consider now motion along a geodesic line of force. The
extra force necessary to maintain the motion is

dv
5.538. Y= fr— X,= v A+ 0¥y, — X,

So far the magnitude of the velocity has not been assigned;
let it be given by
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5.530. = o + 2 f "X ds,
where X is the magnitude of the force. Then
dy
5.540. v = X.
ds

Since the trajectory is a line of force, we have X,= X)\,, and
since it is a geodesic, x = 0. From these facts and 5.540, we
see that the right-hand side of 5.538 is zero. This means that
no extra force is needed to make the system move along the
geodesic line of force with a velocity of magnitude given by
5.539. The theorem is proved.

Exercise. For a spherical pendulum show that the lines of
force are geodesics on the sphere on which the particle is con-
strained to move. What does the theorem stated above tell us
in this case?

Exercise. A system starts from rest at a configuration O.
Prove that the trajectory at O is tangent to the line of force
through O, and that the first curvature of the trajectory is one-
third of the first curvature of the line of force.

So far, in dealing with configuration-space, we have used
only the kinematical metric 5.502. There is another metric of
importance, but it exists only for a system possessing a poten-
tial energy. For such a system we have

T = }amuo™",
. oV .
T = amnd™f* = Q"™ X" = X pt™ = — 5?'”"‘ =-V
and so
d
505410 a (T + V) = 0’
or

thus the sum of kinetic and potential energies is a constant (E).
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The metric which we are about to introduce is based on
the concept of action, which is defined by the formula

5.543. A= J' T dt,

the integral being taken along any trajectory in configuration-
space, not necessarily one which satisfies the equation of
motion. However, it is understood that the motion satisfies
5.542, E being an assigned constant of total energy. Then,
with ds as in 5.502, we have

5.544, T =30 = -;(ds) j_T

and so the action is

T ds 1I 1J‘ —_—
5545, 4 =| —=-—"=|VTds =—=|VE = Vds.
vaT V2 S =V2 s

We define the action line element do by
5.546. de = VE — Vds,

or, equivalently, the action metric form by
5.547. do®= bmadx™dx®= (E — V) amndx™dx™.

The basic theorem which makes the action metric of interest
is the following: A dynamical system possessing potential energy
V and moving with total energy E describes in configuration-
space a geodesic with respect to the action meiric. This is com-
monly called the Principle of Least Action, or, more correctly,
the Principle of Stationary Action.

In proving this theorem, we must avoid confusion between
the two metric tensors, dmn and bm.; we shall distinguish
Christoffel symbols by suffixes @ and b. We note the following
relations, which are easily established:

= (E — V)amn, b™ = E

a

ma
-V
r r 1 24 av
5.548. } ={ } —_ 5
{mn a mn b+2(E — V) axn+ B axm

rndY
= QGmnl 3t )
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In order to prove the stated theorem, we start from the
equation of motion 5.529, which may be written
d*xr r dx™ dx™ av
an {mn }aﬂ’éf = T
Substituting from 5.548, this becomes

d’x'+{ r } dx™ dx® 1 9V dx* dx~

5.549.

5350 Gp T\mn fo @ @ TE—Vor @t d
vV Amn dx™ dx™
= — g ]——o— — — .
dax?® 2(E—-V) dt dt
Since

Qma  dx™dx™ _ 2T
2(E —-V)dt d¢ 2T

the expression on the right-hand side of 5.550 vanishes, and
the equation of motion reduces to

dx" { r }dx"‘ de®  dxT
5.551. P mn 5—57:4).7['
where
1 9V dx* 1 4dv
5852. ¢ = —F vV a T TE-va

Equation 5.551 is the general equation of a geodesic (for metric
tensor bm,) in terms of an arbitrary parameter (cf. 2.427).
This proves the theorem.

From the general theory of Chapter 11 we know that if the
action arc-length ¢ is introduced as independent variable, the
equation of motion, i.e., of the geodesic, simplifies to

AR

From the manner in which we have developed the geometry
of a Riemannian space from its metric form, it might be thought
that the metric determined all the properties of the space. But
we have already seen in 4.1 that there exist two distinct spaces
of constant positive curvature with the same metric. In general
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we may say that the properties of a space ‘‘in the small”’ are
determined by the metric, but that the properties “in the
large’’ are not completely so determined. A simple illustration
is given by a plane and a cylinder immersed in Euclidean 3-
space. They are both flat manifolds, with the same metric
forms for suitable choice of coordinates. But they have not
the same properties in the large. On the cylinder (but not on
the plane) there exist closed circuits which cannot be con-
tracted continuously to a point. It is not possible to put the
points of the cylinder into continuous one-to-one correspon-
dence with the points of the plane; otherwise stated, supposing
the surface of the cylinder to be a thin elastic sheet, it is not
possible to stretch it to cover the plane without tearing it.
These are intrinsic properties of the manifolds.

When the points of two spaces can be put into continuous
one-to-one correspondence with one another, they are said to
be homeomorphic. For example, the surfaces of a sphere and an
ellipsoid are homeomorphic; the surfaces of a sphereand a torus
are not homeomorphic. If this correspondence can be made
without change of distance between adjacent points, the spaces
are said to be completely applicable. Thus a portion of a cylinder
which does not go right round it is completely applicable to a
portion of a plane.

Dynamical systems provide interesting illustrations of
topological properties of this sort. Consider a system which
consists of a flywheel which can turn about its axis; the axis
maintains a fixed direction, but can move in a direction per-
pendicular to itself. This is a system with two degrees of
freedom, and the kinetic energy is

5.554. T = ima? + 3162,

where m is the mass of the flywheel, I its moment of inertia,
x the displacement of the axis, and 8 the angle through which
it is turned. The kinematical metric is

5.555. dst= m dx?+ Id6*= (dx')*+ (dx?)2,

where x' = 4/m x and x2= /T §. Thus the configuration-space
is flat. But since an increase of 2x in 6 restores the original
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configuration, the configuration-space is homeomorphic to a
cylinder, not to a plane. In fact, the configuration-space is
completely applicable to a cylinder in Euclidean 3-space. It
is easily seen that the trajectories under no forces correspond
to helices on this cylinder.

Consider now a system consisting of two flywheels rotating
independently about an axis. The kinetic energy and kinem-
atical metric are

5.556. T = '}I]ﬂ{ + %I:ég, d5’= Ildoi + I,d0§,

where Iy, I; are the moments of inertia and 0y, 6, the angles
of rotation of the flywheels. Obviously the configuration-space
is flat. It is homeomorphic to the surface of a torus, because
the configuration is restored by an increase of 2 in either
6 or 5. In Euclidean 3-space there exists no surface completely
applicable to this configura-
tion-space.

If we resolve a dynamical
system into its constituent
particles (say P of them), we
have a flat space of 3P di-
mensions. The configuration-
space of the generalized co-
ordinates is a subspace im-
mersed in this flat space.
Suppose that in the example
just considered we replace the
two flywheels by two particles
of unit mass, constrained to move on a circle of unit radius
(Fig. 12). If 6; and 6; are angles determining the positions of
the particles on the circle, we have

5.557. ds® = db} + db;.

Again we have a flat configuration-space with the connectivity
of a torus. If we introduce the rectangular Cartesian coordin-
ates of the particles, x,, x; for the first particle, and x3, x4 for
the second, we have

F16. 12. Model of a flat 2-space
homeomorphic to a torus.
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X3 = cos 0, xg = sin 6y,
X3 = cos 83, X = sin 0,

If we suppose the particles to be free, the configuration-space
has four dimensions and a kinematical metric

5.559. ds?= dx! + dx} + dx + dx..

When the two adjacent configurations correspond to keeping
the particles on the circles, this metric reduces to 5.557, as we
can see at once on differentiating 5.558. It appears therefore
that in a Euclidean space of four dimensions there exist finite
closed flat subspaces homeomorphic to a torus.

¥

5.558.

)
Fi1G. 13. Representation of the configurations of

a rigid body with a fixed point—first phase.

Another interesting dynamical system is a rigid body
turning about a fixed point. A configuration is determined by
the values of three Eulerian angles 8, ¢, ¢, and so the con-
figuration-space has three dimensions. All possible configur-
ations are included if we vary the coordinates in the ranges

5560. 0607 0L o6<2r, 0L ¢ <2r.

To get an idea of the topology of the configuration-space, let
us take 0, ¢, ¢ as rectangular Cartesian coordinates in Eucli-
dean 3-space (Fig. 13); the ranges 5.560 define a rectangular
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SER: |
Y0

F16. 14. Representation of the configurations of

a rigid body with a fixed point—second phase.
parallelepiped or cuboid. But to the face § = 0 there corres-
ponds only a singly infinite set of configurations, not a doubly
infinite set; the same holds for § = x. To improve our repre-
sentation of the configuration-space we should therefore com-
press the faces 6 = 0 and 6 = 7 into sharp edges (Fig. 14),
deforming the cuboid, but with the understanding that each
point retains the values of the coordinates originally assigned
to it. Now we have to take into consideration the fact that an
increase of 2 in either ¢ or ¢ restores the configuration. Thus
the faces ¢ = 0 and ¢ = 2= correspond to the same configur-
ations, and these two faces should therefore be brought into

Qo T =>

F16. 15. Representation of the configurations.of a
rigid body with a fixed point—third phase.
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coincidence. If this is done, the original cuboid is changed into
a ring with sharp edges (Fig. 15). The parametric lines of ¢
run (from 0 to 2x) through the thickness of the ring. To com-
plete the representation, we would have to deform again so
that points for which ¢ = 0 and ¢ = 2r coincide; a point
such as 4 should be brought into coincidence with a point such
as B. But here our attempt to represent the configuration-space
in ordinary 3-space breaks down. The best we can do is to
leave our model in the last form, and remember the coincidence
of the inside with the outside of the ring.

So far no metric has been mentioned. For simplicity, let
us suppose that the momental ellipsoid of the body, relative
to the fixed point, is a sphere. Then there is only one moment
of inertia, which we shall denote by I. The kinetic energy is

5.561. T =3I+ ¢*+ ¢ + 2¢y cos 6),
and the kinematical metric

5.562. ds? = I (d6®> + d¢® + dy? + 2 d¢dy cos 0).

By a short cut, we can show that the configuration-space is of
constant curvature. If the three principal moments of inertia
were not all equal it would be possible to give instructions
about moving the body, without mentioning the coordinate
system. For example, we could say that the body was to be
rotated so much about the principal axis of greatest moment
of inertia. But in our case that cannot be done. Except for
magnitude, as given by 5.562, all displacements are intrin-
sically indistinguishable. In other words, configuration-space
is isotropic. It is therefore of constant curvature (X), by Schur’s
theorem, 4.1. We can find K by another short cut. Motion
under no forces takes place along a geodesic in configuration-
space. For the body we are considering, motion under no forces
consists of rotation about a fixed axis with constant angular
velocity. In completing a revolution specified by

= const., ¢ = const., 0 £ ¢ £ 2m,
the representative point in configuration-space describes a
closed geodesic of length
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5.563. L=[ds=[ /Idyp=2r/I.

Now if, starting from an assigned configuration, we compare
two rotations about adjacent axes, we see that the two se-
quences of configurations so obtained have no configuration
in common except the initial one. Thus in configuration-space
two geodesics drawn from a point P in adjacent directions do
not meet again until they meet at P. This means that con-
figuration-space is a space of constant curvature of the polar
type, and we know from 4.123 that the length of each closed
geodesic is

5.564. L= 7"—1_{ )

Equating this value to L as given in 5.563, we get for the con-
stant curvature the value

5.565. K =—.

SUMMARY V
Physical components:
X"y X™ \mbin}
(AN = pqut= 1).
Physical components for orthogonal curvilinear coordinates:
(X1/h1, Xa/hs, Xs/hs),
or
(B XY, ho X2, hsX3);
ds? = (hdx')? + (hedx?)? + (hsdx®).
Dynamics of a particle:

A
™St = U=y

or

g’flr WZVT_FI’
mvds +m = ’
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doT 9T dx?
—— ——= F,, T = }ma,nrz?, i* ="

dtox"  ox
Dynamics of a rigid body in N-dimensions:
Ur= = WrnZpy Wrn= — War,

d d
;i—t(zmvr) = an d_thnp'_' Mnm

an = Z(Zan— ZpF,.),
Bap= 2m(nVp — 3¥n) = Jnproorgs
anrq = Em(anrzpzq - 6prznzq)-

For N = 3:

vr= ermnwmzn, O’r= % ermuwmm
d
-(-Z—l (I cnwn) =M '

Ton= 042 303q— 2M3,3n, M,= Despe2pFy.
Moving frames of reference:
5= Armim, %= AmrZipn,
AmpAmg= 8pqs ApmAam =. Spas
""M(S'! S)=— “’Pc(sv S’) = AmpAmq= - Aqump;
wpa(S'y S) = — wpe(S, S)=— APmA:cm= Aqupmo
Kinematical line element:
dst= 2T di?= apmadx™dx™;

_ 4 95) 8T  dv | r 5
=% ~a\ax = v N, fr=anft

~ axT
Generalized force:

92"
X,= ? Z, Fy
Conservative system:
oV

X, =

et
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Dynamics of a system:
fr=X,.

Action line element:
a0?= bppdx™dx®, bmp= (E — V) Gmn,
de = V'E = Vds.

Dynamics of a conservative system:
a*" { ’ } dx™ dx®

do? mn ,,E?EI=

0.

EXERCISES V

1. If a vector at the point with coordinates (1, 1, 1) in
Euclidean 3-space has components (3, —1, 2), find the contra-
variant, covariant, and physical components in spherical polar
coordinates.

2. In cylindrical coordinates (r, ¢, 2) in Euclidean 3-space,
a vector field is such that the vector at each point points along
the parametric line of ¢, in the sense of ¢ increasing, and its
magnitude is k7, where % is a constant. Find the contravariant,
covariant, and physical components of this vector field.

3. Find the physical components of velocity and acceler-
ation along the parametric lines of cylindrical coordinates in
terms of the coordinates and their derivatives with respect to
the time.

4. A particle moves on a sphere under the action of gravity.
Find the covariant and contravariant components of force,
using colatitude and azimuth, and write down the equations
of motion.

5. Consider the motion of a particle on a smooth torus
under no forces except normal reaction. The geometrical line
element may be written

ds®= (a — b cos 0)2d¢>+ b%de?,
where ¢ is an azimuthal angle and 6 an angular displacement
from the equatorial plane. Show that the path of the particle
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satisfies the following two differential equations in which % is
a constant:

d¢
(a) (@ — b cos 6)? g = h,

2
) b? (%) = (a — b cos 6)*/h2— (@ — b cos 0)*.

6. Consider the motion of a particle under gravity on the
smooth torus of the previous problem, the equatorial plane of
the torus being horizontal. Taking the mass of the particle to
be unity, so that ¥ = bg sin 6, show that the path of the par-
ticle satisfies the following two differential equations:

(@) (E — V)(a — bcosb)’d¢/do = b,
b? ( > (E — W)(a@ — b cos 0)*/h*—(a — b cos )%,

where E is the total energy, & is a constant, and do is the action
line element.

7. A dynamical system consists of a thin straight smooth
tube which can rotate in a horizontal plane about one end O,
together with a bead B inside the tube connected to O by a
spring. Taking as coordinates r = OB and 6 = angle of
rotation of the tube about O, the potential energy V is a
function of r only. Show that, in configuration-space, all the
lines of force are geodesics for the kinematical line element.

8. Show that if a line of force is a geodesic for the kinem-
atical line element, it is also a geodesic for the action line
element.

9. Using the methods of Chapter II and 5.532, show that
the trajectories of a dynamical system with kinetic energy T
and potential energy V satisfy the variational equation

3]
5J (T — V) dt =0,
h

where the family of trajectories considered have common end
points at ¢ = ¢ and ¢ = t,. (This is known as Hamilton’s
Principle.)
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10. Using the definition 5.335 for I,,, prove that if X, is
any non-zero vector, then I,, X, X,2 0, and that the equality
occurs only if all particles of the system are distributed on
a single line.

11. Let Oz2:25 and O'2'15’s2's be two sets of Cartesian
axes, parallel to one another. Consider a mass distribution and
let I, I';, be itsmoment of inertia tensors calculated for these
two axes in accordance with 5.385. Writing I’,, = I,,+ K,,,
evaluate K,,.

12. A rigid body is turning about a fixed point. Referred
to right-handed axes Og,2,2;, its angular velocity tensor has
components

wi=1, wp =2, wiz= 3.
What are the components of its angular velocity vector w,?
If we refer the same motion to axes Ogz’13’;2's, such that the
axis Og'y is Oz, reversed, while Oz,2; coincide with 07’355,
what are ’,, and o’,?

13. Consider three rigid bodies, S, S’, S, turning about a
common point. If all angular velocities are referred to common
axes, show that the angular velocity tensor of S” relative to .S
is the sum of the angular velocity tensors of .§’ relative to .S
and of S” relative to .S'.

14. A freely moving particle is observed from a platform .5
which rotates with angular velocity w,= 70,3, where n is a
constant, relative to a Newtonian frame S in which s, are
rectangular Cartesians. Use 5.421 to find the equations of
motion relative to S’ in terms of coordinates ', in S’ , such
that the axis of 2s coincides permanently with the axis of 2.

15. If the tensor I, is defined by 5.335 for N dimensions,
and J,,,, is defined by 5.330, establish the following relations:

anrq=(N - 1)—1103(81"8”1"‘" anapr)'_ anrlpq+ sprlnq,
J, popn = — I,
Tng=(N — 1) (Juppa— SngJepps) =T nprp.
16. The motion of a dynamical system is represented by a

curve in configuration-space. Using the kinematical line ele-
ment, express the curvature of the trajectory as a function of
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its total energy E, and deduce that as E tends to infinity, the
trajectory tends to become a geodesic. Illustrate by considering
a particle moving under gravity on a smooth sphere.

17. A particle moves on a smooth sphere under the action
of gravity. Using the action line element, calculate the Gaussian
curvature of configuration-space as a function of total energy
E and height z above the centre of the sphere. Show that if
the total energy is not sufficient to raise the particle to the top
of the sphere, but only to a level z = h, then the Gaussian
curvature tends to infinity as z approaches % from below.

18. Show that the equations of motion of a rigid body with
a fixed point may be written in either of the forms
(a) Ko+ w,mr(S,y S) h’m = M,n
(b) We— K'rmn W B'n = My,
where 7/, are the components on z'-axes (moving with the
body) of angular momentum as given in 5.338 and K’ mn is a
certain moment of inertia tensor. Evaluate the components
K’,mn in terms of the moments and products of inertia.

19. A rigid body turns about a fixed O in a flat space of
N dimensions. Prove that if N is odd, there exists at any
instant a line OP of particles instantaneously at rest, but that,
if N is even, no point other than O is, in general, instantan-
eously at rest. Show that if N = 4, there are points other than
O instantaneously at rest if, and only if,

waswiat+ wawest+ wiwse = 0.

20. The equations 5.329 do not determine J,,-, uniquely.
Why? As an alternative to 5.330, we can require Jnpr, to be
skew-symmetric in the last two suffixes. Show that this
defines Jn,r, uniquely as follows:

Tnprg=3% 2 M (8nr 2p%¢ + 0pg ZnBr — Ong Zp2r — Opr 2n3q) +

Prove that Jypsq, as defined here, has the same symmetries as
the covariant curvature tensor (cf. 3.115, 3.116) and that, for
N =3, we have

—_— 1 —_—
I, = 7 €anp €trg anrq’ anrq = % €snp €irg I:.



CHAPTER VI

APPLICATIONS TO HYDRODYNAMICS, ELASTICITY,
AND ELECTROMAGNETIC RADIATION

6.1. Hydrodynamics. The mathematical fluid of hydro-
dynamics is a continuum of moving particles, each of which
remains identifiable, so that we can speak of following a par-
ticle of the fluid. The space in which the motion takes place
is Euclidean 3-space. We shall use rectangular Cartesians Zr,
and later curvilinear coordinates x". In general, it is easiest
to use the Cartesians to establish formulae, and then translate
these (with a little judicious guessing) into a form valid for
curvilinear coordinates.

The history of any particle is described by equations of the
form 2, = 2,(), where ¢ is the time. But we have a continuum
of particles in the fluid, and so we introduce labels to distin-
guish one particle from another. These labels (which we shall
denote by a,) may be the coordinates of the individual particle
at time ¢ = 0, or they may be arbitrary functions of these
initial coordinates. The complete history of the whole fluid
may then be described by equations of the form

6.101. 2, = 2.(a, 1),

where a stands for the set of three labels. The components of
velocity v, of a particle of the fluid are then given by taking
derivatives with respect to ¢, holding the a’s fixed, since we are

interested in the rates of change of the coordinates of an indi-
vidual particle:

3z,
-

6.102. O
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The above method of describing the motion of a fluid is called
the Lagrangian method.

Another (and generally more useful) way of describing the
motion of a fluid is the Eulerian method. We disregard the
labels we attach to the particles, and start from the fact that,
at a definite point and at a definite instant, there exists a
definite velocity in the fluid; in other words, velocity v, is a
function of coordinates 2, and time ¢, and we may express this
by writing

6.103. v, = v,(2, £).

Exercise. A fluid rotates as a rigid body about the axis of 23
with variable angular velocity w(f). Write out explicitly the
three Lagrangian equations 6.101 and the three Eulerian equa-
tions 6.103.

Of course, it remains true in the Eulerian method that the
co-ordinates 2, of an individual particle are functions of ¢, and
that the velocity is obtained by differentiation, as in 6.102.
But since we have no occasion in the Eulerian method to refer
to the labels a,, we shall, for future reference, write 6.102 in
the form

dz,
U =a

The acceleration of a particle is the rate of change of vy,
provided that, in differentiating, we follow a definite particle.
Thus, if we differentiate 6.103 and use 6.104, we obtain for the
acceleration f,

6.104.

dv, v, 0v.d3, [

where ,s denotes 9/0z..

Uris Vay

Exercise. Compute the components of acceleration for the
motion described in the preceding exercise.

What we have calculated above, in deriving 6.105, may be
called the comoving time-derivative; it is “‘rate of change moving
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with the fluid.” Sometimes this is emphasized by using the
symbol D/Dt instead of d/dt, to remind the reader that a
special procedure is involved, but we shall not find this neces-
sary. For any function F(z, ¢), the comoving time-derivative
is

6.106 aF _ oF
s d ot T Fave

The density p of a fluid is defined as mass per unit volume
If the ratio of mass to volume is the same for all volumes in the
fluid, then the fluid is of constant density. But if this is not
the case, the definition actually involves a limiting process.
We take a sequence of volumes enclosing a point P, the se-
quence shrinking in on P in the limit. The density at P is then
the limit of the ratio of mass to volume for this sequence of
volumes. Density is in general a function of position and
time, and so we write p = p(,£). The comoving time-deri-
vative of p is of course

dp _dp
6.107. i o 4+ pue Ve

So far we have been working with rectangular Cartesians.
Let us introduce curvilinear coordinates x*. Now we have a
coniravariant velocity vector

P
6.108. V= 7R
and a covariant velocity vector.*
6.109. Ur = Qya0°,

where a,, is the metric tensor. The simplest way to get the
acceleration is not to transform 6.105, but to guess the co-
variant and contravariant forms

*To avoid complicating the notation, we use the same symbols vy, fr
to denote components for rectangular Cartesian coordinates, and covari-
ant components for curvilinear coordinates. The context should remove
any possible ambiguity.
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81),' 8 avr r 8
6.110. fo="7 T vr1a?% fr="3; T v 1a0%

where the stroke indicates covariant differentiation, as in 2.520
or 2.521. We verify that these equations are correct, because
they are vector equations, and they reduce to 6.105 when the
curvilinear coordinates reduce to rectangular Cartesians.

For the comoving time-derivative of an invariant, F or p,
we have

aF_OF L

6.111. 7, =% 4+ F.»°% -
Exercise. Verify that the operator 8/0¢ does not alter tensor
character.

dpo 0p
—_— o —— L
at + P:c” ]

In what follows we shall make use of Green's theorem (also
known as Gauss' theorem, or the divergence theorem). Con-
sider a volume V, bounded by a surface S. Let us use rect-
angular Cartesians z,. Let %, be the direction cosines of the
normal to S, drawn outward. Let F be a function of the co-
ordinates, which is continuous and possesses continuous partial
derivatives of the first order throughout V. Then Green's
theorem states that

6.112. [ Fn,dS = [ F.dV.
The integral on the left is a surface integral taken over S, and
the integral on the right is a volume integral taken throughout
V. Only a single sign of integration is used for economy in
notation, because it is obvious from the differential what multi-
plicity of integral is meant. As usual, F.,= dF/dz,. We as-
sume that the reader is familiar with the proof of 6.112.*
The equation 6.112 is often written with a vector function
in the integrand. Indeed, it follows from 6.1 12 that

6.113. [ Fn,dS = [ F..dV.

*See any book on advanced calculus, or, in particular, R. Courant,
Differential and Integral Calculus, London and Glasgow, Blackie, 1936,
p. 384. For a proof of Green's theorem, in generalized form, see chap.
viI, in particular 7.610.
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| This may be called a divergence theorem, since F;,, is the diver-
gence of the vector F,. Actually, however, Green’s theorem is
a theorem in analysis, and the question of the transformation
of coordinates is not necessarily involved. If we like, we can

replace F in 6.112 by a set of quantities which may be tensor
components, and write

6.114. [ FundS = [ F,,.,dv.

But the tensor character of the integrand becomes important
if we wish to transform Green’s theorem to curvilinear co-
ordinates x". It is then essential that the integrand be an
invariant, and the transformation of 6.112 (where F is an in-
variant) or 6.114 (where F,; is a tensor of the second order)
presentsdifficulties. But 6.113 transforms directly. It is true

that v, dt
6.115. [Fmuds = [ Fr|.dV,
for each integrand is an invari- v,) vin,d1
ant, and so the statement is y
O

true for all coordinate systems
if true for one—and obviously
6.115 reduces to 6.113 for rec-
tangular Cartesians. In 6.115
n” are the contravariant com-
ponents of the outward unit
normal, i.e., n" = dx"/ds, where
ds is an eiement of the normal

to S.

We shall now consider the expansion of a fluid. Let V be
a volume of the fluid, bounded by a surface S. Let .S move
with the fluid, so that it is always formed of the same particles.
Let us use rectangular Cartesians. Let v, be the velocity.
Then v,n, is the component of velocity along the outward
normal, n, being the direction cosines of that normal. As the
fluid moves, a particle on the surface is displaced obliquely
(Fig. 16); the normal component of its displacement in infini-
tesimal time dt is v,n,df. Hence the volume of the thin shell

F16. 16. Expansion of a fluid.
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between the surface S at time £ and the surface formed by the
same particles at time ¢ + d¢ is

6.116. dt [ vn.dS.

