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PREFACE

MATHEMATICIAN unacquainted with tensor calculus is

at a serious disadvantage in several fields of pure and

applied mathematics. He is cut off from the study of Rieman-

tri.o geometry and the general theory of relativity. Even in

Euclidean geometry and Newtonian mechanics (particularly the

mechanics of continua) he is compelled to work in notations
which lack the compactness of tensor calculus.

This book is intended as a general brief introduction to tensor
calculus, without claim to be exhaustive in any particular
direction. There is no attempt to be historical or to assign credit
to the originators of the various lines of development of the
subject. A bibliography at the end gives the leading texts to
which tlre reader may turn to trace the development of tensor
calculus or to go more deeply into some of the topics. As treat-
ments of tensor calculus directd towarrds relativity are compar-
atively numerous, we have excluded relativity almost completely,
and emphasized the applications to classical mathematical
physics. Hourever, by using a metric which may be indefinite,
we have given an adequate basis for applications to relativity.

Each chapter ends with a summary of the most important
formulae and a set of srercises; there are also exercises scattered
through the toct. A number of the orercises appeared on exam-
ination paper at tle University of Toronto, and our thanks are
due to ttre Univensity of Toronto Press for permission to use them.

The book has grovrn out of lechrres delivered over a number
of years by one of us (J.L,S,) at the Univereity of Toronto, the
Ohio State University, the Carnegie Institute of Technology.
Many suggestions from those who attended the lectures have
been incorporated into the book. Our special thanks are due to
Professors G. E. Albert, B. A. Griffith, E. J. MicHe, M.
Wyman, and Mr. C. W. Johnson, each of whom has read the
manuscript in whole or in part and made valuable suggestions for
its improvement.

J. L. SrrgcB
A. Scgu.o
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CHAPTER I

SPACES AI{D TENSORS

1.1. The generalized idea of a space. In dealing with two
real variables (the pnessu3e and volume of o 9?s, for srample),
it is a common practice to use a geometrical reprlesantation.
The variables are represnted by the Cartesian coordinates of
a point in a plane. If we have to deal with three variables, a
point in ordinary Euctidean space of tbree dimensions may be
used. The advantages of such geometrical representation are
too well knon'n to require emphasis. The analytic aspect of the
problem assists us with the geometry and vdcc scrso,.

When the number of rirariables exceeds t[r€e, the geome-

trical representation presents some difficulty, for we require a

spac€ of more than thrce dimensions. Although such a space
need not be r€garded as having an actual physical existence,
it is an ortremely valuable oncept, because the language of
geometry may be employed with referene to it. With due
caution, we may e\ren draw diagrams in this "gpace," or rather
we may imagine multidimensional diagrafiIs proiected on to
a two-dimensional sheet of paper; after all, this is what we do
in the case of a diagram of a three'dimensional figure.

Suppose we are dealing with JV reat variables *r, *2 , . . . , str .
For reasons which witl appear later, it is begt to write the
numerical labels as superscripts rather than as subscripts. This
may seem to be a dangerous notation on account of possible
confusion wittr posrer€, but this dangen does not firrn out to be
serious.

We call asetof valuesof *1, #r... r{ apoint.Thenari-
ables fiLr*r. . , , { af,e caled coordittotcs. The toali$ of points
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corresponding to all values of the coordinates within certain
ranges constitute a spacc of N di,mensions. other words, such
as hypcrspacc, manifold', or tarhty are also used to avoid con-
fusion with the familiar rneaning of the word ,,space.', The
ranges of the coordinates may be from - o to f o, or they
may be restricted. { space of /v dimensions is referred to by
a symbol such as V;.

Excellent examples of generalized spaces are given by
dynamical systems consisting of particles and rigid bodies.
suppose we have a bar which can slide on a plane. Its position
(or conf'gurat'ion) may be fixed by assigningthe cartesian co-
ordinates fit ! of one end and the angle 0 which the bar makes
with a fixed direction. Here the space of configurations is of
three dimensions and the ranges of the coordinates are

@( r ( f  o r  - c ,  1y1 {o ,0<012 r .

Excrcise, How many dimensions has the configuration-space
of a rigid body free to move in ordinary space? Assign co-
ordinates and give their ranges.

It will be most convenient in our general developments to
discuss a space with urn unspecified number of dimensions /v
where N > 2. rtis a remarlcable featur€ of tjre tensor calculuJ
that no essential simplification is obtained by taking a small
value of lI; a space of two million dimensions is as easy to
discuss (in its general aspects) as a space of two dimensions.
Nevertheless the cases l[ : 2, N : B, and JV : 4 are of par-
ticular interest: J[ : 2 gives us results in the intrinsic g"o-
metry of an ordinary surface; fy' : B gives us results in the
geometry of ordinary spac€; /v : 4 gives us results in the
space-time of relativity.

The development of the geometry of. vy is a game which
must be played with adroitness. We take the familiar words
of geometry and try to grve tjrem meanings in zy. But we must
of course remember that /v misht be B and vy mrght be our
familiar Euclidean space of three dimensions. Therefore, to
avoid confusion, v/e must be careful to frame our definitions
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so that, in this particular case, these definitions agree with the

familiar ones.
A cunte is defined as the totality of points given by the

equations

1.101. xr: f (u) (r - 1, 2, , .., JV).

Here u is a parameter andf are /V functions.
Next we consider the totality of points given by

1 . 1 0 2 .  x , :  f ( u L r i l Z r .  .  . r u M )  ( r  :  L r 2 r . .  . ,  J V ) ,

where the a's are pariuneters and M < /V. This totality of
points may be called V r, a subspacc of. Vy. There are two cases
of special interest, namely $ - 2 and l,[ - JV - 1. Either of
these might be called a surfa,cc, because if iV : 3 they both
coincide with the familiar concept of "surface." It seems' how-
ever, that VN -1 has the better right to be called a surface,
because it has (for any iV) the fundamental property of a
surface in ordinary space' viz. it divides the neighbouring por-
tion of space into two parts. To see this, we eliminate the
parameters from 1.102. Since llf - /V - 1, the number of
parameters is one less tlran the number of equations, and so
elimination gives just one equation:

1.103. F(d,  f iz r .  . . ,  * i l )  = i  0 .

The adjacent portion of [r is divided into two parts for which
respectively F is positive and negative. VN -l isoften called a
hypcrsurface h VN.

Other familiar geometrical ideas will be extended to Zy as
the occasion arises.

Excrcisc. The parametric equations of a hypersurface in Vx
are

*L: a, @s ul,
*: o sin nt cos ltt,

f : o sin al sin a2 @s uE,

a a a a a a

{ 
-t : & sin zl sin u2 sin rs. . . sin uN 

-2 
@s zf -1,

*N : o sin al sin at sin tJE.,. sin ar-2 sin tt*-t,
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where a is a constant. Find the single equation of the hyper-
surface in the form 1.103, and determine whether the points
(*a,Or 0, . . . . 0), (0, 0, 0, . . .Drfut) lie on the same or opposite
sides of the hypersurface.

E*crc,i,se. Let Uzand Wzbe two subspaces of Vy. Show that
if JV : 3 they will in general intersect in a curve; if /V : 4 they
will in general intersect in a finite number of points; and if
.M > 4 they will not in general intersect at all.

t.2. Transformation of coordinates. Summation conven-
tion. It is a basic principle of tensor calculus that we should
not tie ourselves down to any one system of coordinates. We
seek statements which are true, not for one system of coord-
inates, but for all.

I-et us suppose that in a 7y there is a system of coordinates
*r, lctr. . . , {. l*t, us write down equations

1.201. * r r :  f ( x t ,  * r .  . .  ,  r i l ) Qt :  Lr  2r .  .  . ,  . lV),

where the /s are single valued continuous differentiable func-
tions for certain ranges of rr, *, . . .r{ .These equations assign
to any point fiLr/.2, . . ,r{ a newsetof coordinates*'1, d2r...rr,N .
The Jacobian of the transformation is

afr
a a a

0xr

olc'N 
' ' '

a a a

0tcr

0rtL
a a

0tcM
1.202. J', -

0x'N"w
or, in a briefer notation,

1.203. J', :
adI

0*'

the ranges /, s - 1, 2r... , Jvbeing understood. We shall sup-
pose that the Jacobian does not vanish. Then, as is well known
from the theory of implicit functions, the equations 1.201 may
be solved to read



01 .2

1.20d'.

1.206.

SurnreuoN Corrnxrrow 7

x' : g'(fi '!*'1 .. . , $'tr) (, : lr 2, .. ., JV).

Differentiation of 1.201 gives

1.205.

Thus the transformation of the differentials of tjre coordinates
is a linear homogeneous transformation, the coefficients being
functions of position in tr/;y. We shall return to this trans-
formation presently, bu't first let us introduce two notational
conventions which will save us an enormous amount of writing.

Range Convention. When o smal,l, Latin suffir (superscript
or subscript) occurs unrepeoteil in a term, it'i's und'erstood to tahe
ol,l the aal,ues 1,2, . . . , JV, where.tV is the number of ilimensions
of the space.

Summation Convention. When o small Latin sufJi* is re-
peatd, in a term, summation with respect to tlwt suffix is und'er-
stood,, the range of summation being Lr 2, ., . , lV.

It will be noticed that the reference is to small Latin suf-
fixes only. Some other range (to be specified later) will be
understood for small Greek suffixes, while if the suffix is a
capital letter no range or summation will be understood.

To see the economy of this notation, we observe that 1.205
is completely expressed by writing

w 0*"
i lf ' : 

,Erfid*' 
(r - 1,2," ', ' lf)'

0*''
d,tc" : 

{*" 
dxt

Repeated suffixes are often referred to as "dummiesl' since,
due to the implied summation, any such pair may be replaced
by any other pair of repeated suffixes without changing the
expression. We have, for example,

arrb" : or*bh.

This device of changing dummies is often employed as a useful
manipulative trick for simplifying expressions.

In order to avoid confusion we make it a general rule that
the same suffix must never be repeated more than twice in any
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single term or product. If this cannot be avoided, the sum-
mation convention should be suspended and all sums should be
indicated explicitly.

E*ercisc. Show that
(ar"t* acu* a 37s)*"$.tg, : BaTrgc"*.9c..

Ercrcisc. If O : a76*t*sl show that
a6 \ a26

6, 
: (ar"* a"r) * ', 

#*r: ar"* a"r.

Simplify these expressions in the case where a,g: ag7.

Let us introduce a symbol { called the Kronecker ilcl,ta;
it is defined by

1.207. 1if.  r  :  sr
0 i f  r  *  s .

Exercisc. Prove the relations

4 a ' ; r : o ' ; i ,
4b* i  :  bs t .

It is evident that 0*t/0x.:e!, or equivalently

1.208. gty,
0d, 0rr: 

6:'

From this we may derive an identity which will be useful later.
Partial differentiation with respect to se gives (since the
Kronecker delta is constant)

, 021c, 0*r^ 0*r, 0r, a2{,
l'2O9. Ar{^O{" A.t O.' + O*ffi,: 0.

If we multiply across O"#, we get

lzrrq 02*, 0X,^ 0r,r 0*,c
l '2lo' 

a""a*ri adnad" a*, o"r;.F 
- 0.

o3:
63:
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We may of course interchange primed and unprimed symbols
in the above equations.

Excrcise. lf Ai are the elements of a determinant A, and B!
the elements of a determinant B, show that the element of the
product determinant AB is AiB'!. Hence show that the pro-
duct of the two Jacobians

$ 1.3

1.301.

0x"
F"

0dt

0x'
'.,Jr : T r -

1 J

is unity.

1.3. Contravariant vectors and tensors. Invariants. Con-
sider a point P with coordinates r'and a neighbouring point Q
with coordinates *'* dtc'. These two points define an infini-

tesimal displacement or outor PQ; f.or the given coordinate
system this vector is described by the quantities dr', which
may be called fhe cotttpmcnts of this vector in the given co-
ordinate system. The vector d*'isnot to be regarded as "free,"
but as associated with (or attached to) the point P with co-
ordinates rt.

kt us still think of the same two points, but use a different
coordinate system r". In this coordinate system the com--+
ponents of the vector PQ are dx"i these quantities are con-
nected with the components in the coordinate system x' by
the equation

dtc"
d,x" : 6p dx',

as in 1.206. If we keep the point P fixed, but vary Q in the
neighbourhood of P, the coefficients iltct'/Ar, remain constant.
In fact, under these conditions, the transformation 1.301 is a
linear homogeneous (or affine) transformation.

The vector is to be considered as having an absolute mean-
ing, but the numbers which describe it depend on the coor-
dinate system employed. The infinitesimal displacement is the
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prototype of a class of. geomctria,l, objuts which are called con-
travar'iant vectors. The word "contravariant" is used to dis-
tinguish these objects from "covariant" vectors, which will be
introduced in 1.4. The definition of a contravariant vector is
as follows:

A sct ol Ewntiths T, assoc,iat"ed wdth a poi,nt p, arc sa,id, to
bc thc componmts of a contratnriant occtm if they transfmm, on
change of coordinatcs, accordling to thc eqwtian.

1.302.
0*"

T"  :  T " ; " ,

where thc furtinl' ilcrfuotiaes arc ewluatcd at P. Thus an infini-
tesimal displacement is a particular example of a contravariant
vector. It should be noted that there is no general restriction
that the components of a contravariant vector should be in-
finitesimal. For a cunre, given by the equations 1.101, the
derivatives d'x'/d'uare tjre components of a finite contravariant
vector. It is called a ta.ngcnt occtor to the cunre.

Any inf,initeshnal contravariant vector T, may be repre-
sented geometrically by an infinitesimat displacement. We have
merely to write

1.303. d,*r : T.
If we use a different coordinate system dr, and write

1.304. d*" : T",
we get an infinitesimal displacement. The whole point of the
argument is that these two equations define the same displace-
ment, provided I' are tjre components of a contrarrariant vector.
lf. T and Tt'were two sets of quantities connected by a trans-
formation which was not of the form 1.302, but something
different, soy, T" : T'0r"/0r", then the connection between
the dx" of 1.303 and the dd' of. 1.304 would not be the trans-
formation 1.301 which connects the components of a single
infinitesimal displacement in the two coordinate systems. In
that case, d,tc" and d*" would not rrepresent the same infini-
tesimal displacement in 7y.
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This poin\ has been stressed because it is very useful to
have geometrical representations of geometrical objects, in
order that we may use the intuitions we have developed in
ordinary geometry. But it is not always easy to do this. Al-
though we ciul do it for an infinitesimal contravariant vector,
we cannot do it so completely for a finite contravariant vector.
This may appear strange to the physicist who is accustomed
to represent a finite vector by a finite directed segment in
space. This representation does not work in the general type
of space we have in mind at present.

Ercrc,isc. Show that a finite contravariant vector determines
the ratios of the components of an infinitesimal displacement.
(Consider the transformation of the equation d,tc': 0P, where
d is an arbitrary infinitesimal factor which does not change
under the transformation. Alternatively, show that the equa-
tions T'd,*'- T'd,x': 0 remain true when we transform the
coordinates.)

We now proceed to define geometrical objects of the contra-
variant class, more complicated in chamcter than the contra-
variant vector. We set down the definition:

A sct of gwrr&h,s Tv" arc sa'id to bc tlu componcnts of a con-
trawr,iont tcnsor oJ tlu suond' oril.cr if th?y tronslorm according
to tlu cgwtian

1.305. Trts - 7*r0d' 
ad t

0*a iltc' 
'

It is immediately obvious that if. W and W are two contra-
nariant vectors, then the product WV' is a contravariant
tensor of the second order.

The definitions of tensors of the third, fourth, or higher
orders will at onc€ suggest themselves, ffid it is unneces.sary
to write them down here. But going in the opposite direction,
we notice that a contravariant vector is a contravariant tensor
of the first order, and this suggests that there should be a
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contravariant tensor of. znro order, a single quantity, trans-
forming according to the identical relation

1.306. T': T.

such a quantity is called an im)oria,nU its value is independent
of the coordinate system used.

Exercisc. Write down the equation of transformation, anal-
ogous to 1.305, of a contravariant tensor of the third order.
Solve the equation so as to express the unprimed components
in terms of the primed components.

1.4. Covariant vectors and tensors. Mired tensors. Let
d be an invariant function of the coordinates. Then

1.401.
d0 :
ilrt'

0g 0x'
l tc'0*'?

This law of transformation is rather like 1.301, but the partial
derivative involving the two sets of coordinates is the other
way up. Just as the infinitesimal displacement was the proto-
type of the general contravariant vector, so the partial deri-
vative of an invariant is the prototype of the general cwariant
vector. We define it as follows:

A set of Ewntitits I, arc sa'id, to be thc components of a co-
var,iant vector i,f tluy transform according to the cEuation

L.402.
0rt

6 m, - t -r ? -  t  r U * r r .

It is a well-established convention that suffixes indicating con-
travariant character are placed as superscripts, and those indi-
cating covariant character as subscripts. It was to satisfy this
convention that the coordinates were written x, rather than frr,
although of course it is only the differentials of the coordinates,
and not the coordinates themselves, that have tensor character.

There is no difficulty in defining covariant tensors of various
orders, the covariant vector being a tensor of the first order.
Thus for a tensor of the second order we make this definition:
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A sct of Ewnliths T* orc so,id, to bc thc componmts of a co-
wr,ia,nt tcnsor of tlu second ordcr i,f thcy tronslorm according to
thc cEwt'ion

Having set down definitions of contravariant and covariant
tensors, definitions of mixd, tcnsors suggest themselves. Sup-
pose a set of quantities I! transform according to

1.403.

1.404.

iltcm 0x'
,ltt rd
, . f s -  4mn  

Ad t "  A f  , .

6*11 6*t 616?
Trt .Trn -r st - ' o) AX^ ArC, . AXrr.

We would ray tlrat they are the @mponents of a mixed tensor
of the third order, with one contravariant and two covariant
suffixes.

In adopting for the Kronecker delta the notation 6! we
anticipated the fact that it has mixed tensor character. Let
us now prove this, i.e. let us show that

1.405.
illt 0x"

61 : 6tr *p#,
where 6'! is unity if. r : s and znro if. r * s. Holding m fixed.
temporarily, and summing with respect to n, we get no con-
tribution unless n : ,n. Hence the right-hand side of 1.405
reduces to

ilsct'0r^

0x^ 0d , '

and this is equal to 6!; thus the truth of 1.405 is established.
The importance of tensors in mathematical physics and

geometry rests on the fact that a tensor equation is true in all
coordinate systems, if true in one. This follows from the fact
that the tensor transformations are linear and homogeneous.
Suppose, for example, that we are given that Tr":0; it is an
immediate consequence of 1.403 that T'rr:0 also. More gen-
erally, if we are given
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1.406.
then

1.407.

1.408.

and

1.409.

then

1.410.

Thxsons

Arr- Br,

A'rr: B'rr.

Let us now consider what may be called the tronsitivity of
tensor character. We shall speak of covariant tensors of the
second order for simplicity, but the results hold quite gener-
ally. Let there be three coordinate systems: s', r", tc"'. Sup-
pose that a set of quantities Ir" transform tensorially when
we pass from the first to the second set of coordinates, and
also when we pass from the second to the third. These two
transformations combine to form a "product" transformation
from the first set of coordinates to the third. If this trans-
formation is tensorial, then we say that the tensor character
is tronsithe. To establish this transitivity, we have to prove
the following statement:

Given that

0r^ 0*o
tlrt ,f
L ?E - t ^n 

U*r, iltrr r,

0r'- |fi 'o
T"' - 'ft
t rt - t ,r; 

AXtr" 6*tt t,

T,t, - T, ilxm 0*n
t r, - t mr{rr 

ff ir.

This is easy to show, and is left as an exercise.
A tensor may be given at a single point of the space 7s,

or it may be given along a curye, or throughout a subspace,
or throughout 7n' itself. In the last three cases we refer to a
tensor tield, if we wish to emphasize the fact that the tensor is
given throughout a continuum.

Exercise. For a transformation from one set of rectangular
Cartesian coordinates to another in Euclidean 3-space, show
that the law of transformation of a contravariant vector is
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precisely the same as that of a covariant vector. Can this
statement be extended to cover tensors of higher orders?

1.5. Addition, multiplication, and contraction of tensors.
Two tensors of the same order and type may be added together
to give another tensor. Suppose, for example, that Alt and Bit
are tensors, and that the quantities Q, are defined by

1.501. 4t :  AI ' *  Bk.
Then it is easy to prove that fitarethe components of a tensor.

A set of quantities .r{.r, (not necessarily components of a
tensor) is said to be synmetr,ic if.

1.502. 4, , :  A , , ,
and skcursymmetrh or on:tisynrnetric if.

1.503. Arr:  -  A , r .

If the quantities have tensor character, the property of sym-
metry (or of skew-symmetry) is consenred under transforma-
tion of coordinates. This follows from the fact that

Arr- Arr, Ar"* 4",

are themselves tensors, and so nanish in all coordinate systems,
if they vanish in one.

These remarks about symmetry apply equally to contra-
variant tensors, the subscripts being replaced by superscripts.
They do not apply to a mixed tenmr .r4'3; the relationship
A!, : .r{i does not in general @rry over from one coordinate
system to another.

The definitions of symmetry and skew-symmetry may be
extended to more complicated tensors. We say that a tensor is
symmetric with respect to a pair of suffixes (both superscripts
or both subscripts) if tJre value of the component is unchanged
on interchanging these suffixes. It is skew-symmetric if inter-
change of suffixes leads to a change of sign without change of
absolute value.

The following result is of considerable importance in the
application of tensor calculus to physie: Any tpnsor of thc
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second, ord,cr (cowr,iont or contrawr,iant) moy bc acprcssel, os thc
sum of a synmetr'ic tcnsor ond, o skcto-synmetrh teil,sor. This is
easy to prove. Let us take a contranariant tensor A,, f,or illus-
tration. We have merely to write

1.504. A,": t(A,"+ A"r)+ *(A,,- A",);
each of the two terms on the right is a tensor-the first is
symmetric and the second skew-symmetric.

Etccrcise. In a space of four dimensions, the tensor Ar* is
skew-symmetric in tfie last pair of suffixes. Show that only
24 of the 64 @mponents may be chosen arbitrarily. If the
furtJrer condition

Ar** A*r* At 
" :  

0
is imposed, show that only 20 components may be chosen
arbitrarily.

Ercrcisc. If. A'" is skew-symmetric and Br" symmetric, prove
that

AtrBrc: 0.

Hence show that the quadratic form o;ff is unchanged if o6;
is replaced by its symmetric part.

Let us now consider the multiplication of tensors. In adding
or subtracting tensors we use only tensors of a single type, and
add components with the same literal suffixes, although these
need not occur in the sarne order. This is not tJre case in
multiplication. The only restriction here is that we never
multiply two omponents with the same literal suffix at the
same level in each. (This general rule may be broken in the
case of Cartesian tensors, to be discussed in chapter rv, but
this exception is unimportant.) These restrictive rules on add-
ition and multiplication are intnoduced in order that the results
of the operations of addition and multiplication may them-
selves be tensors.

To multiply, we may take two tensors of different types
and different literal suffixes, and simply write them in juxta-
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position. Thus, suppose Ar" and B! are tensor:s of the types
indicated. If we write

1.505. 4o : ArrBT,

then these quantities are the components of a tensor of the
type indicated. This follows immediately from the formulae
of tensor transformation.

Such a product as 1.505, in which all the suffixes are dif-
ferent from one another, is called an outcr prod,uct. The ,i,nner
profurct is obtained from the outer product by the process of
contractioa, which we shall now explain.

Consider a tensor with both contravariant and covariant
suffixes, such as Tf;rr. Consider the quantities T#r, in which
there is of course summation with respect to m in accordance
with the summation convention. What is its tensor character,
if any? We have

r.506. T,y-. : T!,..a{^ 
oxq oxt ort .

"'r "- atco otc'o ofi'? axte

Putting n : rnr and using 1.208, we obtain

t7

1.507.

In fact, the tensor character is that of. Br, covariant of the
second order. we have here contractd, with respect to the
suffixes nh n (one above and one below), with the result that
these suffixes become dummy suffixes of summation and no
longer imply any tensor character.

The general rule is as follows: Gfuen a mixcd, tensor, iJ we
contract by utriting thc samc l,cttcr as a superscript and, os a sub-
s cri'pt, the r e suJt ha s the ten s m cha,radq indieatcd by the r emainin g
sufi,res.

Applying contraction to the outer product 1.505, we get
the inner products

A*"Btr, Ar_BT,
each of which is a covariant tensor of the second order.

T.rm - Tn illct ilxo
t ,nrs - z htu 

O* al r'
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The process of contraction cannot be applied to suffixes at
the same level. of course, tfuere is nothing to stop us writing
down the expression aTrr; but it has not tensor character, and
so is of minor interest, since our object is to deal (as far as
possible) only with tensors.

Erercise. What are the values (in a space of .tv dimensions)
of the following contractions formed from the Kronecker delta?

6T,, 6T,6n, 6T6i6'_.

1.6. Tests for tensor character. The direct test for the
tensor character of a set of quantities is this: see whether the
components obey the law of tensor transformatidn when the
coordinates are changed. However, it is sometimes much more
convenient to proceed indirectly as follows.

suppose that r{., is a set of quantities which we wish to test
for tensor character. Let X'be the components of an arbitrary
contravariant tensor of the first order. We shall now prove
that if the inner prod,uct ArX, is an imnr,ia,nt, thcn A, are the
componmts of a covariant tcnsu of tlu first order. We have, by
the given invariance,

1.601. A,X, : AIX,,,
and, by the law of tensor transformation,

L.ffiz.
af,

Xt' : X'Fi,,".

Substituting this in the right-hand side of 1.001, rearranging,
and making a simple change in notation, we have

1.603. (,e, - Ai#)r,= o.
Since the quantities X' are arbitrary, the quantity inside the
parentheses vanishes; this establishes the tensor character of
A, by 1.402.

The above example is illustrative of the indirect test for
tensor character. The test is by no means confined to the case
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of a tensor of the first order, nor is it necessary that an invar-
iant should be formed. It is, however, essential that there
should enter into the test some quantities which are arbitrary
and are known to have tensor character.

Exercisc. If. X', Y are arbitrary contranariant vectors and
orrX' Yt is an invariant, then o". ate the components of a
covariant tensor of the second order.

Exercisc. If, Xrris an arbitrary covariant tensor of the second
order, and A!"X^n is a covariant vector, then z{fo has the
mixed tensor character indicated by the positions of its suffixes.

The following case is of some importance. Suppose that or.
is a set of quantities whose tensor character is under investi-
gation. Let X' be an arbitrary contravariant vector. Suppose
we are given that o,rrX'X ' is an invariant. What can we tell
about the tensor character of. ar"?

We have

1.604. a,nxtxt : otrrX"Xt'

: a'rrX^X'A#t+,
and so

19

1.605.

This quadratic form vanishes for arbitrary X', but we cannot
ju*p to the conclusion that the quantity inside the parentheses
vanishes. We must remember that in a form b^#Xo the co-
efficient of the product xrxz is mixed up with the coefficient
of, XzXr; it is, in fact, bu* Du. Thus we can deduce from 1.605
only that

. 0r', axt, a*tr arr t
1.606. @^o* anm: o'rrffi 

Ae" + o,rrfxr;^.

The trick now is to interchange the dummies r, s in the last
term; this gives

( o*t' or" \
\ o-"- a',,ffi a." ) 

x-x': o.
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1.607. o^o* (rnst- (o'rr* o' ,)##.

This establishes the tensor character oI a^o* arm. lf we are
given that amr and at ̂ n are symmetric, the tensor character
of a^n follows, and we obtain this result: If ar&rX, ,is ,insar-
,iont, X' bedng on arbitrary contravar,iont occtm and, a* bcing
symmctr'ic in ol,l coud,inatc systams, thcn ar" are thc cotnponcnts
of o cowr,iant tmsor of tlu sccottd, ordar.

1.7. Compressed notation. The range convention and
the summation convention, introduced in L.2, save a great deal
of unnecessary writing. But still more can be done to improve
the symbolism. In the present section we shall discuss a "@m-
pressed notation." This notation certainly simplifies the proofs
of some results, but it is questionable whether it is advisable
to adopt it as standard notation. On the whole, it has seemed
best to introduce the present notation as a sample of what can
be done in the lyay of smoother notation, but to revert, in the
subsequent parts of the book, to the notation which we have
used up to the present.

Suppose we have a space of /V dimensions. Let x' be a
system of coordinates, small l"atin suffixes having the range
t, 2,. o . , lV. Let f be another system of coordinates, small
Greek suffixes also taking the range lr 2, .. . , ,lV. At first sight
this appears to be an impossible notation, violating the funda-
mental rule that one matliematical symbol shall not denote two
different quantities at the same time. We ask: What does rr
mean? To which of the two systems of coordinates does it
belong? The answer is: Never write rr, but (r')'-t or (rf)r-r
according to whether you wish to denote the first or the second
coordinate system. This is clumsy, but does not spoil the
notation for general arguments, in which we do not require to
give numerical nalues to the suffixes. As long as the suffix
remains literal, the fact that it is Latin or Greek tells us which
coordinate system is involned.
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We now denote partial differentiation by 0, so that

aa
0,  :  # ,  0o-  f r .

Further, let us rvrite

1.702. )(s: 0{, )(a- 0n*', X!: 0d/, Xo": ilnf ,

so that obviously

1.703. )4: 6!, 4X!: E:.

The following are tensor transformations erpressed in this

notation:
f - TXl, TP:' T'X!,
Tr- TJo, Tr- T Jq,

1.704. Trr: ToJq Xi,

T;',:'.'.!y : Tii::liy )(;. , , \trxiy.. x"rl.
The last line in !.704 is tlre general formula of tensor trans-
formation.

It is convenient to use tlre following notation for second

derivatives:

2t

1.701.

1.705.
exP

ArX! : A,Xi - 
f,*rA*t: 

X1".

In this notation the equation 1.210 reads

1.706. Xk + X#X\XEX|: 0'

Etccrcdsc. If .rl.r" is a skew-symmetric covariant tensor, prove

that Br,l,,t defined as

1.707. Bre.: 0rA rt* 0 A** 0Ar,

is a covariant tensor, and that it is skew-symmetric in all pairs

of suffi:res.

When calculations become complicated, notational devices
become of red importance as labour-saving devices, and to
keep the bulk of formulae under control. It sometimes happens
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that more than two coordinate systems are involved. There
are two methods of handling such situations.

The first plT 
i: p lreak up tle Latin alphabet into groups

such as (abcde), (fghii), (klmno), . . . , ond assign 
" 

grlup io
each coordinate system. Thus, coordinates ror the 

-n 
rt' .o-

ordinatesystem would be denoted by f , . ..,rr, for the second
*1,...,d, and so o-n. using x as irtu br* retter for partiar
derivatives, we would then have formulae such as the roill*ing:

1.708. Xt : 6"", X? : Y, XiXt: XE,
A A '
vab-

Ttc : T6X{Xf , Ft : TbXlXl.
The second plan is to use one alphabet, but to put a sign

on the suffix indicative of the coordinate system- involvi.
Thus, coordinates for the first coordinate systbm would be
denoted by *', *^, *lr. . : , for the second by */, *r*, *;;, . .-. ,for the third by &,r" , ,gnl' , gt", o . o , and, we would have for-
mulae such as the following:

l.7}g, XJ: 6i, X{r, : 
0x' y t,= 

#, x,{,xtr;: xJ,,
T{n{ : Try(;xl', f,d, : To(:xy, .

SUMMARY I

Contravariant tensor:

T,rmr _ T'eiltc'^ Af"

Ffi .
Covariant tensor:

Tt - T, 0r' 0x'
r  tnt  -  t  t r [7_ 

f f i .

T'rrn - *0{- 0X'. 13 - "E# .

Mixed tensor:
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Invariant:
T' :  T.

Kronecker delta:

EXERCISES I

1. In a Vtthere are two 2-spaces with equations

x, : f (ur, ilz), st - g'(tf , d).

Prove that if these 2-spaces have a curye of intersection, then
the determinantal equation

lu*' l :o
Idu'I

is satisfied along this curve.

2. In Euclidean space of three dimensions, write down the

equations of transformation between rectangUlar Cartesian

coordinatey *, lt z, and spherical polar coordinates r, 0, Q.

Find the Jacobian of the transformation. Where is it ?.ero or

infinite?

3. If X, Y, Z arethe components of a contravariant vector

for rectangular Cartesian coordinates in Euclidean $-space,

find its components for spherical polar coordinates.

4. In a space of tirree dimensions, how many different

expressiottr 
"i" 

represented by the product AfnB!:Ci"? How

many terms occur in each such expression, when written out

explicitly?

5. [f z{ is an invariant in Vy1 atte- the second derivatives

azA ..

0*'d*'

6. Suppose that in a Vzthe components of a contravariant

tensor field Tn" in a coordinate system trr are

7Tl: 1 F:' 0.
F :  0  Tw:  1 .

23

. , f : l i f r : s ,ot t :o i f r#s '
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Find the components T'^o in a coordinate system r,r, where
*'r: (rt)t, d2: (#)t.

write down the values of these components in particular at
the point sl: L, *: 0.

7. Given that if, T^or" is a conariant tensor, and
To,,.r"* Tmn*: 0

in a coordinate system *", establish directly that
T'*orr* T'^nrr: 0

in any other coordinate system rre.

8. Prove that if. A, is a covariant vector, then

AA' - AA'
iltc' iltc'

is a skew-symmetric covariant tensor of the second order.
(Use the notation of 1.7.)

9. kt fi', fr', !,, j, be four systems of coordinates. Examine
the tensor character of 0x,/0y, with respect to the following
transformations: (i) A transformation {:f (f,, . . ., ftr),
with y'unchangd; (ii) a transformation yr: gr(gt, . . ., jN),
with r'unchanged,

10. If !c', !,, z" are three systems of coordinates, prove the
following rule for the multiplication of Jacobians:

lu*-l . lgl: lq{|.
ld9t" l  ldz' l  lda"l

11. Prove that with respect to transformations

d' : C"*"

where the coefficients are constants satisfying

C-rC^r: 0!,

contravariant and covariant vectors have the same formula
of transformation:

A": CrA", Atr:  CrAr.
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12. Prove that

18. Consider the quantities d*'r/ilt for a particle moving in
a plane. lf, r'are reqtangular Cartesian coordinates, are these
quantities the components of a cpntranariant or covariant
vector with respect to rotation of the axes? Are they com'
ponents of a vector with respect to transformation to any
curvilinear coordinates (e.g. polar coordinates)?

14. Consider the questionE raised in No. 13 for the accel-
eration (ihx'/dtz).

15. It is well known that the equation of an ellipse may be
written

a*2+ Zhsy + bf- 1.

What is the tensor character of o, h, b with respect to trans'
formation to any Cartesian coondinates (rectangular or ob-
lique) in the plane?

16. Matter is distributed in a plane and A, B, H are the
moments and product of inertia with respect to rectangular
axes Oxy in the plane. E:ramine the tensor character of the set
of quantities A, B rIf under rotation of the axes. What notation
would you suggest for moments and product of inertia in order
to orhibit the tensor character? What simple invariant can be
formed from A, B, H?

17. Given a tensor ,S-r' skew-symmetric in the first two
suffixes, find a tensor/-,r, skew-symmetric in the last two suf-
fixes and satisfying the relation

- f*n * fn r- S-tr.

Answer: f*or: *(- S.rrr- S-** S"t-)J.

0rc;
ayn

a m l1{l: "Y*0r' l0r"l 0*"0*t



CHAPTER II

BASIC OPERATIONS IN RIEMANNIAN SPACE

2.1. The metric tensor and the line element. we shall
lead up to the concept of a Riemannian space by first dis-
cussing properties of curvilinear coordinates in the familiar
truclidean space of three dimensions. Suppose that !1, !2, lg
are rectangular Cartesian coordinates. Then the square of the
distance between adjacent points is

2.lol. dsz : (dyt)n * (dyr), * (df),

Let rr, x2, f be any system of curvilinear coordinates (e.g.
cylindrical or spherical polar coordinates). Then the y's aie
functions of the tr's, and the dy's are linear homog"tr"our func-
tions of the dr's. When we substitute these linear functions in
2.101, we get a homogeneous quadratic expression in the dr's.
This may be written

2.1o2. d,sz -- a^od**d,*n,

where the coefficients amn are functions of the r's. Since the
a^n do not occur separately, but only in the combinations
(a^n* an^), there is no loss of generality in taking a^n sym-
metric, so that amn: anm.

No matter what curvilinear coordinates are used, the dis-
tance between two given points has the same value, i.e. ds (or
ds2) is an invariant. If we keep one of the two points fixed and
allow the other to vary arbitrarilv in its neighbourhood, then
dr' is an arbitrary contravariant vector. It follows from 1.6
that a^n is a covariant tensor of the second order. It is called
the metric tcnsor, or fundamcntal, tcnsor of space.
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Exercisc. Take polar coordinates r, 0 in a plane. Draw the
infinitesimal triangle with vertices at the points (r,0), (r*dr,0)
(r, 0 * de1. Evaluate the square on the hypotenuse of this
infinitesimal triangle, and so obtain the metric tensor for the
plane for the coordinates (r, 0).

E*ercise. Show that if *t: f , j1r: 0, f : 6, in the usual no_
tation for spherical polar coordinates, then

atr: L, azz-- f2, ogg: 12 sinz 0,

and the otJrer components vanish.

Suppose now that we draw a surface in Euclidean 3-space.
According to the method of Gauss, we may write its equations
in the form

2.LO3. y' -- f (*1, *2), y'-- f (rr, $2), y' : f (xr, $2) ,
where *r, *2 are curvilinear coordinates on the surface. The
square of the distance between two adjacent points on the
surface is again given by 2.101, and we may use 2.103 to trans-
form this expression into a homogeneous quadratic expression
in the d.r's. This expreasion may be written in the form 2.102,
but the range of the suffixes is now only 1,2, and not 1, 2, 3 as
before. It follows that a^ois again a covariant tensor; it is the
metric tensor of the surface, which is itself a space of two
dimensions.

E*crc,isc. Starting from 2.t03, show that

amn: 9Y' 9Y'- a 9f. aYz 
+ 

af -af
0*^ 0*n 0*^ 0*n 0r^ #'

and calculate these quantities for a sphere, taking as curvi-
linear coordinates on the sphete rL: !r, x2: !2.

The differential expression which represents ds2 may be
called the metr'i,c form or fmilammtal form of the space under
consideration. It may also be called the square of the line
clemcnt.

What.has been explained in the preceding argument is basic
in the application of tensor calculus to classical geometry and
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classical mathematical physics. But we have in mind the exten-
sion of these ideas to spaces of higher dimensionality. Theie-
fore we shall not pause here to develop the immediate imfti-
cations of what we have done, but rather use it as a source of
suggestion for generalization. As a basis for generalization, let
us summariz.e our result as follows:

rn ord,innry spacc, (n on a surfacc i,n tlnt spacc, the sEuarc
ol the linc cl,entent is a homogcncoas Ewd,rati,c yirm, and, tie co-
cffwimts of tlnt form, whcn unittcn symmctriaaily, arc the com-
poncnts of a covar,iant tensor of tlu second, ord,cr.

we now pass to a general space of l/ dimensions, discussed
in 1.1. consider two adjacent .points p, e in it. Does there
exist something which may be called the 

-d,istance 
between p

and Q? Although the basic ideas of tensor calculus originated
with Riemann, he himself was a little confused on this essential
question. He apparently thought that the concept of distance
was in rinsic in a space. we know now that this is not the case.
We can develop a logically consistent theory of a non-metrical
space' in which the concept of distance never enters. If there
is to be a measure of distance in a space of tr/ dimensions, it is
something that w6 must put in for ourselves. The question now
before us is this: How shall we define distance in vp to satisfy
the following criteria?

(i) The definition should grve a comparatively simple
geometry;

(ii) The definition should agree with the ordinary defin-
ition in the particular cases where the space is ordinary
Euclidean space, or a surface in that sDace.

These criteria are best satisfied by using the itaticized state-
ment above as the basis of definition. But a little caution is
necessary if we are to make our definition wide enough to
include qhe space-time of relativity. Thus, without introdicing
the word "distance," we lay down the following definition of a
Riemannian space:

A spau vvis so'id, to bc Ri,anann'ia,nif thcrcis givm dn,it o
metrh (or fundommtol) cwariant tcnsor oJ thc sccond, ord.cr,
whkh,i,s sTmtmetrio.
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If we denote this tensor by o*orwe may write down a mctTit

(or funil,anctutal) f orm

2.1o4. lb - o^od,*^d,r'.

This form is, of course' invariant.
We might proceed to define the "distance" between ad'

jacent points by means of the equation d,* - Q. Howener, with

a view-to relativity, we must admit the possibility of an im-

portant difference between the form 2.L04 and the form we

encountered in Euclidean sp, ace. In Euclidean space the form

2.L02 is posi,tdoc4cfinitc; this means that it is positive unless

all the differentials yanish. In other words, the distance be-

tween two points vanishes only if the points are brought into

oincidence.
We shall not impose on the form iD the condition that it

shall be positive-definite. We shall admit the possibility 9f "l
d,nfufdnitcform, such as iD : (iLxr)2 - (ihc2)2, which vanishes if

d,#L d,*. Then for some displacements d,xt the form O may

be positive and for oth-ers it may be zero or negative. If
([ : 0, for il,*" not all z.eto, the displacement is called a null

displacement. For any displacementdr'which is not null, there

exists an inilimtor e, chosen equal to *1, or -1, so as to

make 6o positive. We may use this indicator to overcome a

difficulty in the definition of distance arising from th9 in-

definiteness of the form. 
'We 

define the lmgth of the displace-

ment dr' (or the ilistonccbetween its end points) to be ds, where

2.105. d,*:6([ - a,^oih{il*, ds > 0.

We define the length of a null displacement to be zero. Thus,

in a Riemannian space with an indefinite metric form, two

points may be at ?Etodistance from one another without be'

ing coincident . o
It is most important to note that Riemannian geometry is

built up on the concept of the distance between two neigh-

bourini points, rather than on the concept of finite distance'

2.2. The conilgate tensor. Iowertng and raising strffires.

From the covariant metric tensor onlv we can obtain another
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tensor, also of the second order, but contravariant. Consider
the determinant

2.201.

I

lot' 
oP

o : lo^nl :  lazr 
azz

lo*r '  ; ; ;
we shall suppose, here and throughout, that a is not znro. Let
A-o be the cofactor of a^o in this determinant, so that

2.202. ( t r ^ r&* t :A r ^A t ^ -  6 tA .

This follows from the ordinary rules for developing a deter-
minant. Now let us define a^ by the equation

2.203. A''.|,
nlftt! - 

-

L 0  -  - .

a
It follows from 2.202 that

atn
azN

autt

2.204.
and, similarly,

2.205.

2.206.
by 2.N2. Thus

2.207.

amra^' : 6i,

Ar^Atm : d;.

since a^oissymmetric, it is obvious that ant issymmetric also.
Note that 2.204, or 2.205, might be regarded as a ilefinition

of a^', since either of these sets of equations determines these
quantities uniquely. Iret us take 2.204 and multiply both sides
by Al'; then

a6la^'- 6ilr"

a b '  : { ,
a

which is the same as 2.203. We obtain the same result from
2.205 on multiplication by A'&. This proves our assertion.

we are now ready to investigate the tensor character of
a-?. For this purpose we introduce a contravariant tensor dua
which in one particular system of coordinates sr, say, coincides
with omn. Then



This is obviously a tensor equation and therefore lrolds in ant'

other system of coordinates r"; thus

$ 2 . 2

2.208,

2.209.
Comparing this with

2.21O.

CoNJucers Mmmc TsNson

a*&^t - Dt.

a'^rd'* ' - 6;-

a'^ra'*" : 01,

which, as we have seen' determines a''^o uniquely, w€

at^n: d,^o. Thus a*o and ti*n coincide in all coordinate
havc
sys-
that

to be
tems, The latter being a tensor by definition, it follows

a*n is a contrawr,i,ont tensor of thc second ord'cr.It is said

conjugate to a^n, the fundamental tensor'

Exercise. Show that if. a*n: 0 for n' * a, then

o r r : - L ,  a z l :  
t r . , . r a r l : 0 ,  . .

at am

Exercise. Find the components of a^'for spherical polar co'

ordinates in Euclidean 3-sPace.

Having now at our disposal the covariant fundamental

tensor 
"rrd 

itt contravariant conjugate' we are able to introduce

the processes known as the lruqing and roising of suffixeS'

We sttatt in future refrain from writing a subscript and a super'

script on the same vertical line; in vacant spaces we shall write

dots, thus: T?r'.
Take a tensor T!r, and write

L'ZLL' S"'" : a'^Tl"i

this has the tensor character indicated. The tensor 'S has been

generated from the tensor ?. by lowering a sumx. We may raise

a suffix by means ol a^n:

2.2!2. UTr, : amnSn,re '

It is easy to see that this tensor U is precisely the original

tensor f. ttir suggests that in the processes of lowering or

raising suffixes we should retain the same principal letter'

Thus we write 2.2l1in the form
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2.213.
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Tnr, - on6(7s,

E*ercisc. Find the mixed metric tensor oio, obtained from
o^o by raising the second subscript.

Before we introduced the metric tensor of Riemannian
space we recognizrd a tensor as a geometrical object-a thing
which had different representations in different coordinate
systems, but at the same time an existence of its own. The
tensors T.r and I-, were entirely unrelated; one was contra-
variant and the other conariant, and there was no connection
between the one and the other. The use of the same basic letter
r in both implied no relationship. But in a Riemannian space
these two tensors urne essentially the same geometrical obiect;
if we know the components of one, we can obain the com-
ponents of the other. In most of the physical applications of
tensor calculus, the space is Riemannian; a physical object
(e.g. stress in an elastic bodv) is represented by a tensor, and
we can suit our convenience as to whether we express that
tensor in contravariant, covariant, or mixed form.

We shall now establish a useful formula for the derivative
of the determin ant a. Let us forget the assumed symmetry of
a6n1 so that a*o and a,nm afie regarded as independent quan-
tities. Then o is a function of the .Ap quantities a*o, and,frorn
the expansion of the determinant it is evident that

0a
at^ :  

( ' ( t rmt '

: a^o

Hence

A - | A . \ i la^o i la_o2.216. *lna 
: 

\ar_" 
lna 

)# 
: a^"ft ,

which is the formula required, rf a is negative, the same equa-
tion holds with -o written for o.

Excrcisc. Prove that a^na*o: -ly'.

2.214.

or

2.2t5.
a

--lna
oamn
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2.3. MagBifude of a yector. Angle between vectors. To

find the magnitude of a vector in ordinary spa@' we square
the components, add, and take the square root. This simple
plan does not work in a general space for a very good reason:
ih" t"r,rlt obtaind by this process is not innariant, i.e., it
depends on the coordinate system employed.

If the spaf€ has no metric, there is no way of defining the
magnitude of a vector. But if a Riemannian metric tensor @nn
is given, the definition is easy. Tln magnituik X of a contra'

sar'innt vcctor X' is tlu positi'vc rcol gtnnfiry sotdsfyi'ng

2.30t. ]P: q,mrJ(^Xo,

whcrc e is thc inilicator of X' (see 2.1). For a covariant vector

we take, instead of 2.301,

2.302. )?: a^oX^Xo.

Obviously there will be null vectors, i.e. vectot€ of. znto magni-
tude, if the metric form is indefinite. We note that the defin-
ition 2.105 defines ds as the magnitude of the infinitesimal
vectot dlc".

E*acdse. Show that in Euclidean $-space with rectangular
Cartesian coordinates, the definition 2.301 coincides with the
usual definition of the magnitude of a vector.

Suppose we are given a cuwe with equations

2.303. r': x'(rt),
where uisaparameter' If wewrite P': dx'/d'u'an infinitesimal
displacement along the curve is

2.304. d,tc': P'(u)du,
The length of this displacement is

2.305. d's : la'*n|*Pol\ du,

where e is the indicator of. ilx'i the length of the curye from
\t, : l,lt to u : ule is
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,.
2.306. s:Jla*n?^?nlld,u.

Exucisc. A curve in Euclidean B-space has the equations

fir: o @g tt, fi2: a sfur a, f : bu,

where *1, *, rf are rcctangular cartesian coordinates, u is a
parameter, and o, b are positive constants. Find the length
of this curye between the points u, :0 and u : 2r.

what is the length of the curve with these same equations,
between the same values of, u, if the metric form or trr" g-
space is

(d*), +(it#)o - @*'1r7
Consider your result for the cases where o is greater than,
equal to, and less than D.

unless we are dealing with a null curye, for which s : 0,
we may take s as parameter along the curve. The finite vector
?' : d*'/ds has the same direction as the infinitesimal dis-
placement dr' along the curve, i.e., it is a tangcnt vcctor. More-
over, its magnitude is unity, since

2.307.

and so

a'^odaPd,rt: d*t

z.gog. 
d*m d'xo

i l t rmrT 
T:  

l .

Any vector with unit magnitude is called a unit v&tor. Thus
ilr'/ils is the unit tangent vector to the curlre.

Let us now consider the onghbetween two curves, or, what
is the same thing, the angle between two unit vectors, tangent
to the curves. Difficulties arise if we attempt to define angle
in a space with an indefinite line element. Accordingly we srran
confine ourselves here to a space with a positive-definite line
element. we might write down a formal definition of angle,
but it is more interesting to develop it as a natural general-
ization from familiar concepts.
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Consider, in Euclidean 3-space, two curves issuing from a

point A.Let B and C be points on them, one on each; join B

and C by a curve (Fig. 1). We shall consider a limit as B and C

Ftc. 1. Angle between cunzes in Riemannian space'

both tend to A; it will be assumed that the curve joining B

and C maintains a finite curvature during this process. It is

then easy to see that the angle 0 between the curves satisfies

the equation

AB2+ ACz- BCz
2.309. cos 0 - lim 2 AB.AC '

where AB, AC, BC indicate arc-lengths.

The above equation is set up in such a way that it can be

taken over into Riemannian JV-space as a ilefinition of angle'

Two things remain to be done: first, to turn 2.309 into a usable

formula; secondlY, to show that the angle 0 defined in this way

is real.
Suppose that Fig. 1 now refers to Riemannian N-space.

Let the coordinates be as follows:

A . . . . . . . *?1

8 . . . . . . . * ' * { t
C . . . . . . . r ' * q "

The principal parts of the squares of the small arcs are

ABz : &**W,
AG : a^nfl^V',
BG : a-"(Y- q*)(t"- ?').

Since we are interested only in principal parts, it is not neces-

sary to allow for the change in the metric tensor on passing

from A to B or C; we consider amn evaluated at A. The formula

2.309 grves



36

2.310.
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c o s o : l i m a * n Y \ '
AB.AC

The unit tangent vectors to the two curve s at A arc

2.311. X': lim f'/AB, Y': lim qr/AC.
Hence thc angl'c 0 bekscen tuo cuttcs (or thc angle bchoem any
two unit oectars at a point) satisfks

2.312. cos 0 * amnx^In.
This equation determines a unique angre 0 in the range (0, r),
provided the right hand side does no{ exceed unity i" 

"urot"i"value. we shall now show that this condition is fulfilled in a
space with positive-definite metric form.

From the assumed positive-definite character, we have

2.313. o^o(x-* kr\(x"* kv"1
here x' and Y are any unit vectors, and k any real number.
Multiplying out, we get

h2*2ha^oX^Y"+t > 0

(k + a^nx^I^)r+[r -(a^ox^Y")rl
Since this holds for arbitrary k, and k may be chosen to make
the first term vanish, it follows that

2.316. lo^nX^I/" | < l.
This proves the required result.

In a space with an indefinite metric form, z.glz may be
used as a formal definition of angle, but the definition is not
of much use since the angle turns out to be imaginary in some
czrses. However, whether the metric form is definite or inde_
finite, we adopt as definition of. pcrpcnd,hd,arity or orthogonal,,i,ty
of vectors X', Y'the condition

2.314.

or

2.315.

2.317. orr*X^Yi : 0.
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Erercdse. Show that the small angle between unit vectors
Xr and X'+ dxt (these increments being infinitesimal) is
given by

02 : a^*dX^dXo.

2.4. Geodesics and geodesic null lines. Christoffel sym-
bols. In Euclidean $-space a straight line is usually regarded as
a basic concept. But if we wish to build up Euclidean geometry
from the Euclidean line element, there is no difficulty in defin-
ing a straight line; it is the shortest curve between its end
points.

We carry over this definition into Riemannian .lV-space in
a modified form. The modification is suggested by considering
a surface in Euclidean 3-space. In general, this surface contains
no straight lines; nevertheless, tJrere are on it certain curves
analogous to the straight lines of space. They are curves of
stationary length, or geodesics (great circles on a sphere). This
idea of stationary length, rather than shortest length, is what
we carry over into Riema^nnian space as a basis of definition: .d
geoilcsi,c is a cursc whose lcngth lws a stat'i,onary val'uc with rcspcct
to arbitrary sfiuil oariat'ions of tlu cu,rnc, thc ald points bei'ng heW

fird'.
In the notation of the calculus of variations, a geodesic

joining points A and B satisfies the variational condition

2.40L, o]  
^o ' :  

Q .

Our ne:rt task is to find the differential equations of a
geodesic, using tJre technique of the calculus of variations.
We shall use an argument valid whether the metric form is
definite or indefinite.

Consider the equations

2.402. *': *'(ah o).

If we hold u fixed and let uvary, we get a curve. Thus 2.402
represents a singly infinite family of curves, u being constant
along each cunre.

37
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A singly infinite family of curves joining common end
points A, B may be represented by equations of the form
2.402. There is no loss of generality in supposing the para-

Flc. 2. Family of curves with common end points.

meter u so chosen that u has the same value (u) for all the
curyes at A, and the same value (ur) for all the curves at B
(Fig. 2). The length of any curve of this family is

z.4og.  l -1"0 ,
J e

: l"' ko^,p-pn)t du,
J u r

where ?' : 0x'/ 0u is a tangent to the curve and e its indicator.
We shall suppose that all the curves have the same indicator.
For shortness let us write

2.404.

Then 2.403 reads
w : a^nP^Pn.

2.405. L - l"' {rr1r ou.
J u '

This length is a function of u, and its derivative is

o# : 
I:',,*ew)'itu.

Now w is a function of the r's and the p's; hence

z.4oz. ! GOr: 
3 

Gw)tu*' + L Gr)+ aP' .
0v '  

'  
0x, '  

'  
0v |pr ' - - '  0u 

'

2.406.

But

2.408. V__  0  0 r ' _  0
0v 0v 0u 0u

0x'
t

0v
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and so, if we substitute from 2.407 in 2.406 and integrate

by parts, we get

2.4W.

We may also express this result in terms of infinitesimals.
The change in length dZ when we Pass from a curye ?, to a

neighbouring curve u * 0s is

4L -f d r-".r1 u*'1"'
6: laP'\eu)- * )*,

- 
JG'#'*"- *"G')')# o"'

i(*#@$ 
-*G,)'),*'ou,

6L : -T (**, r*r, - * Gw)t) u,au;

we have replaced 0/0uby il/du, since there is now no chance
of confusion.

If the particular cun/e ?, is a geodesic, the integral in 2.412
vanishes for variations dr'which are arbitrary, except at the
end points (where they are zero). It follows from the funda-
mental lemma of the calculus of variations* thattheequations

fR. Courant, Diferentia'l ond, Intcgral Calculus (Blackie, London and
Glasgow, 1936), II, p.499.

dL  rd  1n ,
2.4!o. 6L :fr,6o :l*(au)' o*' J*,

where

2.41L.

2.4L2.

0tc?
6rc, - 6 

6o.

This last differential is the increment in r' on passing from a
point on the curve s to the point on the curve a * 6v with the
same value of, u. Since the points .C and B are fixed, 0tr': 0
there, and so the first term on the right hand side of 2.4L0
disappears; thus we have
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2.413.

are satisfied at all points on a geodesic. These are called the
"Euler equations" of the variational problem. It is easy to
see that they may be uritten

2.414.
d 0 w  0 w  l d w i l w
Aap'- T*,- zr6rTp,'

so far the parameter u has been arbitrary. Let us no\il
choose it equal to the arcJength s along the geodesic, so that

2.415. % :  E, p ' :y,  ,  zt)  :  a^n p^p,, :  et  
H:0.

The differential equations of a geodesic now read

2.416.
iI 0w Aw
ds 0p' 0x'-

To obtain a more explicit form, we substitute for w. This
grves

2.417.

or

2.419.

and so the equations of a geodesic may be written

z.4rs. o,^T +W p*po - +W f^?o:0.
By a mere reaff€rngement of dummy suffixes, v/€ have iden-
tically

ffo^oo: t(W +e#)o^o*,

RrnuaNrvraN Spacr

*#,@,,)t -*,(.,r,)t-o

#,r**n) -Yr*r':0,

2.420.

where

o, ff + lmn, rl p^pn-- o,



,2.4

2.421.

This orpression lmn, rl is called the Chrtsbffcl sytnbol of tlu
first hind,.

The Chrdstaffcl synbol of tlu suond hdnd is defined as
/ \

2.422.  l ' l -o" Imn,s l .
l nn  )

If we multiply 2.420 by a", we obtain anotJrer form for the
equations of a geodesic:

Ch.rstorrsr, Stlmors

r,nn,rt- r(W+#-W).

ff + \;") ,^0,:0.2.tn3.

In more explicit form, this reads

2.424. %*{ r ld'x^d'*"
de '  l*ola E: o'

We have now found the differential equations of a geodesic
in three different forms, as shown in equations 2.4L6, 2.420,
and,2.423 or 2.424. In the discussion we have tacitly assumed
that the curve under consideration has not a null direction at
any point on it; if it had, we would have d,s :0, and the
equations would have become meaningless. But, as we shall
see in equation 2.M5, by taking a different approach, we can
define cunres analogous to geodesics, but with ds : 0.

As regards tlre amount of information nec€ssary to deter-
mine a geodesic, we note that the equations 2A?A are differ-
ential equations of the second order. A solution r'(s) is deter-
mined uniquely if we are given initial values of. *'and dx,/ds.
In geometrical language, this means that a geodesic is deter-
mined if we are given a point on it and the direction of the
tangent at that point; in this respect, as well as in its stationary
property, a geodesic resembles a straight line in Euclidean
3-space.

Excrcisc. Prove the following identities:

Z.ULS. lmnrrl : Inm, rl, lrm, nl * Irn, ml : Oa^r/O*'.
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Exerc'ise. Prove that

2,426.

rn 2.4L4 we obtained the differential equation of a geodesic
in terms of an arbitrary parameter u. This equation may be
reduced to a form analogous to 2.424, or we may obtain the
result directly from 2.424 by transforming the independent
variable from s to a. In this way we get

lmnrr l :  , r r \ ; - ) .

d2* '  (  , l i h^d ,x "  dx '- L t  '  \ _  ! _
d u z ' \ * n l  a u  d , u -  

n d u '

d,2u / / ilu\z
r :  -  

d r ,  /  \E) .

2.427.

with

2.428.

Since the right-hand side of 2.427 is a vector, so is the left-hand
side.* We may therefore say that on a geodesic, no matter
what parametet a is used, the .nector

z.4zs. H*{ r \rygt
d , u z '  \ * r l  d o  d u

is codirectional with (or opposed to) the tangent vector dx,/du.
Conversely, if we are given that along a curve c the vector
2.429 is codirectional with (or opposed to) the vector dr,/d,u,
and if further il*'/il,u is not a null vector, then C must be a
geodesic. This may be proved without difficulty by starting
with 2.427, in which )t is a known function of, u, and defining s
by the relation

2.430. s :J ( *rl x@)4a0,
uot oo being constants. No matter what values these constants
have 2.424 is satisfied, and by adjusting the constant gs v/€ c€ul
ensure that a^o(d.r*/d.s)(dr"/d,s) : * l along C, so that s is
actually the arc length.

rThis tells us that it is a vector when calculated for a geodesic. In 2.487
we establish its vector character for any curve.
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The fact that we can put the equations of a geodesic into
the form 2.427, where l(rz) is an arbitrary function, enables
us to discuss the possibility of drawing a geodesic through two
given points. Let the points be r': ar and r': b'. Let us
choose n, : tcN , and assign to Greek suffixes the range 1,2, . . . ,
iV - 1. Then the last of. 2.427 gives

'V ld fd{ ,n [N\ ry , (  I r lI : l  I

Ip, | f f iN * ' t  pNf tnttrmrl '
and the other equations read

i l {  : ,4.- l  o\4,4-r l  p \4- l  p I
@,xMjz- 

ndtcN -1r,  
f  a{d*N- " lprr  f  a** 

- l l rarf  '

Here we have (JV - 1) ordinary differential equations, each
of the second order, and tJreir solution will contain 2(N - 1)
constants of integration. The conditions that we should have
tc.: ap when lcN : ar, and xp: bp when tcN -- bN arez(N - 1)
in number. Hence we may form the general conclusion that it
is possible to draw at least one geodesic through two given
points, but of course this argument is suggestive rather than
convincing. We can also approach the question through the
variational principle, seeking the curve of shortest length
connecting the given points. However, difficulties occur here
in the case of an indefinite metric, since any two points can
be joined by an indefinite number of curves of zero length. We
shall not pursue further the question of the existence of a
geodesic joining two given points. When we have occasion to
use this construction, we shall assume that it can be done.

The importance of stationary principles, buch as that used
in defining a geodesic, wzrs recognized long before the tensor
calculus was invented. Such a principle is 'i,mtar'iant, in the
sense that no particular coordinate system is mentioned in
stating the principle. Hence the differential equations obtained
from the principle must share this invariant character. If the
equations 2.416 are satisfied by a certain curve for one co-
ordinate system, then they must be satisfied for all coordinate
systems. This suggests (but does not, of course, prove) that

43
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the left-hand side of 2.416 has tensor character. I-et us examine
this question in a slightly more general form.

Consider a curve *t: *r(tc), where a is some parameter,
not necessarily the arc-length. Write pr: dxr/du, and to :
o^o|*Qo, where a^o is the metric tensor. Define f, by

2.431.

We ask: Is/, a tensor?
We know that f is a contravariant vector, and so

d ,  / 0 w \  0 w2l': d"(. w)- a*-,'

dx|
f ' -  0"#.2.432.

2.433.

Then

2.434.

and

Hence, if we regard p, as a function of. pt^ arrd fi'^, we have

Ap' 0*t
T : -
i l p t t  

-  
A f ' '

0w 0w 0p' 0w 0x'
- :
ilptr 

- 
Ap, AO', 

- 
Ap" Adr'

dtc'^

2.437.

d /aw \  d /aw \d * .  ow  ozxs2'43s' a \ W, ) 
- d;\ tp, ) a"', + u, u"'*"*

Further

2.4s6. #,:#,#+##.
To enaluate ips/dr" we use 2.432, with a changeof suffixes.
Then subtraction of. 2.436 from 2.435 gtves

- (  - .  -  d r ' \
,\/" - f"a*,,)

0w 02*' dd^
- 

0P" d*t^O*t' du

du

0u 02*"-5 tw :  e .aP" ax"a*"
Hence f, is o cnar,iant uedor.
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2.4d.2.

hence

2.t143.

Equarror or GnooBsrc 45

2.4?4 is a
arbitrary

The transition from 2.4L0 to 2.420, 2.423, and
formal process which holds equally well when an
parameter u is employed instead of s. Hence

is a covariant vector, ffid

d 2 * '  (  r l d x ^ d x "
z.4gg.  f  :  

dur+\* " |  *  *
is a contravariant vector.

It may be noted that, in proving the tensor character of

/, defined by 2.43L, no use was made of the actual form of u,
All we needed to know about zt, w.ts that it was an invariant
function of the *'s and the f's.

Let us now establish an important property of the differ-
ential equations

d2* - d,cc^ dr'
fr= ar^ 

d", * lmn, ,l do do

d / Arrt\ &o- l  -  l _ - _ : 0 .
du\ ap' / ar,

, )  : 0 ,

2.4/90.

Multiplication by 0'Sives (since f': dx'/du)

2.th4l.

The last two terms together give ilw/ilu, and so 2.441may be
written

d / _ 02, \ dp' 0w dnc' 0w

a-,r \  P'  *  )-  d" ap,-  a"T*:  Q.

d /  0 w

o"\P '* -

0w
P'A?-r- w : constant.

This is a first inbgra,l' of the equations 2.4&. If we now put
w : &*af^fo, we get

2.41*4. w = a^nf^fo': constant.

If we put u : s in 2.440, we get the equations of a geodesic;
then, as we already know, the constant in 2.M4 is e, the in-
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dicator of the direction of the geodesic (. : + 1). But if we
start a curve with a null direction, so that zo : 0, and if this
curve obeys the differential equations 2.440, then the con-
stant in 2.444 has the value zrcroi tjre curve has a null direction
at each of its points. Such a curve is a geodesic null line. Its
differential equations read

2.44s. W*l r \ryy:g.
duzT\*n f a" d,u 

- t"

with the particular first integral

2.446. 
dlc^ dro

o^"d  du :  o '

To sum up: A geoilesh nuJl, line,is a cule anh,i,ch, for some
parameter u, satisfies tlrc dtifferential, eEwtions 2.440, or equi-
valently 2.445, with the parthuJar first integral, 2.446.

If we change the parameter from u to u, where u is some
function of u, the equations 2.445 and 2.446 become respec-
tively

2.447,

with

d , 2 x '  (  , l d x ^ d r "  d , x '
-  r  |  '  

\ -  \ -

d r& - \ *n l  d ,  f u t  
- ' r  

dv '

r : -#/ (#)"
and

2.44g. 
dr- dxn

o^o66:  o .

By suitable choice of the parameter u, )r can be made any pr€-
assigned function of u. Hence, sufficient conditions that a
curve be a geodesic null line are that the quantities

dz r '  .  (  y  \d r^d r "
d o r + \ * " 1  d . ,  d , ,

2.449.

be proportional to ilx'fdv and that 2.448 hold.
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Excrcisc. The class of all parameters u' for which the equa-
tions of a geodesic null line assume the simple form 2.445, are
obtained from any one such parameter by the linear trans-
f o r m a t i o n  

a :  o u * b ,

o and D being arbitrary constants.

Like a geodesic, a geodesic null line is determined by a
point on it, and the direction of its tangent there; but of course
tlris direction must be a null direction. The geodesic null line
is important in relativity; it represents the history of a light
pulse in space-time.

Exqc,isc. Consider a 3-space with coordinates $, !, z, and a
metric form 6 :(d,r)'*(dy)'-(dz)', Prove that the geodesic
null lines may be represented by the equations

*  :  a u , * a ' ,  !  :  b u * b ' ,  z  :  c u +  C ,

where u is a parameter arrd a, a' , b, bt , c, c' are constants which
are arbitrary except for the relation a2+ b2- c2: 0.

2.5. Derivatives of tensors. Ere saw in 1.4 that the partial
derivative of an invariant with respect to one of the co-
ordinates is a covariant vector. One might think that the
partial derivative of any tensor is itself a tensor. That is not
so (cf. Exercises I, No. 5). But by adding certain terms to
the derivative we obtain a tensor. This is a very important
idea in tensor calculus, and we shall devote the present section
to it. First we shall see how the Christoffel symbols transform.

ln 2.4 we saw thatf , where

2.501.

is a contravariant tensor. From this fact it is easy to deduce
the law of transformation of the Christoffel symbols. We have

r:ffi*{;)T"#,

0*"
f ' : f '# .2.502.
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Now

2.503.

and so

2.50l-

RrBu^txNrltr Sracr

dzr' d | 0x. d,/- \
W : 

A\a"^ d" )
0x' d2*'* , |rfi,: -

ilXr^ dU2 
' 

6*tm6*tn

dr'^ d^rt,

d.u du '

dzrt A*'"

d,u2 0x'

&lc', o*r, oz*, dccr^ dlc,o
J - _:  

du,  r  a* ,  6 do '
Thus 2.ffi2 gives

2.50s. 
dxt^ d*toAi""Td:  o,

where we have written for brevity

2.506. Alr,  :  
{ ; l '

_I  s  \a*"  
oxP oxq 

_atcr t  az*e

lpqJ 0*, 0*t^ iltc,n ltc' 1tc,*1xtn'
obviously AI": A'r*, and these quantities are independent
of. d,xt'/du. Hence Alon- 0, and so we have the formula of
transformation for the christoffel symbols of the second kind.

z.so7. I r Ir :1 t \u"" 0*e 0*o _an'" aztcs
lmn, t pq) Atc" iltc,^ iltc,o ' Or. Otc,^Afi,n

In the notation of, L.7, this reads
' o )  ( ,  )2.s08. { :,.t : 1 _'-..lxgxlxi I xlx;,.
l p r l  l m n ) - '

Erercisc. Prove that the Christoffel symbols of the first kind
transform according to the equation

z.soe. lmn, rl' : lpq, il #^##, * apq#,#,
or, in the notation of 1.7,
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2.51o.

Agsor-um Dpnrvlrrrrp

I pr, p] : [ ,wt, rlXtrX|,\ + a,XoX;,.

It will be noticed that neitlrer Christoffel symbol is a tensor;
the first terms on the right-hand sides of the equations of
transformation are those of tensor transformation, but the last
terms spoil the tensor character.

We are now ready to discuss the differentiation of tensors.
We shall start with a contravariant vector field F, defined
along a curye $': tc'(NJ), and prove the following result:

Thc obsotrute ilcriflatisc 6T /6u of thc vcctor T, , d,efincd, as

2.sll.

is itsel'f a controwriant vector.
This is easily shown by using the formulae of transforma-

tion of the vector T' and the Christoffel symbols. We find
6T" 6T" |xtt dr" / aztct, 02r, axt, ar,p drra \
6u 6u ilrt d,u \0*^0x" 

' A*'oArtq 0*, 0*^ 0r" / 
'

and this vanishes by 1.210; this establishes the tensor char-
acter of.6Tr/6u.

If the vector I'satisfies the differential equations

6T '  dT  ( , \  dx "- :  - + t  \ 7 % -
6u  du ' l * nJ '  d ,u '

6T '  dT  ( , 1  d , x "_L )  >T^_ :06u 
-  

i la '  
\*nl-  d.u

2.st2.

along a cun/e, then the vector T, is said to be propagated
paral,lcl,l,y along the curve. If the space is Euclidean B-space
and the coordinates are rectangular Cartesians, the Christoffel
symbols vanish, and 2.512 reduces to il,T"/d,u: 0; in this par-
ticular case, parallel propagation implies the constancy of the
components, i.e. the vector passes through a sequence of par-
allel positions, using the word "parallel" in the ordinary sense.

Referring to 2.424, we note that thc unit tangcnt scctor to a
gcodcsh is propagotd. parol,klty along'itz in symbols

2.s13.
6 dfi"

er 7; '= o'
The fact that there exists a tensorial derivative of a contra-

variant vector suggests that the same might be true for a co-
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variant vector. This is correct, and we can easily find the form
of this derivative indirectly {rs follows. Let T, be a covariant
vector field, defined along a curve rr: rr(u), and let S' be a
contravariant vector which is propagated parallelly along the
curve, and therefore satisfies 2.512. Then frs'is an invariant,

d
and so i"Tu(f,S). But

d dT, dS2.514. d,;g,Y) : fr ^S'+ f,i

/dr ,  _ lm \r_{\* .:  
\a"  

-  
\ r" l '^  a" 1

Now, at any point of the curve, St may be chosen arbitrarily;
hence, by the test of 1.6, it follows that

2.515. o+ :
6u #-{nlr^#

is a covariant vector. We call it the absolute ilcrhnthtc of Tr.
The equation for parallel propagation of a covariant vector

is 67,/6u - 0.
This method opens up the possibility of defining the abso-

lute derivative of any tensor given along a curye. We have
merely to build up an invariant by multiplying the given tensor
by vectors which are propagated parallelly along the curve.
Consider, for example, the tensor Ir". We build up an invariant
Trrgu" and differentiate. We find at once, on using the equa-
tions of parallel propagation for S' and Ut, that

. ,  t7A 0f ' "  
:dTr"  _ !  m\  -  

-  dxo _ |  * l  dx"2'st6' 6r, du lrn I 
T^'6 - 

t;; I 
r'* au

is a covariant tensor of the second order; we call it the absolutc
ileriztativcof 7,".

Applying the same method, we obtain the following defini-
tions of the absolute derivatives of contravariant and mixed
tensors of the second order:
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2.517.
6Tr"

67" .  _dT, ,  ,  f  r  I r .  dxo _ ! * \ r ,  dxn
2 '518 '  ;  

:  
d"  *  

1*" l  
t  " " '  

d"  
-  

\ rn l ' ' ^  d , , t '
There is no difficulty at all in applying the same method to
tensors of any order.

Etccrcisc. Find the absolute derivative of T'"r.

In order that the absolute derivative of a tensor may have
a meaning, the tensor must be given along a curve. If it is
given throughout a region of space, we may define the cmarinnt
ilcrisotiuc of. a tensor in the following way. Let us start with
a contravariant vector, for which the absolute derivative is as
in 2.511. For any curve traversing the region in which the
vector is given, we have

67" /ar, (  j  )  \d*oz.sre. 6: \*"*7*olP)*.
Now the left-hand side is a contravariantvectorl ik"/d,u is also
a contravariant vector, and it is arbitrary. Hence by the tests
of 1.6, the coefficient of. il,r"/ilu is a mixed tensor. We write it

z.szo. r,p:ffi+{;)*,
and call it the covariant derivative of. Tr.*

The same method may be applied to obtain, from the abso-
lute derivative, the covariant derivative of any tensor. The
plan is so obvious that we shall merely write down the results
for a covariant vector and for tensors of the second order:

z .sz l .  T , t . . :  *  - {m} t - ,
0ro lro I

2.s22. T,t, :+ +{ '  }*" +{ :  )  r^,i l t c o  '  l * o ) -  
' l * o )

*Other notations are T ,n, T; o, y oT,, and DnT.
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z.szs. r,4n :# - 
{n} r",, 

- 
{n)r,^,

2 .s24 .  T4o : * * { r  \ - -  { * \
oxr, l*nl r : '  -  

1;: ;1,:-.
The formulae for covariant derivatives are fundamental in

tensor calculus, and it is useful to remember them. This is easy,
if we observe the way in which they are built up. The formula
for the covariant derivative of a general (mixed) tensor of any
order may be split into three parts:

(1) The partial derivative of the tensor.
(2) A sum of terms, each prefixed with a plus sign and

coffesponding to one of the contravariant suffixes of the tensor.
This suffix is taken off the original tensor and put into the
upper line of the Christoffel symbol occurring in the term. It
is replaced in the tensor by a dummy, which is also inserted in
the lower line of the Christoffel symbol. The vacant space in
the Christoffel symbol is filled with the suffix of the r with
respect to which we differentiate.

(3) A sum of terms, each prefixed with a minus sign and
corresponding to one of the covariant suffixes of the tensor.
These terms are formed in very much the same way as those
in (2), the guiding principle being that of taking a suffix from
the tensor and putting it into the Christoffel symbol at the
same level.

Here is the formula for the covariant derivative of the most
general tensor:

2.525. zTl : : t',Tro : *rT'4::',r + {;l 
TT,o:::Iy * . . .

.  { ' ;r} ", 
t. : iy-,o - 

{,;} 
rr,:::  : ;r - . .  .

- l  q \
tr ,2 ,  ry:: : | tr  -u'

A very important special case of. 2.523 is that in which
Trr: or", the metric tensor. We find



$ 2.s

2.526.

2.528.

DBnrvatrvB or Mntnrc TbNson

ilar" ( ml
a r \ t :  

A " t  
-  

\ r t l  
o m t  - {T,).,-

The cmaria,nt d,crivat'i,vc of thc mctrh

Excrc'i,sc. Prove that

2.527. dlt, : 0, a'"p : 0.

For the sake of completeness we define the absolute and

covariant derivatives of an invariant to be the ordinary and
partial derivatives respectively. If. T is an invariant,

0arc:# -  [d ,s ]  -  l s t , r l

: $ .

DT dT AT
tTr

6u 
- 

d,u' 
' l '  -  

Ar"

An important difference between the covariant derivative
and the partial derivative should be noticed. Suppose we have

a tensor lrr. Consider the quantities

^ oTn
r * l 'E .

The partial derivative can be calculated if we know the com-
ponent Tn 3s a function of the coordinates. But we cannot
calculate the covariant derivative unless we know ol'l the com-
ponents. Thus, partial differentiation is an operation which is
applied to a single quantity; covariant differentiation is an

operation which is applied to a whole set of quantities.
Absolute and covariant differentiation obey the following

basic laws of elementary calculus: (i) the derivative of a sum
is the sum of the derivatives. (ii) The derivative of a product
IIV is the sum of two products: the product of U and the
derivative of. V,and the product of, V and the derivative of. U.

The first is obvious, from the definitions of absolute and
covariant derivatives. The second is not so immediate. But
there is no difficulty (only length of writing) in giving a
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straightforward proof. We shall not give such a proof here,
because the next section will provide us with a new approach
which cuts out the need for long calculations.

The rule for differentiating a product, together with the
fact that the covariant derivative of the metric tensor van-
ishes, implies that the order of the operations of lowering (or
raising) a suffix and of differentiating can be reversed. For
example,

2.529. Tf;^1t: (ar"Tii)f : arctrTt".^ * ar"T'.".^t,
: arrTs.!-F.

This means that it is immaterial whether we differentiate the
covariant, contravariant or one of the mixed representations
of a tensor.