But this is the increase in the volume V, and so we have
av

6.117. FTha [ om.dS = | 9,47,

by Green's theorem. We divide by the volume V, and then
consider a sequence of volumes, all enclosing the point P and
shrinking down on this point. Then it is easy to see that

14V 1

i v a T g, v ey =

evaluated at the point P.  We define this limit to be the expan-
sion of the fluid at the point P. Denoting it by 6, we have

60119; 0 = vrvf;

in vector language, this is the divergence of the velocity vector.

No logical contradiction is implied by choosing the velocity
v, and the density p as arbitrary functions of position and time.
But such arbitrary choice will, in general, violate a basic phy-
sical principle—the conservation of mass. It is, in fact, a basic
hypothesis of Newtonian mechanics that the mass of any
system is constant, provided the system is always composed
of the same particles. (In relativity, the conservation of mass
is abandoned—hence the source of atomic energy.)

Let us now investigate the connection between velocity and
density arising from the conservation of mass. The mass of a
fluid element is pd V. As the fluid moves, the volume dV may
change, but the mass pdV does not. Let us write for the
volume of a portion of the fluid

6.118.

1
6.120. V= JdV = I;pdV.

Following this portion of the fluid, we have

2 _[5(1)av
6.121. 7 _Jd p),,d,
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the derivatives being comoving derivatives. Dividing by V
and letting the volume shrink to zero as in 6.118, we get

. lav a4 /1
6.122. 0 = Il}l.r)[:) 3 =pdt<p)-

But

oa» L1y _La
e dt\p)  ~—ptdt’
and hence 6.122 may be written
6.124 @

124, k7 + p60 = 0.

This is the equation of conservation of mass, traditionally called

the equation of continuity. By virtue of 6.119, it can also be
written in the following forms:

5 de 0

6.125a. 7 + pvre= 0,
3

6.125. 3'; + (otr),= 0.

The above equations are easily transformed to curvilinear

coordinates by the usual process of guessing and verifying.
We have

6.126.

6.127a.

9p
6-127bo 52 + (pv')“- = Oo

Exercise. Write out 6.126 and 6.127b explicitly for spherical
polar coordinates.

The vorticity tensor at a point in a fluid is defined as
6.128. Wrs = %‘(vc-r— vr-c)
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for rectangular Cartesian coordinates. Obviously, it is skew-
symmetric (wer= — wr). We can at once transform 6.128 to
curvilinear coordinates by replacing the comma by a stroke.
However, it follows from 2.521 that, for any covariant vector V,

6.129. Veio— Veio= Ver— Ve
Therefore 6.128, as written, represents the vorticity tensor in
curvilinear coordinates as well as in rectangular Cartesian
coordinates.

For rectangular Cartesian coordinates, the vorticity vector is
defined as

6.130. Wy = %ermnwmm
so that, explicitly,

6.131. 2w1= V3.2— V2.3 209 = Y1.3— V3.1, 2w3= V2,1— ?%1.2.
The right-hand side of 6.130 is an oriented Cartesian vector
(cf. 4.3). To transform to curvilinear coordinates, we must
investigate the tensor character of the permutation symbol
¢;mn for general transformations.

The Jacobian of a transformation from coordinates x to
coordinates ¥’ may be written

ax? ox' ox™ dx™

ax'e| = ™™ ol gx'2 9’

If we interchange two of the numerical suffixes, say 1 and 2, we
change the sign of the expression on the right, without alter-
ing its absolute value. If we permute 123 into uvw, the effect

is the same as multiplication by euyw, Or, if we prefer to write
it so, €ypw. Thus

6.132. J =

, dx™ Ix™ dIx™
6.133. J€uow= €mn 5;7;%;; 3x' 2’

or
, _ ax” Ix™ ox™
6.134. €uon=J ermn 9% 9% 3
If the Jacobian is unity, this becomes the usual transformation
for a covariant tensor of the third order. In general, a set of
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quantities transforming as in 6.134 are said to be the com-
ponents of a relative tensor of the third order of weight —1. If
J¥ occurred instead of J7!, we would say that the weight
was P.*

Exercise. If €™ is defined in precisely the same way as ¢,
prove that

axlu axlv axlw

x™ x™ Jx™ '’
so that €™" is a relative tensor of weight +1.

6.135. uvY = Jermn

Now consider the transformation of the determinant a of
the metric tensor. We have

ax™ Ix™
Gmn 35T 9’ *
ox? || dx?

by the rule for the multiplication of determinants. Hence

6.136. a' =

4
179

= 10mn ’

6.137. a'= J,

so that a s a relative invariant of weight 2.
To avoid complications, let us think only of transforma-
tions for which the Jacobian is positive. Then we have

6.138. Vd = JVa,

so that \/a is a relative invariant of weight 1.
Combining 6.138 with 6.134, we get

— — 0x" Ix™ Ix™
6.139. Gluvw'\/al = (e"‘”‘”\/a) ax'® —3—;; ox'® )

Hence e;ma\/@ is a tensor (not relative—we may call it absolute
for emphasis), covariant and of the third order.

Exercise. Prove that €™ /+/a is an (absolute) contravariant
tensor of the third order.

*For the general theory of relative tensors, see 7.1 and 7.2.
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We are now ready to write 6.130 in curvilinear coordinates.
Tentatively, we put

1
r E—
6.140. [4] 2\/(—1 €

Clearly, this is an (absolute) contravariant vector. If we take
rectangular Cartesian coordinates, we have ¢ = 1, and so 6.140
reduces to 6.130. Therefore, in view of its tensor character,
6.140 is the contravariant transform of 6.130 in curvilinear
coordinates.

A fluid motion is said to be érrotational if there exists an
invariant function ¢ such that

rmn

Wmne

6.141. V= — o

. . . . . nrpds
This equation is unchanged in form if

we pass to curvilinear coordinates. It is
evident from 6.128 that w,,= 0 for an
irrotational motion; w,= 0 also.

So far we have considered only the FiG. 17-fPreEsqae ina
kinematics of a fluid. Let us now discuss perfect fluid.
the internal forces. We shall here consider only perfect fluids.

A perfect fluid is defined as one in which the force trans-
mitted across any plane element is perpendicular to that ele-
ment (Fig. 17). The force per unit area is called the pressure,
and will be denoted by p. This definition does not in itself
imply that, if two plane elements with different normals are
taken at a point, the value of p is the same for both of them.
However, the application of Newton’s law of motion (mass times
acceleration equals force) to a small tetrahedron of fluid does in
fact establish the fact that the value of the pressure at a point
is independent of the element across which it is measured.*
Thus the force across an element of area d.S and unit normal #,
is the vector #,p d.S in rectangular Cartesian coordinates, where
p is a function of position only.

ds

*Sir H. Lamb, Hydrodynamics, Cambridge, 1932, p. 2.
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In addition to the pressure, there may be present a body
force, such as gravity. We shall denote by X, the body force
per unit mass, so that the body force on an element of volume
dVis X, pdV.

To determine the equations of motion of a fluid, we have
available the principle of linear momentum, which states that
for any system of particles the rate of change of linear mo-
mentum is equal to the total extermal force. For our system,
let us take the fluid contained in a surface S which moves with
the fluid. Its linear momentum is [pv,dV. To the total
external force, the body forces contribute f pX,dV. The pres-
sures across plane elements in the fluid give internal, not
external, forces. It is only the pressure across the bounding
surface S that gives a contribution to the total external force.
That contribution is —[pn, dS, the minus sign occurring be-
cause we are using #, to denote the outward unit normal to
the surface S.

Combining these expressions, the principle of linear mo-
mentum gives

d
6.1420 .d_;Jpvr dV= J-pXr dV_J-PnT dSu

We bring the differentiation under the sign of integration,
remembering that pdV is constant on account of the conser-
vation of mass; at the same time we transform the surface
integral by Green'’s theorem, and so obtain

dv,
6.143. J.p?vth =J.pX,dV—Jp.dV.

Combining the integrals into a single integral, we get

do,
6.144. J(p%— X, + p,,)dV = 0.

Since this integral vanishes for every volume taken in the fluid,
the integrand must vanish, and so we get

dv,
6.145. P_(-i? — pXs+ pr= 0,
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or

0v,
6.146. E + v0p0= X,— P—lp'f'

These are the general equations of motion of a perfect fluid in
rectangular Cartesian coordinates. In curvilinear coordinates
they read

o, _
6-147. —67 + 9'7,',- ].= Xr_ p lp,r,
in covariant form.
Exercise. Write down the contravariant form of 6.147.

In the case of irrotational motion (which is by far the most
important type of motion in the applications of hydrody-
namics) we have, by 6.141 and 6.146, in rectangular Cartesian
coordinates,

/]
6.148. - _a—t (¢.r)+ bisPirs= X,— P—lp-r-

It is generally assumed that the density p is a function of the
pressure p. (The case p = const. is a special case of this.)
Then, if we define

d
6.149. P = J"f ,
P is a function of p, and so (through ) a function of the co-

ordinates. Hence

P _
6.150. P,= C_Z;p"——- p IP.,-.

Let us also assume that the body forces X, are conservative
and can be derived from a potential U such that

6.151. Xy= =U,n
Then 6.148 may be written

i)
6-152- ( - —2 + %¢'!¢u + -P + U ) = 0!

ot

of
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’ so that the quantity in parenthesis is independent of the co-
| ordinates. It can be a function of the time ¢ only; so we write

3
‘ 6.153. a‘f + 30ubet+ P + U = F(t).

This is the integral of Bernoulli for irrotational motion. This
form holds only for rectangular Cartesian coordinates; for
curvilinear coordinates we have

)
6.154. - ?f + 3a™¢mdat P+ U = F().

The simplest and most important type of fluid motion is

that in which the density is constant (homogeneous incom-

| pressible fluid). For irrotational motion of this type, the
| equation of conservation of mass 6.125b becomes

6.155. buer= 0

for rectangular Cartesian coordinates; in curvilinear coor-
dinates it reads

6.156' amn¢ I mn =0.

Written explicitly, 6.155 is Laplace’s equation
P¢ ¢ ¢
azl + a 2 + - l

and 6.156 is the transformation of thls equation to curvilinear
coordinates. However, the second-order covariant derivative
in this expression is sometimes tedious to compute, and 6.156 is
more conveniently written

6.157. (Vaa™ ¢,m) .= O.

Exercise. Verify by means of 3.204 that 6.157 and 6.156 are
the same equation.

6.2. Elasticity. The theory of elasticity involves the
concepts of strain and stress in an elastic solid. The theory of
strain belongs to geometry; it consists of a systematic mathe-
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matical description of the deformations which can occur in a
continuous medium. The theory of stress involves a study
of the internal reactions which can occur in a continuous
medium. We shall start by considering strain and stress
separately, and later link them together by Hooke's law.

Consider a continuous medium, consisting of particles
which retain their identities. First, the medium is at rest in
what we shall call the unstrained state. Using rectangular
Cartesian coordinates z,, we shall suppose that the particle
situated at the point z, receives a displacement u.(z), the
notation indicating that each particle receives a displacement
which is a function of its coordinates. If the functions %,(z)
are constants, the whole medium is translated without defor-
mation. For other special choices of these functions, the
displacement of the medium may be that of a rigid body. But,
in general, for arbitrary displacements u.(z), the medium will
be deformed or strained.

It is characteristic of a rigid body displacement that the
distance between any two particles remains unchanged by the
displacement. It is therefore natural that we should analyse
a strain in terms of the changes in length of the lines joining
particles. Consider two particles with coordinates z,, 2 in the
unstrained state. After strain, their coordinates are respec-
tively

zr-+ u,(2), 25+ u. ().
Let L¢ be the distance between the particles in the unstrained
state and L, the distance between them after strain. Then
the extension e of the line joining the particles is defined to be

6.201. e = (L1 — Lg)/L,,
i.e., the increase in length per unit length. Let us now see how

the extension is to be evaluated.
We have

6.202. LY = (28 — 2.)(zr — 3,),

L= [z:"" zrt+ u.(2) — u,(2)][27 — 2.+ u(2") — u.(2)],
and hence
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6.203. Li— Li= 2(z1— 2,) [u.(z) — u.(2)]

+ () —ur(2)] [0 (8) — 0, (3)].
It is clear that we could derive from 6.202 a formal expression -
for e. But it would be very complicated. Let us rather in-
vestigate the extensions of infinitesimal elements drawn from
the point 2,. To do this, we keep 2, fixed, and allow 2, to ap-
proach it along a curve, the unit tangent vector to this curve
at g, being denoted by \,. Since, in this process, 2, — 2, be-
comes small, we have approximately

6.204. u,(z’ )‘— u,(z) = (3'0—' zo) Usree (2),
and so 6.204 gives approximately
6.205. Li— Li= 2., (3)(sr— %) (s — 2.)
+(8a— 2.) (3t — 26)t4r.s(2)t4re(2).
But s,— z,= Lo\, approximately. So, dividing 6.205 by L}

and letting s, approach s, along the curve, we get after a

change of suffixes,
2 2

- 7 * = 20r,s(B)N N s + Unor(8)thm,s(Z) M 4.
But even this has not given us the desired value of 6.201.

To get a simple expression for the extension it is necessary
to introduce a limitation on the character of the strain. We
shall consider only small strains, a small strain being one in
which the derivatives #,,, are small. Then the last term on
the right-hand side of 6.206 is small of the second order, and
will be dropped. Moreover, we have identically

Li— L} _ Li+ Ly Li— L,

L L, L,
Ly— Lo\ L1 — L,

(2 + Lo ) LO :
On account of the smallness of the strain, the left-hand side of
6.206 is small because the right-hand side is small. Hence the
limit of the term on the left of 6.207 is small. Since (L1+Lo)/Lo
Is greater than unity, it follows that the limit of (L;— Lo)/Lo
Is small, and 6.207 gives approximately

6.206. lim

6.207.
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L:—L! "Ly — L

L——'= 21lim
Lo Lo
e being the extension of the element in question, i.e. the element
at g, pointing in the direction A\,. Combining this result with

6.206, we have

6.208. lim = 2e,

6.209. e = 1 s(2)Arhs.
We now define the components of strain e,, by
6.210. ers= §(thr.st tair).

It is obvious that these are the components of a Cartesian
tensor. Equation 6.209 for the extension e may be written

6.211. € = ershrhse

Thus, if the tensor e,, is given as a function of position through-
out the medium, the extension of every element is determined.
But it must be remembered that 6.211 is valid only for small
strain.

Exercise. Show that a small strain is a rigid body displace-
ment if, and only if, e, = 0. In the case of finite strain,
deduce from 6.206 the conditions which must be satisfied by
the partial derivatives of the displacement in order that it
may be a rigid body displacement.

If we use curvilinear coordinates x7, the extension of an
element with direction determined by a unit vector A" is (for
small strain)

6.212. € = er.)\'h‘,
where
6.213. ere = 3(%riet %er).

This statement is verified at once from the invariant character
of 6.212.

In future it will be understood that the strain is small in
every case.

Stress is a generalization of the concept of pressure intro-
ducedin 6.1. 'We consider the force transmitted across a plane
element dS, but no longer insist that the force shall be per-
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pendicular to the element. These ideas apply both to an
elastic solid and to a viscous fluid.

Let us use rectangular Cartesian coordinates z,. Let 1, be
the direction cosines of the normal to the element d.S, and
T, dS the force across the element. (We naturally take the
force proportional to the area dS.) We call T, the stress across
the plane element, so that stress is force per unit area. In
general, T, is a function of the coordinates 2, which determine
the position of the element dS, as well as of the direction
cosines 7, which determine the direction of the element. We
may indicate this dependence by writing
6.214. T,= F.(z, n).

We shall next see how this function involves the direction
cosines.

Consider any point 4 in the
medium and a plane P passing
through 4. Take three mutually
perpendicular planes, P’, P, P,
cutting the plane P in a triangle
containing 4 (Fig. 18), so that a
tetrahedron is formed with 4 situ-
ated in one of its faces. Let the
direction cosine of the normals to
P, P!, P”, P, alldrawn outwards

from the tetrahedron be #,, n., n.’,
n;"’, respectively. The areas, S, §', S, S’ of the faces of
the tetrahedron are easily seen to be connected by the relations
6.215. S'= —Sum., S"= —Sum!, S""'= —Sunm}".

Let us suppose that the medium is subject to a body force
such as gravity, the force on a volume dV being X,dV. Now
the rate of change of the linear momentum of the material
contained in the tetrahedron is equal to the total external
force acting on it. Therefore

6.216.

25t = JXAV + [T,dS + [TdS + [T}dS" + [Tyas™,

Fi1c. 18. Analysis of stress.
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where M, is the total linear momentum of the tetrahedron and
the surface integrals are taken over the several faces of the
tetrahedron.

Let us now make the tetrahedron contract towards 4 by a
uniform contraction. This means that the directions of all
four planes are maintained, and the relations 6.215 remain
unchanged. Let a denote the longest edge of the tetrahedron
in this process of contraction. Then, clearly, since the volume
of the tetrahedron is less than a3,

7 im =2 o, ledV 0
6.217. lm % =0 lm 5[X.dv=o,

and so by 6.216

1
6.218. lim —( [T,dS + [TidS' + [TVdS” + [T!dS™) =0.
a»0 -

Assuming the function F, of 6.214 to be continuous in z, the
value of the above limit will not be changed if we replace the
integrands by constants as follows:

6.219. T,> F.(2,n), T}>F.(2,n), T!>F.(z,n"),
T)"> Fo(z, n'"),
where z stands for the coordinates of 4. It then follows that
6.218 may be written
6.220. [F.(z, n)— F.(2, 0" )nsny — Fo(z, n')nnl
— F(z,n'")nm"] Lim (S/a?) = 0.
a>»0
But lim S/a? is not zero, and so
a>»0
6.221. F,-(Z, n) = Ers(z)nn
where
6.222. E,s= F.(3,n")ns + F.(z,n")nl! + F.(z,n"")nl".
We note that E,, is independent of the direction cosines ;.
We may write 6.221 equivalently in the form

6.223. Tr = Er.'n‘.
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Since T, and %, are Cartesian vectors, it follows that E,, is a
Cartesian tensor; we call it the stress fensor. Equation 6.223
gives the stress across every plane element in the medium if
E,, is given as a function of position. So far there is no evi-
dence that E,, is symmetric, but we shall see later that it is.

Exercise. Show that the stress across a plane z;= const. has
components Ey, Eg, Es. What are the components across
planes z;= const. and 2;= const.?

The concept of stress which we have just developed applies
to any continuous medium, solid or fluid. We shall now find
the equations of motion for a continuous medium by applying
to a portion of it the principle of linear momentum. We have
already done this for a perfect fluid, starting with 6.142 and
ending with 6.145 or 6.146. To generalize 6.142 to the case
of a general medium, we have merely to replace the last in-
tegral on the right by an expression for the total force due to
stress across the bounding surface of the portion of the medium
under consideration. The appropriate expression is

6.224. [T.dS = [E.ndS,

by 6.223, the integral being taken over the bounding surface
and 7, denoting the unit normal to this surface, drawn out-
ward. Using Green’s theorem to replace this surface integral
by a volume integral we easily obtain the generalization of
6.145 in the form

6.225. Pfr = PXr+ Erers.

where f, denotes the acceleration of a particle. These are the
equations of motion of a continuous medium. The equations of
equilibrium are obtained by putting f,= 0.

We shall now establish the symmetry of the tensor E,, by
means of the principle of angular momentum, which states that
the rate of change of angular momentum of any system about
a fixed point is equal to the moment of external forces acting
on the system about that point. As fixed point let us take the
origin g,= 0. The angular momentum for a rigid body was
given in 5.327; actually that expression holds for any system
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of particles, rigid or not, and the appropriate expression for
a continuous medium is

6.226. Bra= [p(30, — 2,9,) AV,

and the moment of external forces is

6.227. M= [p(3, Xo — 2, X;) AV + [ (@ T.— 2.T;) dS.
The principle of angular momentum then gives

25
6.228. gylre = Mre

This yields, by 6.223,

6.229. [p(zfa— 5fr) AV = [ p(erXs— 2.X,) dV
+ J.(ZTESM_ zaErm)ﬂm das.
By Green's theorem
6.230- I(ZTEOM— S.E,-m)nmdS = f(er'm’m_ zcErm:m) dV
+ J(Ew— E.)dV.

When this is substituted in 6.229, all the integrals cancel out
on account of 6.225, except one, and we are left with

6.231. J(Eer— E,o) dV = 0.
Since this holds for every volume, we deduce that
6.232. Ey= E,,.

Thus the symmetry of the stress tensor is established.
Having dealt separately with strain and stress, we shall
now connect them, and so establish the theory of elasticity.
The basic assumption is the generalized Hooke's law, which
states that stress is a linear homogeneous function of strain.
This means that there exists a stress-strain equation of the form

6.233. Ers= Cremnbmn.

In the case of a heterogeneous body, with elastic properties
varying from point to point, the coefficients will be functions
of position; we shall consider here only homogeneous bodies,
for which the coefficients are constants.
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Since €mn= eénm, there is obviously no loss of generality in
taking
6.234. Crsmn= Crsnm.
Moreover, since E,, = E,,, we must have

6.235. Cramn= Csrmne.

By applying the tests for tensor character, 1.6, it is easily seen
that ¢rsmn are the components of a Cartesian tensor; we shall
call it the first elasticity tensor. On account of 6.234 and 6.235,
the number of independent components is 36.

By appeal to thermodynamic arguments, into which we
shall not enter here, it can be shown that

6.236. Cramn= Cmnray

in the limiting cases of isothermal and adiabatic states. This
relation reduces the number of independent components of the
elasticity tensor to 21. This is generally accepted as the
maximum number of independent coefficients.

Exercise. Show that if 6.233 is solved for strain, so as to read

6.237. Crs= Cr.mmEmn!

then the symmetry conditions 6.234, 6.235 and 6.236 imply
similar conditions on Crsmn. (The tensor Cysm, is the second
elasticity tensor.)

The simplest type of body is ¢sotropic. This word implies
that all systems of rectangular Cartesian coordinates are equi-
valent as far as the description of elastic properties is con-
cerned. But the elastic properties of a body are completely
described by the elasticity tensor ¢,smn, and so this tensor must
have the same components for all sets of axes of coordinates.
Thus, under the orthogonal transformation

6.238. 2, = A, (A rmA sm= 61'8) ’
the general transformation

6.239. C:»",m = cpquvA rp A an mu A ny
must reduce to
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6.240. Cramn= Cramn-

We have already met a tensor that transforms identically like
this—the Kronecker delta 6,,. This suggests that the elas-
ticity tensor must be built up out of Kronecker deltas. It can
in fact be shown that this is the case.* But we shall content
ourselves here by building up a tensor which satisfies 6.249
and the symmetry conditions, without proving that it is the
most general possible.

The most general tensor of the fourth order that we can
construct from the Kronecker delta is

6.241. Cremn= ANOrsOmn—t WOrmOsn—t VOrndam,

where A, u, v are invariants. Since §,4= 9pq, 6.240 is satisfied.
On account of 6.234, we have

6.242. l‘armasn"!‘ VornOem = Ftarnasm‘i' VOrmOan,
or

6.243. (p = »)(Ormdsn—"0rndsm) = O,
so that u = », and 6.241 becomes
6.244. Crsmn= xarcamn"l' l-‘(’srmaan"l" 6rn53m)-

The other symmetry conditions 6.235 and 6.236 are auto-
matically satisfied. We accept 6.244 as the elasticity tensor of
an isotropic body; it contains just two elastic constants, X and u.

Substitut;ing 6.244, we obtain from 6.233, as stress-strain
equation for an isotropic body,

6.245. Ero= Norsl + 2pers,
where
6.246. 0 = enn;

0 is called the expansion or dilatation.
It is easy to solve 6.245 for strain in terms of stress. The
result is usually written in the form

*H. Jeffreys, Cartesian Tensors, Cambridge, Cambridge University
Press, 1931, p. 66.



212 ELASTICITY

1
6.247. Crg = E { (1 + O‘)En— GsrcEnn } ’

where the constants are given by

s8N 4 24) A
6.248. E = g o —_—2(}\4_“)’

or, written the other way round,

\ ¢E E
T+ -2)" F T2 +0)

Specific names are given to these constants:
E is Young’s modulus,
¢ is Poisson’s ratio,
A is Lamé’s constant,
p is the rigidity.

If we substitute from 6.245 in 6.225, and use 6.210, we
obtain the equations of motion of an elastic body in the form

6.250. Pfr= pX,+ O\ + l‘)o-r'l‘ plAu,,

where A is the Laplacian differential operator. On account of
the assumed smallness of the displacement, we may write f, =
du,/9%. Then 6.250 gives a set of three partial differential
equations for three quantities, «,.

6.249.

Exercise. Deduce from 6.250 that if an isotropic elastic body
is in equilibrium under no body forces, then the expansion 6
is a harmonic function (A9 = 0).

Let us now translate our results from rectangular Cartesian
coordinates 2, to curvilinear coordinates x. This is easy to
do by guessing, and the verification is immediate in each case.

From 6.223 we have
6.251. Ty= E.n®, T'= E™n,.

The equations of motion 6.225 read, in contravariant form,

602520 p_fr = pX’+ Er'| F1)
or, in covariant form,
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6.253. Pfr = PXr+ Eln

where E is the mixed stress tensor. The symmetry property
6.232 is invariant under general transformations of coordinates,
and so it holds for curvilinear coordinates since it holds for
rectangular Cartesians. On account of this symmetry, we can
write ES instead of E;*, since E;*= E,, so that there is no
risk of confusion in omitting the dot.

Hooke's law 6.233 reads in covariant form

6.254. Ere = Cramn€™,

the coefficients being the covariant components of the first
elasticity tensor. The symmetry relations 6.234, 6.235, and
6.236 hold for curvilinear coordinates. The isotropic stress-
strain relation 6.245 reads, in covariant form,

602550 Er.= Mr.e + 2"‘61“)
where a,s is the metric tensor and
60256. 0 = G”mem”.

Exercise. Express the equations of motion 6.250 in curvi-
linear coordinates.

6.3. Electromagnetic radiation. We shall consider only
electromagnetic fields in vacuo. This means that we omit the
application of tensors to electromagnetic circuits and machines,
and to the propagation of electromagnetic waves through
material media. However, for most practical purposes, air
may be regarded as a vacuum, and so our theory applies to
the ordinary propagation through air of radio waves, radar
waves, heat waves, light waves, and X-rays.