Erqcisc. Prove that

2.530.
d .  e l r
7;(a^X-Io) 

: 2o*nlr*fi ,

where )r'is any vector field given along a curye for which s is
the arc length.

Erercisc. Without assuming (ii) above, prove that

2.531. (ZYS.);': FtoS.* FSq,,.

As a general rule, christoffel symbols are clumsy to handle
in explicit calculations, and we avoid their use whenever pos-
sible. Thus, the vector/, is easier to compute from z.4B! than
from 2.438 or 2.439. We shall illustrate this by making explicit
calculations for a Euclidean 3-space with spherical polar co-
ordinates

fil: ft tc?: 0, fi8: 6.

The metric is

2.532. il9 : (dtcr),*(*rilyz)21 (*r sin *2 df)2,
and consequently the metric tensor is
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2.533. (trLt: L, oaz: (*t)2, asE: (*1 sin *2)2,

AZg: Att: OtZ: 0.

Then the function u occurring in 2.431 is

2.534. 70 :@t)r+(xt/)r*(rr sin r, 0r)r,
and so 2.431read explicitly

d
fr: t@\- *t(f)2- *r(sin *' f)',

d
2.535. fo- nKxt)o/)- 

sin # cos x' (xtf)',

d
fr- i((rr 

sin #)rf),

where fr: ilxL/ila, f : d#/du, f8: dd/il,u. Aftet performing
the differentiations, we have

ilzxr /dA . /dd).z
f t : fr-  *\*) -  *t(sin " ') ' \ fr)  ,

dz*z / dxo\ d,xt d,xz
2.5s6. fz : @')'fi - (*t;z sin rf cos # 

\fr ) 
* 2xt T, du,

ilzf d* df
f t : (rr sin *')' ffi * Z(x')o sin *2 cos 12 d" d"

+2*t $n *)'ffy*.
Comparing these expressions with 2.438, and noting that the

coefficien t of (dxr / d'u) (d'xL/ d'u) in f y sa! t is [12, 2l + lzl, 2l :

21L2,21, we immediately read off the Christoffel symbols of

ihe first kind. The complete table of all non-vanishing symbols

of the first kind is as follows:

lrnn, Ll z 122, Ll - - *r, [33' U : - N| (sin d)r;
2.597. lmn,Zl z [33' 2] : -@t)z sin 12 cos s2,

[12' 2l : xri

bnn,8l z [23' 8] -(xr)z sin rP cos d,
[31' 3] : NL (sin *2)2'
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Noting that

a r r : l  
I  1

, o22 : 
(ry , a83: 

G\in rr)2 ,

2.539.
(tr% : a8t _ at2: o,

we can derive from 2.537 the Christoffel symbols of the second
kind. However, we shall illustrate a more direct method of
obtaining them. This method is useful since we often require

/ \
the{ :-tbutnot thelmn, r], as, for instance, in the compu-

lmn )
tation of the curvature tensors which are discussed in the
following chapter.

Since f : o-,fn, we can immediately obtain the f from
2.536. In the special, but important, case of an "orthogonal"
metric (a^o: 0 when m * n),thef are obtained by dividing
the corresponding expressions for the f^ by the coefficient of
the second order derivative. Thus we have

f : f, :ry, - ,ct(ilxz\z vu\r(g\'.'  d u z  * \ d u ) - r r ( s i n : - '  
\ d u / '

z.sss. f -- &:#- sin*,cos .(H)'+ :,H#r,
fd _ ft _dzf d.rz dxs 2 dr8 d,xr
J5 - ("t rt" 

"r), 
:fr *2 cot *'A du + .ri d"'

comparing these expressions with z.4gg, we read off all
non-vanishing christoffel symbols of the second kind:

:  - ! c l  ,

: - sin rz cos 12,

: cot tczt

{;}'6}
{:},fJ
{:},{,1,}

{3!) 
: - *r (sin rz),;

{l}:},
{'1} : i

2.540.
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E*crc,isc. Compute the Christoffel symbols in 2.540 directly
from the definitions 2.42L and2.422. Check that all Christoffel
symbols not shown explicitly in z.MA vanish.

Returning to a general Riemannian space' let us note a
short cut for calculating the contracted Christoffel symbol
/ \
1" l. Using 2.2L6, we have
Vn)

2.s41.

/0or* ilo^n darn\
@"-F;; + A", 

- 
A"^ )

: O^"Y
a

f,;.'lno'
or

z.s4z.  ( "1 a,  -  1  a
\:"1 : *tn {a: e*{a'

assuming that the determinant a is positive. If o is negative,
2.542 holds with o replaced by -4.

Ererc,isc. Show that for the spherical polar metric 2.532, we
have ln {a : 2ln *1* ln sin 12, and

2.s43. {r") ::,,{;_} : "o. *, u,): o
The result 2.542leads to a useful formula for the "diver-

gence" Tnp of. a vector T'. By 2.520 we have

2.s+4. rop:ffi * {;"} r-
aT" / 1 a _\-# + \Z 6*^{a)r  ,

or

, 
{:") 

- ?ttr lrn, ml



58

2.545.
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1arn - 6/ar1'' ln - t/E ar"

Here we have assumed a positive ; if o is negative we replace
it by -a.

Exucisc. Show that for spherical polar coordinates

2.s46. rop,::,*e,T)+*#cr* ,,-.) * *n.
obtain a similar expression for the "Laplacian" av of, an
invariant trz defined by

2,547. Av:Q" ffi,,.
2.6. specid coordinate systems. Tensor calculus gives

us a symbolism which avoids reference to particular coordinate
systems. This "democratic principle" is, in fact, the idea under-
lying the whole subject. Nevertheless there are occasions when
special coordinate systems prove very useful. To think of
Euclidean 3-space for a moment, the formalism of tensor cal-
culus applies to the most general curvilinear coordinate system;
but there are many occasions when it is much simpler to work
with rectangular Cartesians. In a general Riemannian [y there
exists no system of coordinates as simple as rectangular Car-
tesians. But there are several systems with certain simplifying
properties, and these we shall now discuss.

First we shall consider lom,tr cartcs,ians. The terms in the
general form db : a-nd,x^d,ro which contain dxt are

a4(d*r)2 * 2opdxrd* + futtdxrilf{. . . * Za.wd.xrd,xN .

Let us assume that arr is not zero.* Then this expression differs
from

o,, I ih, *Ho*+.. .+T:o*"]
*See Appendix A.
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by certain terms which contain dr', . . .d** ,but do not contain

dr|. Thus we may write

2.60l,. ([ - erVr2 * Or,

where €r: * 1, to make Grat positive,

2.602. Vr: \/crarrl O*' +?d* +. . . + ? O**f ,
L  a n  a t  l -

and iDr is a homogeneous quadratic form in ilxz,. . . , dxN, the

coefficients being functions of 11, !c2, . . . , tcN.
Applying the same process to (01, and so on' we finally get

2.603. ([ : erVrz * ezvzz+. . . * erVrz,

where each e is * 1 and each ltr is a differential form of the first
degree, as in 2.602; we may write

2.604. V*: b^ndrco.

In the general czxte, it is impossible to integrate these differ-
ential forms; we cannot obtain a set of coordinates y^ such that
the differentials of these coordinates are given by 2.604.

But let us fasten our attention on a point O with coordinates
o'; let us write

2.605. !^ :  (b^")o(*o- o") ,

the subscript O indicating evaluation at the point O. Then, bY
2.603 and 2.604, we have at O

2.646. rb - erdyf* ezdyzz+. . .+ eudyNz.

To sum up: .Il 'i's possibl,c to choose coordli,nat s so tlret tho metr'i,c

form relarccs to 2.60G at any onc assignad podnt of sfucc. Sttth
coordinates are called I'ocal Cartcs'ians.*

The next special coordinates to be discussed are Rhmann'ia'n
coordinates. T-et x' be a general coordinate system and let o'
be the coordinates of a point O. Consider the family of geo-
desics drawn out from O; each geodesic satisfies the differential
equation

*See Appendix A.
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2.607. ffi*{;lTT:0.
Let p'be the unit tangent vector at o to one of these geodesics.
Then by 2.607, we have at O

d,\c, ( r )
w : - 

\*ol 
p^ p",

d,8*'
2.608. 

ZF 
- A,.^n, p^ pn p',

where

2.609. A:, 
a (tn.: - 0.,\,;") *r{;} {kl

There are similar but more complicated expressions for the
higher derivatives. Consider a point p on the geodesic at a
distance s from o. Its coordinates may be written in the form
of power series in s:

z.6to. ,c, : a, + sp, - * *{ ;"1 o^po

++ fA!^n,P^pop" * . . . .
The coefficients are of course evaluated at O.

We define the Riemannian coordinates of. p to be
2.611, *t':s?',
where s is the arc length oP and p, is the unit tangent vector
at o to the geodesic oP. The Riemannian coordinates of o are
therefore r" -- 0.

The first thing to show regarding Rieniannian coordinates
is that they form a regular system in the neighbourhood of o,

i.e. we are to show that the Jacobian 
l#,f 

is neither zero nor

infinite. Substitution from 2.611 in 2.610 gives

z.6tz. ,c?: at* tc',- f\;l*,^*,**tAi^*ac,^x,orn* . . .,

and so
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2.6rs. #" : o- {;} *,^*
Thus at O the Jacobian is

dz$t '  (  
" l r f lg tm6,* rn

dr,*fu"|  d, dr:  o

2.614. lxl :l"l:1,
and in the neighbourhood of O it is neither zero nor infinite.

We shall now prove the fundamental property of Rieman-
nian coordinates: At the,origin of Ricnnnn'ian coord'inatcs, the
Christotfel, syrnbol,s of both kind's and thc first-ord,cr partial' deri-
sahi,vcs of thc mctrin tcnsor all' san'ish.

Consider the geodesics drawn through O, the origin of
Riemannian coordinates. Along each of them the equation

2.6L5.

is satisfred. Here the primed Christoffel symbol is calculated
for the metric tensor a'r, corresponding to the Riemannian co-
ordinate system r". Now substitute from 2.611 in 2.615, re-
membering that P' is constant as we pass along the geodesic
since it represents a quantity calculated at the fixed point O.
It follows that

\;)' 
f-Pn : o

along the geodesic. Therefore at O,where the ratios of the p's
are arbitrary (corresponding to the arbitrary direction of the
geodesic there), we have

2.6L7.

Hence, by 2.426 and 2.
\;.1' : o
425, we have

2.618, lmn, rl' : 0, 
U# : 0

at O. This establishes the result italicized above. Note that
2.617 and 2.618 hold only at the point @, and not elsewhere.
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We recall from 2.5 that the absolute and covariant deriva-
tives differ from their leading terms (ordinary or partial deri-
vatives) only by the addition of certain terms each of which
has a Christoffel symbol as a factor. It follows immediately
that at thc origi,n of Riamanninn coordinates absolute ond, co-
sariant ilcrisatises rcd,ucc to ordti,nnry and, partial d,erivatives.

This is a very useful result. Let us use it to prove the state-
ment regarding the absolute and covariant derivatives of pro-
ducts, made (but not proved) in 2.b (p. bB). one particular
case will serve to show the method.

Consider the statement

2.6t9. (7t" S'-)tr : T"$Sr* * ?T" Sr-13.
At present, we do not know whether it is true or not. However,
we recognize that each side is a tensor, and the equation must
be true in all coordinate systems, if it is true in one. Let us fix
our attention on some arbitrary point o. Take Riemannian
coordinates with O as origin. At o, the tentative equation 2.6tg
becomes a statement connecting partial derivatives instead of
covariant derivatives. We know this statement to be true from
elementary calculus. Therefore the general statement 2.619
is true.

The above argument is typical of the way in which Rieman-
nian coordinates may be used to avoid a great deal of tedious
calculation with Christoffel symbols.

Exercisc. Prove that if a pair of vectors are unit orthogonal
vectors at a point on a curve, and if they are both propagated
parallelly along the curve, then they remain unit orthogonal
vectors along the curye.

Excrcise. Given that )r'is a unit vector field, prove that
)rt;.)r, : 0 and lt)rr1" : 0.

Is the relation r'1rr" : 0 true for a general unit vector field?

We proceed now to another special coordinate system-
normal, cou&itntcs or uthogonal, coordinafas. Rieman-
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2.622.

If we define

2.623.
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nian coordinates have certain analogies with Cartesian co'

ordinates; normal coordinates have some resemblance to spher-

ical polars, but neither analogy is to be pressed too far.

Consider a singly infinite family of surfaces, i.e. subspaces

of (N - 1) dimensions, in a Riemannian .ntr-space. Their equa-

tions may be written

2.620.  tc"  :  f (u t rNJzr . . .  ,  %N- ' i  C) ,

where the a's are parameters defrning the position of a point

on a particular surface, and C is a parameter which is constant

over each surface. If we eliminate the a's and solve for C we

get a single equation of the form

2.621. F(x' ,  * ,  .  . .  ,  f i l )  :  C.

This single equation represents the whole family of surfaces,

the value of the constant C determining the partiCular surface.

For an infinitesimal displacement in one of these surfaces

we have

AF
fidr" 

: 0.

AF OF
Xn:  i * " ,  

X^  -  a^ '6 , ,

the equation 2.622 may be written

2.624. o^* Xmdvn : $.

According to 2.9L7, this expresses the orthogonality of the

vector X' and any infinitesimal displacement in the surface.

In fact, the vector X' (defined in 2.623) is a normal uector to

the surface.
We now seek the orthogonal, trajatoriss of the family of

surfaces 2.62!, i.e. a family of curves cutting the family of

surfaces orthogonally. At each point an infinitesimal displace-

ment dx, along such a curve must have the direction of X'.

Thus it is a question of solving the ordinary differential

equations
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dac' X"
f f i :F

f'ot *rr... ' x'-r in terms of the remaining coordinate rd.
u1de1 very general conditions these equations will have a
solution with a sufficient number of 

"ott.t 
rrt, of integration

to give one curve through each point of space. In brief, i singly
infinik fomil'y of surfaccs in Ricmannian N-spocc posscsscs o
famil.y of orthogonal, trojcctorics.

In the above argument the coordinate system was general.
we shall now see how a normal system of coordinates isiefined.
we start with a singly infinite family of surfaces. we define
rN to be a parameter which is constant over each surface. on
one of' the surfaces we set up a coordinate systeh sl, . . . , *r 

-r.
we shall use the convention that Greek suffixes have the range
1 to /v - 1; thus we refer to these coordinates as d.

Frc. 3. Nornal ao.odinat$ in &spaoa

The coordinates of any point P in space are now assigned
in the following way. The coordinate *il has the value belong-
ing to the surface passing through P. We pass along the ortho-
gonal trajectory which passes through p until we meet the
surface on which f are assigned. we attach to p the values
of. f corresponding to the intersection of the orthogonal tra-
iectory with this surface (Fig. B).

I t :  C o o S l r
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Consider now two vectors at any point. One vector X' is

tangent to the orthogonal trajectory and the other }r' is tan-

gent to the surface of the family. Since the coordinates rf

remain constant as we pass along the orthogonal trajectory,

we have

2.626. XP: 0.

Since trfl remains constant as we move in one of the surfaces,

we have

2.627. I f l : 0 .

But from the basic property of orthogonal trajectories, these

two vectors are orthogonal, so that omixmYo: 0. By virtue

ol, 2.626 and 2.627 this reduces to

2.628. axoXu lP - 0.
Since Xr does not vanish and Y arearbitrary, we deduce that

2,629. aNp: 0.

This is the characteristic property of normal coordinate sys-

tems. The metric form is

2,630. ([ : a*d*Pd{+ a**(dru)z

Excrcisc. Deduce from 2.629 that

2.6gL. aMo - 0, otril : !/anx.

On any one of the surfaces (which is itself a %'-r) the

metric form is

2.632. lD': audfdi.

The coefficients are functions of the coordinates rp and also
contain ril as a parameter. Since the surface is a Riemannian
space, it will have its own tensor technique, which is related
to the tensor technique of the parent.iV-space but is not to be
confused with it. In the tensor calculus of the surface we con-
sider only transformations of the coordinates rf , instead of the
whole set st.

If we write down the symbol aN, what dowe mean by it?
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Either it stands for the conjugate of the tensor aon in vy-1, ot
it stands for some of the components of the conjugate of the
tensor d,"" in l/lv. lf these two things were different from one
another, the notation would be confusing. Actually they are
the same, as we shall now see.

To make it quite clear what we are doing, let a,pn be the
conjugate of oo, h Ziv-t, and, oN be some of the components
of the conjugate of ar" in [y. Now, as in 2.n4,

2.633.
and if we take r and

2.634.
or, by 2.629,

2.635.

o^ra^': 01,

s in the range 1,.. . ,  JV -1, this gives

O^oA*: 4,

ooooun: Ofo.

These equations determine oP'. But

2.636. oup'u": 4,
and these equations determine a'on. Hence

2.637. otqn : apn,

which is the required result.
The next question is this: Do the Christoffel symbols of

Vn-r. coincide in value with the Christoffel symbols of VN
when the indices of the latter lie in the range 1, . . . , -lf - 1?
It is easyto see that they do; wehave (indicating the symbols
f.or Vy-1with a prime)

2 . 6 3 8 .  l p r , p l ' - l p r , p l ,  {  
o } ' : {  o } .

luv l  l rv l
As for the other Christoffel symbols in 4, we have

2 .6g9 .  [p ]V ,o l : [ t JV ,p ]  :  -_ lpo ,JVJ :  +? . " ,

lpJV, ffl : - [ JVJV, pl: *9#, [JV/V, ]Vl : ## ,
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t
{

SusrENsons

,f,) : i*k' {rT}:
J r \ -  1  oaxx  I  p  \
Npl- tuwx af  ' t l r r ry

t ilaro-W*W'

oaNN: b aouffi,

I r r  I -  1  darv iv

lar l r f :2t*"W'
Consider a set of quantities I"p which transform according

to the tensor law

Ad' At(
T'oF : T* 

6*r" 6*te

if we transform the coordinates ccr, trc2r..., ,*-t, without

changing *fr. We shall refer to the set of quantities T,pas the
components of a subtcnsor. Since the transformation is of the
form

do : fd (*t,

!c'N : *N,

,  * f f - 1 ) ,

2.640.

2.64L.

we have

2.642.

0r'N
0,  E:

0xN
o, f io:

0x'N
0,  W:1,

0xNo, f f i :1 '

0x'"-lrM :

0*"

f f i :
It follows that if we split up a tensor T"" of trz1y into the groups
of components

Ton ToN, T*r, Irvrv,

tJren, for the transformations z.6/.L,

Ton is a covariant subtensor of the second order,
ToN, Tyo a;re covariant subvectors,
Iarrv is a subinvariant.

Let us look into the covariant differentiation of subtensors
with respect to the metric form aodxgdx'. We shall denote
this type of differentiation with a double stroke. We shall
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illustrate by examining the covariant derivative of a covariant
subvector. Then, remembering 2.68g,

rato-#-{lulr,.

2.64. rap-#-{{ulr^

: r-ilF -{ 
f, }t',

and so, by 2.639,

2.il3.

Now

2.645.

We also have

2.646,

and

2.&7.

TntF - Tarp +*ffir.

: Ta, * *ffirn.

rmn :# _{#"lr^

:u#-{.,f"}a - {,fl"}*
-#-to,ukr,-*ffr.
:u# -*?r,*-*ffr*,

ro,N:#-{:: lr-

-#-*W*-*ffrn.
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Ftc. 4. Constructionof geodesic normal coordinate system.

Vk-t Gig. 4). The essential fact we wish to prove is this:
Al,l, the geoilesi,cs normal to Yx-t arcal,so normal to Yk-r.

Let P, 0 be adjacent points on tr/;y-1 and let P' , q be the
points where the geodesics through P, Q cut V'y-r. Let us look
back to the formula 2.4LA.It is a formula for the variation in
the length of a curve when the curve receives a small displace-
ment. When it was obtained in?.4we had in mind curves with

@

Exercise. Show that

2.648. Tnlp : T'll, + to'uffi rn ,

2.64s. r*tn :# - *ffiT +*#r*,

z.6so. Tnw :# + * a"ffir - to*ffi r..
The above relations hold for a normal coordinate system.

There is a special type of normal coordinate system, namely,
a geoilesia normotr coord,inatc systcm. This will be described
below, but first we must establish an important property of
geodesics.

Let us take a surface V*-tin Vy, and draw the geodesics

normal to [r-1. Let us measure off along all these geodesics

the same length. The points so obtained give another surface
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common ends points, but actually this condition was not used
in obtaining the formula in quesiion. In apprying the formura
to the case now under consideration, *u put 6L :0, since
PPt : QQ' by construction. Further, the iniegral on the right
hand side vanishes because pp' is a geodesic-. Thus we hive

2.651. l#(a')'aroT::0,
where 6r' at u : Ntr represents the infinitesimal displacement
PQ and 6x" at u : razrepresents the infinitesimal displacement
P'Q'. Let us take the parameter u equarto the arc length along
the geodesics. Then 2.415 hold, and 2.6b1 reduces to

lo**?^o*" ] i': o.2.652.

Here p^ is the unit tangent vector to the geodesic. But the
contribution from P vanishes, since the geodesics cut Z2y_r
orthogonally. Hence

2.653. (a*op^6ro)r, : 0.

since Dr" is an arbitrary displacement on vi-r, it follows that
the vector p'is perpendicular to vk-; the result is proved.

we now define a geodesic normal coordinate syslem as
follows. we start with an arbitrary surface v*-, and assign
over it a coordinate system rp. To assign coordinates to an
arbitrary point, we draw through the point the geodesic which
cuts vx-t orthogonally. The first nr - 1 of the coordinates
are defined to be the coordinates of the point where this geo-
desic meets vn-..j, the last cordinate xN is the arc length of
the geodesic.

It is clear that the geodesic normal coordinate system is a
special case of the normal coordinate system, and so all the
relations given above hold good. But there are other simpli-
fications. As we go along a parametric line* of.r& we have

*A parometric line is a curve along which only one coordinate changes.
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2.6#. dt' - cwowN(df)z,

where ey is the indicator of t*re parametric line. But drf - d's,

by the defrnition of rfl. Hence

2.655. oNN- cf, @ilil- Grv.

These equations are additional to 2.629 and 2.631. Equations
2.639 hold, of course, for a geodesic normal system, but there
are some obvious simplifications since the derivatives of aiyiy
vanish.

For a geodesic normal coordinate slntem, the metric form
is
2.656. (P : ordfd,f + .r(drr)t.

E*crcisc. Write down equations 2.64t1 to 2.650 for the special

case of a geodesic normal coordinate system.

The special types of coordinates considered above-local

Cartesians, Riemannian coordinates, normal coordinates' and

geodesic normal coordinates'-all exist in a general Riemannian

space of ff dimensions. Let us now consider orthogotntr coor-

ilhwtcs for which the parametric lines of the coordinates are
perpendicular to one another at every point. For an infini-

tesimal displacement d111r' along the parametric line of rl,
we have

d6,1* : il111d : . . o : d6'1*N : 0,

and for an infinitesimal displacement dpsr' along the para-

metric line of s2, we have

dglxr : d,<r)f - . . . : dgpN - 0.

The condition of orthogonality

o7nd6,sfind1z;sn : $

reduces to
apdi6yr.Ld(2rfi2 : 0,

and so atz: 0. Taking into consideration the other pairs of
parametric lines, we see that thc coorditn'ta systcm'ds mthogonal
if, onil only if,
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2.657,

Rmmmn^qN Spacr

o r o l : 0  f o r  t  * t .
The corresponding metric form is

2.658. tD : et(hilxt)r*et(h#)2*. . .+ e*(hnd*N)2,
where the e's are *1 or -1 and the lr's are functions of the
coordinates.

orthogonal coordinates do not exist in a general Rieman-
nian space of /v dimensions, and consequentlv they cannot be
used in general arguments. They do exist, howevei, in special
types of space, Errd in particular in Euclidean B-space, where
polar coordinates, confocal coordinates, and othei orthogonal
systems ane familiar. They also exist in special typu. of
Riemannian 4-space occurring in the general theory oi rela-
tivity. In such cas€s they have distinct advantages when de-
tailed computations are nequfud, since the conditions 2.657
reduce the number of components of a"r, from +iv(JV * l) to
JV, so that in vt we hane only 4 components instead of 10.

2.7. tr'renet formulae. with any point on a twisted
curve in Euclidean 8-space thene is associated an orthogonal
triad consisting of the tangent, principal normal, and binoimal,
and two numbers, the curvature and the torsion. we shall
now extend these ideas to the case of a curve in a Riemannian
space of lV dimensions.*

Let

2.702.

2.701. fi? - r'(s)

be the equation of the curve, s being the arc length measured
from some point on the curr/e. Then

d*,
) t t : T

as
is the unil tangcnt vutor, and we have

3we shall use an indefnite metric form, but we shall for simplicity
exclude the possibility that any of the vectors encountered bas a nuli-
direction. We sball also exclude the possibility tbat anyof the cuilzrtures
vanishes. However, these poesibilities will be discussed after the general
formulae harc been set up.
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2.7A3.

2.704.

2.705.
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@;ta)rD)rr: Gs

where e is the indicator of the direction of the tangent. Differ'
entiation gives, by 2.530'

0rf
I"Ti 0,

which shows that 6)r'/6s is perpendicular to the tangent. The
unit vector ).(r)'codirectional with 6I'/6s is called the unit first
normal,, and the magnitude of E)t'/Ds is called the first curul-
turc rg.1' Thus we have

tN
E 

: r111l1ry', e111\1y1l(1)o: 1,

where e11y is the indicator of )t1ry'. This is the first of the Frenet
formulae.

Let us now define a unit vector I(r)'and a positive invariant
r12y bY the equations

2.706. 
Y 

: r121)t1e)'- €€(r)r{r1trr, elzyllelol(z)i: 1,

where elzy is the indicator of l1z1t. This vector I(r)' is perpen-
dicular to both )r'and tr1rf i for we have, by 2.706, on multi-
plication by trr, )r1ry' respectivelY,

2.707. r1a1l121t)r" - 
Y)ro* 

c111tr1r1r r12y)r121nl(1)r : 0,

since \r)'is a unit vector perpendicular to tr'. In the first of
these equations we may put

Ytro 
: - t n,"* : - c111r1r)r2.708.

so that the stated perpendicularities follow. The vector I(r)'
is called the unit suond' normal, and r14 is called the sccond
cuntaturc.*

Let us next define a unit vector )*(r)' and a positive
invariant r1a1 by the equations

*Sometimes called torsdon.
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2.709.
d\d

0s
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E= r(s)I(s;t- e11;e1e;r1z1l1ryt, e1s1l1s11tr(B)o : 1,

where elay is the indicator of tr(r)'. It is easily proved in the same
yty_ tl,"J 162-'is perpendicular io all three vectors )r', )r11;', and
)t1zy'i it is called the undr tl,ird normoland rlsy is called the thirit
cutvohtrc.

Consider the sequence of formulae

2'7lo' 
Y 

: r(ro'r(ro n- ,(u-zyc1u-1)tra-rltrtrr -z)"t

I161t : )rt, r1o; : 0, G1s;: G;
c1Y-1) I(rr-r)" tr(rt-t)" : 1,
( I r I  :  t r  2 , .  .  . )

in which there is no summation with respect to repeated capital
letters. These formulae f,or lr,t - 1, 2, and B coincid" ,urp""-
tively with 2.705, 2.706, and 2.?0g. It is easily ptorr"d by
mathematical induction that the whole sequence of vectors
defined by 2.7t0 are perpendicular to the tangent and to one
another. The vectors )r1r1t, tr1e;t, . . . , are the unit first, second,
. . . r. normals, and the invariants r1r1, K121t .. . , are the first,
second, . . ., curvatures of the cunre.

It would appear at first sight that the formula 2.210 defines
an infinite sequence of vectors. This cannot be the case, how-
ever, because at a point in l/rv we can draw only JV mutually
perpendicular vectors. Therefore z.zlo with fuf - JV cannot
yield a vector r(rD' with non-zero components. In fact, we
must have r(rq: 0, so that for M - JV 2.7t0 reads

, rrrr ol(rv-r)t -..-tLL. --T;-: - €(rv_zy e1r_r1 rlrv_rl l(rv_z)t.

This equation terminates the sequence.
The eomplete set of Frenet formulae may be written

2 .7 |2 .Y : r ( r4 I (M, ,_c (u -Dc(a -g r1u-11) r1 ra -z1 ' ,

c( - la- r )  \ r r - r ) "  L t re-grr  :  1r  (M :1r2r . . . ,  t r f ) ,
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where we define
2.719. ).(o)t : It, r19; - 0, f,(w) : 0.

Excrcise. For positirre definite metric forms, write out ex-
plicitly the Frenet formulae for the cases J[ : 2, N : 3, N - 4-

In the above discussion it was assumed that the successive
curvatures could be determined with non-zero values. But there
is no reason to suppose that this will necessarily be the case.
The eguation 2.705 gives

6r- 0ro
2.7L4. r(r)2 : e11y omn 

e, 6, , €(1) : + 1.

If 0I"/0s : 0 (which means that the curve is a geodesic), then
n11;: 0. Even though the separate components do not all
vanish, we shall have r(r): 0 if Ol'/ds is a null-vector. (This
can occur only with an indefinite metric form.) In either case,
2.705 fails to define the normal vector )r1r1', and so the pro-
cedure breaks down. If we get past the first stage with r11y) 01
it may happen that r(z): 0, and the procedure breaks down
at the second stage. In such cases we have a truncated set of
Frenet formulae. I.et us illustrate by the case where r11y) 0,
1121) 0, rta) : 0. Then the Frenet formulae are

0r'
E- 

: r111l1r;r,

2.715.
e)r(rlt _

0s

0)r(s)' 
:

6s

r12yl1z1t - €e111r111ltg

- e11ye1zyr12;)r1r1t.

Other normal directions remain undefined, but we can fill in
a complete set of mutually perpendicular vectors by taking
at a point on the curve unit vectors l1a;t, . . . , Ilrv- rlt mutually
perpendicular and perpendicular to I', I(r)' and l1z1t. If we
subject I1a1', . o . ' trt"- 11' to parallel propagation along the
curve, the set of /V - 1 vectors remain unit vectors, mutually
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perpendicular and perpendicular to the vectors r', )\(r)', tr(r)r.
The formulae 2.712 are satisfied with

f ,(g)- f ,( l ) :  .  .  .E r( iv-r):  Q.

Excrcisc. rn a Euclidean space [y, the fundamental form is
given as rD : drod,ro.show that a curve which has r1z1 : 0 and
f,(r): constant satisfies equations of the form

x, : A" cgs r111s + B, sin r11ys + g,
where A', Br, C are constants, satisfying

ArA r :  B rB t :+  ,  A rB r :0 ,
f(t)'

so that A' and B? are vectors of equal magnitude and perpen-
dicular to one another. (This curye is a circle in the JV-space.)

SUMMARY II
Metric form:

lD - o*od*^d*o, df : eo*od,*^dtco.

Metric tensor and conjugate tensor:
amt:a;n, a-o:atm, (l-ro^" : S.

Magnitude of vector:

)P: c o^nX^Xo.
Condition of orthogonality :

omJ(mY: 0.
Raising and lowering suffixes:

Xm -- o,^tXn, X-: a^nXn.
Christofiel symbols:

l A " r y r 0 @ n ,  d a ' z \  (  r  )lmq,r l :  t ( * "  +#-  * ) ,  7*n l :o ' " | *n,s l .
Geodesic:

a lar:  o,
J

d. 0w 0w d,x,
dt1 Tx, 

: 0, P' : 6, TJtt : a^*p^fo'
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&x, ( , I ilxn dx" dx^ dnn

w+\*l  a, E: o, on"TE:r.

Geodesic null line:

&*' . ( ,ldx^d'r" - il*^d,*o:4u '+\ ; "1 
d" i :  o ,  ono6,a:  o.

Absolute derivative:

6T -t  * l  ' \ r^qt
6 

:  
du  t \ *n  do '

tT ,  _d ,T ,  _ l * \  dx ,
6u:fr-I;;l '^a'

Covariant derivative:

aT t ! t I r , , .  T  -oT ' - l * lT1c:  * .  +  
\ * r f  

t ^ ,  1 ' r t " :  * - \ ' r ; l r - ,
0r4t: 0, O"cp - 0, {f  :0.

Lrcal Cartesians:

Q : ct(dyt)t* ez(dyz)o*. . . + cx(dyn)z at origin.

Riemannian coordinates :

l m n , r l : 0 ,  { r  } =  
a o m n  Av '  

l *n l '  
o '  # :  oa to r ig in '

Normal coordinate system :

iD : op,Md,x' I o*n(d{)2.

Geodesic normal coordinate system :

e:audfdx,a e"(dr f f )a .

First normal ltr)t and first cunrature 1111 of a curve:

dx' _ - 6l1o)t

6:  
)1101' ,  - f :  r111l1r1t ,  c1ry l1r1o)r (1) ' :1 .
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EXERCISES II

For cylindrical coordinates in Eucridean B-space, write
down the metric-fot1 by inspection of a diagrarn-showing a
general infinitesimal displacement, and caiculate all it.
Christoffel symbols of both kinds.

2- lf ar" attd br" are corzariant tensors, show that the roots
of the determinantal equation

lxorr- brrl - o
are inrrariants.

3. Is the form
d,f+ Bd^rd,y * Mf+ a*

positivedefinite?

4. If X', Yt are unit vectors inclined at an angle 0, prove
that

sin20 : (o^o"n- onomo)Xryrx^In.

5. show that, if 0 is the angle betrn'een the normals to the
surfaces sr: const., d: @nst., then

coso :+
yon@'

6. Let *r, *2, s8 be rectangular Cartesian coordinates in
Euclidean 3-space, and let fir, * be taken as coordinates on a
surface f - f(xr, *). Show that the christofiel symbols of the
second kind for the surface are

I  r  \ :  , f ' f \ ,

the suffixes talcing *"9,J"" ,,t :if'* subscripts indicating
partial derivatives.

7. write down the differential equations of the geodesics
on a sphere, using colatitude 0 and azimuth d as coordinates.
Integrate the differential equations and obtain a finite equation

.d sin 0 cos 0 + B sin 0 sin O + C eps 0 : 0,
where A, B, C are arbitrary constamts.
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8. Find in integrated form the geodesic null lines in a tr6
for which the metric form is

(d*tyt - f'pl(d{8)z+ (dd}l,

R being a function of *1 onlY.

9. Show that, for a normal coordinate system, the Chris-
toffel symbols

[pJV, o], [po, ff], [pff, IVI' [IVJV' IV]

{;J' {fl}' {*}' {#}' {,flo}'
have tensor character with respect to transformations of the
coordinates rrr... , str-l.

10. If 0, S are colatitude and azimuth on a sphere, and we
take

rr: 0 cG 0, #: 0 sin 0,
calculate all the Christoffel symbols for the coordinate system
fir,f and show that they vanish at the point 0 :0.

11. If vwtors 2t and ,S' undergo parallel propagation along
a curve, show that 2uS' is constant along that curve.

12. Deduce from 2.201 that the determinant o : lo*,
transforms according to

I  o* ' l
& ' - o . P r J  - t - l-  

la/ ' ;  '

13. Using local Cartesians and applyirrg the result of the
previous exercise (No. 12), prove that, if tlre metric form is
positivedefinite, then the determinant a : h-"1 is always posi-
tive.

L4. In a plane, let *r, fi2 be the distances of a general point
from the points with rectangular mordinates (1' 0)' (-1' 0),
respectively. (These are bipolar coordinates.) Find the line
element for these coordinates, and find the conjugate tensor
afrt.

15. Given lb : onodr^dr", with otr: ozr:0 but ou*0,
show that iD may be written in the form
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iD _ cvrr_ cvlrf o1 ,
where Or is a homogen@us quadratic form in d,rs, drcr, . . . , d,lcN ,where e : :t I such that dlr.T 0, and where

vr: (zarr1-r [on (it# + itdl) * (ar. * az) df + . . .
* (arr* o2y)dacN l,

Vr: (2a,r)-r larz(- d*r* it*)+(arl - on) d,f* . . .
* (orr - azn) d** l.

16. Find the null geodesics of a 4-space with line element
d,*: e tQl** dyr+ d,zr- dtz),

where 7 is an arbitrary function of, x, lt h t.
L7 . In a space [y the metric tensor is a*n. Show that the

null geodesics are unchanged if the metric tensor is changed
to b^o, where b^o: ^famttT being a function of the coordinaies.

18. Are the relations

Tp, =: Tpr,
Trlth : Trlh,lt

true (o) in curvilinear coordinates in Euclidean space, (D) in a
general Riemannian space?

19. consider a [r with indefinite metric form. For all
points P lying on the cone of geodesic null lines drawn from
o, the definition 2.611 for Riemannian coordinates apparently
breaks down. Revise the definition of Riemannian coordin-
ates so as to include such points.



CHAPTER III

CURVATURE OF SPACE

3.1. The curvattrre tensor. The idea of curvature is
simple and familiar in Euclidean geometry. A line is curved if
it deviates from a straight line, and a surface is curved if it
deviates from a plane. However, it is usually possible to dis-
cover whether or not a surface is curved by purely intrinsic
operations on the surface. Let us think of the simplest of curved
surfaces-a sphere. Imagine a two-dimensional being who
moves in the spherical surface, and cannot perceive anything
outside that surface. The operations he performs consist solely
of measurements of distances (and hence angles) in the surface.
From their geodesic (shortest-distance) property he can con-
struct the great circles on his sphere. If he measures the angles
of a spherical triangle formed of great circles, he finds that the
sum of the angles is greater than two right angles. This result
tells him that his twodimensional region is not a plane.

This simple example illustrates our point of view in dis-
cussing the curvature of Riema^nnian space. Curvature is re-
garded as something intrinsic to the space, and not as some-
thing to be measured by comparison of the space with another
space. Nor do we think of the Riemannian space as necessarily
embedded in a Euclidean space, as we are tempted to do when
we discuss the intrinsic geometry of a sphere.

In creating a geometrical theory of Riemannian lV-space,
we have to generalize our familiar concepts in two ways. First,
we have to pass from three to /V dimensions; secondly, we have
to consider the possibility of an intrinsic curvature, such as is
found in a surface drawn in Euclidean 3-space.
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we define flatness as foilows t A spocc is sa,id. to be II,at if it
is poss'ibh to choosc coord,itntcs for wihh tlu mctrh foim ;si

3.101. tD: er(dxt)r+ er(d*)r*... + cy(d,{)z,
u,ch e being *L or -L.

A space which is not flat is called cuntcd,.

Ercrcisc. Explain why the surfaces of an ordinary cylinder
and an ordinary cone are to be regarded as .,flat" in the sense
of our definition.

our next task is to develop a test to tell us whether a given
space is flat or curved. By ttgiven space" we mean a space in
which the metric form ib: onod*^d,ro is given. The question
is: Can we, or can we not, by transformation of coordinates
reduce rD to the form 3.101?

we attack this question by means of the formulae for
covariant derivatives given in 2.5. kt I, be an arbitrary
covariant vector field. Its covariant derivative is given by
2.521:

3.to?.

This is a covariant tensor of the second order, and we can
obtain its covariant derinative by means of the formula z.5zg,
In writing a s@ond-order covariant derivative, vr€ omit all
vertical strokes occept the firet: thus

3.103. T,t, 'o :u;# - 
\ro*) a,- - 

\*o*) 
*,,.

Interchanglng ,n and ,t and subtracting, we get (since

I q I:1 s I ' '
lmo j  t r r tn t "

'It ghould be clearly understood that a rpaoe fty is flat only if it is pos.
sible to redue Q to the fotm 8.101 tfuoughout ril. Every Bpae is ctcmcrr-
brily flat n the sense tlat it ia always possible to reduce iD to the form
3.101 at a single assigled point This uras done in 2.606.

r,tn : #-\ro*1 r,.
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3.104. Trl^n- Trl*

: *(#- {,0*),,) - {,oo\ (#- {f-}', )
- *"(# - {:"),,) . {,0*)(# - \ f"}' )

The partial derivatives of the components of r' cancel out,

and we get

3.105.
where

Trl^n- Trln : Rlr*oT'

3.106.  R.- - :  a  I  s  I -g{  s  }' tmn-tF l  ,o l  a"" l r * l

+{  
p } { . '  }_ l  

p  }J  s  } .1', f \p*f 
-1,*f\o"f '

Now I" is an arbitrary co\rariant vector and the left-hand side
of 3.105 is a covariant tensor of the third order. It follows from
the tests of 1.6 that Rlr-' has the tensor character shown. It
is called-the mixd, curtaturc tcnsor.

Exucise. What are the values of Rl'-" in an Euclidean plane,
the coordinates being rectangular Cartesians? Deduce the
values of the components of this tensor for polar coordinates
from its tensor character, or else by direct calculation.

kt us now suppose that a vector field T'(u, u) is given over
a 2-space Vz with equations *'- *'(uro), immersed in a
Riemannian Vp. By taking absolute derivatives along the
parametric lines of u and o respectively, we obtain the. vector
fields

6T' 6T

t '6"
These fields may in turn be differentiated absolutely, yielding
fields

62T' 627|' 627?

ffir' ffir' orF'
6?Tr

w'
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If we were dealing with the usual partial differentiation oper-
ators (0/0u,0/}o),the order in whilh the operators are appried
would be a matter of indifference, i.e.

azT _ orT
ilutu 

- 
ffir'

(we say that these operators commur,e.) However, the result
3.105 might lead us to suspect that the operators (d/0 u, 6/6v)
do not commute in general. A straightiorward calcuiation,
based on 2.511, leads to

Y -dY : Ko^oPo*norn .
6uttt 6v6u 'E""' 

0u Av
3.107.

Thus the operators (6/6u, 6/60) do not commute in general.
The formulae 3.105 and 8.102 are important.
we are now in a position to grve a partial answer to the

question raised aborre regarding the flatness of a space. If the
space is flat, then there exists a coordinate system such that
3.101 is true. But then the Christoffel symbols vanish, and
hence by 3.106 all tjre components of the curvature tensor
vanish. Hence thc cond,i,ti,ons

3.109. &*rn: 0
arc naccssary for flatncss. These conditions are also sufficient,
but we shall postpone the proof of this to B.b.

A word with regard to the structure of the formula 8.106
will help if we wish to remember it. The curvature tensor
involves derivatives of the metric tensor up to the sccond, order
and the expression 3.106 starts with differentiation with respect
to the sccond, subscript. Noting the relative heights of the
suffixes, we have then no difficulty in remembering the first
term. To get the second term, interchan ge m and n. The first
Christoffel symbol in the third term is the same as that in the
first term, except that s is replaced bythedummy p; the rest
of the term tjren fits in uniquely so as to preserve the heights
of unrepeated suffixes and to show the repeated suffix otrJ" 

",a supersc'ript and once as a subscript. To get the last term,
interchange m and n. It is, of course, unwise to attempt to
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remember too many formulae, but the curvature tensor plays

such an important iart in tensor calculus that it is worth while

paying special attention to it.
The mixed curvature tensor has some symmetry properties'

First, it iq skew-symmetric in the last two subscripts:

3.109. -(rmn: - 'Frrn*'

secondly, it has a cyclic symmetry in its subscripts:

3.110. (r-t* 4-tt* 8o'- == 0'

These results are easy to show from 3.106. The work may be

shortened by using Riemannian coordinates with origin at the

point in 7s under consideration. Then the Christoffel symbols

vanish, and

$ 3.1

3 .111 . 4,-o : #,{,'*} - #"{,; }
This formula holds only at the origin of the Riemannian co-

ordinates.
We may lower the superscript of the mixed curyature tensor

in the usual w&Y, and get the cna7iant cutttaturc tcnsor, or

Ricmonn tcnsor.

3.112. Rpra,, : asft.tm,.'

A little manipulation with Christoffel symbols leads 1o the

formulae

3.113. R,,^, : 
*lsn, 

rl - 
*Jlsm, 

rl

+ \,e*\r'n,Pt 
- 

\ !")v*' ot '

3.114. R,"^o: +( #+#"- # 
-H

* aoo (lrn,f|lsm, ql-Vm, Pllsrt, gl).

The covariant form of the curvature tensor has the symmetries

already given for the mixed form, but it has others. It is skew-

ry**.tti" with respect to its first two subscripts, and sym-
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metric with respect to_it" m p.i"r of subscripts. All the sym_metry properties ane listed as follows:

3'115. Rrr*o: -R.r-r, Rrr-": -Rr.o^, Rr^r: R-or,

L^*r*- lx/v -z)(N-B).

3.116. Rr"-,,* R**.* R o"- =: 0.

Excrcisc. Show that in a Vz all the components of the co-
variant curvature tensor either vanish or are expressible in
terms of Ruu.

many independent components has the tensor Rr"^n?
we cannot answer this question by simply counting the equa-
tions 3.115 and 3.110, because they overlap. we reason 

"sfollows. By the first two of 8.115 a compotr"rrt vanishes unless
r # s and m * n'. lenote by (rs) . co*bitration r, s, with r
and s distinct and with no consideration of order. The ntrmber
of (rs) is

M _ +tv(/v_ 1),
.l/ being the number of dimensions of tjre space. There is of
course the same number of combinations (mn).If trre first two
of 3.115 were the only conditions on Rr-"*o, we would have
M2 independent components. But the last of 8.11b cuts down
this number by the number of combinations of M things taken
2 at a time, iz. *M(r[ - 1). Thus if the three rela]tions of
3.115 were the only identities, we would have for the number
of independent components

3.tr7 . tuF - * M (M - 1) : * M (M + t) : +/V(/V - I X/w - Jy+ z).
Turning to 3.116, it is easy to see that unless r, s, rn, n are all
distinct the identity is included in B.llb. Furttrer, we get only
one identity from a given combination. Thus 8.116 grve a
number of new identities equal to the number of combinition,
of JV things taken 4 at a time, i.e.

3.119.
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3.119.

BHxcsr IosNTnY

Subtracting this number from 3.117, we get this result: The

number of-inil,cpc"ndqrt cotnponcnls of tlw cotar'iont cutvature

tcnsor'in a sPocc of N dhncnsints is

#**-1).
The following table shows how rapidly the number of inde'

pendent components increases with /V:

Number of dimensions of sPace 2 3 4 5
Number of indePendent compo-

nents of R'-' 1 6 20 50 '

In addition to the relations 3.115, 3.116 satisfied by the

corrariant curvature tensor, there are certain identities satisfied

by its coyariant derivative. Consider the covariant derivative

oi $.tt+, calculated at the origin of Riemannian coordinates;
it is the €am€ as the partial derivative, i.e.

3.t20.
- / dsarn , 0t& r 08ar* 08a ,n \Krsm'l:tf f,ru*r*^*-*n*n*r-ffi6**-i;nx-'an^)-

Perrnuting the last three subscripts cyclically, and adding, we

obtain

3.12t. Rlmrlr* &rnrp* Rrra4n- 0.

This is a tensor equation, md so it is true in general, since it

is tme for one parbicular coordinate system. The subscript r

may be raised in the usual woY, Swi"g

3.t22. (r-o1r* (rtqm* Kel.lllrln- 0'

This is known as the Bianchi idcnt'ity. It may also be derived
from 3.106, using Riemannian coordinates'

Ercrcise. Using the fact that the absolute derivative of the
fundamental tensor vanishes' prove that 3.107 may be written
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3.123.

Cunverunp

627, 62/^, An,m A,vt

6u6v dzttu 
- ' F""'- 

0u 0t
where I" is any covariant vector and Tp: apeTq.

3.2. The Ricci_tensor, the curvature invariant, and theEinstein tensor. We may contract the mixed curvature tensor3.106 and so obtain a covariant tensor of the second order

3.201.
or equivalently

3.202.

Rr-: Rlr^o,

Rrra: (trsoR"r^o.

It follows from the identities B.llb that R"- is a symmetric
tensor. It is called the Ricci tensor.

By 3.106 we have

3.203.

R,^:  a{  n\_ o {n }*J p\ l  
" \_J p\ l  

" \0*-lr nJ dFt r rnt - l ' "f \pnf 
- 

\i*l \p "l 'Now, by 2.541,

3.204.

assuming o to be positive, and so

3.205.

R, ^ : + ffi* - * {:*l *^" - **\,"*l * {,0 _) { o"*l
If o is negative,g.zo1 holds with o replaced by -a. This form
makes the symmetry of the Ricci tensor obvious.

Taking its symmetry into consideration, the number of
independent components of the Ricci tensor in a space of tr
dimensions is +lr(lr + 1). Thus there are B components if
{ : 2, 6 components if If : B, and l0 components if N : 4.
In the case fy' : 2 (e.g. in the intrinsic geometry of a surface
in Euclidean 3-space) we have

{ :"}  
:  + *o^o,
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$ 3.2

g.206. Rrr: ailLRznz, Rre: &rzRztzt, Rzz: OrLR:,nzt'

Bu t , f o rN :2 ,

ort:ry, @12: -+ , &D :+,

R' Rrz Rzz Rurr
- : - : - :
Os Ott Ozz O

Thus, in a 2-space, the components of the Ricci tensor are

proportional to the components of the metric tensor. This is

nof true in general in spaces of higher dimensionality.
The curttature 'insar'innt R is defined as

3.209. ft = amtR*n: K.*

It follows from 3.208 that for -l[ : 2 we have

.fQ : -? Rrrrr.
a

This result, like 3.208, is restricted to two-dimensional space.

This shows that familiarity with the properties of curved sur-

faces in Euclidean 3-space is not of much assistance in under-

standing the properties of curved spaces of higher dimension-

ality-there are too many simplifications in the case N : 2.

There is an identity of considerable importance in the

theory of relativity, which is obtained from the Bianchi identity

in the form 3.121. We multiply that equation by a'oo'-; this

gives

3.2L1. atnRtmp- at*R"tlm- a"&qo: 0.

(Use has been made of the skew-symmetry of &r*n with re-

spect to the last two subscripts.) This may be written

Rtr- 2(tt":  0,

3.213, (RTt - * 6?R)r": 0.

The Einstcin tcnsor GTr is defined by

3.207.

and so

3.208.

3.2L0.

3.212.
or
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3.214. Cr: Rir- *ei3.
Thus 3.213 may be written

3.215. @.r lo :  o ;
this may be expressed in words by saying that thc iliwrgcnce of
the Einstcdn tcnsor wnislus.

3.3. Geodesic deviation. Imagine a two.dimensional
observer living in a two-dimensional space. He wants to explore
the properties of his space by measuring distances. From the
property of stationary length he is able to cpnstmct geodesics.
what can he find out by following one geodesic? Not very
much. We are so used to thinking of 2-spaces as surfaces im-
mersed in a Euclidean 3-space that we are inclined to think of
the geodesics of a 2-space as curved lines (e.g. the great circles
on a sphere). But when we consider a 2-space in iGeff there is
no master cunre with which to compare a geodesic of the 2-
spae; the idea of the curvature of a geodesic disappears-
indeed we regard the geodesic as the "straightest" 

"u*u 
u,u

can draw in the 2-space.
Thus, as our twodimensional observer travels along a

geodesic, he has nothing interesting to report, except for ine
possibility: the geodesic may rneet itself, as a gtu"i circle on
a sphere meets itself. This is a property of the space ,,in the
large," i.e. it does not belong to the domain oi differential
geometry.

Much more interesting results are obtained if the observer
considers not one geodesic, but two. Suppose that these two
geodesics start from a common point and make a small angle
with one another. Consider two points, one on each geodes-ic,
equidistant from the common point; we shall call ru& points
"corresponding points," How does the small distance belween
corresponding points vary as we move along the geodesics?
This is the problem of. gcoil,csio drta,iatiatu, €urd if we can solve it
we get a good insight into the nature of the space.

Think, for example, of the application of the method of
geodesic deviation to a plane and to a sphere. In a plane, the
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distance between coffesponding points on the two geodesics
(strarght lines) increases steadily, being in {act proportional

to the distance from the common point of the two geodesics'

In a sphere, the distance betvreen coresponding points on the

tnro Seodesics (great circles) increases at first, but after a while

it has a ma:rimum value, and then decreases to znro. Thus the

study of geodesic deviation enables us to distinguish very

simply between a plane and a sphere.

fuercise. Would the study of geodesic deviration enable us to
distinguish between a plane and a right circular cylinder?

To introdue the idea of geodesic deviation as simply 1s
possible, we have talked about a 2-space. The sanre idea applies
h 7", and we shall now develop basic formulae for this general
castg.

Consider a singly infinite family of geodesics in [r, forming

a Vz. |,et u be a parameter r,arying dong each geodesic of the

family, and let u be a parameter constant along each geodesic

of the family, but rrarying 
"s 

we pass from one geodesic to

another. The equations of IZr may be written

3.301. x'- x'(a, g)i

the geodesics a^re the parametric lines of u rn V*
Let us make the parameter ,, mone precise in the following

way. Draw a cunre AA' n Vz (Fig. 5) cutting the geodesics
( v + d

( v )

Frc. 6. Geodesic deviation"

orthogondly, and let u be arcJength measured along each
geodesic from AAt. Then, since the currres o : @nst. are geo-

desics in Vry, we have all over Vzrby 2.513,

6P' - 0,
6tt

3.302.
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*h"-t" 8': 0r'/0ui P' is the field of unit tangent vectors to thegeodesics, satisfying the equation

3.303. a^np^qo: + l.
consider two adjacent geodesics of the fami ry, c and. c, ,with parameters u and u * &,. We shall say that points p on C

and Pt on c'are c€rresponding points if they have equal values
o! u: i,e. are equidistant from ihu 

"torr-curye 
aA,: Let 4, be

the infinitesimal vector pp,,.so that

t l '  :0*' do.
fltt

3.304.

In setting up the geodesic normal coordinate system in 2.6, we
had occasion to compare two adjacent geodesics. with a slight
change in notation to suit the present case, the equation z.osg
may be written

3.305. a^r/^tlo : 0;

the equation holds at the point p. This equation tells us that
the deviation ?' is perpendicular to c. Equation B.B0b may
also be written

3.306.

This equation holds
on Vz.

3.309.

illcm 0*r
A^oL a- : Q.

0u Av

all over 22, since P may be any point

I-et us now see how 4'changes as we pass along c. we have

3.307.

since &t is a constant for the pair of geodesics, c and, c,.
Now

0? '_  O  / a r ' \- - _ . - l  _  1dv ,6u 6u\ 0v /

3.30g .  6ox ' :o ' * '+ l  r  }u " -y :
6u0u  0u0u ' lmn)  0u  0u

and so 3.307 may be written

6q' 6D' ,- :  -  a v ,
6u 6u

6 ilxr

&)  0u '
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We take the absolute derivative of this equation with respect

to u, and use 3.107. Thus

3 .310 .  
6 'n ' :  LVao
6u2 6u 6s

- ( ' 6P' + K. "*oD"p^Y) 
rr.

\ a u e a '  
' e " " ' ' -  0 v /

The first term on the right-hand side vanishes by 3.302. Re-

arranging the terms, apd replacing u by s (arc length along

the geodesic) we obtain the cEtnt'ion of gcoilcsic daiation

3.311.

We recall that 4' is the infinitesimal normal displacement to

the neighbouring geodesic, and f is the unit tangent vector to

the geodesic.
iquation 3.311 contains .lf, ordinary differential equations

of the second order for the .l[ quantities ?'. These equations

determine ?' as functions of s if the initial values of 1' and

6n'/6s (or ilq'fiLs) are given.

Exercisc. For rectangular Cartesians in Euclidean $-space,

show that the general solution of 3.311 is rl' : A's * B', where

Ar,B, are constants. Verify this result by elementary geometry.

3.4. Riemannlan cgrvature. The great charm of class-

ical geometry lies in the interplay of visual intuition and pre-

cise Lnalytical arguments. In passing to a Riemannian If-

space, much of the intuition must be left behind. But it is

worth an effort to seek to build up in this general geometry at

least a shadow of that type of thought which has proved so

powerful in the difierential geometry of ordinary surfaces. To

lhis end the curvature tensor itself is of little use. The concept

of Riemannian curvature is much more helpful. Since we wish

our definition to be applicable to a space of indefinite metric

form, we must first clear out of the way some preliminaries

connected with indicators.

f f+ K"*no'r f?o:0.
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I.et X, and Ir be two vectons, grven at a point. Write
3.401. Zt: AXr+ By,
and let A, B be invariants which take arbitrary riralues. wesay that the vector ? s defined is coplotnrwitl x, and y,.
!h9 totality of infinitesimal displacements in the directions
defined by these vectors z, deterrnine an ctanentary ?-sfo,cc atthe point.

Suppose now that X' and y are orthqgonal unit netors
with indicators e(x) and c( | respectinely. i*t z, and w, be
two more unit rrccJors, orthogonal to one another and copl*",
with x' and r'; let their indicators be 

"(4 
nd c(w) ;p."-

tively. We shall prove* that

3.tLO2. c(X)e(Y) - e(Z)e(W).
We have

3.403. Z?: AXr+ RY, W: ArXr+ Bry,
and hence

3.t*M. 'l?: a*&^z'- ALe(X)* B"(Y),
G(W: o66WnW- A'r"(X)+ B,tr(Y).

We have also

3.405. O : o*tZ*W: e(X)AAr* e(y)7'3.,.
Consequently

3.406. e(Z)e(W) - lr(X)Ar* e(Y)Brlle(X),l,zar(nB,r!
-le(X)AA'+ e(Y)BB,l2

: e(X)e(4(AB'- A'812.
since the indicators are each * 1, it follows that g.4ozis true,
and also

3.407. A B t -  A t B :  * 1 .
we now defne tlu Natunnia,n cuttatarc ossoc,iated. with on

clcmentaryt %spacc Vz to bc ttu ,inoaria,nt
frhis may also be easily proved by sylvesteds tl€orcm (see Ap-

pendix A).
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3.40E. fi - e(X)c(I/)Rr"*&Y'Xn?,

whcrc X', Y orc ortlugonol tn;t odors |n Vtond c(X)' c(l)

thai'r ind,imtors.
Let us show that K does not depend on the particular pair

of orthogonal unit vectors chosen in I/t. lf Z', W arc two other

ortlogonal unit vectors, the corresponding Riemannian curv-

ahrre given bY 3.408 is

3.409. fl - ,(4r(W)RrerJ'W"ZnW'

To ompare this with 3.4S8, we use 9.402 and 3.403. Using the

symmetry equations 3.116, we easily obtain

3.410. Rr"^^Z'WfW : (AB' - AtB)ryrrn,"/,'Y'Xlln'

and by virhre of 8.407 we hane K'- K, a required'
It is sometimes advisable to orpress K in terms of any two

vectors in the elementary 2-spae, ratlrer than a pair of ortho-

gonal unit vectors. If fr, 1t are any two nectors in the elemen-

t:rry 2-sPace, then

3.411.
v Rr"^oE'q'?qo
K  2 ,  

- -  '

(ono* - op&nPqol"r,'

To prove this we unite

g.4!2. {: AX'+ BY, f - A'X'* B'ln

where Xt, Y' are orthogond unit vectors in the elementary

Z-spae. The numerator in 3.411 bectmes
(AB,- A',B)2R n&Y'xnw,

and the denominator be&mes
e(X)e(Ir) (AB'- A'B)'.

The truth of 3.411 is then evident.
When the given manifold is of two dimensions (JV ,= 2)'

the elqnentary %space at a point is unique. Thus, with any
point ot a Yzthere is associated a unique Riemannian cutta'

iurc K.If this VzhB a positive definite metric' we can set up
here a connection betrreen the formdism of tensor calculus and
a familiar concept of difierential geometry. L€t us recall that a

surface ( %) in Euclidean 3-spae has two principal radii of
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cunrature,* say Rr and Rz. The Gaussian curvature of thisVz is

? t 1
{ J :  _ .

RrRr
The great contribution of Gauss to differential geometry washis proof that G can actualy be expressed in terms of intrinsicproperties of the surface, without reference to the a-rp""u1i
which it lies. He established, in fact, . ,ur.rit which may bestated as follows:

3.413.

3.414.

3.415.

G : lim E/5.

KS :8 .

Here s is the area oJ a smalt Jil*tc quadrilaterar, and E theexcessr of the sum of its angles over four right angles.
^ Now suppose that we take a vector in V, aid propagate
it parallelly (cf. equation 2.512) round the sides of 

" 
sirall

geodesic quadrilateral. on compretion of the circuit, the vector
will have undergone a small change which, as will be seen in
3.5, is given by equation 8.51g. Fro* this formula it is not
hard to calculate the small angle through which the vector has
been turned: it turns out to be K.s, where K is the Riemannian
curyature and s the area of the quadrilateral.t But under
parallel propagation along a geodesi", 

" 
vector makes a con-

stant angle with the geodesic; following the vector round the
small quadrilateral, it is easy to see that the angle through
which the vector has turned on completion of the lircuit is E,
the excess of the angle-sum over four right angles. Hence 

'

Comparison with 9.414 gives K - Gz for a Vz with pos,itivc
definite tnetrh, the Riemannian curuaturc is cwat to the Giuss,bn
curuaturc, dcfincil by 8.414.

The above geometrical interpretation of the Riemannian
curvature K holds only in a space of two dimensions with a

rcf. c. E. weatherburn, DifferethialGcMry,I (cambridge universityPress, 1939), Sect.29.
tSee equation 3.63i1.
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positive definite metric. To get an interpretation in 7,o1 v/€

iefer to the equation of geodesic deviation 3.311. I-et p'be the

unit vector in the direction of the deviation 47, and let 4 be the

magnitude of ?', so that

3.416. tf : tllt', a^n1J^po : e(P)'

I-et us substitute this in 3.311; we get

s.417. ffir'* rk*S + r# * n4,,^of'r^Po : o,

where P' is the unit tangent vector to the geodesic from which

the deviation ?' is measured. Now from the second of 3.416

we have

3.418. F^ttm: e(p), ,-S : 0, 
*T * u# : Q.

Hence, if we multiply 3.4LT across by p* we get

3.41e. ,(t)ba r* qp,ff + qe(f)c(p)K : o,

where K is the Riemannian curvature for the 2-element de-

fined by n' and p'. I-et us suppose that the two neighbouring
geodesics involved in the geodesic deviation start from a com-

mon point O, and let s be measured from O. Then 4 * 0 as

s ) 0, and so by 3.419 we have

g.4zo. timdll - o.
s+o ds2

Now return to3.4L7 and let s tend to zero. On account of 3.420
and the fact that iln/d,s does not tend to zero at O (if it did' the
geodesics would not separate at all), we deduce

g.,ill. lim or{ : o.
s)o 0s

Hence, by 3.418,

g.4zz. lim pr 6'ttl : o.
s)0 0S2
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we return to 8.41g, divide by q and ret s tend to zero. Thisgrves

1.429. [m I dPr - -.K
t1o n d,f 

-.-'

where e is the indicator of either geodesic (the same for both
since they are adjacent) and lr is the Riemannian curvature
correspondirg to the 2-element defined by the two geodesics.

suppose now that we expand z in a power serieJin ,, tiu
distance from the common point of the two geodesics. If we
define 0 by

g,424. 0 : lim drt 
.

it is easy to see that .hu 
"*p;:i:::kes 

the form

This formula gives us an insight into the geometrical mean-
ing of the sign of K. For simpli"ity, take 

" 
rp"c" with positive

3.423. z:0(s-+-€KC+...).

€K> 0

cK:0

eK<0

Frc. 6. Behaviour of dirrcrging geodesics, relatirrc to the sign of eK.

definite metric, so that G : l. The quantity 0,defined by 3.424,
is the small angle between the two geodesics at their common
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3.501.

3.502.

Pmeu,rr Pnorecauox

point-this follows at once from the formula 2.309 which de-

h"o angle. Thus the term 0s on the right of 3.425 represents

the deviation with whieh we are familiar in Euclidean space'

When we bring the next term into consideration' we see that

a positfue Riemannian curvature implies a cofn erga&ca of the

gefoesics, ffid a ncgoti,ve Riemannian curvature a dfuggmcc
(*rr.r"rg"rrce and divergence being interpreted relative to the

behaviour of straight lines in Euclidean space).
The behaviour of the geodesics relative to the sign of GK

is shown in Fig. 6.

3.5. Paralleil propagation. We shall non' discuss some
questions connected with parallel propagation. By definition
(cf. equation 2,8L2) a vector with contravariant components
i' it propqgated parallelly along a currre *': x'(Nr) provided

the following equation is satisfied:

[ : g .
6u

lf Tr: oraP, then 3.501 is equivalent to

E: g.
6u

Reference may be made to 2.611 and 2.515 for the definition
of the operator 6/6u.

Let us now investigate how the result of parallel propa-
(T').

(T ' ) ,

Frc. 7. Paraltel propagation t 
i:"jnt6: 

A 6 I dong different Peths,

gation of a vector depends on the curye along which the pro-

pagation is carried out. Let A, B (Fig. 7) be two points in I4f ,
and cr, cz ttro curves joining them. on each of these curves

let us take a parameter u running between the same limits
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uv rJz for both curves. we may then write as the equations of
the two curves

3.503. Ct x'=- f(u), Cz: xr: gr(u), ar ( u {, uz,
with trJ : 10r at A and u : *z at B. Let us take any vector
(l')o at A and propagate it parallelly to B, using hrst the
curve cr and secondly the curve cz 6 path of prlpagation.
Let the resulting vectors at B be (T')r 

""a 1ny, ,"ri"jively.
We seek to evaluate the difference

3.504. (AT,)n: (T)r-(2T)r.
Let us construct a continuous family of curves joining ./,

and B, the curves cr and G being members of the fa-iiy *
Let the parameter u vary between the same limits ur, uzior
all these curves; and let u be a parameter which is n*"a or,
each cun/e' and varies continuously from o : tton cr tos:vz
on cz. Then the equations of the family may be writien;

3.505. tc? : h,(arv),
a r (  u ( , u 2 ,
u r (  u ( u e .

We may also regard 3.805 as the equations of a Vzon which
u and o are coordinates. Note that

3.506. hr(ur 0r) : f (u), hr(u, uz) : gr(u),
h'(uyv) : f(ut) : gr(ut),
h'(uz, s) : f (ur) == gr(az),

and hence

3.507.

f.or u : rttand for oJ : Iic2.

Y:O
0s

*This can always be done if, vx is simply connected (like an infinite
plane or the surfae of a spbere). But if zry is multiply connected (like the
surface of an infrnite cylinder or a torus), it is possiuti to join A and,B by
curves which cannot be ontinuously transformed into one another. Curves
which can be so transformed are called rcconc,ila.ble. We shall understand
tlrat the curves Cu Ctare reoncilable.
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Starting with the vector (I')o at A, let us propagate it
parallelly along all the curves e : constant' This gives us a
vector field T'(u, o) over 7r, single-valued except possibly at
B. This field satisfies

3.508. 
6T : o,
6u

and consequently

3.509.

Furthermore, we have

Dtr - o.
6a6u

3.510.

since ' is independent of s at A, and 3.507 holds. We now
take a second vector tsr, choosing it arbitrarily at B, and pro-
pagating it parallelly back along the curves ? : constant to A.
This defines a vector field Y,(1t,u), satisfying

6 ! :  
o f o r  q t r : r r t t

0u

6 y r : 0

6u
3.511.

over V2.
Consider the invariant T"Yr. Since I, is single-valued at B,

we have

3.s12. (AT')r( y,)n : f* ( !rnr,)) d,v
J o r  \ d t t  / u , - t z

f'/ 'r- o,1 d,v.: J '  
\ -a "  /n -  n

This last integrand may be written

3.sr3. /9..I n\ : 1't r) + l"' u fT v) au.- - - - - -  
\  o u  

- ' l n - n ,  
\  0 u  

- ' / n - u , '  
J * , d a \  D o  

- ' l ' " '

The first term on the right vanishes, by 3.510. The second term
reduces as follows, use being made of 3.511 and 3.107:
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3,514.

Crnvarrnr

f":^*-( # r,) * : f)XY,itu
:J;(# +K.e orr#X)rou.

The first part of the integrand vanisher by g.E0g. when we
substitute back through 8.618 in 8.812, we get

3.sts. (AT )a ( y), - [f y,Ke,nr|Ta1- a!" d,ud.o,
JJ 0u As

the double integral buirg taken over the 2-space Zc between
the curves Cr and cz. Tbis fumuh giocs tts tlu cff?d of futh on
thc rcsilt of poralhl profugation, since (yr)n is arbitrary.

we shall use this result to investigate the effect of propa-
gating a vector parallelly around a dosed circuit. sti[ rcirg
the same notation and Fig. 7, we have at B the three vectors

(P)t, (T')r, Y,.
we recall that the first two of these vectors are the results

of parallel propagation of (?t)o at A along C, md G respec-
tively. Let us propagate these threevectorsDackalong Czto A.
Now it is obvious from the form of the equations of parallel
propagation that if we propagate a vector parallelly along a
curve from A to B, and then propagate it parallelly back along
the sanecurve from B to /., we arrive back at A with precisely
the same vector as we started with. Let us denote by (?)o*
(AT')e the vector obtained by propagating the vector (?t)o
around the circuit formed of. Cta"d Ci reversea. Then, u"Au,
parallel propagation back along Co, the tjrree vectors mentioned
above come to A with the values

(2o)o* (aT) n, (r)0, (Y,).s,,,
the final notation beins used to indicate that r, has been pro-
pagated along cz to./.. Sinae parallel propagation does not
alter the invariant TY, it follows that

3.516. (A7t)e(Y,),e,,2: - (Af) a(Y,)n.
For the right-hand side of this equation we hane the expression



$ 3.s Pnop.c,clrrox Rouno Crncun 103

3.515, and so, in a sense, 3.516 gives an evaluation of the effect
(AT')a of parallel propagation around a closed circuit. How-
ever, we can improve the statement by noting that we can
choose (Y,)e,z arbitrarily, provided we then determine Y, at
B by parallel propagation along Cr. With this in mind, let us
restate our result as follows:

Let A bc any point in Vs and, Vza2-spacc passi,ng through A
(Fig. 8). Lct C be a cl'osed cuntc on Vz, passing through A, with

Frc. 8. Effect of _pqqtlel propagation round closed circuit G * C2, illust-
ratins equation (3.517).

Path of propasation of Ir shown
Path of broilaEation of Ir shown . . . . . .

a certain scntc indicatcil on it. Let B be any othcr point on C,
joined, to A by a sct of curucs trNnS in Vz. Let (Y,)o be chosen
arbi,trarily at A, propagatcd parallelly to B al,ong C, but against
the assigned sense oI C, and then propagoted parallelly from B
back toward,s A along thc gwen sct of cil.n)es. Thcn, os a result o!
paral,l,el propagation around, C'in the ass,i,gnd, scnse, any vector
T' assigncd, at A recehtcs an incrcmcnt AT' satisfying

| | A*m Aot

3.517. Ai.t.(Y,)': - | | Y,rye*nTvYyd,ud.a,
JJ 0u da

the doublc intcgral, being tnkcn wu the part of Vz bound.ed, by C.
If the circuit C shrinks toward zero size, the principal part

of the preceding integral may be written

3.519. -(L')o II u, "r'#ffa,,a,-
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Since (Y,)o is arbitrary, we see that for an infinitesimal circuit
in the form of an infinitesimal parallelogram with adjacent
edges d61*", dplx?l the infinitesimal increment in I' may be
written

3.519. ATr : - Kn^rTrd, 61tcmdp1fit.
We draw an important conclusion from 8.515. lf. Rlo^n:O,

the integral vanishes. But (Y,)ois arbitrary; therefore (AT,1o:
0. In words, if the curuature tensor vanishes, then the result of
paral,l,el, propagation of o vcctor is ind,epeniknt of the path of pro-
pagation Equivalently, if the curvature tensor vanishes, a
vector is unchanged by parallel propagation around a closed
circuit. It is easily seen that these statements apply to both
contravariant and covariant vectors.

We recall the definition of a flat space given in 8.1. (cf.
equation 3.101). In that section we saw that the condition
3.108-the vanishing of the cunrature tensor-is necessary f.or
flatness. We shall now show that that condition is also suffi-
cient, i.e. if the curvature tensor vanishes, then there exists a
coordinate system such that the metric form is as in 3.101.
But first we need to prove the following theorem:

II Ko^": 0 in V*, a oector (I")o ossigncd at a point A
detincs a acctor ficl,d T, throughout Vx by parallel, propagation no

matter what paths of propagation are useil. Thenlo rrh*r, where
J I

B is any scconil poimt in Vy,is inilependent of thc path of integ-
ration joining A to B.

The truth of the first sentence in this theorem has already
been established. To prove the second statement, we take two
curves Cr and Cz joining A and B, and fill in a family of curves
as in 3.505 and Fig. 7. For any one of these curves (u:constant)
we write

3.520.

Then

r(o) : Ilr*, : fn',,r*ff ao.
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3.523. aeqX @1#(n)c: E^n,

where E^o: 0 for m # n, and E**: eo for rn : fi, Gn being
the indicator of trre vector x'@). we define throughout v N
^l/ vector fields by parallel propagation of. x py,. Then the
relations 3.623 are satisfied throughout Zly. We define at any
point P

#:J",*( r-Y),"
: l*wYau + l"'

J*,  6u 0u J* '
6  6 6 x n ,
t  n - -  A U .

6a 0u
Now 67,/6s : 0, since T, is propagated parallelly along att
curves in [r. Also, using 6Tr/6u : 0, we have

f n ' -  6 o x n ,  l u r ^  6 o x o ,3 . 5 2 2 .  I  T " - - - d , u : l  t ^ - - a u
J * '  6 t t 0 u  J o , - - 6 u 0 g

: f:*(r -#) 0" : I e X1"_'^: o,
since 0x|/0v: 0 at A and at B. Therefore ill/d,a: 0, and so
/(u) is independent of sr. Consequently the integral has the
same value f.or Cr and Czi the theorem is proved.

In a Zly with K.p*o: 0 we shall now set up a system of
coordinates for which the fundamental form is as in 8.101
We take a point A, and at A we take a set of .l/ orthogonal unit
vectors Xp,sr. At A these satisfy

3.524.

As we have seen above, the valu e of. y, at P is independent of
the choice of the curve of integration AP. Therefore, for an
arbitrary infinitesimal displacement of p we have

!,: f' 
xs1nd,*,.

dy, : Xg1ndro,

#": 
xpln'

3.525.
and so

3.526.
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Hence by 3.523,

3.527.

Cunverunn

oooo-^y! y: E*,.
ilxP |rq

we may us€ /r as a system of coordinates in vy. Let b^n be
the corresponding fundamental tensor, and b^" its conjugate
tensor. But the latter is a contravariant tensor, and so, bythe
law of tensor transformation,

3.SZg.  b^n:  onofu fu  -_  F .__
oro aro 

- timr"

From this it easily follows that b^n: E^o, and so the metric
form is

g.Sz9. e : et(dy)z* er(dyr)2*. . .+ en(dyx)z.
But this is of the form 3.101. Thus we have proved that thc
cond'it'i,ons \p^n: 0 arc suffi,cient for fla,tness.

It remains to clear up a point in connection with equation
3.415. we wish to show that, if rrl :2and the metric form is
positive definite, a vector is turned through an angle KS after
parallel propagation around a small rectangle of area s.
Let P be any point, and r', p' two perpendicular unit vectors
at P. Let us construct a small rectangle, two sides of which
emanate from P in the directions of )r' and p'. If the lengths
of these sides are dslr;, ilsplrrespectively, we may put, in B.blg,
d61tc^: )r-ds(ryt dplecr- p,rd,spy. Then d,sgld,spy: S,the area
of the rectangle (or, to be precise, its principal part), and
3.519 may be written

3.530. A7tr: - Ko^nI?I-ptS.
Since the angle between two vectors is unaltered by parallel
propagation, we can compute the angle through which I" is
turned by taking T': I'. Then, multiplication of 3.580 by p,,
gives, on account of 3.408,

3.531. FrAT'|: KS.
Hence, since prT': prl": 0, we have
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p,(T'* LT') : KS.

The magnitude of a vector is unchanged by parallel propa-
gation; hence the magnitude of. T* AI'is the same as that
of )r', viz. unity. If 0 is the angle through which I'is turned,
counted positive in the sense of passage from )tr to p', then
pr(Tv* 42"): cos (i 

" 
- 0) :sin 0, and so, replacing sin 0

by 0,since we are interested only in the principal part, we have

3.533. 0 : K,S,
the required result, from which 3.415 follows.

SUMMARY III

Non-commutative property of covariant differentiation:
T4^n- Trln : R,r*oT 

".
Non-commutative property of absolute differentiation:

g-p: Ko*nroYry.6u6v 6ts6u 
- 

0u 0v

Parallel propagation round a small circuit:
AF : -R: r*rT'dp1x^d,pytct.

Mixed curyature tensor:

' ( "nn:  * { , 'n l  
-  

* ! " { , ' * }  *

-{ ,0*} 
{r ;} .

Covariant curvature tensor:

{:") {o'*\

R,"^n: r(#*+m-m-m)
a 6ce(frn, pllsm, ql - lrm, plfsn, ql).

Identities:
Rr"^n: -R"r*n, Rr"^n: -Rrro , Rrr^n: R^nr*

Rr"-"* Rr*nr* Rrnr^: Q.

Vyz $N2(n'r2- 1).



108 CunverunB

Conditions for flatness i Rr"^o: Q.