An electromagnetic field in vacuo is characterized by two
vectors—an eleciric vector and a magnetic vector. For the pre-
sent we shall use rectangular Cartesian coordinates z,; the
electric vector will be denoted by E, and the magnetic vector
by H,. In any given field, the values of the components E.
and H, depend on the choice of units in which they are mea-
sured. We shall use Heaviside or rational units, which are
most convenient for our purposes.
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The basic hypothesis from which we start consists of a set
of partial differential equations, Maxwell's equations. For right-
handed axes, these read

10E, 10H,
6.301. ; ot = €mnHnomy ;7 = — €mnlnm,

6.302. Epn=0, Hpn= 0.

The constant ¢ is a universal constant; if the units of length
and time are the centimeter and the second, its numerical value
is approximately ¢ = 3 X 1010,

There are six equations in 6.301 and two in 6.302. The
equations 6.302 cannot be deduced from 6.301, but they are
connected with them. If we differentiate 6.301 with respect
to 2, and note that

6.303. érman‘mr = 0, CrmnEnrmr = 01

on account of the skew-symmetry of the permutation symbols,
we obtain

—a—H 0
T

Thus 6.301 tells us that E,,, and H,,, are independent of i.
This conclusion is consistent with 6.302. This interlocking of
6.301 with 6.302 enables us to obtain solutions of what at first
sight appears to be an overdetermined problem—namely, to
find six quantities satisfying eight equations.

If we differentiate the first of 6.301 with respect to ¢, and
then use the second equation, we get, with the aid of 4.329,

1 8°E, 9 8H,
c o~ ™mas ot

i)
6.304. ot Er.r = 0,

6.305.

c Ermns; (enpq Eq-p)
m

C €nrménpgq Eq:pm
c (5rp6mq - arqapm) Eq'Pm
¢ Enumr + € Erimm.
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The first term on the right-hand side vanishes on account of
6.302, and so

1 8%E,
6-306. —0-2 at2 - Er,mm= Oo
Similarly,

1 8*H,
6-307- 6—2—_6-? - Hr.mm= 0.

This form of partial differential equation is called the wave
equation. Thus the electric and magnetic vectors satisfy the wave
equation.

Exercise. Verify that E,= z,, H,= 0 satisfy the wave equa-
tions, but not Maxwell's equations.

It will be noted that Maxwell’s equations 6.301 and 6.302
are linear homogeneous partial differential equations. This is
an extremely important property, since it enables us to super-
impose solutions. If (ED, HY) satisfy Maxwell’s equations,
and if (E?, H?) satisfy Maxwell's equations, then the field
given by

B,= B+ E®, H,= HY+ H?
also satisfies Maxwell's equations. Further, if (E, H})
satisfy Maxwell’s equations, then so also do
E.= kE®, H,= kH?,
where k is any constant.

This technique of superposition is useful in connection with
complex solutions of Maxwell’s equations. Physically, we are
interested only in real electromagnetic vectors. However, if
(E., H,) is a complex field satisfying Maxwell’s equations, it
is clear that the complex conjugate field (Er, H,) also satisfies
the equations. Hence, the real field

E; = }(E,+ E.), Hy = 3(H,+ H))
satisfies Maxwell’s equations.

We shall now study complex solutions of Maxwell’s equa-
tions of the form
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6.308. E,= EQ¢S, H,= HO¢S,

Here E? and HD? are complex vectors independent of time
but, in general, functions of position; S is given by

2r
6.309. S=T[V—ct],

where X is a real constant and V a real function of position
only; ¢ is the constant occurring in Maxwell's equations 6.301.
Since ¢ has the dimensions of a velocity, A has the dimensions
of a length.

Since E, and H, involve the time through the factor
@M% only, equations 6.304 imply 6.302. Thus the only
conditions on EQ, HY, V, \, are imposed by Maxwell's equa-
tions 6.301. Substitution in these equations leads to

A
6.310. E9 = i erm D — ermnHQ Vo,

A
6.311. H? = — i5 emnEQm + €mn EQ V.

We now introduce the following approximation. We shall
assume that X is small, or, more precisely, that )\E(,?),,,, and
AHQ, are small in comparison with E® and H?. The omis-
sion of these small terms is the essential step in passing from
physical or electromagnetic optics to geometrical optics. In
the approximation considered, 6.310 and 6.311 read

6.312., EQ = — ¢un H? V.,

6.313. H? = ¢, EQ V..
We immediately deduce the following relations

6.314. EQV,.=0 HOV, =0, E9HO® - 0,

Equations 6.312 and 6.313 are algebraic equations, linear and
homogeneous, in E® and H®. We can eliminate E9 and
HY by substituting from the second equation into the first,
thus:
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6.315. E(e) = - GrrnnemuE(g) Vi Vi
(3rodmu— Srudme) EQ Viu Vim
EQOVVin — EQ Vi V.r
= EQV.n Vi
We immediately obtain Hamilton’s famous partial differential
equation of geometrical optics:

6.316. VinVem = 1.
From 6.312, we have
EQED = emutrpeHOHQ Vim Vop
= H(g) H(g) Vi Vim— H(g) Von H(,(,),) Vime
By 6.316 and 6.314, this becomes
6.317. EQE® = HOHO.

It is now easy to verify the following statement: The com-
plex field 6.308 satisfies Maxwell's equations, to the approxi-
mation considered, if V, EQ, HD, \ are chosen as follows:

@) V is an arbitrary solution of the partial differential
equation 6.316.
(ii) EQ is arbitrary except for the first equation 6.314.

(iii) H? is given by 6.313.

(iv) \ is an arbitrary small constant.

It remains to verify that 6.312 is satisfied. But, with 6.313
established by (iii), equation 6.312 is equivalent to 6.315; and
this is satisfied by virtue of (i), i.e., by virtue of 6.316.

We have now obtained fields of the form 6.308 which satisfy
Maxwell’s equations approximately. when A is small. Let us
examine these fields more closely.

Consider the surfaces V = constant, where V is a solution
of 6.316. The vector V., is normal to V = constant, and
points in the direction of V increasing. By virtue of 6.316,
V.m is a unit normal. If we proceed along a curve cutting
the surfaces V = constant orthogonally (i.e., having the unit
tangent V., at each point), we obtain
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6.313. ds = V,pdzm= dV,
and

6.319 4 Vom= Vo 22 v 3 i( )
' 'ds m=— ¥V .mn ds - mn ¥ nT— 2 azm V'an =0~

The first of these equations tells us that two of the surfaces
V = constant, say V = Vyand V = V,, cut off equal inter-
cepts on all orthogonal trajectories to the system of surfaces;
the length of each intercept is V,— V.. Equation 6.319 shows
that each normal trajectory to the system of surfaces V =
constant is a straight line, since its tangent vector is a constant.
We summarize by saying that V= constant is a system of par-
allel surfaces with rectilinear orthogonal trajectories.

By 6.314, the real and imaginary parts of the vectors E©
and H® are tangential to the surfaces V= constant. The same
statement obviously applies to E, and H,.

The equation .S = constant, or

6.320. V — ¢t = constant,

is the equation of a moving surface, and V,,, is the unit normal
to this surface. To find the normal velocity » with which the
surface moves, we follow a moving point which always lies in
the surface and whose velocity is always normal to the surface.
For such a point we have

da = v

But since the point always lies on the surface, we have from
6.320

6.321.

v _

a ~ "raT o
and thus, by 6.321 and 6.316,
6.322. v = ¢

The moving surfaces 6.320 are called phase waves, and we have
just established the fact that phase waves are propagated with
normal velocity c, where c is the constant occurring in Maxwell's
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equations. Since visible light is a type of electromagnet:c
radiation, ¢ is also known as the velocity of light in vacuo.

We observe that E, and H, vary as slowly as E9 and HY
over a phase wave S=constant. Over a region of this surface
whose linear dimensions are of the order of \, and for a time
interval of the order of /¢, E, and H, are constants to the
approximation considered. Moreover, to our approximation,
we get the same value again if S is increased by 2w, or any
small multiple of 2.

It is clear from 6.309 that, at any fixed point in space, S
is changed by 2r if ¢ is changed by an amount M/c. This is
called the period 7, and the frequency v is its reciprocal. Hence

6.323. T =MNe¢, v=c/\

Since \ is small, we have on moving a distance \ along the
normal to a phase wave, without changing the value of ¢, the
following approximate result:

27 27
AS = )\AV— )\)\ = 2m,

Thus, at any instant, wave surfaces of equal “phase” ¢S are
separated by a normal distance \; \ is therefore called the
wave-length.

[n exploring the nature of the field, the situation is slightly
complicated by the fact that EQ and H are complex vectors.

If we multiply 6.312 and 6.313 across by ¢, we get

6.324. Er= —emnHnVimy Hr= €omnEnV.m.
These relations between the complex vectors E,, H, (involving
twelve real components) can be replaced by relations between
the real vectors

£

6.325. E =% (E, + E), H =4% H + H),

6-326. E‘:‘= ‘%1: (Er - ._E_r)s H-:‘= %i (Hr - ﬁr)-

The vectors E; and H, will be taken as the physical components
of the electromagnetic field. The vectors EY, H} also satisfy
Maxwell’s equations, and may be regarded as the physical
components of a complementary electromagnetic field.
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If we take the complex conjugates of 6.324 and add, we
obtain

6.327. Er = — ¢maHp V., m, Hy = érmpEsV, m.

Hence the vectors V,,, E;, H, form a right-handed ortho-
gonal triad, and we obtain the relation

6.328. E,E, = H,H,

in the same way as we obtained 6.317. Thus, the physical

electric and magnetic vectors are mutually perpendicular and lie
in the phase waves; their magnitudes are equal. (Fig. 19.)

V=const,

F16. 19. Orthogonality relations in electromagnetic radiation.

Exercise. Prove a similar statement for the electric and mag-
netic vectors of the complementary electromagnetic field.

Each of the vectors EQ, H® defines a pair of fixed direc-
tions at any point in space, but the directions of the physical
vectors Ej, H, are not fixed. It is true that, if we move with
a phase wave, E, and H,, and consequently also E, and H,
are approximately constant for time intervals of the order of
the period 7. But if we remain at a fixed point in space, we
have, by 6.308 and 6.309,

32 0E, 21r'icE 0H, 2wic "
6.329. a - T A o8 - A OIn

and so
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oE, 2xc _,, OH, 2mc

i Sl
6.330.

oY g . OHI | 2mc

at xE:' FY R Y
Hence

277" 2 2 2
6.331. 96%_]_(2_:5) E; =0, aalf+ (2__;:c) H; =0.

Thus the extremities of the vectors E} and H,, which lie in the
fixed plane tangent to the surface V= constant, follow the
behaviour of a particle attracted to a

fixed point by a force proportional to K]
the distance from that point. It is well
known that the path of such a particle is

an ellipse, and therefore the extremities

of E; and H, describe ellipses, thess vec-

tors being at all times perpendicular to

one another. We say that the radiation

is elliptically polarized (Fig. 20).

A case of particular interest is thatin F16. 20. Elliptically
which the vectors E; and E; have the gfﬂgz‘fg from paper.
same direction, or opposite directions. It
follows from 6.330 that, in this case, the ellipse degenerates
to a straight line, and the vector E) maintains a fixed direction,
except for reversals which occur twice in each period. The
same is true for H,, on account of the orthogonality relation.
We speak then of a plane-polarized wave.

E.

Exercise. What conditions must be imposed on the fixed
complex vectors E© and HY in order that the wave may be
plane-polarized?

Our discussion of electromagnetic waves has involved an
approximation and is valid only for a small wave-length .
There is, however, an important special case for which our
theory is exact. Consider the linear function
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6.332. V = anzmt b,
where a, and b are real constants. We immediately have

6.333. V'm = am,
and thus 6.316 is equivalent to

6.334. Am Gy = 1.

This means that a,, is a unit vector.
Equations 6.312 and 6.313 become

6.335.  EQ= — emHPam HY = ¢mEQa,.
These are algebraic equations with constant coefficients. We
may therefore take E® and A @ to be constant complex vectors
without giving rise to inconsistencies. But in this case 6.335
follows rigorously from 6.308 and from Maxwell’s equations
6.301; no approximation is required.

The phase waves are planes orthogonal to the unit vector
ar and they propagate with velocity ¢ in the direction of a,.
We speak of plane electromagnetic waves. For plane electro-
magnetic waves our theory is exact for arbitrarily large wave-
length. The vectors E and H are rigorously constant over a
phase wave and are also constant in time if we move with the
wave.

Let us now return to the general Maxwell equations 6.301
and 6.302. We shall consider some useful types of solution.

Let ¢ be an invariant and ¢, a vector, both functions of
position and time. Let us write tentatively
19
6.336.

H, = €rpgdg.p.

Let us see what conditions must be imposed on ¢ and ¢, in
order that Maxwell's equations may be satisfied.

The second of 6.301 is satisfied automatically, and the first
gives

1 d%¢, 1 ¢y,
6.337. ; th Z__(.;' = Prinm— Pm.mre
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The second of 6.302 is satisfied automatically, and the first
gives

10 :
6.338. _C at ¢m,m + ‘b,mm = 0.

If, then, we subject ¥ and ¢, to the partial differential equa-
tions

1 3y 1%

6.339. _2 6t’ - d’r.mm: 0, E 8t2 - ll’.mm = 0,
6.340 l ﬂ 0
. . c at + ¢fmm - 9

we have in 6.336 an electromagnetic field which satisfies
Maxwell's equations. The invariant ¢ is called the scalar
potential and the vector ¢ is called the vector potential.

If we are given an electromagnetic field satisfying Max-
well’s equations, it can be shown that functions ¥ and ¢, exist
so that 6.336 are satisfied. It follows that these functions
must satisfy 6.337 and 6.338. It does not follow that they
necessarily satisfy 6.339 and 6.340. However, other functions
v and ¢, can be found to satisfy 6.336, 6.339, and 6.340. (Cf.
Exercise 16 at end of chapter.)

There is another useful type of solution in terms of the
Hertz vector T,. Let II, be a vector function of position and
time, and let us write tentatively

Er= Mpmr — 3 2
6.341.

1 9
H,= ; €rpq :3—t gp.

On substitution in 6.301 and 6.302, we find that these equations
are satisfied provided the Hertz vector II, satisfies the wave
equation

1 &I,
ct o

6-342. - nr,mm = 0.
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It must not of course be assumed that any field satisfying
Maxwell’s equations can be represented in the form 6.341.
However the Hertz vector enables us to build up a fairly gen-
eral type of solution, to be discussed below.

Let 2, and {, be any two points in space and let R be the
distance between them, so that

6.343. R = (8~ £m)(8m— &m)-
Let & be any constant, and let us write

$kR
6.344. F(s, §) = R

the notation indicating that we have here a function of the six
coordinates g,, {,; but of course these variables are involved
only in the form R. Let us denote derivatives with respect to
R by primes, and partial derivatives with respect to z, by a
comma. By 6.343 we have

Zm — ¢
6.345. Rm=—" 7 =,
and
(8m—¢m) F’
—r -
Hence, since gn.m= 3, we obtain

2F
6.347. Fonm= F" + xR

6.346. Fop =

But, directly from 6.344,

R R
B 2%k 2\ .
" - - . == _— $ER
F‘( R-r twm)d

ik 1\ .
6.348. = (Z )e‘kR,

2F' k2
FII + ? = —'EeikR - _kQF.
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On substituting this in 6.347, we find that F satisfies the partial
differential equation

6-350. F,mm‘l‘ k’F = 0.

It will be recalled that the comma indicates differentiation
with respect to g,. It is very easy to see that the same equa-
tion is also satisfied if the comma indicates differentiation with

respect to .
Let us define G(3, {, t) by
; 1

6.351. Gz, ¢ ) = e F(g }) = 2 FRR—)
Then

G ,
6’352. G'mm = c-—ikc‘F'mm, -a—tz' = — k2cze—lbch’
and so, by 6.350, G satisfies the partial differential equation

102G

6.353. Gimm — ;’ ﬁ = 0,

which is the wave equation. The function G may be called
the fundamental solution of the wave equation, the constant k
having any value.

We are now in a position to build up a fairly general class
of solutions of Maxwell's equations. We shall confine our
attention to fields with a simple harmonic variation in time,
so that the physical electric and magnetic vectors have the
forms

Ey= A, cos kct + B, sin kct,
H, = C, cos ket + D, sin kct,
where the coefficients are real functions of position and % is a

real constant. This field corresponds to a complex field of the
form

6.355. E,= EQ¢ e, H,= HQe !,

where E® and H? are complex vector functions of position
only. (The use of the negative form of the exponential is
merely a notational convenience.) When we substitute 6.355
in Maxwell’s equations 6.301, we get

6.354.
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6.356.  —ikED = em,H? ,,, tH® = ermnEQ .

The equations 6.302 are satisfied identically.

Now we know that Maxwell’s equations are satisfied by
expressions of the form 6.341, provided II, satisfies 6.342.
Hence 6.356 will be satisfied if we put

6.357. I, = OWe—iket

where II? is a vector function of position satisfying

6.358. a? ..+ 2a®= o,

By 6.341 the vectors E® and H® are given in terms of IY by
E(B)___ H('?:),mr'l' kzn(?),
HO= i €19,

Thus we can build a Maxwellian field out of any vector field
satisfying 6.358. By 6.350 we know that 6.358 is satisfied by
a vector

6.359.

eikR
6.360. n9= B: %

where B, is any constant vector, and R is the distance from
the variable point 3, to a fixed point ¢,, as in 6.343. But we
can immediately construct a much more general solution of
6.358 by writing

6.361. o9 = [ v Lr($)F(, )dv;

where F(z, {) = ¢*®/R, P,(¢) is an arbitrary vector function of
the coordinates ¢, and dV; is the volume element of d¢idiadis.
The integration is carried through a volume V, which does
not contain the point 2, under consideration. If z, did lie
inside the volume V;, we would have to consider carefully
the possibility of differentiating under the sign of integration
with respect to 3. However, this is not the case by hypo-
thesis, and differentiation under the sign of integration is per-
missible. It follows that 6.358 is satisfied. The corresponding
Maxwellian field is given by 6.355, where
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EQ= [, Pu(t) (Fanrt BFon)dVs,

6.362.

where the comma indicates partial differentiation with respect
toz It will be noted that the vector field P,.({) remains com-
pletely arbitrary. It need not even be continuous through-
out V;.

It is not essential that the integration be through a volume;
integration over a surface or along a curve would serve equally
well.

Exercise. Show that Maxwell’s equations in the form 6.356
are satisfied by

EQ = ikerpg ) V{Qq(g) F,dV;,
HY = [} 0n() (Fanrt BFoms) dVr,

where Q,(¢) is an arbitrary vector field, and Fis as in 6.344.

6.363.

So far we have used rectangular Cartesians in discussing
electromagnetic fields. We shall now introduce curvilinear
coordinates. One method of obtaining Maxwell’s equations in
covariant form is by introducing

1
6.364. Nrmn = aermny N = ,\/E €.
We recall from 6.139 that the 5’s are absolute tensors, at least
for transformations with positive Jacobian. It is now easy to
guess and verify that Maxwell’s equations 6.301 read in tensor
form

6 365 1‘ aEr rmnH -l;aHr rmn

365. o = v Haim [T = = 0 Eaims
and 6.302 read

6-366. E'ln = 0, Hnln = 0.

The stroke indicates covariant differentiation.
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Due to the behaviour of the 3's, Maxwell’s equations in
the form 6.365 and 6.366 only hold in right-handed curvilinear
coordinate systems; this means that the Jacobian of the trans-
formation to right-handed Cartesians must be positive.

However, there is another covariant form of Maxwell’s
equations valid in both right- and left-handed coordinate
systems. For the moment we retain rectangular Cartesian
coordinates. From its usual definition as force on a unit
charge at rest, it follows that E, is a Cartesian vector. Hence,
by 6.301, H, must be oriented since €,ms is an oriented tensor,
4.3. If we therefore introduce a skew-symmetric magnelic

¢ ensor by the equations

6.367. Hrm = efman' Hr = %efﬂlﬂvaﬂr

then both E, and H, are unoriented. It is easily verified that
Maxwell’s equations may be written in the following form:

14E, 10H,
6.368. c ot = e oo Epm— Enpy,
E,p = 0, Hrm-n'l' Hmmr + Hnrom = 0.

These equations are equally valid in right- and left-handed
Cartesian coordinates.

Exercise. Write out Maxwell’s equations in terms of a mag-
netic vector and a skew-symmetric electric tensor.

We have succeeded in getting rid of the permutation sym-
bols in Maxwell’s equations for rectangular Cartesians, and
are now in a position to write them in the covariant form, valid
for arbitrary curvilinear coordinates (right- or left-handed):

- 10H,
6.360. %a—a% = @™ Hmim 5 = Erm= Enn,
a’""EMm = Oy Hrmm+ Hmn:r -+ Hnr-m = 0.
In two of these equations the partial derivatives have been
retained. This is justified since E,n— Em., and Hpm.n +
Hupnr+ Hpr.m are both tensors (cf. Exercises I, No. 8 and
1.707).
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There is a third and most compact form into which
Maxwell's equations can be brought. This entails the intro-
duction of a fourth dimension, but gives the most fundamental
form of Maxwell’s equations from the point of view of rela-
tivity.

Introducing Greek suffixes for the range 1, 2, 3, while re-
serving Latin suffixes for the range 1, 2, 3, 4, we may write two
of Maxwell’s equations 6.369 in the form

Hopiy -+ Hpyia + Hwa =0,

6.370.
7 Eury = Eupa + ——

6( 5 H,, 0.
The coordinates are curvilinear. The dot in E, and E, is
merely a device to bring into focus the similarity between the
two equations. This similarity suggests the following pro-
cedure: we introduce a fourth coordinate x*= ¢t and the skew-
symmetric quantities Fpa, defined by

6-371. Faﬂ = Haﬂ, F¢4 = - F4a = Ea) F44= 0'

With respect to transformation of the curvilinear coordinates
x%, it is clear that F,s is a skew-symmetric tensor and F,,
(or Fy,) is a tovariant vector. Then the equations 6.370 can
be combined into the single equation

6.372. Fimmt Fmnet Fnem= 0.
The remaining two of Maxwell’'s equations can now be
written as follows:
0°"Hop| v — Eau = 0, a® Egjy = 0,
or, equivalently,
6.373. ahF..p”y— at = 0, a® Fgyy = 0.

The double stroke indicates covariant differentiation with
respect to the 3-metric a,g.

Let us now consider a 4-dimensional manifold, space-time,
in which the four coordinates are x!, x2, %, x4, where x*= ct.
Let us adopt in space-time the metric gmn defined by

6.374. 2ag= Qopy Zas= 0, guu= — 1,
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so that the metric form is

6.375. @ = guadx™dx™ = a,pdx"dx®— (dxb)?, xt= ct.
From 6.375 it follows that

6.376. g¥= a®¥, g*= 0, g4= — 1.

We have already defined the quantities F,,. We shall under-
stand the symbol F,p, to mean

6.377. Frmln = Lrmm— { fsn } Fom — {‘Wfﬂ} Fis,

which is the formula for the covariant derivative of a tensor in
4-space, the Christoffel symbols being calculated from the g's.
So far the only transformations of coordinates in space-time
have been transformations of the coordinates x!, x2, x3 among
themselves, with x* unchanged. For such transformations
F.m|» has tensor character, as is easily verified (cf. the dis-
cussion of normal coordinate systems in 2.6).
Consider now the equations

Frmnt Fmaswt Frrm= 0,

g""‘F,mM = 0.
The first was established in 6.372. As for the second, the four
equations contained in it are precisely the four equations in
6.373. Equations 6.378 express Maxwell’s equations in the
form suitable for the theory of relativity.

Should we wish to use arbitrary coordinates in space-time,
i.e., any functions of x!, x2, x3, x*, we have in 6.378 a valid form
for Maxwell’s equations provided that the following rule is
observed: under the space-time transformation

6.379. 2T = fr(x, x2, x3, x4),

gmn and F,, are to be transformed as covariant tensors. The
fundamental nature of equations 6.378 becomes apparent only
when coordinate transformations of the general type 6.379 are
considered which involve all four coordinates on an equal
footing. These are the transformations of the theory of
relativity.

6.378.
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If rectangular Cartesian coordinates are used in space,
6.375 becomes

6.380. ® = (dx')® + (dx*)? + (dx?)® — (dx*)

The linear transformations of the coordinates in space-time
which preserve the form of this line element are called the
Lorents transformations. They form the basis of the special
theory of relativity.

Physically, a Lorentz transformation connects, in general,
the spatial and temporal frames of reference of two observers
moving with uniform velocity relative to each other. The
electromagnetic field is characterized for each observer by Fpq
which, under a Lorentz transformation, behaves like a four-
dimensional tensor. Since F,, embodies both the electric
and magnetic fields, these will in general not transform as
separate entities. Physically this means that if, for example,
an observer finds an electric but no magnetic field present, then
a second observer, moving relative to the first, may find both
electric and magnetic fields present. It is obvious that Max-
well’s equations preserve their explicit form under Lorentz
transformations. They read as in equation 6.378, with the
simplification that the stroke may be replaced by a comma,
and all the g™ vanish except gll= g%= gl = —gh= |,

Exercise. Show that with homogeneous coordinates g, (21, 23, 23
being rectangular Cartesians in space and s = ict = ix%)
Maxwell’s equations read

Frm-n+ mer+ Fm-.m= 0, Frm:m = 0.

Write out the components of F, in terms of the real electric
and magnetic vectors, noting which components are real and
which are imaginary.

In the general theory of relativity space-time is a curved
Riemannian 4-space with line element

6.381. D = gpdx™dx".

The coordinate transformations considered are of the general
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type 6.379. We can no longer distinguish between an electric

and a magnetic field, even if we restrict ourselves to a single
coordinate system. Only the fusion of the electric and mag-
netic fields in the tensor F,, has physical significance. The
tensor F, satisfies Maxwell’s equations in the covariant form
6.378 in space free of charges.

SUMMARY VI

HyprobYNAMICS
Eulerian description of fluid motion:
v, = v,(x, £).

Equation of continuity:
a_p + ( r) = 0
a T W= 0

Equations of motion of perfect fluid:

09, _
a_t + ”.vrh = Xr il IP'r-

Vorticity:

1
Wrs = % (vlvf— ”7.3), wf = 2v; e"mﬂwmn.

Irrotational flow:
Wrg = 0, v,-= - ¢.r .

Bernoulli’s integral for irrotational flow:
¢
— % T §0™¢mént P+ U = F(),

dp
- (2,

P X r= - U.r .
EvLasTtICITY
Displacement in elastic medium:
us(x)
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Extension and strain tensor:
e = e A"\ NN = 1,
ere= 3} (uf|a+ uclr)~
Stress tensor:
E;= E4y Te= E,n°, n*n,= 1.
Equations of motion of continuous medium:
of' = pX'+ E™ .
Generalized Hooke’s law:
Eis= Cremne™,
Cramn= Cream= Cermn™= Cmnrs.
Isotropic stress-strain relation:

Cromn= MNGrs@mn—t I‘(arma!ﬂ'" arnatm)v
E,,= N + 2pers, 0=0""emy.