Bianchi identity:

K r*np* K rntl^* K ,inolln: Q.

Ricci tensor:

Rr^: R-r: Rlr-o

:  r r ,  o '  lno-+ l  P }Sr 'onA* rA*^ " ' *  , l rm lbxo

-#\,"*) * \,o,l1r)'
Einstein tensor:

G! , :  R i t -  +d?R '  G l rw :  Q.

Geodesic deviation:

62n,

* + \ * " n / ^ n " P o : 0 .

Riemannian curvature:
K : e(X)e(nR,"^nX'YsXmYn

Rr r^ot'qtt^rlo
(a pua qo - apaa qu)Eo not rt"

Spherical excess: .E:KS.

EXERCISES III

1. Taking polar coordinates on a sphere of radius a, cal-
culate the curvature tensor, the Ricci tensor, and the curvature
invariant.

2. Take as manifold Vz the surface of an ordinary right
circular cone, and consider one of the circular sections. A
vector in Vz is propagated parallelly round this circle. Show
that its direction is changed on completion of the circuit. Can
you reconcile this result with the fact that Vz is flat?
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3. Consider the equations

(R-*- ila*o)X': 0,

where R-o is the Ricci tensor in a Vy(trf > 2), a^n the metric
tensor, 0 an invariant, and Xo a vector. Show that, if these
equations are to be consistent, 0 must have one of a certain
set of ^l[ values, and that the vectors X' coffesponding to
different values of 0 are perpendicular to one another. (The
directions of these vectors are called the Rhcd princopal, ilirec-
tions.)

4. What becomes of the Ricci principal directions (see
above) if If :2?

5. Suppose that two spaces V*, 7'y have rnetric tensors
a*n, at -o such that (tr'*o: ka^r, where & is a constant. Write
down the relations between the cunrature tensors, the Ricci
tensors, and the curyature invariants of the two spaces.

6. For an orthogonal coordinate system in "a Vz we have

d,sz: an(d,xr)z * azz(ilxz)2.

Show that

! R u,,: - * ht# (+,#) . #(h#)1
7. Suppose that in a Vg the metric is

dsz : (h ihr)2 * (hzdrz)z * (hsdxs)z,

where hu hz, hs are functions of the three coordinates. Cal-
culate the curvature tensor in terms of the /z's and their deri-
vatives. Check your result by noting that the curvature tensor
will vanish if hris a function of *1only, hzaf.unction of 12 only,
and hs a function of *8 only.

8. In relatMty we encounter the metric form
.D : c"(d,xt)r+ tl(ihcz)z* sin2xz(dxr)rl _ ea(dxa)z,

where o and .f ate functions of *r and # only.
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show that the complete set of non-zero components of the
Einstein tensor (see equation (8.21a)) for the form given above
are as follows:

Gl  :  c -o  ( -+ - * r ) *c4 ,
G3: e-" ( -+-  * t r ' -L : ' , ' -L l '++or*  !an)

* c- (t 
"* + + ar2 - L o..rr),

GB : GZ,
Gt :  c - " ( - *+Eor ) *cn ' ,
e "GL:  -caGt :  -  bon

The subscripts on o and r indicate partial derivatives with
respect to *1 and #.

9. If we change the metric tensor from a-o to a*n* b^n,
where b^, are small, calculate the principal parts of the incre-
ments in the components of the curvature tensor.

10. If we use normal coordinates in a Riemannian Z1y, the
metric form is as in equation 2.630. For this coordinate system,
express the curvature tensor, the Ricci tensor, and the cunra-
ture invariant in terms of the corresponding quantities for the
(lf - l)-space tcM : const. and certain additional terms. Check
these additional terms by noting that they must have tensor
character with respect to transformations of the coordinates
ol ry2 _IV-l* r * r . . . r 6 t  .

11. Prove that

Frlmn: Fop^,

where I-" is not necessarily symmetric.

12. Prove that the quantities

crnn L 
I 62

v , 
Za6f U*;Ia(a*art 

- amra'tt)l

can be expressed in terms of the metric tensor and its first
derivatives.



CHAPTER IV

SPECHL TYPES OF SPACE

4.1. Space of constant curvafitre. A general Rieman-
nian space of lI dimensions is bound to remain somewhat
elusive as far as geometrical intuition is concerned. It is only
when we specialize the type of space that simple and inter-
esting properties emerge. We shall devote this section to spaces
of constant curvature, passing on in the next section to the
more specialized concept of flat spaces.

We lead up to the idea of a space of constant curvature by
defining an isotrop,i,c point in a Riemannian space. It is a point
at which the Riemannian curvature is the same for all 2-
elements. This means that the quantity K in 3.411 is inde-
pendent of the choice of the vectors E', rt'. So, if we define the
tensor Trr^* by the equation

Trr*o: Rramn- K(ar^aan- arn@rm),

Tr"^nl'q"E^qo: 0.

This is an identity in t', 4', and so

4.103. Tr"^n* T^"r** Trn*"* T^orr: 0.

On examining 4.101, we see that the tensor Tr"*rt satisfies
the same identical relations 3.115, 3.116 as Rr"-o. Thus

4.101.

we have

4.LO2.

4.LO4.

4.105.

Trr^r: -Trr*n: -Tr"o^: Tmor,

Trr*n* Tr^r"* Tror*: Q.

From the equations 4.103, 4.L04, and 4.105 it is possible to
show that Trr^o vanishes. This is done in the following steps.
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First, by 4.104, we may change 4.108 to

4.106. Trr^r* Tro^r: 0,

and, by 4.105, this may be changed to

4.107.

or

4.111.

Trr^o- Tr^"n- Trro : 0,

4.109. 2Trr*o- Tr^rn- 0.

Interchanging rn and .s, and adding the resulting equation,
we get

4.109. Trr^n* Tr^ro: 0.

Adding this to 4.108, we get Trr^o: 0. Thus, it follows from
4.101 that atanisotropia poi,nttlu Riemannian curuaturc satislies

4.110. K(ar^ asn- arn o"^) : Rr"^n.

Since a Vz is isotropic (although in a rather trivial sense), the
equation 4.110 holds throughout any V2.

Ererc'ise. Deduce from 4.110 that the Gaussian curvature of
a Vz with positive-definite metric is given by

/a R:J,:.f.
v- : 

arrarr-arr'z

Now wr: come to a remarkable theorem, due to Schur:
If a Ri,eman.ninn spacc VN(N > 2) is isotroph at a.ch poi,nt in
a region, tlnn thc Ripmann'ian currnturc is constant throughout
tlwt rcgi,on In brief, isotropy implies homogeneity.

The proof of this theorem is based on 4.110, valid at each
isotropic point, and Bianchi's identity in the form 8.121. We
wish to deduce from 4.110 that K is a constant. Covariant
differentiation of 4.110 with respect to xt gives

Kp(ar^ asn- arn a"*): Rramnltt

since the covariant derivative of the metric tensor vanishes.
Permuting the subscripts rn, n, I cyclically, and adding, the
right-hand side disappears by 3.121 and we have
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4.112.
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Kp (ar^ asn - @rn ar^)

+ Kp(on a* - art asn)

+ Kp(art ar* - arm art):  0.

Multiplication by a'^ o"3 yields

4.113. (Ir - l)(nr - Z)Kt,: 0.
But tr/ ) 2, and so Kp:0; but this is simply dK/ilxt: 0 and
so K is a constant. Schur's theorem is proved.

A space for which K is constant (with respect to choice of
2-element at a point, and therefore by Schur's theorem with
respect to choice of point) is called a spacc of constant curvature.
The basic relation for a space of constant curvature is, as in
4.110,

4.L14. Rrr*n: K(ar^ aer- &rn a"^),

where K is the constant curvature.
It will be observed that in the proof of Schur's theorem we

found it necessary to assume .M > 2, and were led to 4.LL4
with K a constant. As already seen, 4,1L4 holds everywhere
in any Vz, K being in general not a constant, but a function
of position.

Exercise. Prove that, in a space Vp of. constant curvature K,

4.115. R^o: -( iV - \)Ka^, R : - jV(If  -  1)l( .

The study of geodesic deviation in a space of constant
curvature is interesting. We go back to the general equation
of geodesic deviation 3.311 and substitute, by 4.!14,

4.116. K ,*o: K(6i"a rn- 6!na 
"*).

Noting that the unit tangent vector p'is perpendicular to the
deviation vector ?t, so that a r^p"rf- 0, we see that the
equation of geodesic deviation reduces to

4.LL7. ff+ eKq" - o,
where e is the indicator of the tangent to the geodesic.
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This is not as simple an equation as might appear at first
sight. we recall that 62q'/6sz is a complicated thing, involving
christoffel symbols and their derivatives. so any hope of
treating 4.117 as a linear differential equation of the second
order with constant coefficients seems over-optimistic. How-
ever, a simple device enables us to do this very thing. We
introduce a unit vector field X", propagated parallelly along
the geodesic, so that 6X,/6s: [. If we multiply 4.LL7 by X,,
with of course the usual summation convention, the resulting
equation may be written

ff{",r') * .K( x,4'): e.4.118.

The general solution of this is

4.119a. X,4'- 1! sin sr/& + B cor s/IK, if. cK ) 0,

4.119b. XrI ' :  As + B, i t  K:  0,

4.119c. X,\,- A sinh sV4a * n cosh s\R(,if eK(O,
where A and B arc infinitesimal constants"

Consider now two adjacent geodesics drawn from a common
point, from which we shall measure s. For s : 0, we have
r' : 0, and so the above equations become

4.l?Oa.

4.120b.

4.l20c.

X,r'-, / sin sV.K, if eK ) 0,

Xr\'- As, if. K : 0,

X,r,:, / sinh sV--iKt if. eK < 0.

There is a remarkable difference between 4.L20a and the other
two equations. For 4.120a we find Xrq': 0when s : zr/tR.,
but for the other equations Xr\' vanishes onlyfor s : g. Since
X, may be chosen arbitrarily at any one point of the geodesic,
it follows that q': O in the case 4.120a when s: o/l/-iK,
Thus, if eK ) 0, two adjaccnt geod,cshs issuing from a point
intcrscct aga,i,n at a d,istancc



$ 4.1 IutrnsBc"rroN oF Gsoopsrcs

4.121. s :

from thc initinl, point.

E*crcisc. By taking an orthogonal set of iV unit vectors pro-
pagated parallelly along the geodesic, deduce from 4,L20a that
the magnitude 4 of the vector ?'is given by

4 . 1 2 2 .  q : C l s i n s f / & | ,

where Cisaconstant.

Let us investigate the consequences of the result expressed
in 4.L21, assuming that the metric form of the space of constant
curvature is positivedefinite, so that e : 1, and that the space
is of positivc constant curvature (I( > 0). Consider the family
of all geodesics drawn out from a point O. Any two adjacent
geodesics of this family intersect at a distance

4.t23. 7f
- C  :  - o
v P

\/K
It follows that al,l, the geodesics drawn out from O meet at a
common point (say O'). From 4.L22 it follows that the small
angle at which two adjacent geodesics separate at O is

4. !24.  n :  (  e\x:  ( i )*e c\ /K '

and the angle at which they meet at O, is

4.r2s. x,: -( +\ _ : ctFK.
\ @S r/s - t/tlK

Thus X : X'. Hence it follows that, since all geodesics issuing
from o fill all possible directions at o,allthe geodesics coming
in at o' frll all possible directions at o' . rf. we continue on any
one of these geodesics, we shall arrive back at o after travel-
ling a further distance o/\/K.

The situation described above is familiar in the case of a
sphere. All geodesics (great circles) drawn from a pole o meet

t

\/ eK

I
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again at the opposite pole O'. The geodesic distance OO, is

"/\R 
: r,R, if R is the radius of the sphere. Butin a space

of positive constant curyature a remarkable thing may occur
of which we are not warned by our familiarity with the geo-
metry of the sphere. Thc poi,nt O' may be the poi,nt O itsel,f. To
distinguish the two cases, the following terms are used:

Point o'different from o: thespace isantipoilal (or spherical).
Point Ot coincident with O: the space is pol,ar (or cl,l,iptic).
A mere knowledge of the line element or metric form does

not tell us whether a space is antipodal or polar. It is a pro-
perty "in the large." Given the metric form, we can find by
direct calculation whether this form is positive-definite and
whether the space is of positive constant curvature. If it is,
then the space is either antipodal or polar, but we cannot tell
which without further information.

Ftc. 9a. Antipodal, or spherical,
2-space.

Frc. 9b. Polar, or elliptic,
2-space.

To make the concept of a polar space more real, let us
consider a model of such a space. The simplest model of an
antipodal space is a sphere constructed in ordinary Euclidean
space of three dimensions (Fig. 9a). Let us slice this sphere
along the equator, throwing away the northern hemisphere
and retaining the southern hemisphere. I,et us agree that points
A, B (Fig. 9b) at the ends of an equatorial diameter shall be
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regarded as identical. Then a geodesic (great circle) coming up

from the south pole O to.C jumps across to B and continues

from B to O. All the geodesics (great circles) drawn out from

O return to O, and do not intersect until they get back there'

We shall now use the idea of geodesic deviation to find an

expression for the fundamental form in a 3-space of positive

curvature K. We shall assume the metric form to be positive-

definite.
Since any such Riemannian space is infinitesimally Eucli-

dean, we can fix the initiat direction of a geodesic OP issuing

from a point O by means of the usual polar angles relative to

an orthogonal triad at O (Fig. 10). Further, we can appeal to

Euclidean geometry to get an expression for the small angle 1
between two adjacent geodesics OP, OQ with directions (0, d),

Frc. 10. Line element PQ, in a 3-spae of constant curyature.

(d + i1,0, 6 + dil respectively. The value is

4.t26. x : (|fr* sin4d Or)'.

This follows from the fact that this expression represents the
distance between adjacent points on a unit sphere in Euclidean

3-space.
Let us attach to P the coordinates r, 0, Q, where r is the

geodesic distance OP, and to the adjacent point Q the co-

ordinates r * dr, e + d,0, O + dO. Let P.lf be the perpen-

dicular dropped from P on the geodesic OQ. Then
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O N : O P : r , N Q : d r , N p : r t ,

where a is the magnitude of the geodesic deviation. By 4.122
we have

4.L29. q :Cs in ( r /R ) ,R : t / \R . ,

R being the "radius of curyature" of the space. As in 4.124
the angle 1 is C/R. Comparison with 4.126 gives

4.t29. C : R(doz{ sin2td,O)t.
From the infinitesimal right-angled triangle pNe we have

PQ: NV+ NF.
Hence, denoting by ds the infinitesimal distance pe, we have

4.130. d,sz: drz*R2 sin2(;) (dn + sinz6d,sz).

This is thc expression in polar coordinatcs for thc line-clement or
metrh form of a space of positiae constant curuaturc l/Rz. we
note that if. r : rR and dr : 0, then ds : 0. This means that
points at the common distance r : rR from o have zero dis-
tance between them, i.e. they are coincident. This meeting
point of the geodesics drawn from o is the pole opposite to o
if the space is antipodal, or the point o itself if tle space is
polar.

Exerc'i,sc, Examine the limit of the form 4.180 as R tends to
infinity, and interpret the result.

4.2, f,'lat space. In 8.1 we defined a flat space, and saw
that the vanishing of the curyature tensor is a necessary con-
dition for flatness. In B.b we saw that this condition was also
sufficient for flatness. This means that if the curvature tensor
vanishes, it is possible to choose coordinates /r so that the
metric form may be writtetr, irs in B.b2g,

4.201. Q : e1(d,yr)2* cz(dyr)r*. . .f cx(dy[)z,

where the e's are fl or -1. The presence of these e's is a
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nuisance notationally, so we resort to the subterfuge of intro-

ducing coordinates which are imaginary when the correspon-
ding e's are negative. We write

4.ZOZ. , r :  1 / l ryr ,  zr :  { iy ! ,1  . . . ,  zN:  { iyrv ,
and obtain

4.203. lD : d,zod,zn.

Any system of coordinates for which O takes this form will be
called homogeneous.In the Euclidean plane or 3-space rectang-
ular Cartesian coordinates are homogeneous coordinates; but
no imaginary coordinates occur in those cases because the
metric form is positive-definite. In the space-time manifold of
relativity one of the four homogeneous coordinates is imag-
inary, as shown in 4.230 below.

If we look back to the argument by which 3.529 was ob-
tained, we see that there was considerable arbitrariness in the
way the coordinates yr were defined. It is obvious, in fact, that
infinitely many systems of homogeneous coordinates exist in
a given flat space. We shall now show that a linear trans-
formation

4.204. zlo: A^rrzn* A*,

transforms homogeneous system st into another homogeneous
system af provided the coefficients of the transformation satisfy
certain conditions.

Exercise. Show that a transformation of a homogeneous
coordinate system into another homogeneous system is nec-
essarily linear. (U"" the transformation equation 2.507 for
Christoffel symbols, noting that all Christoffel symbols vanish
when the coordinates are homogeneous).

The coordinates z', arc homogeneous if and only if

4.20s. o : dz'*dz!*.

But from 4.2A4 we have

119
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4.206. aziaz'_ =. A^pA^4ilzod,zo,
and o. is given by 4.208 since zt are homogeneous. we deduce
that zl, are homogeneous if and only if

4.207- A^oA^&znilzs : d,z^d,z*,
identically in the d.z's. We can write

4.208. d,z^d,z^ : 6e4ilzrtzo,
where dro is the Kronecker delta defined in L.202 , with both
suffixes written as subscripts for reasons which will appear
later. since the quadratic form on the left of 4.202 i, io t"
identical with the quadratic form on the right of 4.20g, and
since the coefficients are symmetric in p and, gr we obtain, as
necessary and sufficient conditions for the homogeneity of. z,r,

4.209. A-A*o :  6pg.

A linear transformation 4.204 whose coefficients satisfy 4.209
is said to be ortlrcgonal,. We may state this resultz Gi,ven onc
homogencous comdina,tc system z, all othcr coord,i,natc systcttts zl
obtained from z, b! an ortlwgotnl, transformati,on, arc also horuo-
gencous. conversely, it o lina,r transformat'iott. carr,ies onc homo-
gcncous coord,inate systcm into anothcr homogcncous coord,inntc
sy s tcm, thc tran sf ormation,i,s necc s sar,il,y or tho gonal.

Ertcisc, rf. zr, {, are two systems of rectangular cartesian
coordinates in Euclidean 3-space, what is the geometrical
interpretation of the constants in 4.204 and of the orthogon-
ality conditions 4.209?

we shall now prove a useful theorem: If A^n satisfy 4.209,
they also satisfu

4.210. ApJ.q^ : 6pq.

To prove this, we multiply 4.204by A^o and use 4.209. This
glves

4.2L1, A-*'- : zp * A^oA^,

which may be written
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4.212.

Hence

4.2t3.
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zp: A^pz'^+ Ai, AI - -A^nA^.

d,zod,zo : A -pA nodzldz'n'

But since 4.209 is satisfied, by assumption, the transformation

is orthogonal and so

4.214. d,zrd,zo: az'tdz'o : Ao.*dz'*dz',

identically, and hence, by comparison of. 4.213 and 4.214, we

obtain A*oaoo : 6^o, which is 4.210 in different notation.

The result is established.
The Jacobian of the transformation 4.204 is the deter-

minant I a^* l. lnetet to 1.202 for the definition of the Jaco-
bian.) By the rule for the multiplication of determinants we

have

1 l,^*l' : I a^*1. I e,"l : | ̂ e.^^A*"1 : I 6""1 : 1.
Hence I A^,|is either *1 or -1. We shall call an orthogonal

transformation positittc* or negat'ittc according as the Jacobian
is *1 or -1. There is a notable difference between the two

types of transformation. A positive orthogonal transformation

may be regarded as the result of the application of an infinite

number of infinitesimal transformations, each positive ortho-

gonal, starting from the identical transformation 8L : 8m. AL

each stage, the Jacobian of the resultant transformation is *1.
Such a procedure is impossible in the case of a negative ortho-
gonal transformation, because the Jacobian of the identical

transformation is *1, and it cannot change to -1 in a con-

tinuous process. The positive orthogonal transformation cor-
responds to a translation and rotation of axes in the Euclidean

plane or 8-space. A negative orthogonal transformation cor-

responds to a translation and rotation of axes, followed by the

reversal in direction of anoddnumberof axes, i.e., a reflection.
I-et us now consider geod,cs'ics in a flat space. Using homo-

geneous coordinates, we seg that the fundamental tensor is

rt'Positive" transformations are also called frofcr.



I22

4.215.

Flar Specs

alv : 61vn.

(Lrt g7: Q7s + pr.

since these values are constants, all the christofiel symbols
vanish, and the differential equations 2.424 of a geodesic
reduce to

4.216.

Integration gives

4.zlz. dzr :
ds

The constants o, are not independent of one another. we have
dz^dz*: ed's2, where e is the indicator of the geodesic, and
hence

4.219. AmAm : €.

gP' ,  :0 .
d,s2

In a general curved space, the determination of the geo-
desic distance between two points requires the integratioi of
the differential equations of the geodeslc. rn general this cannot
be done explicitly, and so the concept of the finite distance
between two points plays a very -irot role in the geometry
of curved spaces. In flat space, on the other hand, the ditrei-
ential equations of a geodesic are already integrated in 4.zlz.
A' explicit expression for finite geodesic distance follows easily.
If we pass along a geodesic, giving to the arc length s a finiie
increment As, we have, fromthelast of 4.212 rnJfro* 4.2rg,
4.219. Azr: c,rA.9, AznAzo: eAs2.
Thus the finitc geod.csic d,istancc as betutecn two points i,n fl,at
spacc is cEmJ to tht sgutrc root of thc absolutc value of the ium
of thc sEranes of thc finite coordinatc diffcrences az,.

The fact that the differential equations of a geodesic can
be integrated as n 4.zlz makes the geometry of . fl.t space
very much simpler (and richer in interesting results) than the
geometry of a curved space. Many terms familiar in ordinarv
Euclidean geometry in three dimensions can be given ,igni-
ficant and simple definitions in a flat space of ff di*"rrriJrrr.
We shall now make some of these definitions.
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A stro,i,ght linc is defined as a curve with parametric equa-

tions of the form

4.220. Br : Aru * Br,

where the .,4.'s and B's are constants and u is a parameter.

For such a curve we have

4.22L. d'^r: Ardu, d,sz: 
%: 

AnAoduz,

d,s : { eAnA*du.

Unless ArrA": 0, it follows that dzrf ils is constant; hence 4.216
is satisfied, and so the stra'i,ght l,ine is a geodesh. If. AnA': 0,
it follows from 2.445 and 2.446 that the straight line is a
geodesic null line. Thus the totahty of straight lines includes
all geodesics and all geodesic null lines.

A plnne is defined by the equation

4.222, Anzn+ B :  0 ,
where Aoand B areconstants, It is easy to see that this surface
(itself a space of trfl - 1 dimensions) has the familiar property
of the plane in Euclidean 3-space, viz., thc straight l,ine ioi'ni,ng
any two points in a pl'ane l'i'cs cntirely 'in the plnne.

A plane may also be called an (nf - D-flat. This name
suggests the definition of an (If - 2)-flat, an (N - 3)-flat, and
so on. An (JV - Z)-flat is defined as the totality of points whose
coordinates satisfy the hto linear equations

4.223. Anzn+ B : 0, C*o+ D : 0.

An (If - 3)-flat has thrcc equations, and so on.

Eruc,i,se. Show that a one-flat is a straight line.

A sphere is defined by the equation

&nZn : * R2,

R being a real constant, called the railius of the sphere.If the
metric is positive definite, the f sign must be chosen in 4.224,
If the metric is indefinite either sign may be chosen, and there
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exist two families of spheres; these spheres have the unex-
pected property of extending to infinity.

In developing the geometry of a flat space of .l[ dimensions,
one naturally tries to carry over the familiar theory of three-
dimensional Euclidean geometry as far as possible. A warning
is not out of place regarding some possible properties of a flai
space of .l/ dimensions:

(1) The metric form may not be positive definite. In such
cases we find points which are at zero distance from one
another, but which are not coincident.

(2) The number of dimensions may be greater than three.
In such cases a 2-flat, although in sorne ways analogous to the
Euclidean plane, does not divide the space into two parts.

(3) The space may be topologically different from Eucli.
dean space. For example, we can have a flat 2-space which has
the topology of a torus; such a 2-space has a finite area.

Inanyserious discussion of flat spaces, the possibilities (1)
and (2) must be considered. The situation (B) is extremely
interesting, but we shall not discuss it further. In what follows
we shall suppose that the space has Euclidean topology. This
means that the coordinates y, for which the fundamental form
is as in 4.201, take all values from - o to t -, and that to
each set of values of y, there corresponds one distinct point.

Let us briefly consider a flat space of three dimensions with
an indefinite metric form reducible to

4 . 2 2 5 .  Q : d y ? * d y T - d f v .
The corresponding homogeneous coordinates are

4.226. Zr : lu Zz - lh Zs : 'i!t.

Turning to the general equations 2.445 and 2.446 for geodesic
null lines, we see at once that the geodesic null lines drawn
from the origin have the equations

4.227. 8r : ArIJ, A*A.o : 0.
Hence all points on this family of geodesic null lines satisfy an
equation which may be written in either of the following forms:
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4.228.
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z r$* :0 ,  f r+Y 'z r - ) fa :0 -
Comparing the former equation with 4.224, we recognize that

this surf."" it a sphere of. zero radius. However' on account of

the indefinite character of the metric form, it does not consist

of a single point,like a sphere of zero radius in Euclidean space.

The second equation of 4.228 shows that this surface is a cone;

it is called, anull, cond.It extends to infinity, since the equation

is satisfied by 1lr: 0 and any equal values of. yz and ya.

There is of course a null cone with vertex at any point; we

took the vertex at the origin for simplicity in obtaining 4.228.

It is possible to make a model of the null con e 4.228 in

Euclidean 3-space. Let yrbe rectangular Cartesian coordinates

in Euclidean 3-space. The null cone then appears as in Fig. 11.

Frc. 11. The null cone in space-time.

It is a right circular cone, with a semi-vertical angle of 45o.

In using this model we must bear in mind that the Euclidean

line elem ent dy?* dyT+ d,1ft of. the Euclidean space in which

we make the model has no significance in the geometry for

which the metric form is 4.225.
In the special theory of relativity, space-time is a four-

dimensional space with an indefinite metric form, reducible to

P R E S E N T
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dy?+ dyT+ dy?- ay?
by suitable choice of coordinates. of the four rear coordinates
/", the first three are rectangular Cartesian coordinates in the
physical space of the observer, and the fourth yn i, cl, where c
is the constant velocity of light and t is the time as measured
by the observer. The homogeneous coordinates are

4.230. Zt: tb 8z: lzt Zs: lb Za: i!e: , i,Ct.

4.23L. y?+ yz+ fr-  fE:0.
Prove that this null cone divides space-time into three regions
such that

a. Any two points (events) both lying in one region can
be joined by a continuous curye which does not cut the null
cone.

The imaginary character of. zaexplains the introduction of the
concept of "imaginary time" into the theory of relativity. It
is merely a notational convenience, in order that *u ,rr"y uru
homogeneous coordinates.

A point in the space-time manifold is called an event. The
history of a free particle is represented by a geodesic, and the
history of a light ray is represented by a geodesic null line.
Rays of light issuing in all spatial directions from an event
give us a null cone, which therefore represents a light wave.
since space-time has four dimensions, a null cone cannot be
represented in a Euclidean B-space, as in Fig. 11. However, if
we consider only events occurring in a single plane in itre
observer's space, the corresponding space-time manifold has
only three dimensions, and the representation is possible. It
is clear from Fig. 11 that this nulr cone divides space-time into
three portions, which are called the past, the prcsent, and, the
futurc, relative to the event represented by the vertex of the
null cone.

Exercisc. show that the null cone with vertex at the origin in
space-time has the equation
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A. Ail continuous curves joining any two given points

(events) which lie in different regions, cut the null cone.

Show further that the three regions may be further classified

into past, present, and future as follows: If A and B ate any

two points in the past, then the straight segment z4.8 lies

entirely in the past. If. A arrd B are any two points in the

future, then the straight segment AB lies entirely in the future.

If ,{ is any point in the present, there exists at least one point

B in the present such that the straight segment AB cuts the

null cone.

4.3. Cartesiaa tensors. Contravariant tensors were de-

fined in 1.3 and covariant and mixed tensors in 1.4. The defini-

tions were based on the formulae of transformation of the

components coffesponding to a general transfortration of the

coordinatestc'? -- f (xt, !c21, ..n #il), asin 1.201. These definitions

did not involve the metrical geometry of the space in which

*" and ,ct are coordinates. However, tjre geometry appeared
quickly in Chapter u, and the tensor concept proved of great

service in the study of Riemannian space. Although special

coordinate systems were introduced in2.6, they were used only

for special purposes.
But when rve came to the study of flat spaces in 4.2, we

found it advantageous to use homogeneous coordinates because

in terms of them the metric form was particularly simple. As

long as we keep to homogeneous cmrdinates, the transforma-
tions involved are not general transformations, but orthogonal
transformations, as expressed in 4.204 and 4.209. For the dis-

cussion of flat spaces it is therefore wise to review our defini-
tions of tensors. To avoid confusion, we keep the word "tensor"
(unqualified) to denote quantities transforming according to

the laws set down in Chapter t when the coordinates undergo
a general transformation, and define as Cortes'i,an tensors quan-

tities which transform according to the same laws when the

coordinates undergo an orthogonal transformation, i.e. when
we pass from one set of homogeneous coordinates to another.

In accordance with the notation used in the present chapter,
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zn:  A^oz*+ A! , .

homogeneous coordinates will be denoted by zr,and the ortho-
gonal transformation, with the relations between the coeffi-
cients, will be written

4.301. zL : A^osn * A^, A^pA^o : 6oo.
In using the transformation laws of chapter r for cartesian
tensors we are of course to substitute z f.or r rn the partial
derivatives, and depress the superscripts on the r's st that
they become subscripts on the s's.

we use the word "cartesian" because homogeneous co-
ordinates in a flat space are analogous to rectangular cartesian
coordinates in a Euclidean plane or B-sp""", rnd indeed reduce
to rectangular Cartesians when the space reduces to the
Euclidean plane or B-space.

In order to qualify as a tmsor, a set of quantities has to
satisfy certain laws of transformation when the coordinates
undergo a general transformation. This is a much more strin-
gent condition than that which we impose on a set of quan-
tities in order that it may qualify as a Cartcs,inn tcnsor; in the
latter case only orthogonal transformations are involved. Con-
sequently, atery tcnsor is a Cartcsian tcnsm, but thc conaerse is
not true. (This is an abuse of language comparable to the fol-
lowing: "All horses are black horses, but the converse is not
true." To avoid it, we might call the tensors of chapter t
"complete tensors." A simpler plan is to regard the expression
"Cartesian tensor" as a single noun, not divisible inio ,,Car-
tesian" and tttensor.tt)

Let us now investigate cartesian tensors more closely. As
in 4.2L2, the transformation 4.801 may be written

4.302.

From 4.301 and 4.302 we obtain

4.303.

This relation leads to a remarkable simplification in the theory
of Cartesian tensors. For Cartes,inn tcnsors there is no d,isti,nction
between controsaria,nt and, covariant conrponcnts. To establish

0{^ - ^ ilzn

E:Amn :A .
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4.305.

this, consider the transformation formula 1.305 fot a contra-

variant tensor of the second order. With the change from r

to a noted above, this reads

4.304. Tt?s :T-^"%7u"'
0z^ 0zo

By 4.303, this may be written

T,trr: f-^" 
0h ilZn .
0z'r 0d ,

But this is the formula 1.408 for the transformation of a

cooar'iant tensor of the second order, viz.

4.306. T'rr: f*-#:r#,

Similar results hotd for mixed tensors and tensors of other

orders. In eucry casc thclnw of transformation rcmains unchonged'

when a subscript of thc tcnsor is roised, or a sapcrscrdpt l'wered'

Consequently th"t" is no point in using both superscripts and

subscripts when dealing with Cartesian tensors. We shall use

subscripts exclusively, and the words "contravariant" and

"covariant" disappear. We have already anticipated this plan

in writing the Kronecker delta in the form 0-,n, and also in

writing the coordinates a' with a subscript. If we restrict the

orthogonal transformation 4.301 by deleting the constant l'-,

the coordinates zr are themselves the components of a Cat'

tesian tensor of the first order, i.e. a vector. If we restore the

constant ,4.-, this is no longer true, but the finite differences

Az, of. the coordinates of two points are the components of a

Cartesian tensor.
Since the metric form in a flat space is

4.307.

the metric tensor is

Q - d,z*dz^,

4.308. alv- 666.

The conjugate tensor, previously writterL a**, is seen without

difficulty to be precisely 4,," itself, i.e. the Kronecker delta.
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Thus the artifice of lowering and raising suffixes, introduced in2-2, ceases to have ary significance, because the artifice nowinvolves merely multiplicriiott by the Kronecker delta, which
does not alter the tensor at all.

since amn are constants, all christofiel symbols vanish, and
the elaborate formulae for the differentiation of t""r*.' ir."2.5) become extremely simple. The situation may be summed
up by saying that ord'i,nary or partiar, d,erhtathtei of cart rioo
tensors are themsclvcs cartes,ian tensors. There is therefor" nopoint in retaining the notations

we shall write instead

6I,
6'

dT,
t '

Tr4^',

Tr", ^,

using a subscript m, preceded by a comma, to denote partial
differentiation with respect to the coordinat e zm.

A word of warning may be given here. It may be desirabre,
in dealing with a -flat space, to use coordinates other thanhomogeneous coordinates, just as we frequently use por.i 

"o_ordinates in a plane. once we abando" homogeneous coordin_
ates, we must revert to general tensors. In fait, the technique
of cartesian tensors is available onry when uotr, tne roflo*ing
conditions are fulfilled:

(i) The space is flat.
(ii) The coordinates are homogeneous.
rn 4.2 we saw that there are two types of orthogonal trans-formations-positive transformatio". ii}, I i ;;l zT; ;;;negative transformations with lA*nl : - t. We are about tointroduce tensors which are cartesian tensors in a restricted

sense' i.e. they obey the tensor laws of transformation *i;hrespect to a pos'i,t'i;ve orthogonal transformation, but not withr_espect to a negative one. we shall call such quantitie s oriented,
Cartes,ian tcnsors.
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Let us start with the simplest cas*a flat space of two

dimensions. Consider the permutation symbol,.s* €-,. defined by

4.309.

These quantities do not involve any coordinate system, any

more than the Kronecker delta does. Nevertheless, it is profit-

able to associate them with a coordinate system zr. The per-

mutation symbols associated with another coordinate system

s', will be marked with a prime (r'**), but will be defined by

the same formulae 4.309. Let us test e-o for tensor character by

seeing whether the equation

4.310.

is true.

By 4.302, the right-hand side of 4.310 may be written

or, by 4.309,
e^nArr*A' ro

ArrA 
"z- 

ArzA 
"r.

Explicitly, the values of these quantities are as follows:

r  :  L ,  s  :  1 i  A tAp-  ApAn:  0 ;

r :  ! ,  s -- 2i AnAzz- ArrArr: lAnol ;

r  :  2 ,s  :  1  i  AztAp-  AztAn:  -  lAool  ;

/  :  2, s :  2i AztAzz- AztAzt: 0.

If the orthogonal transformation is positive (as we shall now

suppose), w€ have lAool : l. Then the four components of

the right-hand side of 4.310 are equal respectively to the four

components of the left-hand side of that equation, as given by

4.309. Therefore, in a spacc of two il,imengi,ons emn are thc corn-
ponents oJ an oricntcd' Cartes'inn tensor.

In a space of three dimensions permutation symbo'ls e-r,"

are defined by the following conditions:

(i) .-or: 0 if two of the suffixes are equal.

*For a general discussion of ttre permutation symbols, compare 7.1.

€u :0 ,
GzL:  -1 ,

Gtz: 1,

Gzz: 0.

, Azm ilzn,
c- v": n" 

At , A7.
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(ii) c*n,: I if the sequence of numbers mnr isthe sequence
123, or an even permutation of the sequence.

(iii) e-,nr: -1 if the sequence of numbers tnnr is an odd
permutation of the sequence 128.

Thisdefinition tells us that thenon-zero components of e^n,
are as follows:

4.311. Gt28: Gzgl: cgtz: L, Glag: Gztg: Ggzl: -1.

we shall now show that cmnt are the components of an oriented
Cartesian tensor, that is,

4.312.

This can be proved directly as we proved 4.810 in two dimen_
sions but the work is tedious to write out. we therefoie adopt
a more general method. Consider the equation

4.313. lAool : e^nrAt^AznAsr.

4,314. eonrA2^AbAgr,

4.315. 4""rA rorAsrrAo,
is equal to 

,laool if. stuis an even permutation of l2B, and equal
to - lAool if. stu is an odd permutation of 128. Moreover,ihu

we have the expansion of the determinant formed from
llrol by interchanging the first and second rows. Therefore
the expression 4.914 is equal to - 

lAool. If we make further
permutations of the suffixes 128, the resulting expression will
be equal to laool if the totar number of perirutations of the
suffixes 123 is even, and it will be equal to - lAool if the total
number of permutations is odd. Therefore the mression

ct t t t :  ,*nr%0' l  
0."  ,

0z ' "02 '302,u

it is true, because the right-.hand side consists of products of
elements of the determinantlAool, ott" element from each row,
with the proper sign prefixed according to the algebraic rule
for the expansion of a determinant. N-ow if we permute the
suffixes 1 and 2 in the right-hand side of 4.818,lorming the
expression
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expression 4.315 vanishes if two of the numbers stu are equal

to one another, for then we have the expansion of a deter-

minant with two identical rows. These statements establish

the identity of the expression 4.315 with the expression

e ,tulAeql, and so we have

4.316. ,"rulAnol : e^nrA 
"*AsrAur.

This is a purely algebraic result for any set of quantities

A*n. Let us suppose that these quantities are the coefficients
of a positive otihogottal transfoimation, so that lAno l: t.
Since the permutation symbols are defined by the same rules

for all coordinate systemsr we may write Gtht: Gt ctut and so

4.3t7. Gt ,4n: G^nrA ,^AnArr,

which is the same as 4.312. Therefore 'in a spacc oJ thrce ilimen-

sions the pcrmutat'i'on symbols cmnr arc the components of an

orhnted Cartcs'ian tcnsor.
The definition of the permutation symbols is immediately

extended to cover the case of a space of IrI dimensions. In [iy
the permutation symbol has trI suffixes,

C n m r .  o  o ? f l ' l

and vanishes unless they are all different from one another.

It is equal to * 1 or - 1 according as the number of permu-

tations required to transfortt ftitInz. . . rtty into 12 . . . .trfi is
even or odd. There is no difficulty in extending the above proof

to establi sh that the p crmutat'ion symb ol s in V y &r c thc comp oncnt s
af an orhntcd Cartcs'ian tcnsor.It is obvious that the product
of two permutation symbols is a Cartesian tensor which is not
oriented. Any permutation symbol is, of course, skew-sym-
metric in any pair of suffixes. For example, in four dimensions

cmnrc: - cmrns: hncnr.

Etcercisc. In a space of two dimensions prove the relation

4.318. GmpGmq : 6pq.

On account of the depression of all suffixes to the subscript
position for Cartesian tensors, contraction is carried out at the
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subscript level. Thus, if. xn is a vector, xoxris an invariant.
So also is xn,n, the diver-g€rc€ of the vector xn. rf. xnand yn
are two vectors, then xnyn is an invariant, the scalar product
of the vectors. Further, if T^* and s-" are two tensors, then

Uo": T^nS^"
is a tensor. Similar remarks apply to oriented cartesian tensors.
For example, e^nre-,n, is an invariant; its value is 6.

Quantities familiar in ordinary vector theory can be recon_
structed with great ease in the present notation, which has
five advantages over the ordinary notation. These advantages
in most cases outweigh the slightly greater brevity of ihe
ordinary notation. The advantages may be listed as follows:

1. The notation is explicit, i.e., it shows each component
instead of using a single symbol to denote a vector.

2. The vector or invariant character of the expressions is
immediately obvious to the eye.

3. The notation covers tensors as well as vectors.
4. There is no restriction to a positive definite metric form

or line element.

5. Extensions to spaces of more than three dimensions are
easy,

The treatment of oriented Cartesian tensors involving
permutation symbols is particularly interesting. The vectoi
product P* of. two vectors X- and y* in three dimensions is
defined by

4.319. P* : G^n7XnYr.

The analogous formula for two dimensions is

4.320. P -, e*nX^Yoi
this tells us immediately that XrVz- Xzyr is an oriented
Cartesian invariant. Equation 4.gzo suggests a formula in
three dimensions

4.32t. P - e^nrX^YnZr.

This is the mixed triple product of three vectors; the formula



4.322.

4.323,

4.324.

4.32s.
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tells us at once that it is an oriented Cartesian invariant, since
it is formed by contraction from oriented Cartesian tensors.

It is interesting to see what happens to the idea of the
vector product when we pass to a space of four dimensions.
The following formulae suggest themselves:

P : G^nr"XmIlnZrW,

P^:  c^* r "XoYrZ*

P*n : e^nrrXrY,

Pmnt: c*rrrX 
".

Equation 4.922 gives us the four-dimensional analogue of the
mixed triple product; it tells us that the determinant formed
from four vectors is an oriented Cartesian invariant. Equa-
tions 4.323 and 4.324give us two extensions to four dimensions
of the familiar vector product 4.319. In 4.323 a vector is formed
from three given vectors; n 4.324 a skew-symmetric tensor is
formed.

Exucise. Write out the six independent non-zero components
of P^n as giyen by 4.3V1.

The operator anl is important in ordinary vector analysis.
In a space of three dimensions the curl of a vector field is de-
fined by the formula

4.326. Ym : c6n7X7,n.

In two dimensions the analogous formula is

4.327. [ : G^nXn,m,

yielding an invariant. In four dimensions the analogous oper-
ation applied to a vector field yields a skew-symmetric tensor
of the second order:

4.328. Y^n : e*nrrX r,r.
The following relation is very useful for the treatment of

continued vector multiplication in three dimensions:
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4.329.

Fr,et Srlcr

cmreQnps : d"pdrq - 0ro6"r.

This may be verified by writing out all components numer-
ically, but the following procedure is a little shorter: The left-
hand side is zero unless the numbers /, .s are distinct and (p, g)
is a permutation of (r, s), viz. I : r, g : s or p : s, g: r.
In the former case the left-hand side is l, and in the latter case
- 1. Precisely the same remarks apply to the right-hand side,
and thus 4.829 is established.

Ererc,i,se. Translate the well-known vector relations
A x(B x c)  :  B (A'c)  -  c (A'B),
vx(vxv):  v(v 'v)-  vry,

into cartesian tensor form, and prove them by use of 4.82g.

4.4. A space of constant currattrre regarded as a sphere
in a flat space. An ordinary sphere can be regarded in two
different ways. First, as a surface in Euclidean space of three
dimensions, its curvature being put in evidence by the fact
that a tangent line at any point deviates from the surface.
secondly, as a 2-space, without consideration of any points
other than the points in the 2-space itself. In this case the
curvature is put in evidence by measurements made entirely
in the surface, these meznurements showing that the angle-sum
of a geodesic triangle exceeds two right angles.

we think of an lv-space of constant curvature primarily as
a manifold in itself . We do not think of going out of the manifold,
as we do when we step off an ordinary sphere into the sur-
rounding Euclidean space. However, we now inquire whether
it is not possible to consider a space of constant curvature as a
surface embedded in a flat space of one more dimension, just as
an ordinary sphere is embedded in Euclidean B-space.

Let us take a flat space [r with metric form which reduces
to

4.401. tD : d,znd,zn,

for homogeneous coordinates ar. The equation



(Greek suffixes have the range of values tr?r. . ., N - 1.) For
any infinitesimal displacement in Vy-t we have

Byd,zy : - zrilzr,

tlre metric form of Vy for a displacement in V*-t

@ - d,zodzu*(dzn)'
- d,znd,zn* zud,zr.zrtzr/zzy
: arrd,zudzr,

where

$ 4.4

4.402.
defines a sphere [r-1 in
may be solved for zzyz

4.403.

4.404.

and so
g s

4.405.

4.407.

Consider the point
8N: Cl. Denoting

4.408,

SpsBns

SnZn : C

V*, C being a constant. This equation

z2N: C - z,Lz,r.

4.406.

The coordinates ze are /V - 1 coordinates in the manifold
Vx-t; au, is the metric tensor of that manifold. It is not hard
to calculate the Christoffel symbols of Vnq for this system
of coordinates, Direct computation from 2.42L with Greek
suffixes gives

- a r B u & ,
& t r :  O r v + 7 '

u - z & p

lpr,pl: r+,+ffi;r.
P on the sphere with coordinates zo: 0,

values there with the subscript 0, we have
(ar) o - 6,,t

lpr, plo- o,

Wp', 
pl),: .-'t6',,6on

Hence, by (3.113) with Greek suffixes, we have for the
Riemann tensor of Vy- at P
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4.409.
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(Rprpr) 
s 

: rt(6"n6,r0- 6on6"o)

: Ft(a,"auo- ao&"o)0.

comparison of this result with 4.110 shows that p is an iso-
tropic point of. vy-1with Riemannian curvature C-r at that
point. This has been provgd only for a special point p with
coordinates a, : 0, sn: Ctr. However, by means of an ortho-
gonal transformation

4.410. zL : A*nznr. A^o'4^c : 6pq,
the coordinates of any point on Vn-r may be given these
values. (The situation is essentially the same as if we were
dealing with an ordinary sphere in Euclidean B-space. we
could rotate the axes of rectangular Cartesian coordinates so
that two of the coordinates of any assigned point p on the
sphere become zero.) It follows that every point of, vy-1is an
isotropic point with Riemannian curvature ft. Since the
radius R of the sphere is defined by R2: C, we have this result:
A sphcrc of radius Rin a flat Vy is ,itsclf a space of N - |
dimmsions with constnnt Rfumannian cuttature l/pz.

SUMMARY IV

Space of constant curvature K:
Rr"^o: K(ar^arro - ar*ar ),

62q, ,

os' 
+ cKq': o'

d,sz:drz*.R2 sin2(;) @,0, + sin2 0 d6z), K:!/N.

Flat space with homogeneous coordinates:
([ : dzod,zn.

Orthogonal transformation :
z'-  :  A^nzn * A^, A^4^o: dpqi
zm : A"*', + A:r, AprrAq^ : 6pq..
(Positive transformation if l/-"1 =, 1.)
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Cartesian tensors:

Scalar product: XnYn.

In three dimensions:

GmrsGmpq : 6tpd"q

Vector product: e"m*rXrYr

Divergence: Xn,n.

Drd"p.

Curl z e*orXr,n.

139

,r,t ,r, 0g^9 : T^nAr*A. r,^.t rs : t ^"@, 
Ar.,

EXERCISES IV

1. Show that, in a 3-space of constant negative curvature
-t/pt and positive-definite metric form, the line element in
polar coordinates is

d.*: itrz* Rz sinhz (;) @nz+ sinz0d,6z).
\r\/

2. Show that tJre volume of an antipodal 3-space of positive
definite metric form and positive constant curvature 1/R2 is
21PR8. (Use the equation 4.130 to find the area of a sphere
/ : constant in polar coordinates. Multiply by dr and inte-
grate for 0 ( r ( rR to get the volume.) What is the volume
if the space is polar?

3. By direct calculation of the tensor Rrr^, verify that
4.130 is the metric form of a space of constant cunrature.

4. Show that if. VN has a positive-definite metric form and
constant positive cunrature K, then coordinates y'exist so that

d,* : dy^dy^
(1 + t Ky'y")'

(Starting with a coordinate systef, #', which is locally Carte-
sian at O, take at any point P the coordinates

o'fttu') t ' : (i rt/K),
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where p' are the components of the unit tangent vector
(d'x'/d,s) at o to the geodesic op and r is the geodesic distance
oP.)

5. Show that in a flat [y the straight line joining any two
points of. a P-flat (P < /D lies entirely in the p-flat.

6. Show that in four dimensions the transformation
zl : zr cosh O + dar sinh ,0,
, ! r :  , r ,  z ! r :  Bt t
zl: -,izrsinh p * ztcosh 6,

is orthogonal, { being any constant. Putting z!: lct zz- lt
zs: zs zt: ht, tanh Q : v/c, obtain the transformation con-
necting (x', !', z', t') and (r, !,2,t). Thisisthe Lorentz transfor-
mation of the special theory of relativity.

7. Prove that in a flat space a plane, defined by 4.222, is
itself a flat space of .M - L dimensions.

8. Show that in a flat space of positive-definite metric form
a sphere of zero radius consists of a single point, but that if
the metric form is indefinite a sphere of. znro radius extends to
infinity.

9. Prove that in two dimensions
cmnGps : 6^p6nq d^q6op.

10. If , in a space of four dimension s, F^n is a skew-sym-

metric Cartesian tensor, rnd i-o is defined by

i^o: i rr"^nFr*
prove that the differential equations

F^n,r* For,-* Fr*,: 0
may be written

i^n,o: 0.
11. Write out explicitly and simplify the expressions

F^rF^o, qor"F^nFr,

where F-o is a skew-symmetric oriented Cartesian tensor.
What is the tensor eharacter of these expressions?
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12. Show that in a flat space with positive-definite metric
form all spheres have positive constant curvature. Show that
if the metric form is indefinite then some spheres have positive

constant curvature and some have negative constant curva-
ture. Discuss the Riemannian curvature of the null cone.

13. Show that in any space of three dimensions the per-

mutation symbols transform according to

, .r 0*' dxt }xu T, lA*''
dmnr: ccllr t '  

A*ffi O*n, 
t : 

I a*,

Gt ^n, : G st, J a# 
#Yo,, :l#l

Using the result of Exercises II, 12, deduce that in a Rieman-
nian 3-space the quantities qnmr and rfn'defined by

emrr : e^or{a, nmtr : e^or/{a, o : loool ,

are components of covariant and contravariant oriented tensors
respectively.

14. Translate into Cartesian tensor form and thus verify
the following well known vector relations:

V' (0V)  :  OV 'V  +V 'V0 ,
vx(cv) : ovxv vxvo,
v ' (uXV) : v' (vxu) - u'(vxv)'
VX(UXV) :  V 'vU -  U 'vV+ Uv 'V-W'U '
v (U .  9 :  U.  W +v.vu +UX(vxv)+Vx(vXU),
vX (v0) - 0,
v'  (vxv) :  0,
VX(VXV) :  w 'V  -  V2 \1 ,
V ' r  :  3 ,
VXr  -  0 ,
V.Vr  :  V ,

where r is the vector with components equal to the Cartesian
coordinates ar, E2s Bs.

15' Prove 

Yrurr+ GamcGamr: Gq,,1n7Gq,ns.



CHAPTER V

APPLICATIONS TO CLASSICAT DYNAMICS

5.1. Physical components of tensors. Tensor calculus
came into prominence with the development of the general
theory of relativity by Einstein in 1916. It provides the only
suitable mathematical language for general discussions in that
theory. But actually the tensor calculus is older than that. It
was invented by the Italian mathematicians Ricci and Levi-
civita, who published in 1900 a paper showing its applications
in geometry and classical mathematical physics. It can also
be used in the special theory of relativity, which is that simpler
form of the theory of relativity covering physical phenomena
which do not involve gravitation. Thus tensor calculus comes
near to being a universal language in mathematical physics.
Not only does it enable us to express general equations very
compactly, but it also guides us in the selection of physical
laws, by indicating automatically invariance with respect to
the transformation of coordinates.

The present chapter is devoted to the use of tensor calculus
in classical mechanics. The "space" of classical mechanics is
a Euclidean space of three dimensions. In choosing a system
of coordinates, as a general rule it is best to use rectangular
Cartesians. If we restrict ourselves to these, the only trans-
formations we have to consider are orthogonal transformations.
If we further restrict ourselves to axes with one orientation
(say right-handed axes), the Jacobian of the transformation
is *1. The tensors which present themselves are then oriented
Cartesian
equations

and the equations of mechanics are tensor
sense.

tensors,
in that
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On the other hand, if we are dealing with problems in which
certain surfaces play an important part, it may be advisable
to abandon Cartesian coordinates in favour of other systems
in which the equations of the surfaces in question take simple
forms. Thus, if a sphere is involved, spherical polar coordinates
are indicated; if a cylinder is involved, cylindrical coordinates.
In order to take into consideration all possible systems of curvi-
linear coordinates, it is wise to forget that we are dealing with
aflatspace and consider general transformations of coordinates
as in 1.2. With respect to such transformations the entities of
mechanics (velocity, momentum, and so on) behave like ten-
sors in the general sense, and the equations of mechanics are
tensor equations in the general sense. To help in distinguishing
rectangular Cartesians from curvilinear coordinates, we shall
write a, (with a subscript) for rectangular Cartesians, and r'
(with a superscript) for curvilinear coordinates. The Latin
suffixes have the range of values 1, 2, 3, since we are dealing
with a 3-space.

Consider any familiar vector, such as the velocity of a
particle. If we use rectangular Cartesians z' we may denote
its components by 2,. We recall that as long as we restrict
ourselves to rectangular Cartesians, the contravariant com-
ponents of a vector are the same as the covariant components.
Thus we are entitled, if we like, to write Z': Zr. The quan-
tities Z, are called the phys,ial cotnponents of the vcctor al,ong
the coordittatc anccs.

If we now introduce cunrilinear coordinates rt, we may
define a contravariant vector Xt and a covariant vector Xrby
the transformation formulae (cf. 1.302 and 1.402)

5.101.

These quantities are called thc contravor,iant and cooar,iant com-
ponents of the vector in question for the coordinate system rr.
We do not use the word "physical" in connection with these
components, because in general they have no direct physical

x,: z,y, x,- z,Y.
clz t dfir



144 DyNeurcs

meaning; indeed they may have physical dimensioirs different
from those of the physical components Z*

so far we have considered the physical components of a
vector along the coordinate axes, and also its contravariant
and covariant components for a curvilinear coordinate system.
we shall now introduce a third set of components, namely, the
physical components in assigned directions, and, in particular,
the physical components along the parametric lines of ortho-
gonal curvilinear coordinates.

r.et x'be a cunrilinear coordinate system with metric tensor
a^n. l-et x" be the vector whose components are under dis-
cussion, and let )r'be an assigned unit vector. We define the
physical' cornponent of thc vcctor x' in the ilircction of )r' to be
the invariant a^ox^lto. By the usual rules for raising and
lowering suffixes, we have

5.L02. a^oX-So:  Xt l rn :  Xrn la .

Let us now introduce rectangular Cartesians z, and see what
this definition means. I.et Z, and f, be the components of X'
and tr'respectively in this coordinate system. Then, since the
expressions in 5.102 are invariants, we have

5.103. Xo)ro:  Z ' lo:  Zrfo.

But Zn(n is the scalar product of the vectors Z, and 1". It is,
in fact, the projection of. Z, on the direction of f' and so is
the component of. Z, in that direction, the word "component"
being used in the sense commonly understood in discussing
the resolution of forces, velocities, and other vectors in mech-
anics. Thus tJre invariant a*nx-Io represents the physical
component of X' in the direction of )r' in the usual sense of
orthogonal projection.

Now suppose that the cunrilinear coordinates tr'are ortho-
gonal coordinates, so that as in 2.658 the line element is

5.104. d,sz : (h dtct)2 + (h zilxz)z i (h sd*s)t,
Let us take the unit vector )r'in the direction of the parametric
line of rl, so that
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5.105.
Since it is

5.106.
and so

5.107.

5.109.
m cEuhtalently

5.110.

Prvsrcar, CoupoNButs

l]- il*r/ds, )t2: 0, )tE: 0.

a unit vector, we have

I : a^rlt-I': fr?()\t)t,

XJhu Xz/hz, Xilhs,

hi(, h2N2, hJP.
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irl: l/hy

Lowering superscripts by means of the metric tensor of 5.104,
we have also

5.108. )tr: ftr, trz: 0, Ia: 0.

Hence, by 5.102, the physical component of the vector Xr
along the parametric line of xr is X{htor h#. Collecting sim-
ilar results for the other parametric lines, we have the following
result: For orthogonal curuiJina,r coorAi,notes with linc elcment
5.104, thc physi'cal components of a occtor X| arc

I.et us now consider the components of a tensor of the
second order. We start with rectangular Cartesians a', then
pass to general curvilinear coordinates *', and finally specialize
these to orthogonal coordinates. Usually in mechanics the
components Z^ for Cartesians ur present themselves first. We
call tlrem thc physim,l, components al'ong thc coordi'nate atccs.
Then for curvilinear coordinates r' wedefine contravar'iantand
cosariant componenls by the transformation equations

5 .111 .

We can define mixed components also, using the fact that for
a Cartesian tensor it is permissible to push a suffix up or down:

ymt _ qrril*^ illcr _ v 0x^ illco
4 5  -  z . j a . -  - ,

02, 02, 0zr 0z"

t r, 02, 02,.
. r m r l :  u 7 6

0*^ 0*n

v?m vr 0x^ 02" _ 7 0x^ 02"
A ' n- L 't 

ar, a." 
- z"'d 

a."'
5.112.
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Next, we introduce two unit vectors (which may coincide),
with contravariant components rr, p' in the curvilinear co-
ordinates, and define the physical, component of the tensor along
these directions to be the invariant

5.113. X^o\* lto

Finally, taking x" to be orthogonal curvilinear coordinates, we
select the unit vector )r'along a parametric line, and the unit
vector p' along the same parametric line or along another.
we obtain from 5.118, by the same type of argument as we
use for a vector, nine physhal components along the parametric
l,incs. These physical components are expressed in terms of
covariant components as follows:

5.114.
Xtt/h?, Xv,/hrhz, Xn/h1hs,
Xzr/hzhr, Xrr/h?r, Xzs/hzhg,
X st/h&r, X azf hsh2, X rt/h?.

In terms of contravariant components they are as follows:

5.115.
hlxu,
h*ttX ,
hshrxsr,

htht*2,

IEX",
hthaWs,

hzhsxB,

hshzXa, hlYsa.
The procedure set out above is logical. It enables us to pass

from the physical components along coordinate axes to contra-
variant and covariant components in curvilinear coordinates,
and finally to physical components along parametric lines of
orthogonal coordinates. However, the procedure may be con-
siderably shortened by making proper use of the tensor idea.
To illustrate this, we shall now consider a simple fundamental
problem.

Problem : To obtain, for spherical polar coordinates (r, 0 , 0) ,
contravariant and covariant components of velocity, and also
the physical components along the parametric lines.

Taking zrto be rectangular Cartesians, and putting xr: /,
fi2: 0, f : 6, we have the transformation
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Z r :

82:

8s:

The physical components
Elxes are

5.117. V, : dzrfdt.
Let v' and u, be the contravariant and covariant components
of velocity. The formulae 5.101 tell us that

$ 5.1

5.116.

5.120.

and so

s.lzl.

11 sin 12 cos d,

rr sin 12 sin d,

d cos s2.

of velocity along the coordinate

5.118.

To carry out these computations we need the 18 partial deri-
vatives 0z"f 0r' and ilr'f 0z' to be calculated from 5.116. We
sidestep this complicated calculation in the following way.
We look at the formula 5.117, and ask ourselves: Is there any
simple contravariant or covariant vector which reduces to
dzr/dt when the coordinates are reduced to rectangular Car-
tesians? The answer is immediate: dr'/dt is such a contra-
variant vector. So we boldly write

5.119. o': dx'/dt,

and justify this statement as follows. Equation 5.119 is a tensor
eguation, md so it is tme for all coordinate systems if it is true
for one. But it is true for rectangular Cartesians by 5.117, since
Vrandvr ate different representations of the same vector, and
so also are dz,/dt and dr'/dt Therefore 5.119 is true, in the
sense that it gives tJre values of u'demanded by 5.118.

To get the covariant components ?y, we introduce the metric
tensor a*o. The line element in spherical polars is

sr :  Vr#r  r t r :  Vr%.

dsz : drz* r2de2* rz sinz e dfz
: (ikr)2*(xrilxz)2*(d sin xz d,f)z,

orr - L, a22: (*t)r, ar.:(rlsin d)!,
o s s - 0 f o r m # n .
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Lowering the superscript in the usual w&y, we get

s.t22. Or: ArmO^,

or explicitly, from 5.119,

5.123. lr: dxr/d\ tz: (rr)idrz/dtt os:(rr sin f)zdf /dt.
once we have seen our way through this reasoning, we may
shorten the work by omitting the symbols z, and*'and working
entirely with r,0, e. We reason as follows: The contravariant
components of velocity are the time-derivatives of the co-
ordinates as in 5.119, and so

s.t24. d: ilr/ilt, f- do/d,t, f : dh/dt.
(Note that only the first cpmponent has the dimensions of
velocity-length divided by time; the other two components
have the dimensions of angular velocity.) The line element is
as in 5.120, so that

s.tzs. ALt: t, Azz-- /2, (troE: f2 sinz 0,

a m n : 0 f o r m # n .

On lowering the superscripts in 5.!2/1, we get the covariant
components

5.126. vr: dr/dL oz: rzili/dt, ot: 12 sinz 0 dO/dt.

Comparison of 5.104 and 5.120 gives

s.127. ht- t ,  hz: / ,  hs: r sin 0.
Hence, by 5.110, the physical components of velocity along
the parametric lines of spherical polar coordinates are

5.128. vr: dr/dL oe: rilfr/dt, o6: f sin 0 d6/dt.
These components are easily checked by considering the com-
ponents of a general infinitesimal displacement along the para-
metric lines. Note that on uet v6 all have the dimensions of
velocity.

The preceding problem has been discussed at some length
to show how tensor ideas are actually used. Tensor theory
sets up a logical but clumsy procedure. Then, by a little judi-
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cious guessing, usually very €asY, we short-circuit tedious com-
putations, and arrive quicklyattherequired answer. We appeal
to tensor theory to justify the guess and hence the answer.

5.2. Dynamics of a particle. Our purpose is to discuss
the d5rnamics of a particle using general curvilinear coordinates
rr in ordinary Euclidean space. The plan is to write down
tensorial expressions which reduce to known quantities when
the curvilinear coordinates reduce to rectangular Cartesians.

As we have already seen, the contravariant components of
velocity are

5.201. ot : il*'fdt.
Acceleration is @mmonly defined as the timederivative of

velocity. However, dt'f dt are not the components of a tensor,

and so cannot represent acceleration in curvilinear coordinates-

Instead, we write tentatively for the contravariant compo-

nents f oI acceleration

5.202. f :0P'/6t,
where 0 indicates the absolute derirrative as in 2.511. We verify

that this is corr@t, because the ocpression on the right is a

vector which reduces to ili,'/ilt when the coordinates are rect-

angular Cartesians.
Let us now @rry out an important resolution of acceler-

ation into components along t$e tangent and first normal of

the trajectory of the particle, using curvilinear coordinates.

If ds is an element of arc of the trajectory, then the unit tan-

gent vector is

5.203. It'=. d,x'/ds.

Let v, be the contravariant components of the unit first normal
and r the curvature of the trajectory (reciprocal of the radius
of curvature). Itt us fecall the first Frenet formula 2.705,

s.204. 0)rt/ds : w'.

!*t, o^, be the metric tensor for the curvilinear coordinate

system tr', and let s be the magnitude of the velocity, so that
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5.205.

Then

s.206.

and so, by 5.204,

5.207.

:+(ur)+:oPr '+ xzpv,.
6 s '  

'  
d t  

-  
d s - -  

'

Thus the acceleration is resolved into a @mpone nt v d,v/ d,s along
the tangent and a component np a)ong the first normal.

The Newtonian law of motion tells us that the product of
the mass and the acceleration is equal to the 

"pp1i.d 
force.

Treating the mass as an invariant, we write tentatively

5.209. m f :F

as the equation of motion of a particle, F being the contra-
variant component of force. This is cor:rect, belause it is a
tensor equation which reduces for Cartesian coordinates to
the law stated above in words.

The question now arises: How ar€ we to express b.20g in
a form suitable for integration, in order that the motion under
a given force may be determined? In 5.1 we saw how to cir-
cumvent tedious transformations in computing contravariant
and covariant components of velocity. The left-hand side of
5.208 presents no difficulty, since it can be computed from
5.202. In fact, the explicit form of b.208 is

DyNlurcs

g 2 : a ^ o o \ ) t : o n o n .

o2:o^^ffT:(H',

F:Y:  d (aoq: \-  
6 t  0 l \ ds  d t l

-(#+{:*l##):F,

: 
* 

(ur')

s.zw.

in contravariant form. In covariant form, s.z}g reads

S.ztO. ntf, : Fr,

or, explicidy,



Referring to 2.431 and 2.438, we get, after a change in nota-

tion, an alternative (and very important) form of 5.210'
namely,

LlcnaNcrex EquauoN

*(o,,#*rsz, r##): F,.

0T_,
0*?

$ s.2

5.211.

s.212,

where

5.213,

151

. dmI, = 
Tt

OT
a*?

T - $mono*o*q, *": 6Yofd,t.

We note that | : *m8, the kinetic energy of the particle.

The equation 5.2L2 is called the Ingrangnn cgtntion of motion.

It was obtained by Lagrange long before the invention of the

tensor calculus.
However, the question still remains whether F or F' must

be computed from the physical components of force along the

coordinate a:(es of Cartesians by transformations of the type

5.101. Happily, a short-cut can be found here also. Consider

the differential exPression

5.214. dW =r Foilg,',

where F, is the covariant force and ilx' an arbitrary infini-

tesimal displacement. This expression is clearly an invariant.

If the curvilinear coordinates become rectangular Cartesians,

iIW isthe work done in the displacement corresponding to dx?.

But since the expression is invariant, its value is the same for

all coordinate systems. Hence the device is to calculate the

work done in an arbitrary infinitesimal displacement corres-
ponding to increments d,x'in the curvilinear coordinates, and

iead off the coefficients in the linear differential form repre-

senting the work. These coefficients are the corrariant com-
ponents Fr. The contravariant components may then be found

by raising the subscript by means of the conjugate tensor amn i
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5.215.
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F : A'oFo.

This is justified by the tensor character of this equation, which
states (if the coordinates are rectangular cartesians) tiat the
force is the gradient of the poteniial energy, with sign re-
versed-the well-known relation by which in fact the poiential
energ"y may be defined.

Let us now consider the dlmamics of a particle which is
constrained to move on a smooth surface S. We choose in
space a system of curvilinear coordinates r' such that the
equation of s is d : c, a constant. Then r" (Greek suffixes
having the rang e l, 2) form a system of curvilinear coordinates
on s. The motion of the particle must satisfy the general
equations of motion, for which we have the three equlvalent
forms 5.209, 6.211, and 5.212, F or F, being the total force
acting on the particle, i.e. the resultant of the applied force
and the reaction which keeps the particle on the surface. Let
us concentrate our attention on the formula 5.2L2. Since f : C
throughout the whole motion, we are to put

If the particle has a potential energy I/, a function of its posi-
tion (as it has in many physicar ptoLl"*r), then the procedure
is simpler still. For, in that case,

s.216. Fr :  - aV  '
0x?

s.217. f :C r# :0 , i i s : 0 ,
the dots indicating difierentiation with respect to the time.
It is easy to see that, for the first two components of 5.zlz, it
is a matter of indifference whether we make the substitutions
5.2L7 bcforc or affrcr carrying out the differential operations
required in 5.212. With the substitution 6.2lI, we get

5.219. | - \ma*k"iq,
and the equation of motion is

s.2lg.

Here F" is such that Fn dr" is the work done in an ihfinitesimal

dAT  AT
Fn.

dta*" 0x"
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displacement on the surface. If the surface is smooth, the
reaction is normal to the surface, and does no work in such a
displacement. Consequently Fn may be computed from the
work done by the applid force alone. The quantities Fn are
called the covariant components af. 'i,ntrinsdc forrc,

The surface S is itself a Riemannian space of two dimen-
sions, with metric form

3.220. d,f : angikdf .

The motion of the particle on

153

d,fi"
= = - r

ilt 
'

S defines the vectors

r -y.5.221. on

where the d-operation is performed with respect to the metric
tensor oop. We call s" the intrtnsic wJoci'ty (contravariant com-
ponents) and f the intrinsic aacel'cratior (antravariant com-
ponents). If we want conariant omponents, we can get them
by lowering the superscripts in the usual way with c"p.

The Lagrangian form 5.219 of the equations of motion may
be transformed at once into either of the following forms:

5.222. mf: F, ffifn: Fn
The following important conclusion may be drawn: Given

the metric form 6.2?n for a smooth surface, and the vector F"
(or F') of intrinsic fore, the study of the motion of the par-
ticle on the surface may be carried out intrinsically, i.e., with-
out reference to the Euclidean 3-space in which the surface is
emhdded.

Excrcisc. If p" are the contravariant components of a unit
vector in a surface S, show that rr?" is the physical component
of acceleration in the direction tangent to .S defined by p".

Let us purcue further the dynamics of a particle moving
on a smooth surface S, treating the question from the intrinsic
standpoint. Considered as a curve in S, the trajectory has two
Frenet formulae (d. 2.7L2) :
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5.223.

s.227. f - Cyn.

Substituting in 5.225, we easily deduce

0I" - d 6v"
-  Z E y  .  - :

6s 6s
- trI..

Here the Greek suffixes have the range l, zi )rn is the unit
tangent vector in s; v" is the unit first normal; and i is the
first curvature. These formulae must not be confused with the
Frenet formulae of the trajectory in space, of which there are
three. To avoid confusion, we have written r for trr" 

",rr*tui.of the trajectory considered as a curye h s, to distinguish it
from r, the curvature of the trajectory in space which 

"ip""ruan 6.204. The curvature r is a measure of the deviation of the
curve from a tangent geodesic in S; it is usually called the
geoilcsia attw,hrc.

If we carry through in ,s the transformation made n 5.202
for space, we get

5 .224.  f  :  r *x"+k)zvn.
ds

Thus the equations of motion 5.zlg may be urritten

s.zzs. *( rlx + oe") : F.
\ ds  /

If in particular, there is no applied force, we have .F: 0.
Multiplying 5.225 first by )r, and secondly by ,o, we obtain

5226. o! : 0, np -- 0.
d,s

Assuming_that the particle is not at rest, we have rt * 0, and
therefore f : 0, sp"9 this implies that the curve ir a geo;esic,
we deduce the following result: undq no appl,i,ed, foric, o \ar-thk on a smooth surface flloz,cs al,ong a gcod,esic with ,*inot
spud.

As another special case, suppose that the vector F" in the
surface is perpendicular to the trajectory and of constant
magnitude C. Then we may write
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o* :0 ,
as

The first equation tells us that the speed is constant; the second

equation then tells us that I is a constant. This means that

ite traj"ctory is a geod,cgic circl,c on the surface. (On a sphere,

for example, a geodesic circle is a circle in the ordinary sense'

but not itt general a great circle. On a general surface, a

geodesic circle is not t"""ttttily a closed cunre' nor is it the

l-o"t, of points equidistant from a frxed point')

Empirasis is again laid on the essential similarity between

the dynamics of a particle moving on a smooth surface and the

dynamics of a parlicle moving in space.- It it true that there

is one dimension less for the surface, ild it is a curved space'

not a flat one. However, these differences are not noticeable

in the tensor formulation of the equations of motion' This

formulation shows us how easily we might set up a dynamical

theory for a particle moving in a curved space of three or more

dimensior,r. Ho*etur, the theory of relativity has introduced

a fundamental difference in our concept of time, which makes

, unsuitable as an independent variable in equations of motion'

In relativity we aeU with a Riemannian 4-space (space-

time). The equations of motion of a particle af,e

$ s.2

s.228.

5.229.

nlrcaz : C.

*6\ ' :  x ' ,
0s

where m is an invariant (the proper mass of the particle), )t'

is the unit tangent vector to the trajectory in space-time, ds

is an element of arc as defined by the metric of space-time,

and X' is a vector in space-time corTesponding to force in

Newtonian mechanics; it is called the force 4-vector.

Erercisc. Show that in relativity the force 4-vector X' lies

along the first normal of the trajectory in space'time' Express

the first curyature in terms of the proper mu6s m of the par-

ticle and the magnitude X of X"

Let us return to the dynamics of a particle in Euclidean

3-space. I-et zrbe rectangular Cartesians, u' the components of
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velocity of a particle along the coordinate €xes, and F,. the
components of force along the coordinate axes. we define the
oector tnommt of the force about trre origin to be the vector
5.23A. IVfr: cr^nz^Fn.
(For the permutation symbor, see 4.811.) with this is associ_
ated the skew-symmetri c tcnsor monent

5.231. Mr": G72vMv: BrFt- 26F7.
In the same way the vcctor of angular momentunt h, and the
tensor of anplar tnomcntum hr" are defined by
5,232. hr: tftGrmthm\nt

5.233. hrr: Gr"rhn: m(zro"- Z"or),
where m is the mass of the particle. If we differentiate these
equations, remember that the acceleration is/r: d,vr/d,t, and,
use the equation of motion 5.?fl9, we obtain the following
equivalent forms for the eEwtim, of angtlar momcntum for a
particle:

s.234. ff :a, or
It is to be noted that now we are tied down to rectangular
cartesians. The extension of 5.284 to curvilinear coordinates
involves complications into which we shall not go. This arises
from the fact that actually two pints are involved-the p;;-
ticle itself and the origin about which the moments are taken.
It is only relations involving a single point and its immediate
neighbourhood that can be translated easily into curvilinear
coordinates.

5:3. Dynamics 9f a rigid body. It is usual, in discussing
the dynamics of- a- rigid body, to use a good deal of prrv*jl
intuition derived froS_ our experiencu orith motions i; ;p."".
Such methods, especially those which employ vector notation,
are successful in leading us quickly and easil y to the difier-
ential equations of motion. However, the ,tru of spatial intui-
tion obscures the deeper mathematical structure or tn" .*"-

+: M,".
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ment, and so fails to open up new trains of thought. The
situation is parallel to that in geometry. The study of Eucli-
dean geometry of three dimensions by methods based on our
spatial intuition does not lead on to new ideas; but once we
introduce the analytic method, the possibility of discussing
space of higher dimensionality is opened up.

Let us then study the dynamics of. a rigid body in N-
dimension al flat space; we have only to put J[ : 3 in order to
recover the familiar theory. We shall use homogeneous co-
ordinates 4".

Rigidity of a body implies the constancy of the distances
between the particles which compose the body. Consider two
points p(il 

"n6 
pb) *ilScoordinates ar(il and ar(z), respectively.

The square of the distance between them is

5.301. (pal p@)r- (z^ht - u^b)1(z^kt - z^(il).

If the body undergoes an infinitesimal displacement in time dt,

the coordinates of a point in the body change from z, to
z,* dz,, where dz,:(dzr/dt)dt In view of the rigidity of the

body, differentiation of 5.301 gives

5.302, (z^$- z^@)(dz^k)- 6r^(z); : 0.

Obviously, if this condition is satisfied for every pair of points,

the displacement is a possible one f.or a rigid body.
The simplest infinitesimal displacement of a rigid body is

a transl,at'ion, which is described mathematically by writing

5.303. d,z, : &rdt,

where a" are the same for all points of the body. When we
substitute

5.304. dzr(t -- ardt, ilzrE): a*dt

in 5.302, the equation is satisfied. This verifies that the infini-
tesimal translation satisfies the condition of rigidity.

Consider now an infinitesimal displacement which leaves
unmoved the particle of the body which is situated at the
ongin (zr:0). If this is a rigid body displacement, the dis-
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!"ry" of any point from the origin remains unchanged, and so
it follows from 5.802 that

5.305. zflazfl: 0, zflazfl,: 0.
When these are used in 8.802, we get

5.306. zflazfl* zflazfl: 0.
In a continuous motion of a rigid body, with the origin fixed,
the displacement dz, of, a point with coordinates a, is
5 . 3 0 7 .  d z r :  o r ( Z t r g 2 s . , . 1 t ) d , t ,

where a' is the velocity at time l of the particre at 2,. Then
5.306 may be written

5.308. z90l:) * zflafl : 0.
Noting tlrat.o(3] (the velocity ata(fi) is independent of the point
a\f , we obtain by differentiation

5.309.

5.310. Or: - 0)7sl21.

The coefficients @tm are independent of the coordinates, i.e.
they are functions of r only. But as in 5.g05, we have

5.311.
and so

5.312.
From this it follows that cur" is skew-symmetric:

5.313. ( D r e :  -  @ a r .

From 5.310 and the vector character of v, and, z, (for trans-
formations which do not change the origin), it follows that arr"

,Tffi:0.
since a(3) may be chosen arbitrarily in the body, without
changing the-choice of. z9), and the partial derivative is inde-
purdent of 7'i', it follows that the partial derivative vanishes.
Therefore u$) is a linear function oi z(!. But it vanishes at the
origin. Therefore it is a homogeneous linear function, and,
dropping the superscript (1), we may write

87O7: O1

@768787': 0.
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is a Cartesian tensor of the second order. It is called the angular

vel,oc,ity tcnsor.It is clear that if u' is given by 5.310 with c'r""

arbitrary but skew-symmetric, then the corresponding motion

satisfies the condition of rigidity. I,et us sum up as follows:

If a rigid, hoily rotatcs about thc otigdn as tixcil point, tlu ael'ocity

o! anybAot zr,i,s giacn by cqwtion 5.310, i,n whhh tlu nctfi,ci,cnts
@tE are skdus-symmetrie functions of tlu titnc.