ELECTROMAGNETIC RADIATION

Maxwell’s equations (Cartesian coordinates):

10E, 1 oH,
c ot = mnnim c ot = — €mnEn.m
Enm = 0, Hum = 0.
Wave equation:
1 o, L oH,

i Eivmm = 0, ;2 T Hemm= 0.
Electromagnetic waves (small wave-length A):
E.= EVeS, H, = HPS, S = 2{5 (V - ob);
ViV = 13
EQOV,= HOV,= E9H® = 0, EQE® = HOHO,
r = Ne, v = ¢/\

Plane waves:
V=anzmnt+ b aman=1.
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Electromagnetic potentials:

1 3¢,
r = = ; ot Vir, Hi= €rpgdba.s;
1 9%¢, 1 %
G " tme=0 . 53 = Yam= 0,
1 61//
Hertz vector:
1 &1, 1
E,= Ny — ;2 Wy H, = ; €rpg gt. HQ'P;
1 aznf
z; o romm = 0.
Fundamental solution:
kR
I, = H(?)e—ikcl’ (0) B, eR

= (zm"' fm)(zm"‘ g.m)°

Maxwell’s equations (curvilinear coordinates):

Hom="V GermaHl®, H = L €™ Hoa;
2V

1 0E, 1 6H,m
- — n - — = _
c ot a Hrmlm c ot Erm— Em.ry

aﬂmEnpn"—' 0, Hrmint Hmpirt+ Hprm= 0.
Maxwell’s equations in 4-dimensional (space-time) notation:
P = gundxmdx"= adx"dx’—(dxh)?, xt= ct;
Fug= He, Foyy= — Fyy = E,, Fu= 0;
Frmint Faniet Farm= 0, g™ Foma= 0.

EXERCISES VI

1. For a fluid in motion referred to curvilinear coordinates
the kinetic energy of the fluid in any region R is
T =13} fR pvv"dV.
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Use the equations of motion 6.147 to show that, if we follow
the particles which compose R, we have

d

d—f = —[ pnvdS + [ 0pdV + [ pv. X"V,
where S is the bounding surface of R, and #, the unit vector
normal to Sand drawn outward. Show further that if, instead
of following the particles, we calculate the rate of change of T
for a fixed portion of space, we get the above expression with
the following additional term:

- % fs pn,-‘l)"l).i)'ds.

2. Consider a fluid in which p is a function of p, moving
under a conservative body force. Show that if the motion is
steady, but not necessarily irrotational, then the following
quantity is constant along each stream line*:

o0+ P+ U
Compare and contrast this result with 6.154.

3. For the general motion of the fluid described in Exercise
2, prove that

d
7 fc v dx"= 0,

where the integral is taken round any closed curve, and d/d¢
is the co-moving time derivative.

4. Curves having at each point the direction of the vor-
ticity vector " are called “‘vortex lines.”” Prove that fc v.dxT
has the same value for all closed curves C which lie on the
surface of a tube of vortex lines, and go once round the tube
in the same sense. (Use Stokes’ theorem; cf. 7.502.)

5. Prove that for the type of fluid described in Exercise 2,
the vorticity tensor satisfies the differential equations

d

(E Wrs= Wprlp,s— WpsUp,r,

*A stream line is a curve which, at each point, has the direction of the
velocity vector 9.
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the coordinates being rectangular Cartesians. Write these
equations for curvilinear coordinates.

Deduce from these equations that, if w.,= 0 initially at
some point P in the fluid, these quantities will remain zero
permanently for the particle which was initially at P.

6. By eliminating the three components of displacement
4, from the six equations 6.210, obtain the following Cartesian
equations of compatibility:
eramnt Cmnire— Crmin— Canrm= 0.
Show that there are only six independent equations here.
Write the equations of compatibility in general tensor form.

7. For rectangular Cartesian coordinates z,, a state of
simple tension is represented by E;;= C (a constant), all the
other components of stress being zero. Find all six covariant
components of stress for spherical polar coordinates 7, 6, ¢.

8. By substitution from 6.247 in the Cartesian equations

of compatibility given in Exercise 6, deduce that in a homo-
geneous isotropic body in equilibrium under body forces X,,
the invariant © = E,, satisfies the following partial differential
equation:

(1 — 0')9,fr= (1 + U)pXr.r.

9. In a state of plane stress we have E,s= 0, Ess= 0, the
coordinates being Cartesian, and Greek suffixes taking the
values 1, 2. Prove that the equations of equilibrium under
no body forces are satisfied if we put

Eup = €ap€85¥00s
where ¥ is an arbitrary function. Show that this gives
En= y,2, Eqa= — ¢.13, Es2= ¢.11.
10. An isotropic elastic body is in equilibrium under no

body forces. Show that, for rectangular Cartesian coordinates,
the displacement satisfies the partial differential equations

(1 - 20')Aur+ 0.r= Oo
Deduce that 6 is a harmonic function.
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Show that the above equations are satisfied if we put

1
Ur= Yr— 4(1 - o) st &)ors
provided A¢ = 0, A¢,= 0. (Papcovich-Neuber)

11. If, for rectangular Cartesian coordinates 2, xr. is any
symmetric tensor, show that the tensor En,, defined by

Epp= €mpréngsXrepgr
is symmetric, and satisfies the equations Epa.n= 0. (Finzi)
Show that if we choose xrs= 2,2, then Epp= —20ms.

12. The determinantal equation |Asps— Ema| = 0 is im-
portant in elasticity because it gives the three principal stresses
at a point. Show that if we introduce the three Cartesian
invariants

A = Eum B = EmnEmm C= EmnEanpm’
this cubic equation may be written in the form
N— AN+ 3 (42— B)A— (§4* -3 AB+ §C) = 0.
[Hint: Note the Cartesian invariance of this expression, and
use coordinates which make E,,= 0 for r 5 s.]

13. A plane electromagnetic wave in complex form is given,
for rectangular Cartesians 2,, by the formulae

E.,= Aac‘sp E;y=0, H,= -echﬁe’-sv H;= 0,

27
S=_A'(23—Ct),

where 4, is a constant complex vector, and Greek suffixes take
the values 1, 2. Verify that Maxwell’s equations are satisfied,
and that the wave is propagated in the positive gs-direction.
The wave meets a perfectly conducting wall g;= 0, and is
reflected. Given that the condition on such a wall is that the
tangential component of the electric vector for the total fieid
vanishes, show that the reflected wave is given by

El = —A4,, E} = 0, H, = —¢,544¢">, H}, = 0,

2
S’= —'_:"(Zg-‘-ct).
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14. Taking for the Hertz vector the fundamental solution
of the wave equation 6.342
e —ik@—R)
H'= BrT ] R2 = zmzm,

where B, is a constant vector, show that, for R much less than
\ = 2x/k, we have approximately

F) e—ikd

Er= —a_z'[Bﬂlzm R3 ]’
e—o’kct

H, = — ":kermanzn R3
Show also that, for R much greater than A = 2x/k (wave-
zone), we have approximately

—ik(cs —R)
E, = k? (B,R*— Bpn2ns,) T

e«—ib(cl -R)

H = — kzermanznT'

(This is the electromagnetic field of the Hertzian dipole oscil-
lator, which is the simplest model of a radio antenna.)

15. In terms of the magnetic tensor Hp,, defined in 6.367,
show that, in curvilinear coordinates in space,

(a) The condition that A® be parallel to the magnetic field
is

HpuaA?= 0.

(b) The condition that u, be perpendicular to the magnetic

field is
Hpnpr+ Hprpm+ Hrmlln": 0.

(c) The square of the magnitude of the magnetic vector

(H*= H.H") is
H?= } HpH™.

16. Show that E, and H, are unchanged if, in equations

6.336, ¢, and ¢ are replaced by

’r _ ’_ la_v
Or= ¢rt v, ¥'= ‘l’_cat’
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where 9 is an arbitrary function of position and time. (This
transformation of the electromagnetic potentials is called a
gauge transformation.) If v is any solution of the inhomogen-
eous wave equation

1 6% 1oy

agp — Vmm =Tt émm
show that, if ¢, and ¢ satisfy 6.337 and 6.338, then ¢’, and ¢/
satisfy equations of the form 6.339 and 6.340.

17. Combining the vector potential ¢, (a = 1,2, 3) and the
scalar potential ¢ into a single 4-vector «,, given by
Kg= = Qg K4= ‘l’y

show that equations 6.336, 6.337, and 6.338, can be written in
the relativistic form

Fpn= Kmin— Kn.m,

g™ &y | mn=— g™ km jran= 0,
where Fp, is as in 6.371, and g™® as in 6.376. Show further
that equations 6.339 and 6.340 become

g™ Kr | mn= 0, g™ Km0 = 0.
Show also that the gauge transformation of the preceding
exercise can be written

'
K= Ke— v,,-.

18. Using homogeneous coordinates 2, (21, 22, 33 being rec-
tangular Cartesians in space and g4= 7ct = 7x*), and defining

Foun= %‘ emnrsFre
show that the complete set of Maxwell’s equations 6.378 reads

Fimm= 0, %‘rm»m = 0.



CHAPTER VII

RELATIVE TENSORS, IDEAS OF VOLUME,
GREEN-STOKES THEOREMS

7.1. Relative tensors, generalized Kronecker delta, per-
mutation symbol. In Chapter 1 we defined tensors by their
transformation properties. The characteristics to which the
tensor concept owes its importance may be summarized as
follows:

A. The tensor transformation is linear and homogeneous.
Hence if all the components of a tensor vanish in one co-
ordinate system, they vanish in every coordinate system. It
follows that a tensor equation, if true in one system of co-
ordinates, holds in all systems of coordinates.

B. The tensor transformation is transitive.

We shall now study in detail a new set of geometrical
objects which share with tensors both the above properties.
These are the relative tensors which we have already met in 6.1.

As before, we denote the Jacobian of the transformation
from coordinates x" to x’* by
;o ’ ox*

x'®
where the vertical bars denote a determinant. We now define
relative tensors as follows:

A set of quantities T, . are said to be the components of a
relative tensor* of weight W, comtravariant in the superscripts
7, ..., and covariant in the subscripts, s, . . . , if they transform
according to the equation

*Abuse of language, cf. p. 128,

7.101.
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L. ox'T ax"

cee — W
7.102. T"S...—"J Tm”...axmooaax,‘-oo .

It is understood that we limit ourselves to transformations for
which the Jacobian at the point under consideration is neither
zero nor infinite. We shall also assume throughout that the
weight W is an integer, since otherwise J¥ is not single valued.

In accordance with our previous practice, we refer to rela-
tive tensors of orders 1 and 0 as relative vectors and relative
invariants, respectively. To distinguish, where necessary, the
tensors previously considered from relative tensors, we may
refer to the former as absolute tensors, absolute vectors, or
absoluteinvariants. These are, in fact, relative tensors of weight
0. Relative tensors of weight 1 are also known as tensor
densities.

Exercise. If b,, is an absolute covariant tensor, show that the
determinant |b,,| is a relative invariant of weight 2. What are
the tensor characters of |¢™| and |f7] ?

It follows immediately from 7.102 that property A, stated
above, holds for relative tensors. In the case of an equation
in relative tensors the two sides must be of the same weight.

Property B follows from the transitivity of the tensor trans-
formation and from what we may term the ‘“‘transitivity of the
Jacobian.” If x7, 2’7, x’'T are three systems of coordinates, we
have

ax" Ix" '™
7.103. ST = g g
Hence, by the rule for multiplying determinants
x" ax™ | | ax'"
ax'’® '™ lox"e |’
This establishes the *‘transitivity of the Jacobian.”

Two relative tensors of the same order, type, and weight
may be added, the sum being a relative tensor of the same
weight. Any two relative tensors may be multiplied, the
weight of the product being the sum of the weights of the

7'104.
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factors. The process of contraction may be applied to a rela-
tive tensor and does not change the weight. All these results
follow from 7.102 by using arguments quite analogous to those
given in Chapter I for the case of absolute tensors.

We now introduce a set of numerical tensors, the generalized
Kronecker deltas. In a space of N dimensions, we define (for

any positive integer M):

7.105.  oftfeiiitv = +41f k..., ky are distinct in-
tegers selected from the range
1, 2,...,N,and if sy,..., sy
is an even permutation of k,
eeos By

= —11if %y, ..., By are distinct in-
tegers selected from the range
1,2,...,N,andifsy,..., syis
an odd permutation of &y, ...,
k.

= 0 if any two of %i,..., &y are
equal, or if any two of sy,.. .,
sy are equal, or if the set of

numbers ki, ..., ky differs,
apart from order, from the set
Sly e e oy SM.

We immediately notice that for &* this definition agrees with
that given in 1.207. If M > N, N being the dimension of our
space, then

5?: ku =0
1 e e [
since ki, ..., ky cannot all be different.

Exercise. Show that, in three dimensions, the only non-
vanishing components of 5% are

=i = =0 =01 =03=1,

= =0 =0l =0 = o} =

I
|
Yk

.
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Exercise. Show that equations 5.231 and 6.128 can be written
as follows:
M rs = 6&: sz 15

1]
Wrs = %ﬁ: UL,k

To establish the tensor character of the generalized
Kronecker delta, let A(l)k‘, A(z)k’, ey A(M)k“ be M arbitrary
contravariant vectors. Then

Sk At Aan™

.« Sy

is a sum of M/ outer products of these vectors, viz.,

At AP4wh. .. Aen™ — Ao AP Awh. .. Aay™ + ...

This sum has the tensor character of 7% ‘- *», Hence, by our

test for tensor character, 1.6, 6f§j : :f‘; s a mixed absolute tensor
of order 2M.

For purposes of manipulation we shall find the following
formula useful. If 7% * is skew-symmetric in all pairs of
superscripts, then
7.106. S hu e = Ny TR Ru
The expression on the left side is, by 7.105, a sum of M/ terms.
The first of these is 7% ' -*¥; the other terms are obtained
from it by permuting the superscripts and a minus sign is
attached if the permutation is odd. Since T%"--** is com-

pletely skew-symmetric, each of the M/ terms in this sum
equals 4 7% -*»_ This proves 7.106.

Exercise. If Ty, . _ .4, is completely skew-symmetric, determine
S
kT

We now consider the permutation symbol e,,, ... ,., which
was introduced in 4.3 and was there seen to be an oriented
Cartesian tensor. Let us recall its definition:

M

7107. ¢y ...y, = 0 if any two of the suffixes are equal.
= +4 1if r,7s...,ry, is an even permu-
tationof 1,2, ..., N.
= — 1if ry,rs..., 7y, is an odd permu-
tation of 1, 2,..., N.
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This definition is equivalent to stating
7.108. €reeeiry = Orn il

vofy "

In order to investigate the tensor character of the permu-
tation symbol under general coordinate transformations, we
note that, by the definition of a determinant, we may write
the Jacobian

ax"  9xn ax’v
7.109. J = ‘r,r, ceu?y a_x’i m . ax'N .
If, in the right side of this equation, we interchange any two
of the suffixes 1, 2, ..., N, the expression changes sign; if any"

two of these suffixes are made equal, the expression vanishes;
for example

ot 9x" ox'v
Erry...ry 5@ 3;,; R
= o™ - 6_x'_' aim = — J
= CGgiiary ﬁ Py o e ax'N = ’
"  9x ax’v
€rry. ..ty 5?; g:;,'i soe ax'N
B ot o 3
= e'»"---'xv‘—.’;i ;ﬁ e e m
"t 9x ax"™

e h wh G

The last expression is therefore its own negative, and conse-
quently vanishes. Thus, if we change 1, 2,..., N in 7.109
into si, $s, . . . , Sy and divide by J, we get

X 9x" A’

7110, €og.p =T Y6 .rn P lrwr S T

"This proves that the permutation symbol ¢, ..., is a covariant
relative tensor of weight —1.
Similarly to 7.110, we have
xS Ix'* ox'sv
T o ax™ T awm

7.11 10 e"p’, aee SN = Je'l'l
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This shows that the permutation symbol is also a contravariant
relative tensor of weight +1. We therefore use the alternative
notation €' "' |

If the transformation is a positive orthogonal transformation,
4.3, we have J=1, and 7.110, 7.111 become the transformation
formulae for an absolute tensor, covariant and contravariant
respectively. This verifies the fact, indicated in 4.3, that the
permutation symbols are components of an oriented Cartesian
tensor.

Exercise. Show that
7.112. e, = NI

Since the permutation symbol is completely skew-sym-
metric, we have, by 7.106, the following formulae

k... k Spoee SMP1oee PNemp Rieoe Rytyoee ry—
53: M 51 'MT1 N—u = M 5 M1 N u,

oo Sy
7.113. . r
8IS ey = Nl e, .5 et
For later work we also require the formulae
oo Rty o oo TN~
M ik N—u € e Sy Pre oo tN—N
= ook
7.114. =(N—-M)! &b,
ek ek
5k' v €5y = ;s:...s:-

The proof is straightforward, and is left as an exercise.

Having established the tensor character of the permutation
symbol for general transformations, not necessarily orthogonal,
we can generalize concepts such as that of the vector product
and the curl to general 3-spaces and to arbitrary curvilinear
coordinates. It is interesting to note that the idea of metric
is not involved here, nor indeed throughout this section.

Let X, Y be absolute covariant vectors in a general 3-
space. We put

7-115- Pm = manﬂ Yr = %e”""‘ (X"Yr_ XfYn) .

Comparing this with 4.319, we note the similarity between P™
and the vector product of the Cartesian vectors X, and Y.
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However, P™is now a contravariant relative vector of weight 1.
Similarly, if X™ and ¥™ are absolute vectors,

7 1160 P eman”Y = §€mm- (X Y’ XTY")

is a covariant relative vector of weight —1.
A generalization of the curl of a covariant vector field is
given by the equation

7017 Pmo= ennrdXr 4 e ("-& - 6X").

ax™ dx™®  9x"
The expression in the parenthesis is an absolute tensor (cf.
Exercises I, No. 8).

The permutation symbols may be used to generate relative
tensors from other relative tensors, the process in general
changing the order. We illustrate with a particular example
in four dxmensxons (V. = 4). Let Tna be a covariant relative
tensor, and let Tmn be deﬁned by

7.118. T = LertmeT,,

Then 7™ is a contravariant relative tensor whose weight
exceeds by unity that of T'ma, since the weight of e js 41,
It is obvious that I™" is skew-symmetric.

H Tn is skew-symmetric, we can solve the equations 7.118
for Tmn in terms of the components of Tmn, Multiplying 7.118
by % €xsmn, We obtain, by use of 7.114,

%ekamn Ik‘m " o= i’ €ksmn erimn T,..
i‘ ykfv Ty
= % (T ks — ak)
= T,
In the last step the skew-symmetry of T, has been used.
Renaming the free sui’ﬁxes we can write the result as follows:

7.119, = } €rtmn 1™

The symmetry between the equations 7.118 and 7.119 is qulte
striking. Two skew-symmetric relative tensors T, and Tmn
related by these equations are said tobe dual. The symmetry
of the relationship of duality is also exhibited by writing out
explicitly all components of 7.118 :
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f”= Ty, f"u__: Ty, 2"*12,_ Ty,

7.120. A A A
Tl4= Tgs, 1‘24= Tu, Tu= Tn.

Exercise. 1f T,, is an absolute skew-symmetric tensor in a
4-space, show that Ty Tss+ TeuTs1+ TuT12is a tensor density.

The concept of duality can be generalized. If T, . . ,,
is a covariant relative tensor which is completely skew-sym-
metric and if M £ N, then we define
7.121. f‘f]-..fy-u____ i. eSl- e e SpPie s e IN—M Ts

| 77 e
This equation can be solved for T}, ..., by multiplying by
€ ... hy re.re—u+ We then have, using 7.114 and 7.106,

provemee = WMl

Su*

o Sy
ekl..ok”h-.-ry.—y M Y Y] TS,.--SM

=N =M Ty,...¢-
We can write this
1
Y 19 =m€s,...:ﬂ....ru_,

7.122. T, Troeeomw—u
Two skew-symmetric relative tensors T, ...z, and Thiee by —u
related by 7.121, or, equivalently by 7.122, are called duals.
Equation 7.119 is a particular case of 7.122 for M = 2 and
N = 4. The weight of the contravariant relative tensor in a
pair of duals always exceeds by unity the weight of the co-
variant relative tensor. It is easily seen from 7.122 that if
Sty ... S B1y+ - ., EN—y IS an even permutation of 1,2,....
N, then

Tkyoo ok
7.123. Tyoogy = Theecbw—u,
This result enables us to write out immediately the explicit
equations relating the components of a pair of duals.

Exercise. Show that, for rectangular Cartesian coordinates,
the vorticity tensor and the vorticity vector of a fluid are duals
(cf. 6.130).
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7.2. Change of weight. Differentiation. Thus far our
discussion of relative tensors has run parallel to the develop-
ment of absolute tensors as given in Chapter 1. All conclusions
were based on the transformation properties 7.102. We now
consider Riemannian spaces and introduce a metric form

7.201. P = apuadx™dx™.

In addition to the operations of lowering and raising suffixes
by use of the metric tensor, we also have a process of changing
the weight of a relative tensor, as will now be explained.

As we wish to cover indefinite as well as definite forms, and
transformations with negative Jacobian as well as those with
positive Jacobian, certain symbols (e(a) and e(J)) described
below are introduced. For the simpler case of positive-definite
metric forms and transformations with positive Jacobian, we
may substitute e(a) = e¢(J) = 1 in the formulae given below.

Consider the determinant |a,»| to be denoted by . Under
a coordinate transformation, we have

Ox" ox*
'™ ax'™
This shows that a is a relative invariant of weight 2. If & is
positive-definite, then a is positive (cf. Exercises II, No. 13);
but if & is indefinite, a may be negative, and to take care of
that case we introduce a symbol e(a) = = 1 such as to make
e(a)a positive. We note that, since J? is positive, e(a) does
not change sign under the transformation. Thus ¢(z) is an
absolute invariant and e(a)a a relative invariant of weight 2:

7.203. d(a)a’ = Je(a) a.

If T::is a relative tensor of weight W, and w is any
positive or negative integer, then T7 ::, defined by
7.204. T{: = ((a)a)* T3::,
is a relative tensor of weight W + 2w. In a Riemannian space
we may regard T5:: and T}.:as two representations of the

same geometrical object. We shall now consider how to gen-
eralize this result when w is half of an odd integer, so that the

= J%.

7.202. @ =@ mn| =|ars
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weight of a relative tensor may be changed by an odd number.

We have throughout considered only coordinate trans-
formations whose Jacobian does not vanish or become infinite
in any region under consideration. It follows that the
Jacobian J is everywhere positive or everywhere negative. In
the former case we call the transformation positive, in the
latter case negative.* Let ¢(J)= + 1 or —1 according as the
transformation is positive or negative. We now define oriented
relative tensors as follows: A set of quantities T°5 ; : issaid to
form an oriented relative tensor of weight W, if it transforms
according to the equation

ax'r ox™

7.205. T7:: = e(J)JWT',',’:;M—,,,- Ak

If J is positive, then e¢(J)= 1, and this transformation law
reduces to 7.102.

The product of two oriented relative tensors is a relative
tensor which is not oriented. Note that the word “‘oriented”
is used here in a more restricted sense than in 4.3, since 7.205
determines the transformation properties of T%: : under nega-
tive transformations as well.

Taking the positive square root on both sides of equation
7.203, we have

7.206. (€@)a")t = (N)J (e(a) a)}.

This shows that (e(a)a)! is an oriented relative invariant of
weight +1. We can now interpret 7.204 without difficulty if
wis half an odd integer; T'%:: is then an oriented relative tensor.
In particular, we can associate with every relative tensor T ; :
of weight W an absolute tensor T : :, whichis oriented if W
is odd and not oriented if W is even; it is given by

7.207. T7:: =(e(a)a) ™" T7::.

The permutation symbol ¢, .. _,,, or €* ¥, gives rise to
two oriented absolute tensors:
7.208. Tryeoory = (€@)a)} €. .o

*Cf. 4.3.
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70209. 1”1 ceefy = (e(a)a)—i e’l .o N.

Using these, rather than the permutation symbols e, in equa-
tions 7.115 and 7.117, we can, in three dimensions, define the
vector product and the curl as oriented absolute vectors. In
a similar manner we may define the dual of a skew-symmetric
absolute tensor as an oriented absolute tensor.

In one respect our notational conventions are violated by
the permutation symbols, when there is a metric. This is not
serious as long as the following caution is kept in mind:
€' and e,.,.,, are not obtained from one another by
raising or lowering suffixes with the metric tensor. Instead,
we have the relations:

. UREER)
7.210. €reniry = —CQpsi oo Qe €

7.211. €= g gt | A"V o e

These equations are established by an argument com-
pletely analogous to that used in deriving 7.110.

Exercise. Show that

Mryeeery = e(a) Apis o oo Qpysy PLEREL

Fleoely 715, NS
1 N_e(a)a“...a"""h,...sy'

We now turn to the problem of defining the absolute and
covariant derivatives of a relative tensor. We can proceed as
we like, provided that the definition agrees with the old defi-
nition of 2.5 when the weight of the relative tensor is zero.
The absolute derivative of the metric tensor am, is zero (cf.
2.526); we shall now make sure that the absolute derivative
of the determinant @ = |G| is also zero. This suggests the
following definition of the absolute derivative of a relative tensor
T;::: of weight W:

1212, LT3 = (002 (o)) 7 T3,
ou Su

The operation of absolute differentiation on the right side of
this equation can be carried out by the process of 2.5 since the
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bracket expression (e(@)a)~*" T7%::: is an absolute tensor
(which is, however, oriented if W is an odd integer). Note

8 . .
thatg; T%::: is a relative tensor which is not oriented, even

if W is odd.
The absolute derivative of a, for which W = 2, is, by 7.212,

éa

7.213. rve e(a)ag%[(e(a)a)‘la]

= e(a)aa—j‘te(a) = 0,

since e(a) is an absolute invariant, and a constant. Also in
the case of the invariant density (e(a)a)}, for which W = 1,
it is easily seen that the absolute derivative is zero.

The definition of the covariant derivative of a relative
tensor is now obvious:

7214, T5 = (€@)a)V(e@)a) Y T )k
Neither absolute nor covariant differentiation alters the weight
of a relative tensor.*

We have already seen that the operation of absolute (or
covariant) differentiation, when applied to a product of abso-
~ lute tensors, proceeds according to the laws of ordinary (or
partial) differentiation. Thus, for example,

8.5*, . sTm»

w Lt S

The same holds good for relative tensors. This is easily proved
from the definition 7.212. Alternatively, we may take Rie-
mannian coordinates with an arbitrary point O as origin. At
0, all Christoffel symbols vanish and further d(e(a)a)/dx"=0,
since 8ama/8%x"= 0. Thus, at O, the absolute derivative of a
relative tensor, as defined by 7.212, reduces to an ordinary
derivative. We then know from elementary calculus that
7.215 holds for relative tensors at the origin of a Riemannian
coordinate system. But this being an equation in relative

)
— .9 =
7.215. ™ (S*, T™)

*For an alternative (but equivalent) definition of absolute and covariant
differentiation of relative tensors, see Exercises VIII, Nos. 18, 20, 21.
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tensors, it must be true in all systems of coordinates; and O
being an arbitrary point, it must hold generally.

Exercise. Using Riemannian coordinates, prove that
Crerylk = e"‘"'le = (,

o ATieeety
Mryeoryle = 11! Mg = 0.

7.216.

We shall now establish a simple but useful formula for the
divergence of a contravariant vector density. If 7% is a vector
density, i.e., a relative vector of weight 1, then
7.217. t* = (e(a)a)~iT"
is an absolute vector (oriented). Then, by equation 2.545,
generalized slightly to include the case of a negative deter-
minant ¢, we have

9
7.218. "= (e(a)a)™? oo [(e(a)a)? ] .
Multiplying across by (e(a)a)? and substituting from 7.217,
we get
ar™
ax® °
Since the covariant derivative of (e(a)a)!is zero, this reduces
to the simple result

(e(@)a)} [(e(@)a) T =

aT™
T o
Note that this striking result holds only in the case of a contra-
variant vector density.

7.219. T‘"ln

Exercise. Prove that if T" is a relative vector of weight W
then

7.220. T%.= (e(a)a)}@—V aixﬂ [(e(@)a) @ =" 7] .

7.3. Extension. In 1.3 the infinitesimal displacement
was studied as the prototype of a contravariant vector. The
infinitesimal displacement was characterized by the vector dx".
Only later, in 2.1, did we introduce a metric and the concept
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of a length ds associated with the displacement dx". This
indicates that the vector displacement is more fundamental
than its length. Both magnitude (in a sense) and direction
of the displacement are determined by the vector dx"; for
example, it is possible to say that one displacement (d'x") is
twice another (dx") if d'x"= 2dx". It is only when we wish
to compare the magnitudes of infinitesimal displacements at
different points or in different directions that we require the
concepts of metric and length.

We are all familiar with the ideas of area (2-volume) and
ordinary volume (3-volume). In this section we shall be con-
cerned with the more fundamental nom-metrical concept of
extension* which bears the same relationship to volume as the
vector displacement bears to length. We shall work from the
beginning with a general number of dimensions, since the
tensor notation is such that little is gained by restriction to
a special number of dimensions.

In a space of N dimensions, in which no metric is assigned,
consider a subspace Vy of M dimensions (M £ N) defined
by the parametric equations

7.301. x* =%y, 2, ..., yM).

In this Vs consider a certain region Ry. Let us divide Ry,
into a system of cells by M families of surfaces
7.302. f9%) =9, a=1,2,..., M,
where ¢? are constants, each taking on a number of discrete
values and so forming a family of surfaces (Fig. 21). Here and
throughout the remainder of this chapter the Greek letters
a, B, vy assume values from 1 to M and the range and summation
convention will apply to them unless an explicit statement to
the contrary is made. Note that this applies only to the first
few letters of the Greek alphabet. Others, such as 0, p, o, 7
will be reserved for special ranges of values as required.

It is easy to attach a precise meaning to the statement that
a point P of V) lies in a certain cell; for P may be said to lie
between two surfaces of the same family, say family a, if the
expression f@(y) — ¢ changes sign when we change ¢ from

*Historically, this concept is quite old. It is due to Grassmann (1842)
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the value belonging to one of these surfaces to the value be-

longing to the other: here y refers to the parameter values at
the point P.

(Y'+Awy", Y3 Bwy2 v3 Awy®)

F16. 21.—A cell in subspace V3; the coordinates of 4 are x*, and those of
Bq) are x* + Aot

Let A bea corner of a cell (Fig. 21). Through 4 there passes
one surface of each family. Let the corresponding values of
the constants be ¢, ¢®, ..., ¢, Passing along the edge
for which ¢(® alone changes, we arrive at another corner By,
for which the constants have values ¢ + Ac®), ¢ 0
In passing from 4 to Bq) the parameters change from, say,
y* at 4 to y*+ Awy" at B(), and the coordinates from x* to
x*+Ayx*. Similarly the parameter values and the coordinates
of all the corners Bq)y, B, ..., Bur, of the cell which are
reached by passing from A4 along an edge of the cell may
respectively be written

¥+ Awy®;
and x*+ Agx*.

We now form the determinants

Awxh, Awxh, . . L L At
Awx™, Agxh, . . L L, Agate
7.303. Y R R B

cccccc
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Introducing the generalized Kronecker delta 6?;:::?;’, these
determinants can be written compactly as follows:

7.304. Al R 5?‘ : .’;: Apx™. . . A(M)x’".

1
Had the edges of the cell been taken in a different order, the
determinants might all have had the opposite signs; apart from
this common change in sign, the determinants are independent
of the order of selection.

If we employ the same cell, but a different corner to start
from, the determinants formed in the same manner would in
general have different values. But if the cell is infinitesimal,
that is, if the Ac® are infinitesimals, the differences will be
infinitesimals of a higher order than the determinants 7.304,
which we shall now write

7.305. dran® = 8’_::: e g dx®. . . danx®™.

We are therefore to regard this set of determinants as some-
thing which, except for the possibility of a common change in
sign, is uniquely determined by an infinitesimal M-cell whose
Bth edge is dyx"®. The set of quantities dr M is called
the extension of the infinitesimal M-cell. This tensor is the
nearest approach to the concept of elementary volume possible
in a non-metrical space.

Exercise. Show that 7.305 may be written in the equivalent
form
7.3060 df(mkl ter k" = ép‘ b ‘" d(ﬂ‘)xk‘- .. d(p.)xk".

In this equation, what is the tensor character of the permu-
tation symbol & -#xp

The edges of an infinitesimal M-cell of V) can obviously
be written in the form

k
7.307. d(p)xh = E:E- d(p)y‘.
ay*
We therefore obtain the following alternative expression for
the extension of the M-cell
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7.308. d‘r(M)k"”k"
_ba,,,_,,,,,ax"‘ ox¥
= s,...s‘,_;l LI o
9y dy

The expression on the right side of this equation is essentially
a sum, the first term of which is

1 L
g:—z .o % d(l)yq. . d(M)y“".
The other terms in the sum are obtained from this by per-
muting the subscripts ki, ks, . . ., ky, a minus sign being at-
tached to a term if the permutation is odd. However a per-
mutation of ky, . . ., ky in 7.309 is equivalent to the corres-
ponding permutation of ay, ..., ay in dwy™. .. dany™.
For example,

dmy™. . . dany™.

7.309'

. °337,d(1)3""d(2)3’“'- - dany™

dachu .
9y a0y e@Y™. . . dany™,

and this becomes, on interchanging the dummy suffixes a1, as,

dxhaxh  gxtu

oy aymdITEmY™. . . dany™.
It follows that 7.308 may be rewritten in the form

dxh  oxhe .
7.310. drgpf R = —... P Ol rad Y™ . dany™.
Introducing the permutation symbols e**** ¥ for the range
1,..., M, we can, by 7.114, write ¢4 - €. ..y fOr
o1 4%, But
d(l)yl d(l)yz. . .
7.311. e Th d(l)y"‘. .o d(M)y"“=

= ld@y|
say. Then 7.310 becomes
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. o Oxk ax Y
7.312. dT(M) oo Ry e¢l0-' ﬂg;l-.-.—-ayuu Id(p)y l.

The most useful expressions for the extension of an infinitesimal
M-cell are given by 7.305 and 7.312.

Exercise. Let x* be rectangular Cartesian coordinates in
Euclidean 3-space. Introduce polar coordinates r, 6, ¢, and
consider the surface of the sphere r = ¢. On this sphere form
the infinitesimal 2-cell with corners (6, ¢), (6-+d6, ¢), (8, +d¢),
(6 + d6, ¢ +d¢). Determine the extension of this cell and
interpret the rectangular components. In particular, show
that the three independent components of the extension are
(apart from sign) equal to the areas obtained by normal pro-
jection of the cell onto the three rectangular coordinate planes.
Does this interpretation remain valid if the sphere is replaced
by some other surface?

From the fundamental theorem of multiple integration it
follows that, if ® is a continuous function of the parameters
y in Ry, and if the (M — 1)-space which bounds R is suffi-
ciently smooth, then

7.313. lim = & | Ay |

exists and is independent of the manner in which the region
Ry is divided into cells. In 7.313 the summation extends
over all complete cells in Ry, ® is evaluated at a point inside
each cell, and the limit is that in which the size of each cell
tends to zero, that is, Ac®—> 0. The limit in question may
be written

7.314. { ® |dgy| .
M

This theorem we shall accept without formal proof which
properly belongs to the subject of analysis rather than to the
tensor calculus. However, we give in Appendix B an intui-
tive and somewhat incomplete argument which may help to
make the theorem plausible.

If we choose the functions f® in 7.302 as
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7.315. f(y) = 7,

then dg)y"= 0 if 8 ¢ v. Writing simply dy” for dy” when
B = v, 7.314 becomes

7.316. { ® dyl. . . dy¥,
-M

the more familiar form for a multiple integral. The expression
7.314 has the advantage that it exhibits the integral in a form
valid for an arbitrary choice of cells.

Let us now take as integrand in 7.314 the expression
Wit o

oy
where ¢ is another arbitrary function of position in R M, that
is of the parameters y. Then, by 7.312, we can write the
integral 7.314 in the form
7.317. f [ dT(M)k' tee k",
Ry
which is thus also independent of the choice of cells.

So far our considerations have been confined to a single
coordinate system, and no ideas of tensor character have been
introduced. The infinitesimal displacement dx* along the
Bth edge of an M-cell is by definition an absolute contra-
variant vector. Then, by 7.305, and by virtue of the skew-
symmetry and the tensor character of the generalized
Kronecker delta, we immediately have: The extension
dran™ " of an infinitesimal M-cell is an absolute contravariant
tensor of order M which is skew-symmetric in all pairs of suffixes.

Let us now consider the integral

7.318. I d‘r(u)k‘ et k".
Ry

P = - ,

We might call it the extension of the region Ry, but it is of no
interest in general as it has no tensorial character. This is, in
essence, due to the fact that we are here combining the com-
ponents of a tensor at different points; the result of such addi-
tion is not a tensor. For example

(T") 4 + (THp




§7.3 MULTIPLE INTEGRALS 259

is not in general tensorial, 4 and B being different points,
since the transformation coefficients dx'®/dx" at A may differ
from those at B. On the other hand, if Tk ..., is a co-
variant tensor of order M, then

T"x' .o kydT(M)k‘ R
is an invariant, and so is its integral
7.319. 'l’; Tkl' .. kudT(M)k“ oo b
M

In the special case when M = N, the extension d‘r(N)k‘ s B
of an N-cell is determined by the single componentof dr """ V.
In fact it follows immediately from the skew-symmetry of
dran ™ that

7.320. drgp? V= T k,df(zv)k" k= dr oy,
say, and that
7.321. d‘r(N)k" kv e ky dT(N).

We immediately see that dry is a relative invariant of weight
—1; it is the dual of drony*** " ™. As there is little danger
of confusion we shall refer to dr(y) also as the extension of the
N-cell. It follows from 7.305 and 7.320 that dr(y) is the
determinant

7.322. d‘r(N) = l d( .)x" l.
If we regard the parameters ¥ as intrinsic coordinates in the
subspace Vi, we may define dr(y) by the equation

7.323. dT(M) - ld(ﬂ)ya l.

We can now rewrite 7.312 in the form

7.324. d.,(M)kl. coku o e Ry dr ey,

where

7-325. pkl"'kll=e¢p..¢"§_xj...axk".
ay"l ayau

Thus the extension of an infinitesimal M-cell can be written
as a product of two factors which we shall now discuss.
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The factor dr(yy is an intrinsic quantity determined (apart
from sign) by the cell. We may call it the intrinsic extension
of the infinitesimal cell in the subspace Vj. The intrinsic
extension is an absolute invariant with respect to transfor-
mations of the coordinates x; but it behaves like a relative
invariant of weight —1 under transformations of the para-
meters ¥, which can be regarded as intrinsic coordinates in V.

The factor v* ****» is quite independent of the cell but is
determined by the subspace V), including its relation to the
parent space Vy, and by the point P in V;; under consider-
ation. It is a generalization of the tangent vector to a curve
(M = 1) and may therefore be called the M-direction of Vu
at the point P. The M-direction v * js a skew-sym-
metric, absolute, contravariant tensor of order M with respect
to transformations of the coordinates x; under transformations
of the parameters y it is easily seen to behave like a relative
invariant of weight +1.

The sign of the intrinsic extension of an infinitesimal M-cell
depends on the adopted order of its edges. If we permute the
order of the edges this sign does or does not change according
as the permutation is odd or even. We thus distinguish be-
tween two orientations of an M-cell: two infinitesimal M-cells
at the same point P in Vi are said to have the same orientation
or opposile oriemtations according as their intrinsic extensions
have the same sign or opposite signs. Since the M-direction at a
point Pin V), is quite independent of any cell under considera-
tion, we see from 7.324 that if drgg™ " *** and drapnh
are two infinitesimal M-cells at the same point in Vy,, then

7.326. le(M)k‘ ceeky d,r(M)k, R ,

where 6 is positive or negative according as the orientation
of the cells are the same or opposite.

The intrinsic extension of an infinitesimal M-cell was seen
to behave like a relative invariant of weight —1 under trans-
formations of the parameters y. Thus it changes sign under
a parameter transformation with negative Jacobian. We can
therefore give no invariant meaning to, say, the statement that
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the intrinsic extension of a cell is positive. However, if two
infinitesimal M-cells have intrinsic extensions of equal (or
opposite) signs for one system of parameters, this fact remains
true for all systems. Thus comparison of the orientation of
two M-cells at the same point is of invariant nature.

Comparison of M-cells at two different points 4 and B in
a region Ry of the subspace V) is achieved as follows: The
infinitesimal cell at 4, say, is moved in a continuous manner
to B, along a path C lying in Ry, such that, at each stage of
the continuous motion, the intrinsic extension of the cell is
non-zero. The orientations of the two cells are then com-
pared at the point B.

For many types of regions this comparison of orientations
is unique. Such regions are called oriented or two-sided. As
an example, consider a region Ry with intrinsic coordinates
which are continuous and single valued functions of position
in Ry. In the process outlined above, the extension of the
M-cell changes continuously during the motion from 4 to B,
and is never zero. Hence it does not change sign. It follows
that, in the case considered, the orientations of the M-cells
at A and B can be compared by simply comparing the signs
of their extensions. This procedure is obviously unique.

There are, however, regions where the orientations of cells
at different points cannot be
compared because the proced-
ure adopted above is not uni-
que. Such regions are called
unoriented or one-sided. Ex-
amples of unoriented regions
are the two dimensional polar
space of constant curvature (cf.
4.1, Fig. 22) and the well-known

Mobius strip.

In the case of an oriented
region, we distinguish between
two orientations for the whole
region. It should be noted

F16. 22. The pair of vectors, (1)
and (2), changes orientation after
traversing the closed path ABCDEA
of the polar 2-space of constant
curvature. This space is therefore
unoriented.
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that in formulae such as 7.3:4 or 7.319, where integrals taken
over a region Ry were considered, the region R, is tacitly
assumed to be oriented and all infinitesimal cells are assumed
to have the same orientation.

7.4. Volume. In this section we shall introduce a metric
(in general not positive-definite), and by means of it pass from
the extension tensor to the concept of volume element. The
volume is invariant, and can be integrated to give the volume
of a finite domain. The extension tensor cannot be used in
this way, although, as we have seen, certain integrals involving
it have invariant character.

In the previous section we have defined the extension of
an N-cell

1 7.401. dran = | dx* |,

and we have seen that it is a relative invariant of weight —1,
It follows that dr(y) retains or changes sign under a coordinate
transformation according as the Jacobian of the transformation
is positive or negative. Defining e(r)= 2= 1, such that
e(r)dr(y) is positive, it is immediately seen that e(r)dr(ny is an
oriented relative invariant of weight —1.

Let us now consider a Riemannian space with the metric
tensor ams. We have seen earlier that (e(a)a)? is an oriented
relative invariant of weight +1. We can therefore form the
absolute invariant

7.402. dovany = (e(a)a) e(r)dr ),

which is not oriented. We define it to be the volume of the
infinitesimal N-cell. The integral

7.403. Iy = { dU(N) = .!; (G(a)a')i G(T), d(’)xk ’
N N

taken over a region Ry, is an absolute invariant, the volume
of the region. Note that 7.403 always gives a positive volume.

To show that the above definition of volume agrees with
the ordinary definition in the case of Euclidean 3-space, we
take rectangular Cartesian coordinates, and define the cells
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asin 7.315, that is, d(yx*= dx*if s = kand dx*= 0if s > k.
Then we have e(@) = 1, @ = 1, ¢(r) = 1, and so the element of
volume is

7.404. dog) = dx'dxidx®,
as it should be.

In a general Vy, the square of the element of volume of a
cell is

7.405. dogn= e(a)a| dx* |2= e(a) |arrdyxPd " |.

If the edges of the cell are orthogonal, the only surviving
elements in this determinant are in the leading diagonal
(s = £), and they are, to within a sign, the squares of the
lengths of the edges. Hence, since we have defined dyy) to
be positive, we have for the volume of an infinitesimal rec-
tangular cell

7.406. JD(N) = dS1 dS:. .e dSN,
where dsy, . . . , dsy are the lengths of the edges.

Exercise. Using polar coordinates in Euclidean 3-space find
the volume of an infinitesimal cell whose edges are tangent to
the coordinate curves. Obtain the volume of a sphere by
integration.

A subspace Vjs in a Riemannian space Vy possesses a
metric by virtue of its immersion in Vy. Let Vi have the
equation 7.301. Then the distance between two adjacent
points of V) is given by
7.407. ds®= eaydx*dx’,
since the points in question are also points of Vy. Here
e(= = 1) is the indicator of the direction dx*. But if we
adopt the range 1 to M for Greek suffixes a, 8, v, this is
7.408 ds? nga_x_'d *dy’ = ebg dy*d

o . = Galuayaaya y = €0qp QY y‘g’
where

o . .ﬁ=aklay‘a'va'
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Then b,g is the metric tensor of Vy, for the intrinsic coordinate
system y°. Since Vy is itself a Riemannian space, any por-
tion of it possesses a volume. Thus in a Vy we have to con-
sider N-volume, (N—1)-volume, (N —2)-volume, etc. A 2-
volume is also called an area, a 1-volume a length.

The volume of an infinitesimal M-cell is the invariant

7.410.  dogy = (B)b)le(r)dran = («(B)B)? e(r)| dgy® |.
Since ¢ ** *¥¢, . ., = M!, we obtain

7.411. dvant= %e"' s €&,... ,mb dront

We easily see that

T412. ¢, . ayb = Pub g bs. .. by s,
o axtwaxtn  axx
o aku&'xa—y;. : .ayaxayﬁl °* 'aycu’
by 7.409. Substituting from this into equation 7.411 we im-
mediately have, by use of 7.312,

e(b)

dv(ﬁ) = m Okyae o« By d‘r(M)k" o ku dT(M)s" ot "",

= b tug,,

or, equivalently,

b
7.413. dv(ﬁ) = e]fl—; dT(M)k' oo Ry dT(M)k, I

M
€(d)= = 1 and must be such as to make the right-hand side
of this equation positive.

Given a region Ry in the M-space Vi, the invariant
integral

7.414. }; v
¥

is defined to be the M-volume of the region. The volume
integral of an invariant T,

7.415. { TdU(M)
74

is itself an invariant. But the integral of a vector or tensor
of higher order, such as
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f T"dv( M)
Ry

does not possess tensor character.

Exercise. In the relativistic theory of the finite, expanding
universe, the following line element is adopted:
ds®= R2[drt+ sin?r(d82+ sin?0d¢?)] — df2,

where R = R(t) is a function of the “‘time’” ¢, The ranges of
the coordinates may be taken tobe 0 S r < 7, 0 £ 0 < =,
0 ¢ <2r, — @ <t < », Find the total volume of “space,”
i.e., of the surface ¢ = constant, and show that it varies with
the ‘‘time" ¢ as R3(f).

In a space Vy with no metric, the normal to a surface
Vyn—1 has no meaning, but we do have an extension tensor
associated with every element of Vy_;. We shall now show,
when there is a metric, the connection between the normal and
the extension tensor.

Let us take in Vy_; an infinitesimal cell with edges
dwx®, ...,dw-1px*. The extension of the cell is

7.416.  dry—ph o= g g g dgyopatt,

According to 7.122 the dual of dry—p® - *- is (—=1)",,
where v, is the covariant relative vector defined by
_ 1

N -1
Then, by 7.416,

ky...k
€y byt OTOv-n 2T

7.417. vy

.o kN1

1 .
v d()x"= (N——-l)—i €y byy T 32: o1

dwx™. .. dy-px™ 1 duyxT
= €.y T dwx™. .. d-nx" " dx”
= 0,
since dx'dq)x™ is symmetric in the suffixes  and s;, and

€, ...5y— r 1S skew-symmetric. Similarly, we can show that
ved(9)x"= 0, etc., and thus
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7.418. vd@gx"= 0, 8=12..., N—-1.

This shows that the vector with covariant components », is
orthogonal to the vectors dwx", ..., dy-nx", and hence to
every infinitesimal displacement in VNn-1. In short, », is
normal to Vy_,.

We now normalize », by introducing the vector* u,:

(e(a)a)?

. >
dvy-1y

= e(-r) (e(a)a)% €k hy—yr

dyy-ny (N —1)!

€(n) denoting the indicator of n.(e(n) = = 1, such that
e(n)n.n" is positive); e(r) is also +1 and determines the sense
of n,; its significance will be discussed shortly. Obviously #,
is also normal to Vy_;. We shall now show that n, has unit
magnitude, so that n, is the unit normal to Vy_,. Using the

metric tensor to move suffixes up and down, we have, by 7.419
and 7.211,

7.419, e(n)n,= e(r)

by,

drw-n™-

e(a) 1 SeesSy—y T
f = . €k v by €
T = DE dgep R e

dry—ptt st AT(v—1)s,... 5y,

- L e
(V=D dvw—y
dra—n™ M U driy_nyg e

- e(a) . 1 dT(N_l)kl corky g
V-1! dow-n?
ATN=Dky.. . kwmy

= ¢(a)e(d),
the last stage of simplification being justified by 7.413. This
establishes that #, is a unit vector, and also shows that

*The definition of n, breaks down if dy(y—1) = 0 and we therefore exclude
this possibility; dv(y—1) vanishes if dry_® *** -1 = 0; however, even
if this equation is not satisfied, dv(y._3) can vanish in the case of an in-
definite metric—for example, if the cell lies in a null cone (cf. Ex. 7 at
end of chapter).
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7.420. e(n) = e(a)e(d).

At any point P of Vy_; there are, of course, two unit vectors
which differ in sign. Let us assume that Vy is oriented, or, at
least, a region Ry of it which includes all points of Vy_1, thus,
in particular, also P. Let us adopt an orientation in Ry, and
let ¢(r) be 41 or —1 according as an elementary N-cell of this
orientation has, at the point P, a positive or negative extension
drayy. With this convention concerning ¢(r) we are now in a
position to discuss which of the two possible unit normals is
given by the z, of 7.419.

Let

dx*= #n'ds,

where ds is a positive infinitesimal; dx" is codirectional with
the unit normal #»". Thus

e(n)n.dx™ > 0.

Substituting in this relation from 7.419 and 7.416, we obtain
on division by positive factors

(7)€, . .. symyr BOX duv_nx‘" 1 dx™ > 0.
This can be written
7.421. e(r)dran> 0,

where dry, is the extension of an N-cell at P whose first NV — 1
edges, taken in order, are those of the (N — 1)-cell whose
extension tensor is the dry—n™***—1 which occurs in 7.419,
and whose last edge has the direction of the normal #*. Thus,
by 7.421, the unit vector »” must be such that this N-cell has
the orientation adopted for the N-space.

7.5. Stokes’ theorem. Let x" be rectangular Cartesian
coordinates in Euclidean 3-space, R; a finite two dimensional
region on a surface V in this 3-space, and R; the closed curve
bounding Rs;. Let 7, be the normal to V;, and T, a vector
field assigned on R;. Stokes’ well-known theorem* states

*R. Courant, Differeniial and Integral Calculus, New York: Inter-
science Publishers, Inc., 1936, II, chap. v, sect. 6.
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oT, aTs) <6T3 aT,
7.501. =z _ T = _
1,[ [(axs ) T \Ga )

T, oT,
+ (:-r - w) ] e
= I{ (Ty dxt+ Tp da®+ T5 dxd) .

Here, the integral on the left side is taken over the region
Rs, dv(s) denoting an element of surface area (2-volume), and
the integral on the right side is taken along the bounding
curve R;. The sense in which the closed curve R, is described
depends on the choice of the normal #,, which is determined
by Vs only to within an arbitrary sign. Introducing the sum-
mation convention and the permutation symbol €™, 7.501
simplifies to

7.502. { BT, o, doggy = Rf T, dx',

where the comma denotes partial differentiation.

We shall now introduce the extension of V, by means of
7.419, which in the special case of Euclidean 3-space and
rectangular Cartesian coordinates gives

7.503. n,dv(z) = % emndr(z)"‘”.

Remembering the definition 7.305 of elementary extension, we
have, trivially, dx"= dry". Thus we can rewrite Stokes’
theorem in the form

£ erksTk'a % €rmn d‘r(z)'”” =)£ T, dT(l)ry
s

which immediately simplifies to
7.504. LT},., d‘r(g)k' = ]! Tr dT(],)'.

Consider now a transformation to a curvilinear coordinate
system. Since 97%/dx* differs from the tensor 3 (T..— Ta.)
by an expression symmetric in &, s and dr»* is an absolute
tensor, skew-symmetric in these suffixes, it follows that the
integrand on the left is an invariant. Thus 7.504 is a tensor
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equation and therefore valid in all coordinate systems. How-
ever, this last form of Stokes’ theorem has another very impor-
tant advantage: the metric of the parent space is completely
absent in the formulation of 7.504. This reveals the true non-
metrical nature of Stokes’ theorem.

Our purpose in this section is to generalize Stokes’ theorem
to arbitrary numbers of dimensions. Possibilities for such
generalization are immediately suggested by 7.504. The for-
mulation is as follows:

Let Vi be an M-dimensional subspace of the non-metrical
N-space Vy (M < N). Let Ry be an oriented finite region of
Vu, bounded by the closed (M — 1)-space Rp-—1, and let
T,...ky—, be a set of functions® of the coordinates. Then the
generalized Stokes’ theorem states

7.505. [ Th... ¢y by Gron®
Ry

oo Rapm
= { Th,... kg Bru—n™ " 5,
M =1

provided the orientations of
the M-cell (with extension
dr( 1y "*) and the (M —1)-cell
(with extension dr( M_l)’“"""‘")
are related as follows: If to the
edges of the (M — 1)-cell there
is added as an Mth edge an
infinitesimal vector lyingin V
and pointing out from R s, then
the orientation of the M-cell
so formed is to be the same as
that of the M-cell with exten-
sion dr(r -+ *x (Fig. 23).