Excrcisc. Show that if a rigid body rotates about the point

z,: b, as fixed Point, the velocity of a general point of the

body is given bY

5.314. or: - ri,r*(z*- b^).

Let us now put lI : 3 and introduce the angil'ar wl'ocity

occtor

5.315. @r: * GTanQ)6n.

Obviously this is an oriented Cartesian tensor. It is easily

seen that the angular velocity tensor is expressed in terms of

the angular velocity vector bY

5.316. (Drs: ClsvQ)n.

Explicitly, the relations are

5.317. @1: @ztr (o2: QISL &'8: o'1r'

In terms of the angular velocity vector, 5.310 becomes

5.318. l)7: C7a1n(y'.n18n1

which is the vector product of the vectors c'," and zr. Tf we put

zr: 0r,), in 5.318, it is clear that or: 0, no matter what value

0 may have. Thus, iri addition to the origin, a line of points

in the body is instantaneously at rest, given by the equation

5.319. Z1: 0t,i,7.

This line is calted the instantaneous otcis.
So far we have considered only the kincmati,cs of. a rigid

body. As a basis f.or d,ynnths let us take D'Alembert's prin-

ciple in the form
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5.320.
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Zmfrdzo - ZFod6r.
Let us now return to JV-space. The repetition of the suffiximplies summationover therange !,2, .. ., .l[, The sign > i"Ai-
cates a difierent summation, viz., a summation orrl ail theparticles of the rigid body. In 8.820, m is the mass of a typicalparticle, /, its acceleration, F,. the external force acting on it,and d,z, an infinitg{mat displacement (cailed a vi,rttnr ii,rpt"rr-
ment) which is arbitrary except for the condition that tf* air-placements must not violate 

-the 
cpnditions of rigidity oi tlrubody. The internal reactions of the body do not appear, since

they do no work in such a system of dispiacements. The virtual
displacements are not necessarily those which actually ;"";in the motion of the body in time dt.

First, take dz, to be the dispracements coresponding to aninfinitesimal translation. This means that dzr: dar, whete d.a,are the same for all the particles, but otherwise'arbitrary.
Then 5.320 may be written

5.321. (Zmfo- DFn)dar: 0,
and it follows that

5.322. Zmf, : ZFr.
These are the egtat'i,ons of motion fm transra,tioz. They mayalso be written

5.323.

5.324. dzo: - nQo&p,
where 4 is an arbitrary infinitesimal invariant,
arbitrary skew-symmetric tensor. substitution in

flI>*o,l : zF,,
or, in words, thc rata of clnngc of tlu total, l,i,near mommtum is
eqwl to tln total cxternal, force.

Next, Iet us take ds, to coffespond to an infinitesimal
rotation about the origin. This may 

-be 
done by writing, as in

5.310,

and Or- an
5'3210. gives
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5.325.

5.329.

where

5.330.

Axcwen Moumrruu

a"F(mt*u): o,noZ F,&p,
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and hence, since oo, is arbitrary,

s.326,, Zm(fnan- f*"): Z(F*n- Frso).

We now introduce the tensor moment of forces Mop, and the

tensor of angular momentum hnn, defined bV (cf. 5.23L,5.233)

3.927. Mnp: Z(znFo- spEn), hro- Zm(znoo- 8p0r).
Sincc ot: d%/dt, fr- dorf dt, equation 5.326 may be written

5.328.

Thus for a rigid body in /V dimensions, turning about a fixed
point the rate of change of angiar momcn'tum 'is cEwl, to the
momcnt of cxtcrnnl' forccs obout tln or'dgin.

To compute the angular momentum, we use 5.310, where
c,rr* is the angular velocity tensor of the body. Then

hnc : 2m(an6zcso- ueqzqgn)

: Jnprfrq,

Joprc : 2m(6nraezc- 6p&ntq).

This may be called tJnre fourth-mdpr mommt of incrtin tcnsor.
The equations of motion 5.328 now may be written

5,332.

where

5.333.

fin,r: Mnp.

fi {t*o,*,o) : Mop.

d .
1(I ,*'t) -- M ,,
lr.t

f et: t foprqerqtGtnp,

5.331.

Let us see what becomes of this formula when J[ : 3. If
we use 5.316, define the moment vector, as in 5.28t,bY M r:
b e ,ooM*o, and multiply 5.331 bV * Gcnpt we get

On substituting from 5.330, this becomes
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5.334.
or, by 4.329,

5.335.
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f *: 2mepsqegraLqzrt

f t- 6 ,cZmsczo- 2mz ps.

dh,/dt : M ,,

hr: t ,"*oh^n.

Explicitly, rv€ have

r:n: z*(4 * ,l), rzt- >m(zr, + d), ru: >m(z?+zl),
5.336. Ilr: fu- - Zmzgrr fu- d: - Dmz$t,

fu: fn: - 2mzp2,
which will be recqgnized as the usual moments and products
of inertia, the latter with signs reversed. The symmetric tensor
-r"r-is commonly called the moncnt of inertia tpnsor.It is inter-
esting to see how the three-dimensionality of space efiects the
reduction from the fourth-order tensor 

-Joprc 
to the second_

order tensor frr.
The equations 6.842 may also be written

5.337.
where

5.339.
We note that -the components Joprq (and ^I";) depend on

the coordinates of the particles of the body, and so are func-
tions of l. This makes the equations of moiion difficult to use,
and we have recour€e to mwing arcs, which we shall now
discuss,

5.4. Moving frames of reference. A moving rigid body
may be used as a {ramc of refcrenca. consider a rigld u"oav rsi
turning about a fixed point o, and let 4, be rectangut.i irr-
tesian coordinates relative to axes which are fixed 

-in 
sr, but

moving in the space s in which axes g, have been chosen.
Then any particle has two sets of coordinates, a" relative to
axes fixed in s arrd 4 relative to axes fixed in sr. we choose
both coordinate systems to have a common orientation and
a common origin at o. Between the two sets of coordinates
there exist formulae of transformation, which (with the assoc-
iated identities) may be written
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,: =3 ArnS^, 81 : A*rz'*,

A*pA*e: 6no, AprrrAq : doo.

The coefficients A*nare the cosines of the angles between the

two sets of axes; they are functions of the time l.

A moving particle has two velocities; a velocity relative to

,S and a velocity relative to ,S'. The velocity relative to S has

components t, : |ron the u-axes, and the velocity relative to

S'has components aj : A:on the z'-axes' We may have occasion

to describi velocity relative to S' by its components on the

z-a:(es, or velocity relative to S by its components on the z'-

axes, and there is possibility of confusion. This will be avoided

by the following notation:

h :or(S) : components on z-axes of velocity relative to S,

or(S'): Corrponents on s-axes of velocity relative to S',

?l(S) :components on z'-axes of velocity relative to S,

ir: u',(S): components on a'-axes of velocity relative to S'.

In passing from r,(s) to uf (s), we are merely transforming

a vector from one set of axes to another. Sincevectorstrans-

form like coordinates, it follows from 5.401 that

5.402.
u;(S) : A,*o^(S) : A,,,,zn:,i (
or(S') : A^,oL;(s') : A^,h|,.

Indeed, we may, if we like, regard these equations as ilcfining

ei(S) and u"(Sti tr functions of l, once A^n,2r,and 21, ate given

as functions of l. These last three functions are' of course, not

independent, since the relations 5.401 exist. We have in fact

5.403. 2:, : Arrr4^* Arn&*, hr: A^r2'** A^r'L'

If we multiply the first of these by Ar* we get

5.4M. ro(S'): ue(S)* AreArt&m.

Similarly, from the second of 5.403'

5.405. o;(S) : r;(S')+ Ae,A^,z*.

Equations 5.404 and 5.405 give the transformation of velocity

on passage from S to T (or vice-versa) as frame of reference.
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we shall now find out what the coefficients in the above trans-formations mean in terms of angular velocity.
If we follow a particre fixed in y, its coordinates {, areconstant and uj($): 0. Hence, bv 6.ni, ,r(y) _ 0, 

""d;;by 5.454

5.406. ur(S): - A,nA,^z^,
comparison with E.BIO shows that the angular velocity tensorof S' relative to S may be written

S.40Z. c,rr_(Sr, SD: AroAr*i
the notation indicates that we are considering the angular
velocity of s' relative to s. This tensor m,.; also uu ,erJ.rea
:r-:1" 

a'-a>resl by the formurae of tensor transform"tiorr, *lnave

5.409. ,;(s',,s) : AseAs6ao-(Sr, S)
=: 6r"At#irn
: AnA r^.

we may check the skew-symmetry of the right-hand sides of5-407 and b.408 by difierentiating the identiiies in b.401.
By virtue of the expressionr girr"r, above for angurar velo_

city, the formulae 8.404 and 5.405 for transformation of velo_
city on change of frame of referenc€ may be written

s.409. of ({1: ua(S) * ,r-(S,, S)s_,
,j(s) : o;(s')+ ,olo(s,, s)uj.

Relative to s', the originar space s may be regarded as arotating rigid body. Since we hive ,urr"r"i angular velocities
to consider, it will avoid confusion if we set down our notation
methodically.

Axes of Angular
Symbol reference '.r"t*ity of relative to
,.,rr(St, S) z S, S
,'rr(S', S) z, S, ,S
o4r(S,S') I S S,,f(S,S') t S S,



$ s.4 Rore,rrnc FnaMss

To find the angular velocity of ,S relative to ,St, we follow
a particle fixecl in S. Then we have z" constant and rrr(S) : 0,
and consequently tlj(S): $. Then, by 5.405 and 5.408,

5.410. u;(S') =: - AoA^,zi
=: ,l^(S', S)ul.

But it follows from 5.310 that for a particle fixed in S and
observed by S'

5.411. oL(.S') : -r[*(s,s')r|,.
Comparing this with 5.410, and remembering that z) are arbi-
trary, we see that

s.4L2,
Similarly

coi-(S', S) : - c,i-(S, S').

5.413. ,*(S" S) =: - cop*(S, S').

In words, the angal,ar oelocity of S' relatfue to S is the negathse ot
the angul,ar veloc'ity of S relatfue to S',It is understood that both
are referred to the same €D(es, I or z'.

If If : 3, we may introduce angular velocity vectors by
5.315; it follows from 5.413 that

5.4L4. co"(S', SD: -or'(S, S')' coi(S', S): -<of (S, S').

We started with a " fixed space" S, and introduced a moving
rigid body St. But, as we have seen, we can regard S' as " fixed,"
and think of the motion of S relative to it. The two angular
velocities are the same except for sign, and there appears to be
a complete equivalence in the sense that either frame may be
used to describe motions, and neither is to be preferred above
the other. It is true that this equivalence is complete as far as
hinuruati,cs is concerned. But the two frames are not equivalent
when it comes to dynamics. If we suppose that S is a New-
tonian frame, in the sense that the motion of a particle relative
to it is governed by Newton's laws of motion, the same will
not be true of S'. We proceed to investigate this.

165
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using s and s' to denote the two frames of reference as
above, and assuming S to be Newtonian, the equation of
motion of a particle of mass m under the action of a force F, is

5.415. mf,(s) : F,,
if components are taken on the u-ulxes. Here/, denotes acceler-
ation. If we take components on the z'-axes, the equation reads

5.416. mfi(S) : Fl.
Note that the s5rmbol in parentheses is S, not S,, because it is
acceleration relative to the Newtonian frame of reference S
which must appear in the equation of motion.

We proceed to transform 5.416; by 5.402 and 5.409

5.417. t(S) : ;,(S)

d: 
AIA*I,*($|

IA^, tu*(s,) * ,1,*(s,, ,s)rj I l
: A^,fL6)* A^, tr*(s) * ,j-(s" s)zll

* A^,u!,-(S, S)zl* A^*t!,*(S,, S)uj(S,).
We multiply by A * and obtain by b.408

5.418. A 
",f,(S) 

: 
"fl(S') * ,l,r(S', S)[uj(S') * ,!,-(S,, S)rj ]
+ 6;(5', S)t!,* c.r,|"(S', S)uj(S').

The left-hand side is the same as /3(*t), i.e. components on
a'-axes of acceleration relative to S, and so the equation of
motion 5.416 may be written

5.419. mf!(S') : 4 + C! + G!,
where the last two symbols are defined by

C! : m lo!"(S'S) + ,3.(S', S)ri-(S', S)l zl,,
G! : 2mut -(S', S)srl,(S').

Thus Newton's law of motion (mass times acceleration equals
force) does not hold when the rotating body S'is used as frame
of reference; it is violated by the presence of the two vectors

d

dt

5.420.
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Cj and G! in 5.419. But, following a common practice, we may
regard S' as Newtonian provided we add to the real force .(
fictitious forces C! (called cmtrifugal force) and G! (called
Coriolis force).

Since 5.419 is a vector equation, we may take components
on the z-axes, and write

5.42t. m f , (S ' ) :  F " *  C , *  G" ,

where C" and G 
" 

are as in 5.420, but with the primes deleted
from o)t ,t' , arrd z'. The indicationsof frames of reference remain
unchanged.

Ererci,sc. Deduce immediately from 5.420 that the Coriolis
force is perpendicular to the velocity.

Erercise. Show that if /V : 3 and ;, (S', S) : 0, then the
centrifugal force may be written

3.422. CI: mcoln(S', S)u'j(S', S)ai - mol(S',,9)zjo{(S', S).

Deduce that Cj is coplanar with the vectors a{(S', S) and aj
and perpendicular to the former.

Let us now consider the dynamics of a tigtd body S' turning
about a fixed point O under the action of external forces. We
have already obtained the equations of motion 5.331, but they
are not in useful form because the components Jnprq change
with time. We shall transform to S'; this will overcome the
difficulty, since z[ areconstants, and hence Jlrpro are constants,
by 5.330. 

'We 
note that in 5.331 ,ors: or'q (S', S).

Let us multiply 5.331 by A""Aop; then we have

5.42g. Ao,,Aoo!;n""eaeJl6roco'"0(S', S) I : M'ot.

Remembering the relations in 5.401, and also 5.408, this gives

5.424. 4t,oirr ' ,o.J' ,  S)

* J'roro$oo6du6ao* daadcud 
")rlo(S', 

S)ri,('S', S) : Mlo.
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'fhese 

are the eEwtions af tnotion of a ri,gid, bod.y in N-d,immsions,
re'ferrd, to moving e,*es. They are non-linear equations, with
constant coefficients.

Exercise. Taking JV - 3, show that &42a may be reduced to
the usual Euler equations:

d
s.425. Iuari (9, .t) - (Irr- frr) rr(Sr, ^y) ," (.S,, sD : It[],

and two similar equations.

5.5. General dynamical systems. Let us onsider a
dynamical system the configurations of which are determined
by I/ generalized coordinates *t(r : l, Z, . .., fr). particular
examples are (a) a particle on a surface (JV: Z), (b) a rigid
body which can turn about a fixed point, as in the precedirg
section (/v : 3), (c) a chain of six rods smoothly hinged to-
gether, with one end fixed and all moving on a smooth plane
(/v : 6). since the cartesian coordinates of each particie are
functions of the generalized coordinates, the components of
velocity of each particle are linear homogen@us functions of
the quantities *", the coefficients being functions of r'. The
kinetic energy lof the system is the sum of the kinetic energies
of the particles which compose it; hence T is orpressible in the
form

5.501. f - ta^**^*o, (an^: a^o).
The coefficients are functions of the generalized coordinates.

The kinetic energy of a system has the same value at any
instant, no matter what generalized coordinates are used. Thus
r is an invariant under transformation of the generalized co-
ordinates, and since f is an arbitrary contravariant vector,
the coefficients amt ate the components of a covariant tensor
(cf. 1.607).

Let us now think of a configuratiott-space I/y, in which each
point corresponds to a configuration of the dynamical system,
the correspondence being one-to-one. Since the quantities *'
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specify a configuration, they specify a point in Vy; in fact, they
form a coordinate system in [r.

Two adjacent configurations or points determine an invar-
iant quadratic form

5.502. dS - a^od,cc^dnco,
Thus the configuration-space Vy is Riemannian, with the
metric form 5.ffi2, The kinetic energy of a particle is positive
if the particle is moving, and zeto if, it is at rest. Hence I is
positive if any particle of the dynamical system is moving, and
zero if tJre whole system is at r6t. The system is at rest if, and
only if, all the quantities f'vanish. It follows that the form
5.W2 is pos'dtiae ilcfini,te. We note that this form may be written

5.503. d,sz :ZTdF.

To distinguish it from other possible metric forms in the con-
figuration-space, we call 5,602 the kinernotical, metrh form or
I,ine el,anent sEuard,, since it does not depend on the forces
acting on the system.

Exercise. Assign convenient generalized coordinates for the
three systems (a), (b), and (c) mentioned at the beginning of
tlris section, and calculate the kinematical metric form in each
cos€.

When the system consists of a single particle moving in
space or on a surface, the kinematical line element ds is simply
the geometrical line element of space or of the surface, multi-
plied by the square root of the mass of the particle. In these
simple @ses, the configuration space is not essentially different
from the geometrical space in which the particle moves.

With appropriate terminology, the kinematics of a general
dynamical system may be made remarkably analogous to the
kinematics of a particle. We define the generd,irnd contratmriant
vel,ocity vector by

t69

dfi]*, :a5.504. 1 f -
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The covariant components are

5.505. ttr : &r,g,.

lt is not convenient to define acceleration as the ordinary time-
derivative of velocity, because th'at process does not yield a
vector. Instead, we use absolute differentiation as defined in
2.5n. We define the general,i,*1, contravar,iant acceleration vector
by

6a'
i r  - -
J  -  

6 t '

The covariant components are

5.507. f, : ar"ft.
As the dynamical system moves, it passes through a se-

quence of configurations. Correspondingly, the point in con-
figuration-space describes a curve or trajectory, with equations
of the form

5.509. tc? : g'(t).

We may also use the arc-length of the trajectory as parameter;
then the equations are of the form

5.509. *" : h'(s).
Let )r'be the unit tangent vector to the trajectory, so that

d,x'

5.506.

5.510.

Then

5.511.

I ,  :8 .

dfrr d*'ds ils
= . ?  -  \ t -

d t -  d , s d t -  
n  

d t '

Let v be the magnifirde of the velocity vector, so that

5.512. g2 :  a6ng \ ) r1  v )  0 .

Then, substituting from 5.511,

5.513. o2 : @-r)tnln

and 5.511 grves

(f,)':(#)" ,:?,,
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5.514.

5.516.

Accpr-BnarroN oF Sysrpu

s' -- t I7.
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Hence we have the result, familiar in the kinematics of a par-
ticle, but now seen to be true for a general dynamical system:
The aeloci,ty ztector l,,ies al,ong the tangent to the trajectory, and its
magnitude is equal to ds/dt.

Turning now to acceleration, we have from 5.506 and the
Frenet formula 2.7A5

our 6 d,u 
tt 

o)r'
5.515 .  f ' :E : ; (u I ' ) :A I '+ rS t

da 6I' &t:A I '+  d  ds  
:AI '+  n \ ' ,

where we have written r for the first curvature of the trajectory
and v'for the first normal. Since dv/dt :(dv/d,s)(ds/dt), we
have the following alternative forms for the acceleration vector:

d,a do
f :7t\'+ xogv' : o;rtr'+ tr02v'.

As in the kinematics of a particle, we may state for a general
system z The accelerotion I'ias in the elementary fuio-space con-
taining the tangent ond, the first normal to the trajectory, and. has
the tollowing comp onents :

iht ilu
along the tangmt: 

A 
oru 

d,
along the f,rst normal: HtZ.

Let us now consider the dynamics of the system under the
action of prescribed forces. The generalized, covaria,nt force uector
X, is defined by the equation

5.517. Xrd,x' : dW,
where d,W is the work done by the forces in an arbitrary infini-
tesimal displacement d,x'. Since d,W is invariant, and d,x, con-
travariant, it is evident that X, is indeed covariant, as anti-
cipated in the definition. The contravariant components are
given by
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X'-- (tr,tX 2.
If the system possesses a potential energy % then dW : -d.V,
and

5.519.
iltc"'

It is interesting to note that the contravariant components of
velocity and the cmar'innt components of force appear most
naturally in setting up the terminology for a general dynamical
system.

We shall now find the equations of motion of a general
dynamical system in terms of the generalized coordinates and
generalized forces. Suppose that the system consists of P par-
ticles. Denote the mass of the first particle by rtr: tltz: rlt8t
and its rectangular Cartesian coordinates by zr, Bzt Ba. For the
second particle, denote the mass by rn1: rn6: rna, and the
rectangular Cartesian coordinates by zn, zb zo, And so on.
Denote by Zt, Zz, Zs the components of force acting on the
first particle, by Zn, Zu Za the components of force acting on
the second particle, and so on. Then, withholding the sum-
mation convention for Greek suffixes, the equations of motion
of all the particles are contained in the formula

5.520. ffinZn : Zo, q, : 1, 2, . . .r 3P.
Now z'are functions of the generalized coordinates r', and

so the kinetic energy of the system is

avx,

5.521.

Comparing this with 5.501, we have for the metric tensor

s.szz, art: Zm^l+*.
The symbolX means r,r*,o.1rr""'fifJ"spect to o for a : t,z,

a

. . . , 3P. Applytttg the definition 2.42L,we find for the Chris-
toffel symbols of the first kind

| - i lm,e! : * 4*,# ?-*,*".
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5.523. I rs,l ]

We have

5.524. bn - ffir',
and hence by 5.5?B

5.525. 4*,fr';, 
: a,i, * [st, rlo\t,

E o,,Q"+{;") ,r")
: orcf, : fr.

If we multiply the equations of motion 5.52,0 by 02"/0*, and
sum with respect to o, we get

s.s26. 4*"ufi;,: 4#/,.
From 5.525 the left-hand side is equal to the acceleration f,.
As for the right-hand side, the work done in an infinitesimal
displacement corresponding to increments d,x, in tJre gener-
alized coordinates is

S.SZ7. ilw - ZZ.ds,: ZZ,frOo,.
Comparing this with 5.517 and remembering that d*, are
arbitrary, we get

s.s2g. , z-a-u" :4t"|fr': x"
Hence the eEwti,otts of rnotion of a gmeral, ilynamdcal, systan are

5.529. fr: X, ot f - X'i
in words, accetreratdan egual,s foru.

It follows from 2,48L and 2.488 that the acceleration may
also be written in the form

!s, l'zn 0zo
: 

:*" A*rA*r A*r'

,,:#,s"+fubr,
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5.530.

5.532.

5.533.
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a/ar \  aT
f': dt\ uo' ) 

- 
*'

d'g
o 

d-r: 
XtIt, nF : Xrv'.

a/ar \  oT- l  -  |  : x r .
i l \a* ' /  otc'

AL-A . r : 0 ,  l -T -V '

5,531.

These are Lagrange's equntions of motionfor a general, dynam'im,l
system. If the system is conservative, so that Xr: - |Vf 0x',
than 5.531 may be written in the form

*(y")
Etcercise. Establish tJre general results

Deduce that, if no forces act on a system, the trajectory is a
geodesic in configuration-space and the magnitude of the
velocity is constant.

Lines of force in configuration-space are defined as curves
which have at each point the direction of the generalized force
vector Xn. Their differential equations are

5.534. d,x' : 0X',

where 0 is an indeterminate infinitesimal. We assign a positive

sense to the line of force by making 0 positive. If the system
possesses a potential energy V, it is easy to see that the lines
of force are the orthogonal trajectories of the equipotential
surfaces V : constant; the positive sense on the line of force
is the sense for which Z decreases.

It is easy to throw 5.5L2 into the form

5.535. dW : X il,s cos S,
where X ls the magnitude of the generulized force, ds the
magnitude of the displacement, and 0 the angle between the
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displacement and the positive sense of the line of force. It is

then evident tJrat, if we consider all infinitesimal displacements

of constant magnitude ds, the work d,W is a maximum if the
displacement is taken in the direction of the positive sense of
the line of force, and a minimum if the displacement is taken
in the opposite sense.

In dynamical systems of physical interest it often happens
that the lines of force are geodesics in configuration-space.
When this is the case, the system, if started properly, will

travel along a line of force. We shall now prove that if the

system, ,i,s started, with vel,octty tangmt to a geoiles'i'c l,ine of force,
the trajectory w'til Li,e al,ong thnt line of force.

To prove this, let us look again at the equation of motion

5.529. Usually we tlrink of the force X, as prescribed, and
regard the problem as that of determining the trajectory by

solving a set of differential equations. We recall that /' is an

abbreviation for a function of the coordinates and their first

and second derivatives with respect to the time. But we can

look at the equation the other way round. We can think of the

motion as prescribed, and the equation as one which determines

the force under which this motion takes place. If motion and

force are both prescribed, and the equation is not satisfied, it

will be possible to satisfy it by introducing an extra force Y",
given by

5.536. Yr: fr- X*

for then we shall have

5.537. fr: Xr* Y,

which is of tJre form 5.529 with X" replaced by X,* Y,.
Consider now motion along a geodesic line of force. The

extra force necessary to maintain the motion is

5.539.

So far the magnitude of the velocity has not been assigned;
let it be given by

Y,: f,- X,: ,flI'* Kv2v,- X,.
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where X is the magnitude of the force. Then

5.540.
dv,a: x.

Since the trajectory is a line of force, we have X,: X)r' and
since it is a geodesicr f, : 0. From these facts and 5.540, we
see that the right-hand side of 5.538 is zero. This means that
no extra force is needed to make the system move along the
geodesic line of force with a velocity of magnitude given by
5.539. The theorem is proved.

Erercise. For a spherical pendulum show that the lines of
force are geodesics on the sphere on which the particle is con-
strained to move. What does the theorem stated above tell us
in this case?

Exercise. A system starts from rest at a configuration O.
Prove that the trajectory at O is tangent to the line of force
through O, and that the first curvature of the trajectory is one-
third of the first curvature of the line of force.

So far, in dealing with configuration-space, we have used
only the kinematical metric 5.W2. There is another metric of
importance, but it qrists only for a system possessing a poten-
tial enerry. For such a system we have

| - la^64ut,
av

i  :  a*,.sy: @m,^omXr - Xmom: _ 
ff i r- :  

_ i ,

and so

5.541.

or

,z: ,20 * ,l; x d,s,

d

dr?+n =:0,

5.542 .  T+V:E ;
thus tJne sutn oJ kineth and, potential energias is a constant (E),
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The metric which we are about to introduce is based on
the concept of actbn, which is defined by the formula

s.s43. A : [rat,
the integral being taken along any trajectory in configuration-
space, not necessarily one which satisfies the equation of
motion. However, it is understood that the motion satisfies
5.542, E being an assigned constant of total energy. Then,
with ds as in 5.502, we have

/ as\, d.s
5.544.  T : t f  :  + \A) ,  d t :TO,

and so the action is

l r as  l f  t b  1  |s.s4s. A : J ffi: &J{T a' : &J1/ffi 6s.
We define the action l,ine d,em,mt d,o by

5.546. d,o - EV d,s,
or, equivalently, the adion rnetrie form by

S.S4Z, doz:, b^nd*^d,r"- (E _ n a^od,r^daco.
The basic theorem which makes the action metric of interest

is the following z A d.yna.m,i,cal, system possess,ing potential energy
V and mwing with total energy E dau'ibes ,in configuration-
sfuce a geod,esic wifh respect to the action tnetr,ic. This is com-
monly called the Principle of Least Action, or, more correctly,
the Principle of Stationary Action.

In proving this theorem, we must avoid confusion between
the two metric tensors, a^n and b^n; we shall distinguish
Christoffel symbols by suffixes a and b. We note the following
relations, which are easily established:

b^n :@-Da*n ,  b* ' :#
n - V '

t77

s.s48. 
{;")"
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In order to prove the stated theorem, we start from the
equation of motion 5.529, which may be written

d%c, , ( r I d*^d*" aV
5 '549 '  d t r+ \ * "1 "  a  d t :  

- a r "# '

Substituting from 5.548, this becomes

s.sso. ff+{;"\,
avr

Since 

:  -a"E 
uol t

d,x^ dxn , 1 dV d,xh d,x,
d t  d t  E -v \ xh  d t  d t

amn d.x* d,x" I-2(bnE 
d, ,  J '

(trmn d,x^ dxo 2T

2(E - V) dt dt 
: 

Tr: 1,

the expression on the right-hand side of 5.550 vanishes, and
the equation of motion reduces to

d,zx ' ,  (  r  1d*^d.* "  dx ,
d t z  

'  
lmnJud . t  d t  

- e  
d t ,

1  aVd,xb I  dv

5.551.

where

5.552. 0 : -  
B-yT*rE:

Equation 5.551 is the general equation of a geodesic (for metric
tensor b^) in terms of an arbitrary parameter (cf. 2.427).
This proves the theorem.

From the general theory of Chapter r we know that if the
action arc-length o is introduced as independent variable, the
equation of motion, i.e., of the geodesic, simplifies to

d,zx' . ( r 1 dr^dx"
s . ss3 .  - i ; oz * \ * " l r [  

do :0 .

From the manner in which we have developed the geometry
of a Riemannian space from its metric form, it might be thought
that the metric determined all the properties of the space. But
we have already seen in 4.1 that there exist two distinct spaces
of constant positive curvature with the same metric. In general

E -V dt
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we may say that the properties of a space "in the small" are
determined by the metric, but that the properties "in the
large" are not completely so determined. A simple illustration
is given by a plane and a cylinder immersed in Euclidean 3-
space. They are both flat manifolds, with the same metric
forms for suitable choice of coordinates. But they have not
the same properties in the large. On the cylinder (but not on
the plane) there exist closed circuits which cannot be con-
tracted continuously to a point. It is not possible to put the
points of the cylinder into continuous one-to-one correspon-
dence with the points of the plane;otherwise stated, supposing
the surface of the cylinder to be a thin elastic sheet, it is not
possible to stretch it to cover the plane without tearing it.
These are intrinsic properties of the manifolds.

When the points of two spaces can be put into continuous
one-to-one coffespondence with one another, they are said to
be homeomorphh. For example, the surfaces of a sphere and an
ellipsoid are homeomorphic; thesurfacesof asphereand a torus
are not homeomorphic. If this correspondence can be made
without change of distance between adjacent points, the spaces
are said to be completel,y applicable. Thus a portion of a cylinder
which does not go right round it is completely applicable to a
portion of a plane.

Dynamical systems provide interesting illustrations of
topological properties of this sort. Consider a system which
consists of a flynrheel which can turn about its axis; the axis
maintains a fixed direction, but can move in a direction per-
pendicular to itself. This is a system with two degrees of
freedom, and the kinetic energy is

S.SS4. T: +tn*r++I|r,
where m is the mass of the flyrheel, .I its moment of inertia,
* the displacement of the axis, and 0 the angle through which
it is turned. The kinematical metric is

5.555. d,sz: m d,xz* I d02: (dxt)z* (dxr)r,

where xr: \/m r and xz-- \ff 0. Thus the configuration-space
is flat. But since an increase of. hr in 0 restores the original

179
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configuration, the configuration-space is homeomorphic to a
cylinder, not to a plane. In fact, the configuration-space is
completely applicable to a cylinder in Euclidean B-space. It
is easily seen that the trajectories under no forces correspond
to helices on this cylinder.

Consider now a system consisting of two flyltrheels rotating
independently about an a:ris. The kinetic energy and kinem-
atical metric are

5.556. f - tli? * *Izi)|, dsz: Id.o? * Izith,

where Iu rz are the moments of inertia and ltr 0z the angles
of rotation of the fl1mheels. Obviously the configuration-space
is flat. It is homeomorphic to trre surface of a torus, because
tlre configuration is restored by an increase of. Ztr in either
0r or 0r. In Euclidean 3-space there orists no surface completely

applicable to this configura-
tion-space.

{ If we resolve a dynamical
system into its constituent
particles (say P of them), we
have a flat space of 3P di-
mensions. The configuration-
space of the generalized co-
ordinates is a subspace im-
mersed in this flat space.
Suppose that in the orample
just considered we replace the
two flyurheels by two particles

of unit mass, constrained to move on a circle of unit radius
(Fig. 12). If 0r and 0z are angles determining the positions of
the particles on the circle, we have

5.557. d* :d | ' r+d0? .

Again we have a flatconfiguration-space with the connectivity
of a torus. If we introduce the rectangular Cartesian coordin-
ates of the particles, $b *z for the first particle, and *u *r for
the second, we have

Frc. 12. Model of a flat %space
homeomorphic to a torus.
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5.558.

Toror,ocrcer, PnorERTrEs

lCr : COS 01, fi, :

*s : COS 02, lOt :

If we suppose the particles to be free, the configuration-space
has four dimensions and a kinematical metric

5.559. dsz: d*? + dx? + arT + dx\.
When the two adjacent configurations coffespond to keeping
the particles on the circles, this metric reduces to 5.557, as we
can see at once on differentiating 5.558. It appears therefore
that in a Euclidean space of four dimensions there exist finite
closed flat subspaces homeomorphic to a torus.

Frc. 13. Representation of ttre onfigurations of
a rigid body with a fixed point-first phase.

Another interesting dynamical system is a rigid body
turning about a fixed point. A configuration is determined by
the values of three Eulerian angles 0, 6, ry', and so the con-
figuration-space has three dimensions. All possible configur-
ations are included if we vary the coordinates in the ranges

5 .560 .  0<A( t , 0 < 0 12r, 0 < '/ 12r.
To get an idea of the topology of the configuration-space, let
us take 0, Qr 9 as rectangular Cartesian coordinates in Eucli-
dean 3-space (Fig. 13); the ranges 5.560 define a rectangular

lE l

sin 0u
sin 02.



182 DyNaurcs

nr,,  o
Frc. 14. Representation of the confisurations of
a rigid body with a fixed point-seconld phase.

parallelepipd or cuboid. But to the face 0 - 0 there corres-
ponds only a singly infinite set of configurations, not a doubly
infinite set; the same holds f.or 0 : 7r. To improve our repre-
sentation of the configuration-space we should therefore com-
press the faces 0 : 0 and 0 : r into sharp edges (FiS. L4),
deforming the cuboid, but with the understanding that each
point retains the values of the coordinates originally assigned
to it. Now we have to take into consideration the fact that an
increase of.2r in either Q or * restores the configuration. Thus
the faces d : 0 and 6 : 2r correspond to the same configur-
ations, and these two faces should therefore be brought into

f O ' O

0 e T t

Frc. 15. Representation of the confisurations,of a
rigid body with a fixed point-thiid phase.
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coincidence. If this is done, the original cuboid is changed into

a ring with sharp edges (Fig. 15). The parametric lines oI {
run (from 0 to 2r) through the thickness of the ring. To com-

plete the representation, we would have to deform again so

that points for which * : 0 and {t : Ztr coincide; a point

such as A should be brought into coincidence with a point such

as B. But here our attempt to represent the configuration-space
in ordinary 3-space breaks down. The best we can do is to

leave our model in the last form, and remember the coincidence

of the inside with the outside of the ring.
So far no metric has been mentioned. For simplicity, let

us suppose that tlre momental ellipsoid of the body, relative

to the fixed point, is a sphere. Then there is only one moment

of inertia, which we shall denote by I. The kinetic energy is

5.561.  T : t I (bz  +  O,  + i ,  +zOi  cos0) ,
and the kinematical metric

5.562. d.sz : I (d02 + dtz + d{'+ 2d6&l cos0).

By a short cut, we can show that the configuration-space is of

constant curvature. If the three principal moments of inertia

were not all equal it would be possible to give instructions

about moving the body, without mentioning the coordinate

system. For example, we could say that the body was to be
rotated so much about the principal a:ris of greatest moment

of inertia. But in our case that cannot be done. Except for
magnitude, as given by 5.562, all displacements are intrin-
sically indistinguishable. In other words, configuration-space
is isotropic. It is therefore of constant curyature (lO, by Schur's
theorem, 4.L. We can find K by another short cut. Motion
under no forces takes place along a geodesic in configuration-
space. For the body we are considering, motion under no forces
consists of rotation about a fixed axis with constant angular
velocity. In completing a revolution specified by

0 : const., 6 : const., 0 < I ( 2o,

the representative point in configuration-space describes a
closed geodesic of length
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5.563.

5.565.

Dwaurcs

r, - [ d,t : I';"/7 itg : %r\fl.
Now if, starting from an assigned configuration, we compare
two rotations about adjacent axes, we see that the two se-
quences of configurations so obtained have no configuration
in common except the initial one. Thus in configuration-space
two geodesics drawn from a point P in adjacent directions do
not meet again until they meet at P. This means that con-
figuration-space is a space of constant curvature of the polar
type, and we know from 4.123 that the length of each closed
geodesic is

5.564. | - ft.
Equating this value to L as given in 5.563, we get for the con-
stant curvature the value

IK:n'

SUMMARY V
Physical components:

XtIo, X^olt^pni

()trn)to: ltnllr: 1).

Physical components for orthogonal curvilinear coordinates:
(X1/hu Xz/hz, Xs/hs),

or
(hrxr, hJp, hsxs);
d,sz : (hilxr)2 + (hd*), + (h8df)2.

Dynamics of a particle:

6v' dx,
* T ; :  F  '  o ' :  

d t  '

iht
* oTrI'+ mnPv': F,
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d AT AT dxp

i* 
Fr, T - lmar6*e*q, *e : 

dt

Dynamics of a rigid body in JV-dimensions:

Or: - b)rn8u (ftn: - 9)tr t

d .  d
g6(2*o,)  :  XF ,  ihnp:  

Mop,

Mnp: E (soFr- *pF*),

hnp: \m(zpn- zevr): Jn,pr4ci.rc,

J rprc : Nm(6 n&pz s - 6 e&& q).

For JV : 3:

97: G76n0)a16n1 Cttr: t Crmn(Dmmt

d .

V( I ' " , ' t " ) :  
Mu

f ,o: 6 *Zm zczq- Zmz &r, M 
": \e ,nozoFo'

Moving frames of reference:

4: A*t*t Er: A*rzl^,

A^4-o: 0po, Ae*Aq-: epc,

'no(S', S) : - 'po(S, S') : A^/i^o: - A-4*o,

,lo(S', SD: - ,io(S, S') - - ArAsrr: Aqfip*.

Kinematical line element:

d,#: 2T dtz: aand,fi^dx'i

dx'
Or:7 i  :  y?,  Or :  Ar tu t t

6v ,  a /a f \  aT
J ' - -  - - l  -  l _ - -
' 6t dt\O*, / 0x,

Generalized force:

)(--  ' .  z yt - 1t on 
ArC,

Conserrrative system:

xav' ' :  -6 r '

d,a
oE l '+ rfa', fr: at"t'
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Dynamics of a system:

fr: Xr.

Action line element:

do2-- b^ndtc^dtco, b*n: @ - V) a^n,

d,o : 1/{y 6r.