I ine 7.505. it i F1c. 238. Cell at P with edges
In proving 7. .0 ,.1t I8 CON~ ;. vk dix*, dx® has the same orien-
venient to establish it first for tationascell (1), (2), (3) at Q in Ry.

the particular case M = N.
Thus we set out to prove

*Since we do not need to transform the coordinates in establishing
7.505, the question of the tensor character of Tk,,, ky., does not arise.
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7.506. { Tkl veohyey By d‘r(N)k’ L
¥
= l[ Ty ..keey d‘r(zv-l)k‘ L
N—1

We recall that the extension tensor is skew-symmetric;
hence in any surviving term in 7.506 no two k’s can take the
same value. Thus we can write

7.507. £ T],’.“k"_"k‘vd‘r(N)k""kN= Li+IL4... 4+ Iy,
N

where
I 1[ (T Byeeohy—1, 1 d‘r(zv) o R l)(kaﬂ),

7.508. Iz £ (Tk‘ -y, 2 dr(N) by 2)(]:#2)7

o0 0000000000y

the symbol & # 1 indicating that no % is to take the value 1,
and k # 2,. .., having similar meanings.

Let us choose the cells in Ry with edges along the para-
metric lines of the coordinates, in order, in the sense of in-
creasing values of the coordinates. This establishes an orien-
tation in Ry, and we have

7.509. d'r(N)k‘ e by ek‘ ot "”dx‘. .. dx¥N

the infinitesimals being positive.
Then by 7.508, we may write

7.510. I1=Rf Ts,. .. oy

OaeveOnlygd L dxN.

Here and throughout the rest of
this section, the Greek suffix 6
refers to the range of values
2,3,...,N. We proceed to
evaluate this integral by in-
tegrating first along thin tubes
made up of parametric lines of
x' (Fig. 24). Any such tube,
taken in the sense of x! increas-

Fi1c. 24 Thin tube in R,.
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ing, cuts Ry—; in two (N — 1)-cells, the tube entering Ry at
a point 4 and leaving Ry at a point B.* Any one of the cells
cut out on Ry_, by the tube has the NV —1 edges
(f.2 dx?, dx?, 0, 0,.... 0),
705110 (f.a dxs, 0' dxs, 0, e o o o 0)1
(Gwde®, 0, 0, 0,.... d<¥),
where the terms in the first column involve the partial deri-
vatives of the function f by which Ry_, is given in the form
xt= f(x% ..., %"). Carrying out the integration with respect
to x' in 7.510, we have
7.512. L= [BT, o &% dx .. da
Ry—
N—1
the integrals being evaluated respectively over the B-points
and the 4-points.
We now ask an important question: Have the (N — 1)-
cells 7.511 the prescribed orientations? To test this, we add
at a B-point an Mth or final edge with components

7.513. (d«x4, 0,...,0),
with dx! positive; this edge points out from Ry. Equation 7.322
gives us, with substitution from 7.511 and 7.513, the following
expression for the determinantal extension of the M-cell so
obtained:

fr2 dx?, dx?, O,
f 3 dxa ’ 01 dxs ’

f-N de’ 0 0 « o o
dx!, 0, 0, ... 0

SO

7.514.

This is equal to
(=1)V"ldxldx?, . . dx¥,
which is the determinantal extension of an N-cell of Ry, multi-

*If the tube meets R,,_, more than twice, we shall consider each con-
nected portion of the tube, which lies in R, as a separate tube.
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plied by (—1)¥~Y.  Accordingly, the orientation of the (N — 1)-

cell 7.511 is correct at B if N is odd and incorrect if N is even.

Similarly, at 4, where the final edge to be added is
(—dx,0,...,0),

the orientation of 7.511 is correct 1f N is even and mcorrect if N

is odd.

Let (dr(N_l)"" -+ Fv-1)  and (df(N_l)"" : "”"l) B denote the
extensions of the (N — 1)-cells in which the x'-tube cuts Ry_,,
with the proper orientations. Introducing the appropriate
factors to correct for orientation, where necessary, we have

(dr( —ph - P)p= (~ 1D iy <SR <A
7.515. da™. .. dg™,

@rav—n™ "M = (=1)V gl ba

d(z)x"’ d(N)x N,

where dgx*(0 = 2,..., N) are the edges 7.511, taken in order.
Now if no % in 7.515 is given the value 1, no s can take the
value 1 if the term is to survive. So we have
7.516. (d‘r(N_l)o" o ) ( l)N‘la"' NN dx2. . de
But

60, ON_ 610, . ;),!-= 6”""0”=(-—1)N_160""0”1

and so, w1th the sxmxlar result for the cell at 4,

vs1y.  @ra-p™ Mp= & de | dl¥,
@ryv—n™ M)y = — & gyt | da,
Substitution in 7.512 gives

705180 I1= J TG’ 0,; dT(N—l)O.. o 9)(
N=—1

- Rf (Th,... kyey Gr—ny™ """ 21) o,

N—1

Similarly,
I = T d _ k... kyey ,
7.519. ? ‘{,_.( k... ky—, 0T(N—-) ) kw2

I= {t (T,... kyey drav—n™ 1) g,
"-
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We have now very nearly proved 7.506; by 7.507, 7.518, and
7.519, we have shown that the left-hand side of 7.506 is equal
to the sum of a set of terms of the general type of the right-
hand side of 7.506, but with the understanding that in the
first term no % takes the value 1, in the second term no % takes
the value 2, and so on. However, since there are N — 1 suf-
fixes in the right-hand side of 7.506, and the extension is skew-
symmetric, it is easy to see that we can break down the
summation occurring in 7.506 into precisely the restricted sum
considered above. Hence Stokes’ theorem in the form 7.506
is proved.

The general case for an arbitrary M(M < N) is easily
proved from the above result, as will now be shown. Let the
M-dimensional subspace Vs be given by

7.520. xb= x*(y1, ..., yM).

The parameters y may be regarded as intrinsic coordinates of
Vu. Let Ry be a finite region in Vs, bounded by the closed
(M — 1)-space Ry-—1, whose parametric equations are

7.521. = y*(@,.., ).

As in the previous section, the Greek letters a, 8, 7y range from
1 to M, but the Greek lettersp, s, r range from 1 to M — 1. We
can disregard the fact that V) is a subspace of Vy, and apply
our previous result 7.506 to the region Ry. In order to avoid
confusion, the extensions of the elementary cells will be written
in explicit form (cf. equation 7.312). We then have

(i)
7:522. J ayau tn.l. .o cx__lea’" .o QUI d(ﬁ)y'l I
M

Oy™ Byt . e
= q...uy_lg'°'azm{_‘€h pu lld(c)zflt
Ry—y
where £, . .. o, is a set of quantities defined at each point
of RM.

If Ty, ... ry—, is any set of quantities defined in the full
space Vy, then the expression
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é_x_f Jafu—

705230 Tk‘ cee k"—l aya,l M ayuu_!

is a function of position in Ry. Substituting this expression

for ta,...ay—, in 7.522, and simplifying*, we obtain
ak  gxhw L y
7.524. J Tk""k"—"k“@—:“'@—“;eq "!d(p)y l
Ry
= T axk‘ axk"—l oo PM—~ T
- A kl"'kl—lgp:".é?‘?:eﬁ 1 ld(,,)z l
M~—1

This is the generalized Stokes’ theorem. By 7.312, it may be
written

7.525. { Tk‘ R S k”dT(M)k‘ sk
0

— Byoo By
—{ Tk,...k,,_, d"'(M-l)’ -,
M1

as in 7.505.

So far no assumption has been made regarding the tensor
character of T, ..., in establishing the generalized Stokes’
theorem. If Ty . .a,_, is an absolute covariant tensor, it
is at once evident that the integrand on the right-hand side
of 7.525 is an invariant, and so consequently is the integral.
Due to the skew-symmetry of dr( M)'" oo ka o the integrand on
the left-hand side is also an invariant. This may be proved
in a few lines, preferably with use of the compressed notation
of 1.7; the proof is left as an exercise for the reader. Thus
both sides of 7.525 are invariants.

Let us add a final remark. Stokes’ theorem holds for an
arbitrary collection of N¥~! functions Ty,...#y, of position
in Ry. However, the two integrals in Stokes’ theorem have
tensor character only if T4 .. s,_, is an absolute covariant
tensor of order M — 1. Consider, for example, a tensor
Th,...ku_spy, of order M + 2. We still have Stokes’ theorem
in the form

*The second derivatives of x’s with respect to the y's disappear on
account of the skew-symmetry of the e-symbol.
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7.526. { T"x- .o ky—iritste k.df (M)k1 oo R
o

PRy WEN

=I! Tk, A 2 d”'(M—l)
M~

This equation holds for all values of 7y, 73, 735, but neither side
of this equation is a tensor. In 7.525 we may use different
coordinate systems to evaluate the two sides of the equation;
we cannot do this in the case of 7.526.

Exercise. The skew-symmetric part of a tensor T ... &, is
defined to be

Tihy oo kyg = (MOS0 0T,
Show that the left-hand side of equation 7.525 is unchanged

if Tk, ... ky_, is replaced by its skew-symmetric part. Show
that the same is true for the right-hand side.

7.6. Green's theorem. If a metric is givenin the N-space
Vu, Stokes’ theorem, for M = N, can be thrown into a dif-
ferent form which is an obvious generalization of Green's
theorem.*

We start with Stokes’ theorem in the form

7.601. { Ty,... Ry B d‘r(N)k‘ oo by
v

= f Tkl oo by df(N—l)kl‘ .o kN—l'

Ry~
where Ty, .. r,_, are skew-symmetric functions of position,
not necessarily components of a tensor. This, by 7.321, can

be written
0 A
7.602. _’;{N(N - 1)!a_xETk"d‘r(N)

A
= f Tkak, kﬂdT(N-nk‘ see by
Ry—1

A
where T* is given by

*In the case of an indefinite metric there are exceptional surfaces, such
as null cones, for which the transition to Green's theorem breaks down.
For such surfaces Stokes' theorem, as formulated in the previous section,
must be used.
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A 1
I T 1
7.603. T*" = (N — l) ! ekl NTk] oo ky—pr
or, equivalently, by
7.604. Tyokyy= ek,...kNTkN:

since Ty, ... ,_, is skew-symmetric in all its suffixes.
If we now define T7 by

7.605. T"=(e(a)a) T,
the left-hand side of 7.602 may be written, by 7.402,

7606 (V= D] 5 (00 TA(c@a) dnn,
By 7.419, the right-hand side of 7.602 may be written
7.607. L_. T'(e(@)a) e, ... 5y_, r droy—yy® -+ ¥

= (N = 1)le(7) ’L_:(”) Irn, dyw-yy,

n, being the unit normal to Ry_1, and €(n) being its indicator.
From our convention, 7.5, linking the orientations of Ry and
Ry-1, and from the discussion at the end of 7.4, it follows that
n, is the outward unit normal to Ry_;. From 7.606 and 7.607 ,
we have Green’s theorem in the form

7.608. ‘[N %[(a(a)a)‘ T (e(a)a)-idv(m
= { e(n)Tn.dvn—yy .

"N~}
In this formula, we must in general use the same coordinate
system in evaluating the two sides. But if 77 is an absolute
contravariant vector, then Green’s theorem may be written
7.609. { Ir ] ,dv(N) = { e(n) T'n,. dv(N_l).
N N—1

It is obvious that each side is an invariant.

In Euclidean 3-space, with rectangular Cartesian coor-
dinates x", 7.609 reduces to the well-known form of Green's
theorem



SuMmary VII

' aTT
7.610. L -a—x; dv(3, = L T'n, dv(z),

aT7/dx" being the divergence of the vector T* and T7n, the
scalar product of 7" and the unit normal %,. This formula has
already been used earlier in the treatment of hydrodynamics.

SUMMARY VII

Relative tensor of weight W:
T o= T T g g

Generalized Kronecker delta, permutation symbols:

5o b relative tensor of weight 0, or

S1eveSu absolute tensor,
€.ty relative tensor of weight —1,
g relative tensor of weight +1;
5_’:“ ...f: PR sunie - tn—¥ = M} ek‘...ky f,...ru..u’

BiveoRytye e fN—=
P M7 'N"G:,.

ook
« o Syl e v o IN—M = (N—M)laf:. . S:‘l'
Dual tensors:

I;__] e&‘! oo Syfyeee 'N-"Tgl e St
1 __
Tsl...:y = (N_M)[e-*l-”‘u’l“-'n—u

A
Tn: - IN=M

A
Tf‘ oo o IN=M
.

Determinant of metric tensor:
@ = | Gnm | relative invariant of weight 2.
Differentiation of relative tensor:

L= W@ i@ ™ T,

To e = (e@)a)t” (e(@)a) ™ T7ai 1as
a1r =0, 6 ..ogie=0, €™ =03

aT™

o if T=is of weight 1.

T”|“=a
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Extension of M-cell:
dran™ M = &M dat. L dane™,

Q) ooe Gy axkl axku
By oy

drapt H = ¢

dran, dran =|dgy"|.

Volume:

dvany = (e(@)a)? e(r)drayy,

dowy= ds1 dss. .. dsy for rectangular cells.
Generalized Stokes’ theorem:

Rieo ok
_1’; T .. cbsm By "™

-M
ooy
=[ T by Gra—yy ",
Ry—y

Green's theorem:
{ T'l r dv(N) = f e(n)T'n, dv(N..l).
N

N—1

EXERCISES VII

1. Show from 7.312 that the number of independent com-
ponents of the extension of an M-cell in N-space is
N/
M! (N - M)’
2. Prove that the covariant derivative of a generalized
Kronecker delta is zero.
3. Show that

gk Z | eeeeen
Sy oo oSy

4. If T,, is a symmetric tensor density and S,, a skew-
symmetric tensor density, show that

0ayr
ax®’

a
:lr = EE-T:—%T"‘

8 a 8
Srlr =a;yo
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5. Let bmy be an absolute covariant tensor. Show that the
cofactors of the elements bm, in the determinant| bmn | are the
components of a relative contravariant tensor of weight 2.

6. Determine the tensor character of the cofactors in the
determinants formed by the components of (a) a mixed abso-
lute tensor, (b) a relative contravariant tensor of weight 1.

7. In the space-time of relativity, with metric form

(dx")*+ (dx?)*+ (dx®)*— (dx')?,
the 3-space with equation

=)+ @)+ (P — (=) = 0
is called a null cone. Prove that the 3-volume of any portion
of the null cone is zero.

8. Prove that a polar N-space of constant curvature is
oriented if N is odd and unoriented if N is even, but that an
antipodal N-space of constant curvature is always oriented.

9. Show that the total volume of a polar 3-space of con-
stant curvature R2is n2R3, and that the volume is 22%R? if the
space is antipodal.

10. If 7mpn is an absolute tensor in 4-space, show that L,
defined by

L= Ifmn I‘s
is an invariant density. Discuss the tensor character of /™"
and g™*, defined by
o —a-'-L- mn n| ke | —%

fm = ar,..,.’ g = fm If I ’

and also of gma, defined by
gm.g’” = 3:: .

Prove that | gms | = | /™| (Schrodinger)

11. In a non-metrical space V; there is a skew-symmetric
absolute tensor field F,, satisfying the partial differential
equations

mer+ Fnr-m+ Femm= 0.
Show that, if U, and W, are two closed 2-spaces in Vi, de-
formable into one another with preservation of orientation
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then £ andf(2)”m = &F mn d'r(2)"m'
2 2

12. In a flat space V; there is a skew-symmetric Cartesian
tensor field Fi,, satisfying the partial differential equations
Funa= 0. Show that if Us and W; are two closed 3-spaces
in Vi, deformable into one another with preservation of the
sense of the unit normal #,, then

J; e(n)F,,n.dv(g) = ; e(n)Fr.n,dv(a) .

13. In a non-metrical space V; there is given an absolute
covariant vector field v,. Then the derived vector field
"= €™"Uy,m determines an invariant direction at each point
of Vs and hence a congruence of curves in Vs A tube T is
chosen, composed of such curves, and C, C’ are two closed
curves lying in T, and such that they may be deformed into
one another without leaving T. Prove that

L[vrdx’=é[vrdx’,

the integrals being taken in senses which coincide when one
curve is deformed into the other. (Note that this is a general-
ization of Exercises VI, No. 4.)

14. Show that, if V; is a closed subspace of a non-metrical
space V3, and v, any absolute covariant vector field assigned
in Vs, then £ Vr.sdre)™ = 0.

15. Generalize Ex. 14 to the case of a closed Vj, immersed
in a non-metrical Vy in the form

k...
J bty hyeys kuGran B =0,
M

16. In a flat space of N dimensions, with positive definite
metric form, the volume V of the interior of a sphere of radius
RisV = f e f dz.. . dzy, where 2p are rectangular Cartesian
coordinates, and the integration is taken over all values of the
coordinates satisfying 2,2, < R% Show at once that V= KRY,
where K is independent of R. Further show that

NN Fy Fy— Fy Fy
V= 2"R dZN dZN_l coee d22 . d21
0 0 0 0
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where
Fp= (1 — 22 11— -+ — z0)},
and that
Frr1 “T 3P+1) P+1
Fp)fdspyr = — ———=(F +,
L (Fp)" dzp41 > T (%P'l-%)( P+1)
hence prove that the volume of a sphere in N-space is
iNRN
V = T s .
r@y+n

Check this result for N = 2and N = 3.
17. In a flat N-space, as in Ex. 16, if we put #?= 2,2,, then

7]
2p = g(% %), and the outward-drawn unit normal to the
4

sphere 2y2,= R? is n,= 2,/R. Use these facts and Green’s
theorem to prove that
N
14V = ——
J N+ 2R’V,
where the integral is taken throughout the interior of the
sphere, and V is the volume of the sphere.

18. Using Ex. 17, or otherwise, prove that the fourth-order
moment of inertia tensor (cf. equation 5.330) for a sphere of
uniform density p and radius R, calculated with its centre as
origin, is

pVR? |
anrq = N+ 25,,;’,.
dpqVR?
Prove first thatJ.z,,zqu ~¥+3)

Show also that the tensor I, if defined by 5.335, has com-
ponents N—1

I = pVR’ma.g.

(Note that the fraction (N — 1)/(N + 2) gives for N = 2, 3,
respectively, the values of 1/4, 2/5, familiar in the evaluation
of the moments of inertia of a circular disc and a sphere, about
diameters).



CHAPTER VIII
NON-RIEMANNIAN SPACES

8.1. Absolute derivative. Spaces with alinear connection.
Paths. This concluding chapter lays no claim to completeness.
It is rather of an introductory nature and its only object is to
give the reader an idea of some of the more modern develop-
ments of differential geometry. It may be added that the
generalizations from Riemannian geometry, considered in this
chapter, have found application in the many unified relati-
vistic theories of gravitation and electrodynamics.

In Chapter 1t we introduced the Riemannian N-space with
metric tensor @ma. Perhaps the most important use which we
made of the metric tensor was to define by means of it absolute
and covariant differentiation. It is our purpose here to show
that the ideas of absolute and covariant differentiation can be
introduced without going as far as to require a metric, i.e.,
without asserting the possibility of associating a length with
an infinitesimal displacement dx" or an angle with two vectors.
Thus we are led to consider non-Riemannian spaces, which are
more general than Riemannian spaces but more specialized
than the “amorphous” space of Chapter I and of parts of
Chapter viI.

In order to simplify our discussion, we shall restrict our-
selves throughout this chapter to absolute tensors and refer to
them as femsors without any qualifying adjective. General-
ization to the case of relative tensors presents no difficulty
(see exercises 17 to 21 at the end of this chapter).

Given a contravariant vector field 77, defined along a curve
x"= x"(u), the ordinary derivative of 7 is easily seen to trans-
form according to the equation
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AT AT e 8

du " du + Xns du’
where the compressed notation of 1.7 is used. Thus, as we
already know, dT7/du is not tensorial. We now search for
a vector 8T /éu associated with the vector field T; this we shall
call the absolute derivative of T™. Similarly, we require absolute
derivatives of covariant vector fields and of other tensor fields
defined along a curve.

We shall assume that the absolute derivative of a tensor
satisfies a certain minimum number of requirements. The
smaller the number of these properties which the absolute deriv-
ative is required to possess, the more general is the resulting
space. As more conditions are added, the space becomes
specialized—until it reduces to Riemannian space or, if the
commutativity of absolute differentiation is added, to flat
space.

We shall impose the following basic postulates on the
absolute derivative of a tensor field, defined along the curve
%"= x"(u):

A. The absolute derivative of a tensor is a tensor of the same
order and type.

B. The absolute derivative of an outer product of temsors is
given, in terms of the factors, by the usual rule for differentiating
a product. Symbolically-

8.101.

oU 14
8.102. (UV) ——V-I- U""

C. The absolute dertvative of the sum of tensors of the same
type is equal to the sum of the absolute derivatives of the tensors.
Symbolically:

U oV
8.103. (U+V)—-—— o

D. The absolute derivatives of comtravariant and covariant
vectors are respectively:

6T' dT’ dx™

8.104. ==+ Tl ——,
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6T, dT, _ dx™

— —_ 1T’ —
80105. 8“ du I"”Tm du ’

where the coefficients Ty, f:,.,. are functions of the coordinates.
We know that these postulates are consistent, because they
are all satisfied in Riemannian geometry, where I'y,, = I}, =

r . .
{mn} . Riemannian geometry was constructed out of a sym-

metric tensor am, With V(N 4 1) components. Now we have
2N? quantities I',,, I'ys — a larger number. Thus, in a sense,
our new geometry is more complicated than Riemannian geo-
metry; but, in another sense, it is simpler, because Riemannian
geometry contains results which are not necessarily true in the
new geometry.

The four postulates 4, B, C, D define explicitly the abso-
lute derivatives of vectors only. We shall now show that they
also determine uniquely the absolute derivative of a tensor of
arbitrary order.

Let T be an invariant and S” an arbitrary contravariant
vector. Applying 8.104 to S" and to the vector T.S", we imme-
diately find
oST

iTS' —ES' Tr—
8u( )_du + ou’

But, by postulate B, we have

) oT ST
g(TS') =g3”+ T'az"

Thus

oT aT .

su 5 = du S
and, since S" is arbitrary,

8T dT
8.106. g = E .

This proves that the absolute derivative of an invariant is its
ordinary derivative.

Before we consider tensors of higher orders, we must estab-
lish the following lemma:
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Any tensor can be expressed as a sum of outer products of
vectors.

For the sake of concreteness we shall prove this lemma for
the case of a third-order tensor T, The extension of our
proof to a tensor of arbitrary order and type will then be
obvious. We introduce one set of N? vectors and two sets of
N vectors each, and we denote these vectors by X (p,gym» Y (2)m,
Z»™ Here the letters p and g assume all values from 1 to N
and are used to label the individual vectors of the set; m is a
suffix and denotes the component of a vector (e.g., Xz misa
covariant vector and Z ™ isa contravariant vector). Insome
fixed coordinate system we define those N?-+ 2N vectors as
follows:

8.107.  X@gm = T’y Yioym = 8ms Ziy™= 5,

where T,,;? is the given tensor. Then, with summation under-
stood for repeated labels p and g, the equation

8.108. Ton'= X(p,0m Y mynl(a)"

is obviously true in the coordinate system considered. But

8.108 is a tensor equation and therefore true generally. This
establishes our lemma.

Exercise. Show that any tensor 7™" may be written in the
form

™= Xun"Yn"
and use this result to prove problem 11, Exercises III.

Taking the absolute derivative on both sides of 8.108, we
have, by postulates B and C,

) )
8.109. Toi' = (3; X (p.q)m) YoynZ(a)"

5
+ Xp.0m (5_14 Y(p)n) Z"

)
+XwaomYony, Zo"
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Using 8.104 and 8.105, this easily reduces to

a _. -, dxt
d—u Tm;lr - I‘,,.;Ts',',' a
s cop dx‘ 4 8 dx‘

- Panms d—u + I‘stTm” E'
Thus the absolute derivative of the tensor Thn' is uniquely
determined by our postulates. It is clear that this method
may be extended to establish a unique absolute derivative of
an arbitrary tensor.

6
8.110. u Ton” =

Exercise. Show that, if the parameter along the curve
%"= x"(u) is changed from % to v, then the absolute derivative
of a tensor field with respect to v is du/dv times the absolute
derivative with respect to #. Symbolically:

3 _dus
8.111' 51} bl dv 8u *

So far we have not considered the consequences of the
tensor character of the absolute derivative, which is postulated
in 4. It is easy to see that the vector character of §T /ou
and 6T,/éu determines the transformation properties of the
quantities I',,, I'yy; in the compressed notation of 1.7, the
transformations are as follows:

8.112. I%, = T XeXDX? + X0, X,

8.113. T8, = ThaXeXr X" + X, X0
Note that I',,, I'ms transform exactly like Christoffel symbols
of the second kind (cf. 2.508).

Exercise. Prove that C,,, defined by

8.114. Con = Tn — Ty

is a tensor.

Exercise. Show that the right-hand side of 8.110 may also
be obtained formally by the method of 2.516, i.e., by differ-
entiating the invariant T,,,"X™Y"Z,, and using §X™/éu = 0,
3Y™/ou= 0, 6Z,/u = 0.
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_ Consider an N-space in which two sets of quantities Iy,
I, are assigned as functions of the coordinates in some co-
ordinate system x”. When the coordinate system is changed,
the functions I',, I'ws are to be transformed according to
8.112 and 8.113. Thus, having assigned T, I'ms in one
system of coordinates they are defined in all. We then say
that the space has a linear connection and that Iy, I'ms are the
coefficients of linear connection. In a space with a linear con-
nection, the absolute derivative of a tensor field, assigned along
some curve x" = x"(%), is defined by an expression of the form
8.110; the absolute derivative of an invariant is given by 8.106.

Having set up this technique of absolute differentiation,
guided by the postulates 4 to D, it remains to show that these
postulates are in fact satisfied without imposing on the co-
efficients of linear connection any conditions other than the
formulae of transformation 8.112, 8.113.

As regards postulate 4, it is clear from 8.106 that the
absolute derivative of an invariant is an invariant. The for-
mulae 8.112, 8.113 have been developed expressly to secure
the tensor character of 877/6u and 8T,/6u. As for the tensor
character of 8.110, this is established by inspection of 8.109;
this argument may be extended to cover any absolute deri-
vative, and so we see that postulate 4 is completely satisfied.

As regards postulate B, the method (cf. 8.109) which
we have used to define the absolute derivative of a tensor
ensures that postulate B is satisfied for any outer product of
vectors, and hence for any outer product of tensors.

The linear character of 8.104, 8.105, and 8.110 ensures the
satisfaction of postulate C. As for postulate D, it has been
incorporated in the technique. Hence all the postulates are
satisfied.

Following the analogy of the Riemannian case, we define
the co-variant derivative of a tensor field T7 ;:: by the relation

dx* &
8.115. TD il gy =3 lr il

this relation being assumed to hold for all curves x*= x"(%).
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It is easily seen that 77 ;:: , is a tensor field given by

8116. Tl iiiin=T ;w4 Tl +...
- T T . —...

where the comma in 77 ;:: , denotes partial differentiation.

Exercise. Prove that &, ,= Cl,, where C’, is defined by
8.114.

We are now in a position to introduce ideas of curvature
in a manner analogous to the method of Chapter 1 (cf. Ex-
ercises 2, 3atend). However, we shall not do this at present; to
obtain simpler formulae, we shall wait until we have specialized
our space to the case of a symmetric connection.

We say that a tensor T7 ; . is propagated parallelly along a
curve C if its absolute derivative along C vanishes:

8 r
8.117. wTii=o.

The property 8.111 insures that this definition of parallel pro-
pagation is independent of the choice of parameter along the
curye.

Exercise. Prove that an invariant remains constant under
parallel propagation.

We are now ready to examine the possibility of defining
curves analogous to the geodesics in Riemannian space. Ob-
viously the property of stationary length cannot be applied
since no length is defined in our space. Let us, however, recall
the important property of a geodesic, that a vector, initially
tangent to the curve and propagated parallelly along it, remains
tangent to the curve at all points. This is the content of
equation 2.427 and of the argument following it. The property
just quoted is, in fact, sufficient to define geodesics in Rie-
mannian space. This definition is immediately generalized to
spaces with a linear connection. We shall call these curves
“paths”:
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A path in a space with a linear connection is a curve such that
a vector, initially tangent to the curve and propagated parallelly
along it, remains tangent to the curve at all points.

Thus a path x*= x"(x) must be such that the equation
3Tr/6u = 0 has a solution T"= 6\", where

8.118 AT = @

. . = du L]
and @ is an invariant function of #. Hence §(6A7)/6u = 0, or
8.119 ‘E AT

. . 614 = HRA,

where p is an invariant function of .

Eliminating u from the system of equations 8.119, we easily
see that a necessary and sufficient condition for a curve to be
a path is that it satisfy the differential equations

8.120. QN)\' = )\'i)‘—.’
ou ou
or, more explicitly,
8.121 AP L
121. (du2 t Ton 3 du ) au
dx" [ d’x* dx™dx™ \
= du ( du? T Ton 30 2u

Exercise. Show that by a suitable choice of the parameter %
along a path, the differential equation 8.119 simplifies to
AT/ou = 0.

Attention must be drawn to the fact that postulate B
concerned the outer products of tensors, i.e., expressions such
as U™V, and not contracted (inner) expressions such as
U™Vma In fact, the postulate is not in general true for inner
products, and in this respect our new geometry differs from
Riemannian geometry. Let us consider the invariant U"V,,
where Ur and V, are two vectors defined along a curve with
parameter %. Since U'V, is an invariant, 8.106 gives
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_é_. Ur i r
6u( V) =du(U Ve)

_aur V. + UrdV'
T du T du
Hence, by 8.104 and 8.105, with A»= dx"/du,
) suUr oV, , -,
E;(U'V,) = vV, + U'g — (Tpn— Tmw) UmVA™,
Thus

our
ou

The right-hand side of this equation will vanish only under
special circumstances. Hence we may say that, if U and V,
are both propagated parallelly along a curve, the inner product
UV, will not be propagated parallelly; in fact we shall have

8
8.123. E(U’V,) = — Cl, UV, "

8.122 2 7 V. U"m Crn UV A"
o . 6u(U r)— r + 6“ = - m"U rh .

If C},, are of the form

8.124. Con = 8,Ch,

where C, are functions of the coordinates, then 8.123 may be
written

d
;;(U Ve) = — CaA™(U'V,).

Under these circumstances the relation UV, = 0 is satisfied
along a curve if it is satisfied at one point and the vectors
U", V,are propagated parallelly. Although we have no metric,
the invariant condition U"V,= 0 may be said to imply the
orthogonality of the vectors U” and V,. Since, under condition
8.124, this orthogonality is conserved under parallel propa-
gation of the two vectors, we call a linear connection ortho-
invariant if it satisfies 8.124.

Exercise. Show that, in a space with ortho-invariant linear
connection, the Kronecker delta is propagated parallelly along
curves satisfying C,A\"= 0.
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What we have been considering in 8.122 is actually the
question of the commuting of the operations of contraction
and absolute differentiation, and we have seen that in general
these operations do not commute. To simplify our geometry,
we shall now add a fifth postulate:

E. The operations of coniraction and absolute differentiation
commaulte.

Let us examine the consequences of this postulate. Starting
with the outer product U"V,, we first contract to U™V, and
then take the absolute derivative 8(U"V,)/éu. Next, we first
take the absolute derivative

L wva=Z v+ oL
du ¥ s ou '
and then contract, obtaining

sUT 8V,

w T U

The difference between the two results is given by 8.122. If
this is to vanish, for all vectors U, V, and for all tangent
vectors A*, we must have

8.125. Coun= 0,
or, equivalently,
8.126. Ton= T

By the method used above (expressing a tensor as a sum
of outer products) it can be shown that 8.126 is sufficient to
ensure that contraction and absolute differentiation commute
for any tensor.

If a connection satisfies postulate E, or equivalently 8.126,
it may be called contraction-invariant. However, since the
relation 8.126 shows that we have to deal with only one set of
coefficients of connection (NV?® of them instead of 2N® in the
general case), we shall call a space for which 8.126 is satisfied
a space with a single conmection.* A single connection is of
course ortho-invariant (C,= 0). In the following sections
only single connections will be considered.

*If 8.126 is not satisfied, we may speak of a double connection, i.e., one
connection for contravariant components and the other for covariant.
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Exercise. Show that in the case of a single connection,

5
8.127. 5 =0

8.2. Spaces with symmetric connection. Curvature.
To the five postulates 4 to E of the previous Section we
now add a sixth:

F. The coefficients of the single linear connection satisfy
8.201. Thn= Thp.

Such a connection is called symmetric or affine.

The significance of this requirement becomes clearer by
considering two statements each of which is completely equi-
valent to F, namely:

Fi1. There exist infinitesimal parallelograms.

F,. Given any point O, there exists a coordinate system
such that, at O, the absolute derivative of a tensor reduces to
its ordinary derivative.*

The statement F, is rather loosely formulated, but its pre-
cise meaning will become clear in proving the equivalence of
Fand F,.

Let us remember the condition for the parallel propagation
of a vector TT along a curve 2" = x"(x):

8.202 o
-202. o ~ du T T du
4= Pt st 5C1 For a small displacement

dx', the increment of T
¢ under parallel propagation
is given by
Oix" = T, dyyx™ d, XY 8.203. dT7= —I‘:,,,,T"‘dx",

to the first order in the
A small quantities dx".

Let OA4 B (Fig. 25) bean
infinitesimal triangle, the
—

Y dox’
F1G. 25. Infinitesimal parallelogram.

—
displacement OA being given by d(1x" and OB by d(gx". If we

*Such a coordinate system is often called geodesic.
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—>
propagate OA parallelly from O to B we obtain an infini-
—>
tesimal vector BC,, given by
8.204. d(l)x"— I",',,,.d(l)x'”d(z)x".
—>
Similarly, if we propagate OB parallelly from O to 4 we obtain
—
an infinitesimal vector A4 C;, given by

8.205. d(n%"— Tundinx"dmx"
The expressions 8.204 and 8.205 are correct to the second order

in the differentials d;x" and dsyx". This remains true if, in
8.204 and 8.205, I, is evaluated at 0. The infinitesimal
—>

displacement C,C; is now easily seen to be
8.206. (Ton— I‘f,,,.)d(nx"‘d(g)x“,
correct to the second order. This always vanishes if and only
if 8.201 holds. Thus, neglecting third order terms, C; and Ce
coincide in a single point C and OACB is an infinitesimal
parallelogram. This establishes the equivalence of F and Fi.
Let us now consider the statement F,. Assuming F; to
hold and given an arbitrary point O, we have a coordinate system
x", say, in which the absolute derivative of any tensor field
reduces to its ordinary derivative at O. This immediately
implies the vanishing at O of all the components of I, in the
coordinates x”. If x* is any other coordinate system®, the
components of the linear connection at O are given in the new
coordinate system by the transformation equation 8.112.
These, by virtue of the vanishing of I',., reduce to
8.207. e, = XX
Since X7, = X}, the I', are symmetric in the two lower suf-
fixes. But O being an arbitrary point and the coordinate
system x° being arbitrary also, this symmetry property holds
generally. Thus we see that F; implies F.
We shall now prove the converse, namely, that F implies
Fs. Let x” be an arbitrary coordinate system and O an arbi-

*The compressed notation of 1.7 is used.
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trary point in space. The coordinates of O are denoted by x5
and the coefficients of linear connection at O by (Tha)o. We
introduce new coordinates x” by the equations

8.208. "= & (x"— xg) — § H(Trm)o(x™— xT')(x"— xB),
where 47 is unity if p and » have the same numerical value and
0 otherwise. We immediately have

8.209. (X:)0= &, Xown= 5£(P:rm)0v
where, in the second expression, use is made of the symmetry
of I't,,. Using the relation
X:X: = 6:’
we find that
8.210. (X0)o = 3.
By virtue of the identity 1.706, the transformation equation
8.112 becomes

8.211. o= I Xi X0 X}~ X5, X"X",
Using 8.209 and 8.210, we see that at O, 8.211 reduces to
8.212. (I‘;pn)0= 3:6’:6? [(P:nn)o_ (P:nn)ol = 0.
Thus the coordinate system ° satisfies the requirements of F,.
This completes the proof of the equivalence of statements
F and Fs.
Exercise. Deduce immediately from F, that
T] mn = Tlmm

where T is an invariant.

We shall now investigate the curvature of a space with
symmetric connection. If we carry out the operations which
led to 3.105, using the coefficients of connection instead of

Christoffel symbols, we obtain, for any covariant vector field
Tf’

8.213. T, Imn= Lr|lnm= TR rmns
where
ar;, Ir;
8.214. Rvmn = a—x—',f - # + I?,.05,— I2,T;,.
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By 8.213, R’,m, is a tensor; we call it the curvature tensor of
the space with symmetric connection. The curvature tensor
satisfies the following identities, analogous to those of
Chapter 1I:

8.215- Rfrmn = - Rfrmm
8.216. Rfrmn + Rfmnr + anrm = 0!
8.217. Rfmn”c + Rfmklm + Rfrkmln = 0.

Exercise. Prove the above identites by using a coordinate
system of the type considered in Fa.

Note that we can not define a covariant curvature tensor
as in 3.112 since there is now no metric which enables us to
lower a suffix. Thus the curvature tensor R),m» does not
possess any symmetry property involving the contravariant
suffix s. In fact, by contracting the curvature tensor, we can,
in contrast to the Riemannian case, form two distinct tensors
of second order, as follows:
oT;, _ oTt

80218. er= Rfrm. = axm - W + I‘:SI‘:””_ I‘;‘mri,,

[ WA )
8.219. Fpn= lRflmn = %(axm _W)‘
Exercise. Verify that Fm. is skew-symmetric and that
Run—+ Fumn is symmetric. Show also directly from 8.219 that
Fomn vanishes in a Riemannian space.

It is obvious from 8.214 that if I',,, all vanish identically
in some coordinate system then the curvature tensor is iden-
tically zero:

8.220. Riymn = 0.

This last equation, being tensorial, must hold in all coordinate
systems; but the I, will, of course, not vanish in a general
coordinate system.

A space in which the curvature tensor vanishes identically
is called flat.

By methods closely analogous to those employed in 3.5,
which, however, we shall not repeat here, it can be shown
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that the vanishing of RS mn is sufficient (as well as necessary)
for the existence of a coordinate system in which the coefficients of
connection are all identically zero.

In such a coordinate system the equations of a path are
linear in the coordinates, i.e., a path is given by N — 1 inde-
pendent equations of the form
8.221. A%+ B,= 0, c=12,...,N-1,
where N is the dimension of the space and 4,,, B, are con-
stants. The proof of this statement is quite simple and, since
we shall not require the result in our later work, it is left as an
exercise.

In a coordinate system in which the I%,, are all identically
zero, the parallel propagation of a tensor along an arbitrary
curve leaves each of the components of the tensor unchanged.
(This is immediately seen from the definition 8.117 of parallel
propagation and the fact that absolute differentiation coincides
here with ordinary differentiation.) It follows that parallel
propagation of a tensor from a point A to another point B is
independent of the path, joining A and B, along whick the tensor
is propagated. This last statement is of an invariant nature
and thus holds for flat space whatever the coordinate system
used. In fact, using the arguments of 3.5, it can be
shown that this statement is equivalent to the vanishing of
the curvature tensor and may thus be used as an alternative
definition of flat space with symmetric connection.

8.3. Weyl spaces. Riemannian spaces. Projective spaces.
In this final Section we shall start with a space with sym-
metric connection. First, by two specializations, we shall
arrive at Weyl’s geometry and Riemannian geometry in this
order. Next, we shall consider briefly the generalization to
projective space. This generalization does not consist in
loosening the restrictions imposed on the coefficients of con-
nection (which would merely lead back to unsymmetric con-
nections); it is obtained by introducing a new type of trans-
formation affecting the coefficients of connection but not the
coordinates of the space.
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A Weyl space is obtained by imposing on a space with sym-
metric connection Ty, the following requirement:

W. There exists a covariant vector ¢, and a symmetric tensor
Gmn Whose determinant is non-zero, such that

8.301. Omn|r + Gmadr = 0,
8.302. @ = |Gm| # 0.

We shall treat ans as a metric tensor and define a™" as in
2.203. The tensors @m» and a™ will be used to lower or raise
suffixes in the usual manner. Thus we can associate with the
coefficients of connection I',, the new quantities defined by

8.303. Lonr = arsrfnm I‘:mz = a"T'mae.

The T'mar are close analogues of the Christoffel symbols of the
first kind and share their transformation properties, while the
I, are analogues of the Christoffel symbols of the second kind,
as was remarked earlier.

Writing 8.301 out in full, we have

8.304. Cmn, r = I‘fnram - I‘:;ya'ms + Gmadpr = 0,

where, as usual, the comma in @ms,r denotes partial differen-
tiation. By 8.303, this becomes

8.305. Tmern + Torm = Gmn,r + amnds.

If, in this equation, we permute the suffixes m n r cyclicly we
obtain, in addition to 8.305, two further equations: Adding
those two equations and subtracting 8.305, we obtain

8.306. Tomnr = [mn,r] + %‘ (amr¢n+ AnrPm— afmn¢r)v
where [mn,r] is the Christoffel symbol of the first kind:
8.307. [mnt] = % (@mrn + Gnrm — Gmn.r)-

If we raise the suffix r by means of the contravariant metric
tensor a”, 8.306 becomes

mn

8.308. I‘:,m‘-’—' { r } + % (‘Ym(ﬁn + 5;95111 - amn¢’)v
where

8.300. {”:n} = a" [mn,s], ¢"=a"¢,.
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Exercise. Prove that 8.301 implies
8.310. a™ |, — a™¢, = (.

If we are given a vector ¢, and a symmetric covariant
tensor ama, then 8.308 gives us a symmetric connection for
which 8.301 is satisfied. However, we can look at the question
the other way round: Given an arbitrary symmetric connec-
tion, do @ms and ¢, exist to satisfy 8.301 and 8.302? The
answer is “No”, but we shall not attempt to establish this
(cf. Ex. 22 at end). (If the answer were “Yes”, then postulate
W would not restrict the connection; every space with sym-
metric connection would be a Weyl space.)

We shall now show that, given a symmetric connection
satisfying W, the choice of ams and ¢, is far from unique.

Consider a’ms, ¢';, defined by

8311. a'mn = Mmn, ¢'r = ¢, — (InX),r = ¢, _—-)'\—'-,

where M\ is an arbitrary invariant function of position. Then
8.312. a’m,, | r + a,mn¢,r

= Mmn |r + amu)\,r + Mmu¢r - amn)\.r

= )‘(amu |r + amn¢r)

= 0,
by virtue of 8.301. Thus if &ma, ¢, satisfy 8.301, then o’ mns @'r
defined by 8.311, satisfy a relation of the same form.

A Weyl space therefore contains an infinite set of tensor
pairs (@mn, ¢r), (@'mn, ¢'s), ..., mutually related by equa-
tions of the form 8.311. There is no a priori reason why one
such tensor pair should be preferred over all others. Thus the
fundamental relations and quantities in Weyl's geometry are
those which do not depend on the particular choice of the
tensor pair (Gma, ¢r).

The process of replacing the tensor pair (ams, ¢,) by a new
pair (¢'mn, ¢'), defined by 8.311, is called a gauge transforma-
tion. We can now restate the content of the previous para-
graph by saying that in Weyl’s geometry we are concerned
with gauge-invariant relations and gauge-invariant quantities,
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i.e., with relations and quantities invariant under all gauge
transformations.

We shall conclude our brief survey of Weyl's geometry by
an enumeration of the most important gauge-invariant rela-
tions and quantities.

The squared magnitude of a contravariant vector
8.313. X2 = e X™X"
is not gauge-invariant since it gains a factor A under a gauge
transformation. However, the property of having zero mag-
nitude, i.e., to be a null vector, is gauge-invariant. Moreover,
the ratio of the magnitudes of two contravariant vectors at the
same pointis a gauge-invariant quantity. Theangle 8 between
two contravariant vectors X” and Y*, defined in the usual
way by

Cpn X" V"
€08 0 = (4, X?X%a, VT Y’
is gauge-invariant. Since a gauge transformation preserves
angles it i8 conformal.

8.314.

Exercise. 1s &, a gauge-invariant tensor?

Exercise. Show that, under the gauge transformation 8.311,
a™ and a transform as follows:

1
8.315. a'™ = ia”"‘, o' = AVa.

Any geometrical object either involves (@ma, ¢r), or does not
involve them. In the former case, it may, or may not be
gauge-invariant. In the latter case, it is certainly gauge-
invariant, because it is unaltered by the transformation 8.311.
The connection I'y,, is in a peculiar position; it is supposed
given a priori, subject only to the condition that (ama, ¢r)
exist to satisfy 8.301 and 8.302; but it is expressible in terms
of (@mn, ¢r) by 8.308. Any doubt regarding its gauge-invari-
ance can be removed by substituting 8.311 in 8.308, and
showing that it remains unchanged.

Any quantity defined in terms of the I}, exclusively must
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of course be gauge-invariant. Thus the curvature tensor,
defined by

ar; or;
8.316. Rfrmn= ‘a_x:n’! - -_8—x'_;2 + I‘ypnr;m— P"‘,MP;”)

is a gauge-invariant tensor.

Exercise. The covariant curvature tensor is defined by
Rarmn= aapR?rmno
How does it behave under gauge transformations?

Contracting the curvature tensor R’,,, with respect to s
and n we obtain the gauge-invariant tensor

8.317. er = Rfrms-

Contracting R’,m, with respect to s and 7, we obtain the
gauge-invariant tensor

Foan= %Rfamn = %(
By 8.308, we have

o5,  OT5,
™ axr )

O S
Psn - {Sﬂ} + %N ¢ﬂl

where N is the dimension of the Weyl space. Substituting this
into the expression for F,., and using 2.542, we find

N
8.318. an = _4_(¢n:m - ¢m-n)o

It is easy to show that the gauge-invariant tensor G, de-
fined by

8.319. Rpn = Gun— Foun,
is symmetric (cf. Exercise following 8.219).

In Wey!’s unified relativistic field theory an important role
is played by relative invariants of weight 1 which are gauge-
invariant. It follows immediately from 8.315 that for N = 4,
the following relative invariants of weight 1 are gauge-
invariant*:

*We limit ourselves to gauge transformations with positive A.
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(e(2)a) R?, (e(a)a)} Fon F™,
(e(a)a) iGm"Gmn’ (e(a)a) iR srmn RS,
where R = a™ R, and e(@)= = 1 such as to make e(a)a
positive. Note that the tensor densities 8.320 are gauge-
invariant only if the Weyl space is four dimensional. As a
consequence Weyl's unified field theory gives special signi-
ficance to the fact that space-time has four dimensions.

We shall now make the transition from a Weyl space to a
Riemannian space.

Consider a Weyl space in which the tensor Fpm,, given by
8.318, vanishes identically:

8.320.

N
8.321. Fpn = _4—(¢mm - ¢mm) = 0.

A necessary and sufficient condition for the vanishing of Fun
is that ¢, be the gradient of some invariant ¢:

8.322. br = Pure

The sufficiency of the condition is immediately obvious. The
necessity will now be proved by actual construction of the
function ¢. Let O be a fixed point and P a variable one. We
put

P
8.323. o(P, C) = J(C) ¢.dx",

where the integral is taken over some

curve C joining O and P. Then as indi-

cated in 8.323 ¢ is a function of the

coordinates of P and also depends on the )

choice of the curve C. Consider any

other curve C; which joins O to P. The ¢

two curves C and C; together form a

closed curve OCPC;0 which we denote

by I. Let S be any 2-space which is ¢

bounded by I' (Fig. 26). Then Fic. 26.
P

h‘y.v

#(P,C) — ¢(P, C1) = J b dx" — brdx”
P o(C) 0(Cy)
= r ! J— rd r.
{) o érdx” + L . érdx fr brdx
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By Stokes’ theorem 7.505, this becomes
$(P,C) — ¢(P,Cy) = ! briedr()™
= %5" (¢r,c - ¢c.r) d”'(?)"’

and the last integral vanishes by 8.321. Thus

$(P, C) = ¢(P, Cv),
and this shows that ¢ is independent of the path of integration
so that ¢ is a function of position only. We may now write
8.323 in the differential form
d¢ = ¢pdx’,
and 8.322 follows immediately. This establishes the equi-
valence of 8.321 and 8.322.

Under a gauge transformation ¢, goes into
8.324. ¢'r = ¢ — (Ind),,.

It follows that if and only if ¢, is the gradient of an invariant,
8.322, there exists a gauge transformation such that ¢’, van-
ishes identically. This is the case if F,, is zero everywhere.
Then, with ¢’,= 0, equation 8.312 reads

8.325. @mnpr = 0.

The tensor pair (a¢'mn, 0) is distinguished from all other pairs
(@mn, ¢+) Dy its greater simplicity. It is therefore natural to
reserve the name of metric tensor for a’mn alone and to drop
the requirement of gauge-invariance. The resulting geometry
is that of a Riemannian space; by 8.308 the coefficients of
connection are the Christoffel symbols.

More directly, we can introduce a Riemannian space as a
space with symmetric connection in which the following require-
ment is satisfied: '

R. There exists a symmetric tensor Gy, whose determinant is
non-gero, such that

8.326. amnlr = 00
Repeating the process which led from 8.301 to 8.306 and 8.308,
we obtain

8.327. Tomne = [mn, 7], Th,= { r }

mn
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The whole structure of Riemannian geometry, as discussed in
the earlier chapters, follows from these equations.

We shall now give a very brief account of the generali-
zation of a space with symmetric connection to a projective
space. This generalization is similar to that by which we pass
from a Riemannian space to a Weyl space.

In classical projective geometry the basic elements are the
points and straight lines and the basic relation between them
is that of incidence. Concepts such as parallelism, length, or
magnitude of an angle are outside the domain of projective
geometry. In differential geometry the obvious analogues of
straight lines are the paths. While retaining the significance of
paths we must attempt to exclude the concept of parallelism or,
more precisely, of parallel propagation along a curve, a concept
well defined in a space with symmetric connection. The result
of this generalization will be a projective space within the
framework of differential geometry.

The equations 8.120 of a path are explicitly as follows:

8328 ’<d_)£ I!' m u) 1-(d)\a Ps xm)\n)
. e N d’u + m’lk )\ =N\ du + mn ]

where

dx"
=2
While retaining the coordinate system used, we consider all
possible changes in the coefficients of connection T, which
leave the equations 8.328 of a path invariant. We shall regard
all symmetric connections obtained in this manner as equally
fundamental. All quantities or relations which are common
to the spaces with these different symmetric connections will
be called projective quantities or relations. Let I, be the
coefficients of another such symmetric connection. Then the
equations

8.329. AT

dx’ d\®
8.330. \°® Tn + I":,,,,J\"')\") = A" in + 5 2™A"

must be identical with 8.328. Subtracting 8.328 from 8.330
we obtain
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8.331 (034%n— 33A5,) NA™A® = 0,
where
8.332. Aoy = Ay = T — TV,

Since I'},, and I'"},, transform according to 8.112 under changes
of coordinates, it is easily seen that 4}, is a tensor. With a
little manipulation of dummy suffixes, 8.331 can be brought
into the form

8.333. (6;‘4;»;"' 3:14;";"‘ 6;: ;P- 5;‘4;1”_ &A;m
— 0udyy) NA™A™ = 0.

The bracket on the left-hand side of this expression is sym-
metric in the suffixes p, m, n. Since A’ is an arbitrary vector
it follows that this bracket must be zero:

8.334. @A:m: + &A;m + 8:» ;p - 8;‘4;":
- &A;m - 6:;;44:9 = 0.

Contracting with respect to s and p, we obtain
8.335. A:m; = 6:;'1/17& + 8:::‘[’1:’

where ¢, is a vector given by

8.336. ¥r Az,

TN+1
Conversely, if 8.335 is substituted in 8.331, the equation is
satisfied identically in A" and ¢,. By 8.332, the coefficients of
the new symmetric connection must be of the form

8.337. P";nn = I‘rmn+ 5;¢m + B:n‘pn-

It is now clear that the paths are the same for two sym-
metric connections if and only if their coefficients are related
by 8.337, ¢» being an arbitrary vector. The changes 8.337 of
the connection are called projective transformations of the
connection. We may now say that projective geometry con-
sists of the quantities and relations which are projective-inyar-
iant, i.e., invariant under projective transformations.
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In a projective space the notion of parallel propagation is
lost since there is an infinite set of equivalent symmetric con-
nections with conflicting equations for parallel propagation.

We conclude with a short statement on the curvature pro-
perties of projective space, omitting all proofs.*

By direct computation of its behaviour under projective
transformations, the following tensor can be shown to be a
projective-invariant:

8.338. Wfrmn'—'-' R..’rﬂm

1
— S S — &S
N + 1 87Fmﬂ + N — 1 (5man S”er)

2 en g
_Ng_ 1( nd rm 6mFrn)y

where N is the number of dimensions of the space, and R!,ma,
Rymy Fmn aregiven by 8.214,8.218,8.219.  The tensor W? ey
discovered by H. Weyl, is called the projective curvature tensor.

In two dimensions (V = 2) the projective curvative tensor
vanishes identically.

In higher dimensional spaces (NV 2 3), it can be shown
that the vanishing of the projective curvature tensor is neces-
sary and sufficient for the existence of a projective transfor-
mation which makes the space flat. In more mathematical
language: If W'mn= 0 and if N 2> 3, then there exists a
vector ¥, such that the projective transformation induced by it
transforms R’ymn into R ms= 0. A projective space of 3 or
more dimensions with vanishing projective curvature tensor
is called projectively flat.

It can also be shown that if and only if a space is projec-
tively flat, there exists a coordinate system such that the
equations of all paths are linear in the coordinates, i.e., such
that paths are given by equations of the form 8.221.

*For proofs see the books by Eisenhart (Non-Riemannian Geometry),
Schouten (Der Ricci-Kalkiil) and Thomas (Differential Invariants of
Generalized Spaces) listed in the bibliography.
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SUMMARY VIII

Coefficients of linear connection:
Touns Trums
o= DX XUX7+ X X7, Th= TrnaXt X0 X2+ X, X0,
Absolute derivative:

) a dx®
— .. P, r m. .. —_
MT.S.._duT.s..-i_rmnT.s.. d’u
— dx™

— T Tyt T e

Covariant derivative:
Tiin=T hadt D™, = T T 5 ...
Parallel propagation:

6 r
ulosii=0
Path:
wx‘ xra_k' Ar @
du” T N " du

Ortho-invariant connections:
P:rm - r:rm = 6:ncn-
Single (contraction-invariant) connection:

I‘:rm = L'mns

6 8T?... as;..
—_— 7eoo ve oy L oo Feoo =
6u(T.... S'..)_ 8“ S"..+T..‘. 8“ ’
)
b= O

Symmetric connection: IY%, = I, :
given a point O, there exists a coordinate system such that
T, = 0atO.
Curvature tensor:
ar;,, 9Ty,

Rfrmn = dx™ - Ix™ + I‘fnl-‘;m- P‘r"mr;m




Summary VIII

Krmn= - Rfrmm Rfrmn"l’ R{mnr'l‘ anrm = 0’
Rfrmnlk"‘ Rfrnk|m+ Rfrkmln'—" 0,

Rim= Rfrml, Fpn= %Rflmn = %(

Flat space:

ol  l5m
9x™  9x"

Rfrﬂm= 0.
Weyl space:
Amn | r + Gundr = 0, Gmn = Gum, 0 # 0,
r , _ ,
P:nn = {mn} + % (6:,,¢,.+ Ondm— Cmn® )-

Gauge transformation:

).

@ mn= Mmn, ¢'r= br— (lnk)vn PI:nn = P:mv

Riemannian space:

Amn | r = 0, P;t"‘ = {ﬂ:ﬂ}.

Projective transformation:
r”mn = I‘:rm + 6; m + gm‘l’n-
Projective curvature tensor:

1
= asm Ren
Wfrmn Rfrmn N+ laiF,,m +N— 1(
2
- Nn ( - &‘nF rn)-
Projectively flat space (V 2 3):
Wfrmn = 0.

EXERCISES VIII

307

Rem)

1. In a space with a general linear connection, show that

the expressions
P:ns— I";tm’ f‘:rm— f;m

are tensors of the type indicated by the position of the suffixes.
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2. If T is an invariant in a space with a single linear
connection, show that

T|mn- Tlnm= -2 TlrL:nm
where
L:rm"_‘ - L;m= % (I‘:nn - P;m)-

3. If T, is a covariant vector field in a space with a single
linear connection, show that
Tr[mn_ rinam = TCRfrmn- 2 Tr] ] L:nm
where L;,, is defined in Ex. 2, and where
ary T}
Rimn=rn = 5 + Thalim— T2, T,

4. In a space with a single linear connection, show that if
there exists a coordinate system for each point O of space such
that, at O and for all curves through O, the absolute and
ordinary derivatives of any tensor differ by a multiple of the
tensor, then the coefficients of linear connection satisfy a rela-
tion of the form

P:nn- I‘:mx:' OmA n— B:sAm,
where 4, is some covariant vector. (Such a single linear con-
nection is said to be semi-symmetric).

5. Prove the converse of Ex. 4.

[Hint: Consider the coordinate transformation (in the
notation of 8.208):

= 8(x"— x5) + 3} { 1685(Tnn + Tlimdo

1
N = 1%@n=Th)o } ™= o) (5"~ 23).]

6. Show that
Tr|a“ r, | r= Tr,a - Tc.ry
T, being a covariant vector, if the connection is symmetric
but not, in general, if the connection is unsymmetric.

7. Show that, in the generalized Stokes’ theorem 7.505, the
partial differentiation in the integrand on the left-hand side
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can be replaced by covariant differentiation if the space has
a symmetric connection.

8. In a Weyl space, the rate of change of the squared
magnitude X2 of a vector X* under parallel propagation of X"
along some curve x"= x"(u) is given by
n

mn n md
2 XX+ 2 X,

where dama/du is the ordinary derivative along the curve of
@mn (which is defined throughout the space), whereas dX"/du
is obtained by parallel propagation, i.e.,

A T du (@mn ) =

ix® " l’do::’

du ~ 2 X du’
Show that

sz = — X% ‘E

Au " du

Hence prove that the change in X? under parallel propagation
of XT around an infinitesimal circuit, bounding a 2-element of
extension dr™", is given by

2
AX2= TvszmndT(z)mn.

(Hint: Use Stokes’ theorem).

9. Verify that the projective curvature tensor 8.338 is in-
variant under all projective transformations.

10. In a projective space, the coefficients of projective con-

nection P,,, are defined as follows:
1
P, =T, — il (&,I%, + 6,15,

Show that P’,, is invariant under projective transformations
of I',,,. Verify that Ppy= Py, Pry= 0. Find the transfor-
mation properties of Py, under changes of the coordinate
system. (T.Y. Thomas.)

11. Show that the differential equation of a path can be
written in the form

.
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8

xsﬂr P' m\n "dA m\n
(du+ m,xx)_x(du-i-P:,,,xx),

where Py, are the coefficients of projective connection defined
in Ex. 10. Deduce that no change in the T.. other than a
projective transformation leaves the P.,, invariant.

12. Defining
oP; ap;
P.srmn= ax:: - ax': + anP;m— meP;m
P m = Pfrmn
where P7,, are the coefficients of projective connection of Ex.
10, show that

0P,
Pf'm”= 0’ 'P'"‘ = = ax® +P,’,P;,'.
Prove that
1
W.mm= Pf"'m-l-N -1 (&Pm - &Prm),

where W?,mn is the projective curvature tensor.

13. Show that
W'.'cmn = 0, Wfrut = 0, Wsm: = O,
mem= - W..'rnm; Wfrmn + menr + anrm = 0.

14. In a space with a linear connection, we say that the
directions of two vectors, X" at a point 4 and ¥~ at B, are
parallel with respect to a curve C which joins 4 and B if the
vector obtained by parallel propagation of X* along C from
A to Bisa multipleof Y”. Prove that the most general change
of linear connection which preserves parallelism of directions
(with respect to all curves) is given by

I‘”;ml = P:nn + 2 8:»;‘[’1"
where ¥, is an arbitrary vector. If I',,, are the coefficients of
a symmetric connection, show that I'},, are semi-symmetric
(cf. Exercise 4).

15. In a space with symetric connection, show that
Tr]mn"‘ T’Inm= - T‘erm-
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16. By use of the lemma of 8.1, or otherwise, show that
in a space with symmetric connection
T imn— T750  am=
—T.s..Rrﬂmn'l'Tr':: .pcmn'l'---
17. Using the compressed notation of 1.7, show that, in a

space with a double linear connection, the contractions of the
connections I';,, Ty, transform as follows:

10J

I‘pt= X:I‘;n }a_x; ’
— 10J

I = X,T7s Fo

where J = | X7 | is the Jacobian of the transformation.

18. Let T7;: be a relative tensor field of weight W, so
that its transformation character is given by 7.102. In a
space with a double linear connection, we now define the
absolute derivative of T ; : along a curve x"= x"(%) as follows:

8 d . . dxt
uT.s.+P:ntT.:. u-l-"'

ou du
_ dx* '
=TT g, — — WhnT i
Prove that 8T' :/0u is a relative tensor of the same type and
weightas T ;.. Verify that the absolute derivatives of outer

products and sums of relative tensors obey the usual rules for
differentiating products and sums (cf. 8.102, 8.103).

19. Are the statements of Ex. 18 correct if, in the definition
of the absolute derivative, I'y; is replaced by (a) Tm;, (b)
3(Tm:+ Tm)? Show that, in the special case of a single con-
nection, postulate E applies to relative tensors.

20. From the definition of Ex. 18 and from 8.115, deduce
an expression for the covariant derivative of a general relative
tensor.
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21. In the special case of a Riemannian space

(o= = {0 1),

verify that the definition of Ex. 18 agrees with 7.212.

22. Substituting into the equations Cmn,rs = Gmn,er = 0
from 8.304, and using 8.318, 8.219, show that, in a Weyl space,
the metric tensor an, satisfies the algebraic equations

(a) a’qu.’? mnrs = O,
where G !y, is a function of the I'’, and their derivatives,
given by

G.’.qm"r'= %(6?)8R.qﬂ,"+ agl'R.’nf.-'- 8£R?mf'+ 6gR.pmn)

1

By repeated covariant differentiation of (a) and by use of 8.301,
deduce the following set of algebraic equations for @,:

(b) aqu.’.qmnnl Hh = aqu??mnnl = ...= 0.

(Note: A symmetric connection can always be chosen such
that, in some fixed system of coordinates and at a fixed point,
the quantities T'ma, T'mn,ry I'mn,ss, €tc., assume arbitrarily
assigned values subject only to certain symmetry requirements,
such as Tpn = Tym, Tmast = Dimss etc. Hence, in a space
with a general symmetric connection, the infinite set (a), (b)
of linear algebraic equations for Gme (= @) has, in general,
only the trivial solution am, = 0. It follows that postulate W
does not restrict the connection, as was stated on p. 298.)
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REDUCTION OF A QUADRATIC FORM
(Reference to p. 58)

In the reduction of a metric form to a sum of squares, 2.6,
a number of pertinent considerations have been omitted from
the text so as not to detract from the essential simplicity of
the basic arguments. Some of the subsidiary questions will be
answered here.

1. The process by which 2.601 was obtained breaks down if
an= 0. Even if ¢1170, the same difficulty may arise at some
of the following stages which lead to 2.603.

If 411 =0, and if any one of the remaining ‘‘diagonal”
coefficients of the metric form, i.e., @29, ass, - - - , Ay, does not
vanish, then we renumber the coordinates so as to make this
coefficient the first and proceed as in the text. The only re-
maining possibility is thatgi= ass= ... = ayy=0. Then,
since ® cannot vanish identically (we assume ¢ # 0), at least
one of the non-diagonal coefficients must be different from zero,
@12 # 0,say. In thiscase we first perform the simple coordinate
transformation

All a=x"4 2% x™=x" m=1,3,4,...,N.
Then a’11= 2212 # 0, and we can proceed as in the text.

If the difficulty considered here arises at any other stage
of the process which leads to 2.603, the device outlined above

can be used again. An alternative procedure is indicated in
Exercises II, No. 15.

2. We shall now consider another question. It appears that
when we apply the process described in the text to ®, and
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obtain a ¥,;; and a &,,,, more than one differential may con-
ceivably be eliminated so that we end up with fewer than N
forms ¥»in2.603. Weshallnow show that this is not possible.
We can always write & in the form
A 2.1. P = el\Iflz-l- éz\I'zz'l'. . .+ GN\I/Nz,
if we temporarily permit e, to assume the value 0 in addition
to the usual values +1. Put
A22, E= ¢ ifr=s
= 0ifrs=s.
Then, by 2.604,
A 2.3. @ = Er;Wrw.= Er.brmb.ndxmdxn= amndxmdx”,
and therefore, since E,bmbes is symmetric in m and #,

A 2.4, Amn = Enbrmbcn-
Taking the determinant of both sides, we have
A2s5. a = |Ep| |bmal?= €. . . ex|bmal2.

Since a 0, we deduce that no e, vanishes and that |b,,,| # 0.
The first conclusion proves our assertion. The non-vanishing
of |b,,.,.| shows that ¥,, ¥,,..., ¥y are independent linear
combinations of dx!, dx?, ..., dxV, i.e., the set of equations
2.604 can be solved and the dx™ expressed linearly in terms
of the ¥,,.

3. The last question we shall consider here concerns the
signs of the e, in A 2.1. .Sylvester’s famous theorem of inertia
states: If a quadratic form ® = amudx™dx™ (with a % 0) is
reduced to a sum of squares, A 2.1, then the number R of €'s
which have the value +1 and the number N — R of ¢'s which
have the value —1 are invariants of the quadratic form; this
means that these numbers do not depend on the manner in
which the reduction to a sum of squares is accomplished. The
difference between invariants R and N — R is called the
signature of the quadratic form.

We proceed to prove the theorem of inertia. By renum-
bering the ¥’s in A 2.1 we can make the first R €'s positive and
the remaining ones negative. Then
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A 3.1. ® = V24 Ui+, ..+ ¥gr?
— Vpitt— Wpea?—... — ¥y,
V= bmadx®, |bmal # 0.

Let us consider any other reduction of ® to a sum of squares,
such as

A 3.2. Q = X12+ X22+. . .+ st
— XspP— Xgpa?—. .. — Xp?,
Xm= Cmndx®, lcmnl # 0,

We must show that R = S. We first assume that this is not
$0, i.e., that R ¢ S. Then we can, without loss of generality,
take

A 3.3. S>R.
Combining A 3.1 and A 3.2 we have
A34. Vi, . o VR Xgpdd+. . Xp?

= X1’+. . .+ X32+ \I’R+12+. . .+ \I,NB.
Now consider the set of linear homogeneous equations

A35. V,= bpds*=0, m=1,2,...,R,

Xn= Cmndx*= 0, m=S+1,5+2,..., N.
By A 3.3 the number of equations (N — S 4+ R) in this system
is less than the number of unknowns dx™(N). Therefore equa-
tions A 3.5 have a non-trivial solution where the dx® are not
all zero.* Obviously the left-hand side of A 3.4 vanishes for
this solution. Since |b.,.,.| # 0, the set of equations

A 3.6. V= bpndx"=0, m=1,2,..., N,

has only the trivial solution dx® = 0. Hence for the non-trivial
solution of A 3.5, at least one of ¥z4y,..., ¥y must be dif-
ferent from zero. Thus the right-hand side of A 3.4 is positive
while the left-hand side vanishes. This contradiction shows
that the assumption A 3.3 is untenable and thus establishes
the theorem of inertia.

*M. Bécher, Introduction to Higher Algebra, New York, The Macmillan
Company, 1907, sect. 17, Thm. 3, Cor. 1.
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MULTIPLE INTEGRATION
(Reference to p. 257)

In this appendix we present a plausibility argument in
favour of the theorem on multiple integration stated in 7.3.

Consider the edge A By) of the M-cell ABy). . . B(yy) intro-
duced earlier in 7.3. Along this edge ¢ alone changes. Sub-
divide this edge by points By, Bqy, - . - , lying on it and let
W’ 07 | be the corresponding values of ¢V, Then the
(M-1) dimensional spaces

@)= 0, fD(5) = 0,
divide the cell into subcells. If the original cell, and therefore
also the subcells, are infinitesimal, then

B 1. dayy*= dayy*+ dy*+. . .,
where d(1)y*, d(;)y d('{)y »+++, denote the increments in the
parameter y* in passing from A to B, from 4 to B(y), from

By to B(yys e v v respectively. Let A = ld(ﬂ)y | and let A/,
A", ..., denote the corresponding determinants for the sub-
cells. Then

A = e... 0@y "+ diy .. )day™. . . dany™
= ... Y@y . . dany™
+ oo @Y @Y™ . . dany ¥+ ..
or, equivalently,

B 2, A=A+ A+, ...
Thus the determinant A is the sum of the corresponding deter-
minants for the subcells.

We may proceed in the manner described above to choose
points B(;), B(';), e ooy By By .+ - -, On the other edges of
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our original cell, and so subdivide it further. Obviously our
result still holds, namely, that A is the sum of the corresponding
determinants for the subcells.

If the region Ry is divided into sufficiently small cells by
the M families of surfaces

B 3. () = 9,

then for any further subdivision of these cells, of the type
considered above, equation B 2 may be assumed to hold.
Also, if ® is a continuous function in the region Rj, (including
the boundary Ry-1), then, neglecting terms of the order of the
Ac's, ® is a constant in each cell. Thus any finer subdivision
of Ry, obtained by adding new members of the families B 3
to those already considered, changes the expression

B 4. Z3|Agyy°|, or @4,

by a small quantity of the order of the Ac’s. This indicates
that if a definite subdivision of R)s is continually refined in
' the manner just considered, such that all the Ac’s tend to zero,
then the sum B 4 tends to a finite limit.

Equation B 2 also indicates that lim Z®A is independent
of the manner in which Ry is divided into cells—provided
these cells have edges that are tangent to the curves of inter-
section of the (M — 1)-spaces B 3. For, given two such divi-
sions of Ry into infinitesimal cells, we can subdivide each
further to obtain a common division into smaller cells; this
process of subdivision changes the sum B 4 by an infinitesimal
only, as was seen above.

Let us again consider an infinitesimal M-cell AB ). . . By
in Vy, the edgesbeing characterized by d)y®. We say that
a displacement dy® is coplanar with some of these edges, say
with 4By, AB(), AB(), if numbers a,, a2, as exist such that

B 5. dy* = ardyy*+ a2d@y*+ asdm)y®.

Now if we give to the further extremity of an edge, say By, a
displacement coplanar with some or all of the other edges, say
with AB(;), AB(y), ABw), we do not alter the value of the
determinant Id(ﬁ)y‘l . For we merely add to the elements of
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one row of the determinant quantities proportional to the
elements in the other rows. Obviously any cell may be de-
formed in this way into another cell whose edges assume M
prescribed (non-coplanar) directions in V.

Our last result indicates that the limit of B 4 is completely
independent of the manner in which Ry is divided into cells.
For we can start with an arbitrary division and deform each
cell, in the manner justindicated, such that its edgesare tangent
to the curves of intersection of the (M — 1)-spaces, B 3.
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Absolute, derivative, 49, 250, 283,
311; tensor, 198, 241

Acceleration, 149, 153, 170

Action metric, 177

Affine connection, 292

Amorphous space, 282

Angle, 34, 36

Angular, momentum, 156; velocity,
159

Antipodal space, 116

Antisymmetry, 15

BERNOULLTI'S integral, 202
Bianca: identity, 87
Bipolar coordinates, 79
Body force, 200

Cartesian, coordinates, 142; ten-
sor, 127

Cell, 253

Centrifugal force, 167

CHRISTOFFEL symbols, 41

Coefficients of connection, 287

Comoving time-derivative, 191

Compatibility equations, 236

Completely applicable, 179

Components, 9, 144

Compressed notation, 20

Configuration, 4

Configuration-space, 168

Conformal, 299

Conjugate metric tensor, 31

Connection, coefficients, 287;

double, 291; linear, 287; ortho-
invariant, 290; projective, 309;
semi-symmetric, 308; single or
contraction-invariant, 291; sym-
metric or affine, 202

Conservation of mass, 195

Continuity equation, 196

Contraction, 17, 88, 205

Contraction-invariant connection,
201

Contravariant, tensor, 11; vector, 10

Coordinates, 3; bipolar, 79; Car-
tesian, 142; curvilinear, 26;
geodesic, 292; geodesic normal,
69; homogeneous, 119; local Car-
tesian, 58; normal or orthogonal
trajectory, 62; orthogonal, 71,
145; Riemannian, 59; spherical
polar, 54

Coplanar vectors, 94, 317

CorioLrs force, 167

Covariant, derivative, 51, 251, 287,
311; tensor, 13; vector, 12

Curl, 135, 246

Curvature, 81, 294; constant, 113;
Gaussian, 96; geodesic, 154;
invariant, 89; of curve, 73; pro-
jective, 305; Riemannian, 93, 94;
tensor, 83, 85, 294

Curve, 5

Curved space, 82

Curvilinear coordinates, 26

D’ALEMBERT’S principle, 159

Density, 192, 241

Derivative, absolute, 49, 250, 283,
311; covariant, 51, 251, 287, 311

Determinant of metric tensor, 30

Dilatation, 211

Dimension of space, 4

Displacement, infinitesimal, 9; null,
29
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Distance, 28; geodesic, 122

Divergence, 57, 134, 193

Double connection, 291

Dual tensors, 246

Dummies, 7

Dynamics, general system, 168;
particle, 149; rigid body, 156

EINSTEIN, 142; tensor, 89

Elasticity, 202; tensor, 210

Electromagnetic radiation, 213

Elliptic space, 116

Energy, 177

Equilibrium of continuous medium,
208

EULER equations, calculus of vari-
ations, 40; rigid body, 168

Eulerian method, 191

Event, 126

Excess of angle sum, 96

Expansion, 194, 211

Extension, of cell, 253, 255; strain,
203

Finzi, 237

First curvature, 73

First integral, 45

Flat space, 82, 118, 295; pro-
jectively, 306

Force, 150, 171

Frame of reference, 162

FrENET formulae, 74

Frequency, 219

Fundamental, form, 27, 29; tensor,
26, 28, 31

Future, 126

Gauge, invariance, 298; transforma-
tion, 208

Gauss, 27, 96

Gaussian curvature, 96

Gauss' theorem, 193

Geodesic, 37; circle, 155; coordi-

nates, 292; curvature, 154; devi-

ation, 90; distance, 122; normal

coordinates, 69; null line, 46
Geometrical, object, 10; optics, 216
GREEN’s theorem, 193, 275

HaMILTON’S, equation, 217; princi-
ple, 187

Hertzian oscillator, 238

HEerTz vector, 223

Homeomorphic, 179

Homogeneous coordinates, 119

HookE’s law, 209

Hydrodynamics, 190

Hyperspace, 4

Hypersurface, 5

Indefinite, 29

Indicator, 29

Infinitesimal displacement, 9

Inner product, 17

Instantaneous axis, 159

Integral, multiple, 258, 316

Invariant, 12; curvature, 89; rela-
tive, 198

Irrotational flow, 199

Isotropic, medium, 210; point, 111

Jacobian, 6, 240

Kinematical metric, 169

Kinetic energy, 151, 168

KRONECKER delta, 8; generalized,
242

Lagrangian, equations, 151, 174;
method, 191

LAME’S constant, 212

Laplacian, 58

Least action, 177

Length, 29

Levi-CIviTA, 142

Linear connection, 287

Line element, 27

Lines of force, 174
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Local Cartesians, 58
LORENTZ transformation, 140, 231
Lowering suffixes, 31

Magnitude of vector, 33

Manifold, 4

MAXWELL'S equations, 214, 228, 230

Metric, action, 177; form, 27, 29;
kinematical, 169; tensor, 26, 28,
31; tensor, determinant, 30, 248

Mixed tensor, 13

MoéBrus strip, 261

Moment, of force, 156; of inertia,
161

Motion, continuous medium, 208;
Newtonian law, 150; perfect fluid,
201; relativistic equations, 155

Multiple integral, 257, 316

Negative transformation, 121, 249

NEUBER, 237

NEWTON’S law of motion, 150

Non-Riemannian space, 282

Normal coordinates, 62

Normal vector, 63, 265

Null, cone, 125; displacement, 29;
geodesic, 46

One-sided region, 261

Order of tensor, 11

Orientation of cell, 260

Oriented, region, 261; tensor, 130,
249

Orthogonal, coordinates, 71, 145;
trajectories, 63; trajectory co-
ordinates, 62; transformation, 120

Orthogonality, 36

Ortho-invariant connection, 290

Quter product, 17

Papcovica, 237

Parallelogram, 292

Parallel propagation, 49, 99, 288
Parametric line, 70

Past, 126

Path, 289

Perfect fluid, 199

Period, 219

Permutation symbol, 131, 243, 249,
250

Perpendicularity, 36

Phase wave, 218

Physical components, 144

Plane waves, 222

Point, 3

PoIssoN's ratio, 212

Polarization, 221

Polar space, 116

Positive-definite, 29

Positive transformation, 121, 249

Potential, electromagnetic, 223, 239;
energy, 152

Present, 126

Pressure, 199

Product, inner, 17; outer, 17; scalar,
134; vector, 134, 245

Projective, connection, 309; curva-
ture, 305; flatness, 305; invari-
ance, 304; space, 303; transforma-
tion, 304

Proper transformation, 121

Raising suffixes, 31

Range convention, 7

Reconcilable curves, 100

Relative, invariant, 198; tensor, 198,
240, 311,312

Relativity, general theory, 231;
special theory, 125, 155, 231

Ricci, 142; principal directions, 109;
tensor, 88, 295

RIEMANN, 28

Riemannian, coordinates, 59; curva-
ture, 94; space, 28, 302; tensor, 85

Rigid body, 156

Rigidity, 212

Scalar product, 134
SCHRODINGER, 279
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ScHUR'S theorem, 112

Semi-symmetric connection, 308

Signature, 314

Single connection, 291

Skew-symmetry, 15

Space, 4; amorphous, 282; antipodal
or spherical, 116; configuration,
168; curved, 82; flat, 82, 118, 295;
non-Riemannian, 282; of constant
curvature, 111, 113; polar or
elliptic, 116; projective, 303; Rie-
mannian, 28, 302; WEYL, 297

Space-time, 125, 229

Special theory of relativity, 125

Sphere, 123

Spherical, polar coordinates, 54;
space, 116

STOoKES' theorem, 267; generalized,
269

Straight line, 123

Strain, 202, 205

Stream line, 235

Stress, 202, 208

Subinvariant, 67

Subspace, 5, 253

Subtensor, 67

Subvector, 67

Summation convention, 7

Surface, 5

SYLVESTER'S theorem, 314

Symmetric connection, 292

Symmetry, 15

Tangent vector, 10

Tensor, absolute, 198, 241; Car-
tesian, 127; contravariant, 11;
covariant, 13; curvature or RIE-
MANN, 83, 85, 294; density, 241;
dual, 246; EINSTEIN, 89; field, 14;

fundamental or metric, 26, 28, 31;
mixed, 13; order of, 11, 12;
oriented, 130, 249; relative, 198,
240; Riccr, 88

Tests for tensors, 18

TaoMas, 309

Topology, 116, 124, 179

Torsion, 73

Transformation, gauge, 298; Logr-
ENTZ, 140, 231; negative, 121, 249;
of CHRISTOFFEL symbols, 48; of
coordinates, 6; orthogonal, 120;
positive or proper, 121, 249; pro-
jective, 304

Transitivity, 14, 241

Translation, 157

Two dimensions, 89

Two-sided region, 261

Unit first normal, 73

Unit normal, 266

Unit tangent vector, 34, 72
Unoriented region, 261

Variety, 4

Vector, 9; contravariant ,10; covari-
ant, 12; magnitude, 33; product,
134, 245

Velocity, 147, 153, 169; of light, 219

Volume, 262

Vortex line, 235

Vorticity, 196, 197

Wave equation, 215
Wave-length, 219
Weight, 240

WEYL space, 297

Young’s modulus, 212