Dynamics of a conservative system:
d2tc' ( n I dr^dr"
do,+\*" l ra"E:o '

EXERCISES V

1. If a vector at the point with coordinates (1, 1, 1) in
Euclidean 3-space has components (8, - L,2), find the contra-
variant, covariant, and physical components in spherical polar
coordinates.

2. In cylindrical coordinates (r, 6, z) in Euclidean B-space,
a vector field is such that the vector at each point points along
the parametric line of d, in the sense of d increasing, and its
magnitude is &r, where h is a constant. Find the contravariant,
covariant, and physical components of this vector field.

3. Find the physical components of velocity and acceler-
ation along the parametric lines of cylindrical coordinates in
terms of the coordinates and their derivatives with respect to
the time.

4. A particle moves on a sphere under the action of gravity.
Find the covariant and contravariant components of force,
using colatitude and azimuth, and write down the equations
of motion.

5. consider the motion of a particle on a smooth torus
under no forces except normal reaction. The geometrical line
element may be written

dsz: (a - D cos 0)rd6r+ b2d02,
where { is an azimuthal angle and 0 an angular displacement
from the equatorial plane. Show that the path of the particle
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satisfies the following two differential equations in which h is

a constant:

(a)

(b)

6. consider the motion of a particle under gravity on the

smooth torus of the previous problem, the equatorial plane of

the torus being horizontal. Taking the mass of the particle to

be unity, so that V : bg sin d, show that the path of the par-

ticle satisfies the following two differential equations:

(a) (E - V)(a - b cos 0)2d,6/d,o : h,

/ ao\'
(b) u, 

\or) 
: (u - v)(a - D cos 0)4/h2-(a - b cos 0)2,

where E is the total energy, his aconstant, and ilo is the action

line element.

7 . A dynamical system consists of a thin straight smooth

tube which can rotate in a horizontal plane about one end O,

together with a bead B inside the tube connected to O by a

spring. Taking as coordinates r : OB and 0 : angle of

rotation of the tube about O, the potential energy V is a

function of r only. Show that, in configuration-space' all the

lines of force are geodesics for the kinematical line element.

8. Show that if a line of force is a geodesic for the kinem-

atical line element, it is also a geodesic for the action line

element.

9. Using the methods of Chapter II and 5.532, show that

the trajectories of a dynamical system with kinetic energy T

and potential energy Z satisfy the variational equation

o ['(r - n di -0,
Jt '

where the family of trajectories considered have common end

points at t : lr and t : tz. (This is known as Hamilton's

Principle.)

(a -D cos o)'# - h,

/ ao\,
b r \ r r )  :  @-bcosq4 /h2 - (a  -Dcos0 )2 .
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10. Using the definition b.BBb f,or f,r, prove that if X, is
any non-zero vector, then Ir"xrxr> 0, and that the equality
occurs only if all particles of the system are distribuied on
a single line.

11. Let Oz$dzs and O,z,$,ry'a be two sets of Cartesian
axes, parallel to one another. Consider a mass distribution and
let /"r, "r'"" be itsmomentof inertia tensors calculated for these
two axes in accordance with b.BBb. Writing ftrr: frr* Kr",
erzaluate Kr".

12. A rigid body is turning about a fixed point. Referred
to right-handed axes ozgxzs, its'angular velocity tensor has
components

o)t8- 1, cr lgr: 2, cr l13: 3.

what are the componenti of its angular velocity vecto r c,tr?
If we refer the same motion to axes Oz,rztzzr3, such that the
axis Oz'1 is On reversed, while Oz$s coincide with Oz,2z's,
what are ci.'r, and c.r'r?

13. Consider three rigid bodies, S, Sr, Srr, turning about a
common point. If all angular velocities are referred to common
axes, show that the angular velocity tensor of .S, relative to S
is the sum of the angular velocity tensors of s, relative to s
and of S" relative to S'.

14. A freely moving particle is observed from a platform s,
which rotates with angular velocity rl,7: ?t67s, where n is a
constant, relative to a Newtonian frame s in which zr ?te,
rectangular Cartesians. Use 5.421 to find the equations of
motion relative to ,s' in terms of coordinates 2,, in sr, such
that the axis of, z's coincides permanently with the axis of zs.

15. If the tensor /rr is defined by b.BBb for .l/ dimensions,
and Joo,o is defined by 5.330, establish the following relations:

Jop,c:(JV - 1)-U""(6rr'6ec- 6"dr) - 6orfpc{ 6prfns,
Jppg,o: - f"r,

f nc :(/V - L)-r(Jrroo- 6noJ rorr) : Joo,o.
16. The motion of a dynamical system is represented by a

curve in configuration-space. {Jsing the kinematical line ele-
ment, express tlre cunrature of the trajectory as a function of
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its total energy E, and deduce that as E tends to infinity, the

trajectory tends to become a geodesic. Illustrate by considering

a particle moving under gravity on a smooth sphere'

t7. A particle moves on a smooth sphere under the action

of gravity. Utittg the action line element, calculate the Gaussian

cuivature of configuration-space as a function of total energy

E and height z above the centre of the sphere. Show that if

the total energy is not sufficient to raise the particle to the top

of the sphere, but only to a level z : h, then the Gaussian

curvature tends to infinity as z approaches h ftom below.

18. Show that the equations of motion of a rigid body with

a fixed point may be written in either of the forms

(a)

(D)
h' ,* ,'^r(S' , S) h'* - M' ,,

h' r- K'r*r h'^ h'n : M' r,

where h', are the components on at-axes (moving with the

body) of angular momentum as given in 5.338 and K'r*rn is a

certain moment of inertia tensor. Evaluate the components

K'r^* in terms of the moments and products of inertia.

19. A rigid body turns about a fixed O in a flat space of

.l[ dimensions. Prove that if iV is odd, there exists at any

instant a line OP of. particles instantaneously at rest, but that,

if /V is even, no point other than O is, in general, instantan-

eously at rest. Show that if N : 4, there are points other than

O instantaneously at rest if, and only if,

c.r4c.rrr* orrrcoer* crt11@gl : 0.

20. The equations 5.329 do not determine Jnp,q uniquely.

Why? As an alternative to 5.330, we can require Jno,o to be

skew-symmetric in the last two suffixes. Show that this

defines Jnp,q uniquelY as follows:

Jnprq:+ Z m (6n, znzo * 6pq zrr8, - 6nq z&, - 6r, znzo) .

Prove that Jnpre, as defined here, has the same symmetries as

the covariant curvature tensor (cf. 3.115, 3.116) and that, for

N:3, we have

f at : t ,"no Gl-c Jnprc, Jnoro = i Grnp Gtrq Id .



CHAPTER VI

APPLICATIONS TO HYDRODYITAMICS, ELASTICITY,
AND ELECTROMAGNETIC RADHTION

, 6.1. rrydrodynamics. The mathematical fluid of hydro-
dynamics is a continuum of moving particles, each of which
remains identifiable, so that we czrn speak of following a par-
ticle of the fluid. The space in which the motion takes p1.."
is Euclidean 3-space. we shall use rectangular cartesiai, ,",
and later curvilinear coordinates rr. In general, it is easiest
to use the cartesians to establish formulae, and then translate
these (with a little judicious guessing) into a form valid for
curvilinear coordinates.

The history of any particle is described by equations of the
form zr-- zr(t), where I is the time. But we have a continuum
of particles in the fluid, and so we introduce labels to distin-
guish one particle from another. These labels (which we shall
denote by o,) may be the coordinates of the individual particle
aut time t : 0, or they may be arbitrary functions of these
initial coordinates. The complete history of the whole fluid
may then be described by equations of the form

6.101. z7: zr(o, t),

where o stands for the set of three labels. The components of
velocity v, of. a particle of the fluid are then given by taking
derivatives with respect to l, holding the o's fixed, since *" rrl
interested in the rates of change of the coordinates of an indi-
vidual particle:

6.LO2.
02,

t ,  :6
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$r: $r(8, t) .
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The above method of describing the motion of a fluid is called

the Lagr angia,n rnethoil' -
enottrei (and generally more useful) \May of describing the

motion of a fluid is the Euler'ian method. We disregard the

labels we attach to the particles, and start from the fact that'

at a definite point and at a definite instant, there exists a

definite velocity in the fluid; in other words, velocity tr, is a

function of coordinates zn and, time f, and we may express this

by writing

$ 6.1

6.103.

Exercise. A fluid rotates as a rigid body about the axis oI zg

with variable angular velocity or(r). Write out explicitly the

three Lagrangian equations 6.101 and the three Eulerian equa-

tions 6.103.

Of course, it remains true in the Eulerian method that the

co-ordinateszrofanindividualparticlearefunctionsoff'and
that the velocity is obtained by differentiation, as in 6'102'

But since we have no occasion in the Eulerian method to refer

to the labels 071 we shall, for future reference, write 6.102 in

the form
dz,

U,  :66.104.

The accel,erati,on of a particle is the rate of change of' v,

provided that, in difierentiating, we follow a definite particle'

bh,rr, if we differentiate 6.103 and use 6.104, we obtain for the

acceleration f,

dn, 0v, A% dz 
" 

0o,
6.105 .  f , :E  :E  +E,E  :A  +  o r , tou

where ,s denotes 0f Az"-

Erucise. Compute the components of acceleration for the

motion described in the preceding exercise'

what we have calculated above, in derMng 6.105, may be

called the comovi,ng time'ilerfuotitta; it is "rate of change rnoving
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6.106.

6.107.

Hyonooyneurcs

with the fluid." sometimes this is emphasized by using tJre
symbol D/Dt instead of. d/dt, to remind the reader that a
special procedure is involved, but we shall not find this neces-
sary. For any function F(z,t), the comoving timederivative
is

dF AF
E:  a t+  F ,2os .

The ilensi,ty p of, a fluid is defined as mass per unit volume
If the ratio of mass to volume is the same for ail volumes in tlre
fluid, then the fluid is of constant density. But if this is not
the case, the definition actually involves a limiting process.
we take a sequence of volumes enclosing a point F,-th" ."-
quence shrinking in on P in the lirnit. The density at p is then
the limit of the ratio of mass to volume for this sequence of
volumes. Density is in general a function of posiiion and
time, and so w9 write p : p(2, t). The comoving time-deri-
vative of p is of course

d,p op
A :  * +  

p , e o r

so far we have been working with rectangular cartesians.
Let us introduce curvilinear coordinates r'. Now we have a
c o ntr avar,i,ant a elo city v ector

6.109.

and a covar,i,ant veloc,ity vector.*

6.109. O7:  A7sOt1

where @", is the metric tensor. The simplest way to get the
acceleration is not to transform 6.10b, but to guess the co-
variant and contravariant forms

*To avoid complicating the notation, we use tle same symbols orl fr
to denote components for rectangular Cartesian coordinates, and 

"on"ri-ant components for curvilinear coordinates. The context should nemove
any possible ambiguity.

dr,
o' :  E,
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$ 6.1

6.110.
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where the stroke indicates covariant differentiation, as in 2.520

or 2.521. We verify that these equations are correct, because

they are vector equations, and they reduce to 6.105 when the

curvilinear coordinates reduce to rectangular Cartesians'

For the comoving time-derivative of an invariant, F ot p,

we have
ilp 0p

d t :  a t+  P 'ao '

E*ercise. Verify that the operator 0/0t doe;s not alter tensor

character.

In what follows we shall make use of Green's theorem (also

known as Gauss' theorem, or the divergence theorem). Con-

sider a volume 7, bounded by a surface S. Let us Use rect-

angular Cartesiars 8r. Let n, be the direction cosines of the

noimal to S, drawn outward. Let F be a function of the co-

ordinates, which is continuous and possesses continuous partial

derivatives of the first order throughout V. Then Green's

theorem states that

6,LL?. l rn"as: !F, l ,v.
The integral on the left is a surface integral taken over S, and

the integral on the right is a volume integral taken throughout

V. Only a single sign of integration is used for economy in

notation, b""t,rt" it is obviousfromthedifferential what multi-

plicity of integral is meant. As usual t F,r: 0F/0zr We as-

sume that the reader is familiar with the proof of 6.112.*

The equation 6.112 is often written with a vector function

in the integrand. Indeedn it follows from 6.LLZ that

6.113. Ihn,as: IF, ,d,v .
*See any book on adnanced calculus, or, in particular, R' Courant'

Diferential anil Integrol Calcul,us, London and Glasgow, Blackie, 1936'

p. gg+. For a proof of C;reen's ttreorem, in generalized form, see chap'

vu, in particular 7.610.

AccaLsnetrox

fu, ou'
, , : i  *  s r 1 e o ' r  f :  U  *  1 , ' 1 r o ' r
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This may be called a iliaergence theorem, since Fr,, is the diver-
gence of the vector Fr. Actually, however, Green's theorem is
a theorem in analysis, and the question of the transformaticn
of coordinates is not necessarily involved. If we like, we can
replace F in 6.L12by a set of quantities which may be tensor
components, and write

6.114. I f,rol,S : I F,3,,d,V.
But the tensor character of tJre integrand becomes important
if we wish to transform Green's theorem to curvilinear co-
ordinates s'. It is then essential that the integrand be an
invariant, and the transformation of 6.Lt2 (where F is an in-
variant) or 6.114 (where F", is a tensor of the second order)
presents difficulties. But 6.118 transforms directly. It is true
that 

v, d I

6.115. t  Frord,s :  I  F1,dV,

for each integrand is an invari-
ant, and so the statement is
true for all coordinate systems
if true for one-and obviously
6.115 reduces to 6.113_ for rec-
tangular Cartesians. In 6.115
nr ate the contravariant com-
ponents of the outward unit
normal, i.e,, n' : d,x'/d,s, where
ds is an eiement of the normal
to S.

Frc. 16. Expansion of a fluid.

We shall now consider the etcpansion of a fluid. Let V be
a volume of the fluid, bounded by a surface S. Let S move
with the fluid, so that it is always formed of the same particles.
Let us use rectangular Cartesians. I-et u, be the velocity.
Then vrn, is the component of velocity along the outward
normal, nrbeing the direction cosines of that normal. As the
fl.uid moves, a particle on the surface is displaced obliquely
(Fig. 16); the normal component of its displacement in infini-
tesimal time dt is v,n,,.dt. Hence the volume of the thin shell

v r n r d l
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between the surface S at time I and the surface formed by the

same particles at time t * ilt is

6.116. i i l  [  o ,ndS.

But this is the increase in the volume V, and so we have

by Green's theorem. we divide by the volume v, and then

consider a sequence of volumes, all enclosing the point P and

shrinking down on this point. Then it is easy to see that

I dv 
lim !. I o*fi,v : i lr,r,

ly r  TA:  y+o v"

6.Lt7.

6.118.

6.119. 0 :  or , r i

6.L20.

Following this portion of the fluid, we have

T,-- [o,nd's: Ia" 'd 'v '

evaluated at the point P. We define this limit to be the expan-

sion of the fluid at ttre point P. Denoting it by 0, we have

in vector language, this is the divergence of the velocity vector.

No logical contradiction is implied by choosing the velocity

a, and,the density p as arbitrary functions of position and time'

But such arbitrary choice will, in general, violate a basic phy-

sical principle-flte conservation of rnoss. It is, in fact, a basic

hypoihesis of Newtonian mechanics that the mass of any

system is constant, provided the system is always composed

of the same particles. (It relativity, the conservation of mass

is abandott"d-hence the source of atomic energy.)

Let us now investigate the connection between velocity and

density arising from the conservation of mass. The mass of a

fluid eiement is pd,V. As the fluid moves' the volume iIV may

change, but the mass pd,V does not. Let us write for the

volume of a portion of the fluid

r  f I  ___
r l  -  lav:  l -^&v.

J  J P

#:l#,(!o)*,,6.12L.
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the derivatives being comoving derivatives. Dividing by v
and letting the volume shrink to r.ero as in 6.11g, we get

6.122.  o-  r : -  I ry  d / l \: 
iy, vA : P dt$/

But

6 .123 .  g / t \  rdp
d,\ ; ) :  -7 

a,
and hence G.LZZ may be written

6.124. 
dP
V+ PA =B  0 .

This is the eEwti,on of conserlation oJ mass. traditionally called
the eEwtion of continuity. By virtue of 6.119, it can also be
written in the following forms:

6. l2fua. 
f i  *  plur,r :O,

6.L25D. 
00

' 
'to' 

; + (P"')": o'

I The above equations are easily transformed to curvilinear

| _.::rdinates by the usual process of guessing and verifying.

I W" have

| 6.126. 0 : v, 1r,

| 
6 .127a. 

d'p

' 
'^' a + FU'1': o'

l 0 o

| 
6.tz7b. 

; + (ou,) 1, : 0.

Exerei,se. Write out 6.126 and 6.r2zb explicitly for spherical
polar coordinates.

The wtic,ity tensor at a point in a fluid is defined as

6.t28. cDrt : t(v",r- or,r)
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6.133.

or

6.134.
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for rectangular Cartesian coordinates. Obviously' it is skew'

symmetric (ar"': - r,rr"). We can at once transform 6'128 to

curvilinear coordinates by replacing the comma by a stroke.

However, it follows from 2.521that, for any covariant vector |/,

6.129. V t l r -  V r l c :  V u r -  V r , r .

Therefore 6.128, as written, represents the vorticity tensor in

curvilinear coordinates as well as in rectangular Cartesian

coordinates.
For rectangular Cartesian coordinates, the vart'i'c'dty sector is

defined as

6.130.
so that, explicitlY,

@r: *Grmn(Dmnt

6.131. 2u1: og,2- o2,g, 2ct2: g1,8- i l8,tr  Zus: oz,L- 7)r,2.

The right-hand side of 6.130 is an oriented Cartesian vector
(cf. 4.3). To transform to curvilinear coordinates, we must
investigate the tensor character of the permutation symbol
er*n for general transformations.

The Jacobian of a transformation from coordinates r to

coordinates r' may be written

6.L32.

If we interchange two of the numerical suffixes, eY 1 and 2, we

change the sign of the expression on the right, without alter-
ing its absolute value. If we permute 123 into u,vntt, the effect
is the same as multiplication by ,*n., or, if we prefer to write
it so, Gtuo.. Thus

0x'0x^ i lxn
JCorr: Grm*ffu-6*tn{*,

Ar' iltc^ ilxn
Gt ur-: J-rer^" ,rrc;;{to-6*t u .

If the Jacobian is unity, this becomes the usual transformation
for a covariant tensor of the third order. In general, a set of

I axo I a*' o*^ otcn
J - ' lul" l= 

"*n o*"a",r7r '
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quantities transforming as in 6.134 are said to be the com-
ponents of. a relnti,ae tensor of the third order ol wei,ght -1. If
-fP occurred instead of J-1, we would say that the weight
was P.*

Exercise. I{ ctmn is defined in precisely the same way a.s Gy*n,
prove that

6.135.
a$tu ilx'o 0x''

-luow - T-tmnc - J" 
ox' ox^ oxn '

| | o*^ oxn
ol"l: lo^"-o{,Tr,,

so that e'^n is a relative tensor of weight +1.

Now consider the transformation of the determinant o of
the metric tensor. We have

6.136. a' :

oxo I
U'"1'

by the rule for the multiplication of determinants. Hence

6.137. a': .Pa,

so that o is a relathte imtar'i,ant of wei,ght 2.
To avoid complications, let us think only of transforrn?-

tions for which the Jacobian is positive. Then we have

6'138' \E : J\/;'

so that l/i l,t o rel,othte imar'innt of weight L.
Combining 6.138 with 6.134, we get

6.139. ,'ur.{o' : 7e,^ 1/a) 
gq-a{ 

!":,-'
otc'r a*'o 0*''

Hence ,r*n\/i is a tensor (not relativ*we may call it absolute
for emphasis), covariant and of the third order.

Etcercise. Prove that ,'^"11/i is an (absolute) contravariant
tensor of the third order.

*For the general theory of relative tensors, see 7.1 atd'7.2.

:lo**l l#l
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We are now ready to write 6.130 in curvilinear coordinates.
Tentatively, we put

6.140. (0, : 
ffic?mntDq1n.

Clearly, this is an (absolute) contravariant vector. If we take
rectangular Cartesian coordinates, we have a : Lrand so 6.140
reduces to 6.130. Therefore, in view of its tensor character,
6.140 is the contravariant transform of 6.130 in curvilinear
coordinates.

A fluid motion is said to be irrotational if. there exists an
invariant function f such that

6.141. Ur:  -  Q, r

This equation is unchanged in form if
we pass to curvilinear coordinates. It is
evident from 6.128 that (drs: 0 for an
irrotational motion; &,r: 0 also.

n r p d S

So far we have considered only the Ftc. 17. Pressure in a
kinematics of a fluid. Let us now discuss 

perfect fluid'

the internal forces. We shall here consider only perfect fluid.s.
A perfect fluid is defined as one in which the force trans-

mitted across any plane element is perpendicular to that ele-
ment (Fig. 17). The force per unit area is called the pressure,
and will be denoted by P. This definition does not in itself
imply that, if two plane elements with different normals are
taken at a point, the value of p is the same for both of them.
However, the application of Newton's law of motion (mass times
acceleration equals force) to a small tetrahedron of fluid does in
fact establish the fact that the value of the pressure at a point
is independent of the element across which it is measured.*
Thus the force across an element of areadS and unit normal n,
is the vector nrp ilS in rectangular Cartesian coordinates, where
p is a function of position only.

rsir H. Lamb, Hydrd.ynonhs, Cambidge, 1932, p. 2.
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In addition to the pressure, there may be present a bod,y
force, such as gravity. 

'We 
shall denote by X, the body force

per unit mass, so that the body force on an element of volume
iIV is X, pdv.

To determine the equations of motion of a fluid, we have
available the principle of linear momentum, which states that
for any system of particles the rate of change of linear mo-
mentum is equal to the total external force. For our system,
let us take the fluid contained in a surface S which moves with
the fluid. Its linear momentum is lpt,ilV. To the total
external force, the body forces contribute t pXril,V. The pres-
sures across plane elements in the fluid give internal, not
external, forces. It is only the pressure across the bounding
surface S that gives acontribution to the total external force.
That contribution is - [po, dS, the minus sign occurring be-
cause we are using n, to denote the outward unit normal to
the surface S.

Combining these expressions, the principle of linear mo-
mentum grves

6.L42.

We bring the differentiation under the sign of integration,
remembering that pdv is constant on account of the conser-
vation of mass; at the same time we transform the surface
integral by Green's theorem, and so obtain

*,1 *, d'v: I ,*, dv- Joo, o''

I ofuo, d,v : I ex,a, - I p,d,v.

K'#-Px,*P,,)ou:0.

, *  -  px , *  P , , :0 ,

6.L43.

Combining the integrals into a single integral, we get

6.t44.

Since this integral vanishes for a)ery volume taken in the fluid,
the integrand must vanish, and so we get

6.145.
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or

6.146.

6.150.

EqurtroNs or MotroN

&t,

E + oct)r,c:, Xr- p-r',r.

z0t

These arc the general, eEuat'i,ons of moti'on of a perfect flu'id. in
rectangul,or Cartes'ian coordinates. In curvilinear coordinates
they read

6.!47. ff + ssvrt,- X,- p-rp,r,

in covariant form.

Etcercise. Write down the contravariant form of. 6.147.

In the case of irrotational motion (which is by far the most
important type of motion in the applications of hydrody-
namics) we have, by 6.141 and 6.146, in rectangular Cartesian
coordinates,

6.148.
a

- 
at(d,') * Q,r6,rt: Xr- P-tP,r.

It is generally assumed that the density p is a function of the
pressure f. (The case p : const. is a special case of this.)
Then, if we define

6.149. P -Try,
P is a function of P, and so (through f) a function of the co-
ordinates. Hence

dP
P*: d,pP,r: P-rP,r

Let us also assume that the body forces X, are conservative
and can be derived from a potential U such that

6.151. Xr :  -U,r .

Then 6.148 may be written

6.rsz. (-# *te,"6,"* P + u)," :  o,
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so that the quantity in parenthesis is independent of the co-
ordinates. It can be a function of the time r only; so we write

a6-u+b i l , ,o , r *P+U:  F ( t ) .

This is the integral, of Bernoul,k for irrotational, motion. This
form holds only for rectangular Cartesian coordinates; for
curvilinear coordinates we have

-Uur*  L2otung,m6**  P + u  :  F( t ) .

The simplest and most important type of fluid motion is
that in which the density is constdnt (homogeneous incom-
pressible fluid). For irrotational motion of this type, the
equation of conservation of mass 6.125b becomes

6.155. Q , n :  0

for rectangular Cartesian coordinates; in curvilinear coor-
dinates it reads

6.153.

6.154.

6.156.

Written explicitly,

a ^ o f l m n : 0 '

6.155 is Laplace's equation

a26 a26 a26'  - : 0 ,dr?-  azf ,T oz,

and 6.156 is the transformation of this equation to curvilinear
coordinates. However, the second-order covafiant derivative
in this expression is sometimes tedious to compute, and 6.156 is
more conveniently written

6.157.  ( {aa^"0,m),n:0.

Exercise. Verify by means of 3.204that 6.157 and 6.156 are
the same equation.

6.2. Elasticity. The theory of elasticity involves the
concepts of, strain and stress in an elastic solid. The theory of
strain belongs to geometry; it consists of a systematic mathe-
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matical description of the deformations which can occur in a
continuous medium. The theory of stress involves a study
of the internal reactions which can occur in a continuous
medium. We shall start by considering strain and stress
separately, and later link them together by Hooke's law.

Consider a continuous medium, consisting of particles
which retain their identities. First, the medium is at rest in
what we shall call the unstrained state. Using rectangular
Cartesian coordinates z, we shall suppose that the particle
situated at the point z, receives a displacement ur(z), the
notation indicating that each particle receives a displacement
which is a function of its coordinates. If the functions u,(z)
are constants, the whole medium is translated without defor-
mation. For other special choices of these functions, the
displacement of the medium may be that of a rigid body. But,
in general, for arbitrary displacements u,(s), the medium will
be deformed, or strained.

It is characteristic of a rigid body displacement that the
distance between any two particles remains unchanged by the
displacement. It is therefore natural that we should analyse
a strain in terms of the changes in length of the lines joining
particles. Consider two particles with coordinates 2", z|in the
unstrained state. After strain, their coordinates are respec-
tively

zr* ur(z), z!, * ur(z').
Let Lo be the distance between the particles in the unstrained
state and Lr the distance between them after strain. Then
the etctension e of the line joining the particles is defined to be

6.zAL. e : (Lr - Lo)/Lo,
i.e., the increase in length per unit length. Let us now see how
the extension is to be evaluated.

We have

6.202. L'o: @| - zr)(z!, - zr),

L1 : lr ',- s,* u,(z') - u,(z)lt i- z,* u,(z') - u,(z)j,
and hence

203
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6,209. Li- L'o: Z(zi- z,)lu,(/) - u,(s)l

rt is crear that we courd o"n "+ol1'.x]*#;1,J#ll.;,:1i]1f.or e. But it would be very complicated. Let us rather in-
vestigate the extensions of infinitesimal elements drawn from
the point ar. To do this, we keep s, fixed, and allow z!, to ap-
proach it along a curye, the unit tangent vector to this curve
at s, being denoted by Ir. Since, in this pro@ss, zi - z, be-
comes small, we have approximately

L?-

6.204. u,(d)- u,(z) : (sL- z,) u,,, (z),
and so 6.204 gives approximately

6.205. L?- L?o:24,,r(z)(zi- z,)(s',- z")
* (s', - z ) @!t - zt)0r7. g(z)ur,g(z).

But gl- zr: Ls\,, approximately. So, dividing 0.20b bV Li
and letting u!, approach a, along the curve, *" get after a
change of suffixes,

T z  7 2

6.206. lirn "fi! : Zu,r,"(z)rrr, * to-*(z)a-,"(a) )rrr..

But even this has not given us the desired value of 6.201.
To get a simple expression for the extension it is necessary

to introduce a limitation on the character of the strain. we
shall consider only smoll, stra,i,ns, a small strain being one in
which the derivatives ut,s atre small. Then the last term on
the right-hand side of 6.206 is small of the second order, and
will be dropped. Moreover, we have identically

6.207.

on account of the smallness of the strain, the left-hand side of
6.206 is small because the right-hand side is small. Hence the
limit of the term on the left of 0.202 is small. Since (Lt* Li /Lo
Is greater than unity, it follows that the limit of (Zr - Lo) /Lo
Is small, and 6.207 gives approximately

h - L ? o  L t * L o  L r - L o

T: L,  
.  

L ,
( ,  +  z r - zo \  L r -Lo
\  L O l  L O
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6.212.
where

6.213.

Srnarx Tbxson

e : 6rrltl',

an  :  t@r t " *  u r t ) .

205

6.208. n^L+f\: 2 rm Li:' : 2e,
a being the extension of the element in question, i.e. the element
at zr pointing in the direction )tr. Combining this result with
6.906, we have

6.209. e - ar,r(s)trtlr.

We now define the componmts of stradn errby

6.210. ctc- t(ur,* tJs.).

It is obvious that these are the components of a Cartesian
tensor. Equation 6.209 for the extension e may be written

6.211. e : ,t"IrI".

Thus, if the tensor errisgiven as a function of position through-
out the medium, the extension of every element is determined.
But it must be remembered that 6.2L1is valid only for small
strain.

E*orcdse. Show that a small strain is a rigid body displace-
ment if, and only if., er, - 0. In the c:rse of finite strain,
dedue from 6.206 the conditions which must be satisfied by
the partial derivatives of the displacement in order that it
may be a rigtd body displacement.

If we use curvilinear coordinates s", the extension of an
element with direction determined by a unit vector )r' is (for
small strain)

This statement is verified at once from the invariant character
of 6.212.

In future it will be understood that the strain is small in
every @se.

Stress is a generalization of the concept of pressure intro-
duced in 6.1. We consider the force transmitted across a plane
element dS, but no longer insist that tlre forae shall be per-
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We shall next see how
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pendicular to the element. These ideas apply both to an
elastic solid and to a viscous fluid.

Let us use rectangular Cartesian coordinates a". Let nrbe
the direction cosines of the normal to the element dS, and
T, dS the force across the element. (We naturally take the
force proportional to the area dS.) We call I, the stress across
the plane element, so that stress is force per unit area. In
general, I, is a function of the coordinates z, which determine
the position of the element dS, as well as of the direction
cosines z, which determine the direction of the element. We
may indicate this dependence by writing

Tr: Fr(2, n).

this function involves the direction
cosines.

Frc. 18. Analysis of stress.

Consider any point A in the
medium and a plane P passing
through /. Take three mutually
perpendicular planes, P', P" , P"' ,
cutting the plane P in a triangle
containing .24. (FiS. 18), so that a
tetrahedron is formed with L situ-
ated in one of its faces. Let the
direction cosine of the normals to
P, P" P",.P""alldrawn outwards
from the tetrahedron be n, n'r, n'r',

n'rt', respctively. The areas, S, S', S', S"' of the faces of
the tetrahedron are easily seen to be connected by the relations

6.2L5. S': -Sa"n'r, S" - -9n"tu!', S"': - SnrnL".

Let us suppose that the medium is subject to a body force
such as gravity, the force on a volume iIV being X, dV. Now
the rate of change of the linear momentum of the material
contained in the tetrahedron is equal to the total external
force acting on it. Therefore

6.216.

dM,

; : Ixd,v + [r,as + frlds' + [r','ds" + tT1,,ds',, ,
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where M,is the total linear momentum of the tetrahedron and
the surface integrals are taken over the several faces of the
tetrahedron.

Let us now make the tetrahedron contract towards A by a
uniform contraction. This means that the directions of all
four planes are maintained, and the relations 6.215 remain
unchanged. Let a denote the longest edge of the tetrahedron
in this process of contraction. Then, clearly, since the volume
of the tetrahedron is less than o8,

6.217. :,xl * # - o, l,g * Ix,av :0,
and so by 6.216

L
6.218. lim :(lrds + [rps' + {Tl'ds" + [r:!'d,s,,,) :0.

o + o a ' - -
Assuming the function F, of. 6.214 to be continuous in a, the
value of the above limit will not be changed if we replace the
integrands by constants as follows:

6.2L9. Tr+ Fr(z, n), T!+ Fr(2, rr'), Tl'+ Fr(2, n"),
Tl"+ F,(2, n"'),

where a stands for the coordinates of ,4.. It then follows that
6.218 may be written

6.220. lFr(2, n) - F,(2, n')nrn', - Fr(2, n")n,n'r'
- Fr(2, n"')non'r"l lim (S/a') : 0.

c*o

But lim S/a'is not zero, and so
a)o

6.22L. Fr(2, n) : Er"(z)nr,

where

6.222. Err: Fr(2, n')n', * Fr(z, n")nto' * Fr(2, n"')n'r".

We note that E"o is independent of the direction cosirrecs flt.
We may write 6.22L equivalently in the form

Tr: Errfl".
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Since I" and %" are Cartesian vectors, it follows that Er" is a
Cartesian tensor; we call it the stress tensor. Equation 6.22g
gives the stress across every plane element in the medium if
Er" is given as a function of position. so far there is no evi-
dence that E* is symmetric, but we shall see later that it is.

Etcercise. Show that the stress across a plane zr: const. has
components .Err, Ezr, Est What are the components across
planes 8z: Coost. and za: CoDst.?

The concept of stress which we have just developed applies
to any continuous medium, solid or fluid. We shall now find
the equations of motion for a continuous medium by applying
to a portion of it the principle of linear momentum. We have
already done this for a perfect fluid, starting with 6,!42 and
ending with 6.145 or 6.146. To generalize 6.142 to the case
of a general medium, we have merely to replace the last in-
tegral on the right by an expression for the total force due to
stress across the bounding surface of the portion of the medium
under consideration. The appropriate expression is

6.224. ! r, as -- ! E,,nds,
by 6.223, the integral being taken over the bounding surface
and n, denoting the unit normal to this surface, drawn out-
ward. Using Green's theorem to replace this surface integral
by a volume integral we easily obtain the generalization of
6.145 in the form

6.225. pfr: pXr* Er",r,
where /, denotes the acceleration of a particle. These are the
equations of motion of a ctntinuous md,ium. The eq,ntions of
eEu,ikbrium ore obtai,nd, by putting_fr: 0.

We shall now establish the symmetry of the tensor E," by
means of the principle of angular momentum, which states that
the rate of change of angular momentum of any system about
a fixed point is equal to the moment of external forces acting
on the system about that point. As fixed point let us take the
origin z7- 0. The angular momentum for a rigtd body was
given in 5.827; actually that expression holds for any system
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of particles, rigid or not, and the appropriate expression for
a continuous medium is

6.226. hrr: Ip@ro, - zrvr) dV,

and the moment of external forces is

6.227. M,,: Ip@, X" - z,X,) dV + !12,7,- z"T,) dS.
The principle of angular momentum then gives

6.228. ! n-- =
dth" 

: M'"'

This yields, by 6.223,

6.229. Ip@,f"- zqf,) d,V : I pk,X"- z,X,) dV
+ ,f (zrEr^- srEr*)n^d'5.

By Green's theorem

6.230. ! (rrE"*- s"Er-)n*ilS - ! (rrE"^,^- z"Er^,^) dV
* I(a",- 8,") itv.

When this is substituted in 6.229, all the integrals cancel out
on account of 6.225, except one, and we are left with

6.291. I(ar,- 8,") dv : o.
Since this holds for every volume, we deduce that

6.232. Err: Err.

Thus the symmetry of the stress tensor is established.
Having dealt separately with strain and stress, we shall

now connect them, and so establish the theory of elasticity.
The basic assumption is the gmeral,iznd, Hooke's law, which
states that stress is a linear homogeneous function of strain.
This means that there exists a stress-strain equation of the form

6.233. Err: cTgnvtanv.

In the case of a heterogeneous body, with elastic properties
varying from point to point, the coefficients will be functions
of position; we shall consider here only homogeneous bodies,
for which the coefficients are constants.
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since amn: en^, there is obviously no loss of generatity in
taking

6.234. crsmn: crtnm.

N{oreover, since Er" : -8"r, we must have

6.235. Ctemn: CErmn.

By applying the tests for tensor character, 1.6, it is easily seen
that crsmn are the components of a Cartesian tensor; we shall
call it the first elasti,city tensor. on account of 6.zg4and 6.28b,
the number of independent components is 30.

By appeal to thermodynamic arguments, into which we
shall not enter here, it can be shown that

6.236. Cramm: Cmnrst

in the limiting cases of isothermal and adiabatic states. This
relation reduces the number of independent components of the
elasticity tensor to 2L, This is generally accepted as the
maximum number of independent coefficients.

Exercise. Show that if 6.233 is solved for strain, so as to read

6.237. arc: Crr*nE^n,

then the symmetry conditions 6.234, 6.235 and 6.23G imply
similar conditions on Crr^n. $he tensor Crr*n is the second
elasticity tensor.)

The simplest type of body is isotropi,c. This word implies
that all systems of rectangular Cartesian coordinates are equi-
valent as far as the description of elastic properties is con-
cerned. But the elastic properties of a body are completely
described by the elasticity tensor cramnt and so this tensor must
have the same components for all sets of axes of coordinates.
Thus, under the orthogonal transformation

6.238. zr: AuzL, (Ar*A,r^: 0r"),

the general transformation

6.239. C'r"*n: CpquoAro ArA^u Ann

must reduce to
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6.240. C|"*n: Crcmn.

We have already met a tensor that transforms identically like
this-the Kronecker delta Dr,. This suggests that the elas-
ticity tensor must be built up out of Kronecker deltas. It can
in fact be shown that this is the case.* But we shall content
ourselves here by building up a tensor which satisfies 6.240
and the symmetry conditions, without proving that it is the
most general possible.

The most general tensor of the fourth order that we can
construct from the Kronecker delta is

6.24L. crcmn: tro"u0-n* p6r*dr"* v6rn6r^,

where tr, lr, vareinvariants. Since 6Lq: 6eq,6.240 is satisfied.
On account of 6.234, we have

6,242. F6r^6on* v6rn6"^: F6rn6r^* v6r*6"n,

or

6.243. (p - v)(6r*6"o-6"o0"-) : 0,

so that F : t,r and 6.241 becomes

6.244. crtmn: trd""d-n* p(6r*6"rr* d'n6r-).

The other symmetry conditions 6.235 and 6.236 are auto-
matically satisfied. We accept 6.244 as the el,asticity tensor of
an isotropi,cboily; it contains just two elastic constants, X and p.

Substitufing 6.244, we obtain from 6.233, as stress-strain
equation for an isotropic body,

6.245. Era: tr6r"0 * 2parr,

where

6.246. 0 : anni

0 is called the expansion or d,ilntation.
It is easy to solve 6.245 for strain in terms of stress. The

result is usually written in the form

iH. Jeffreys, Cartes'ia,n Tensols, Cambridge, Cambridge Universitl,
Press, 1931, p. 66.
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6.247.

Eusrrcrry

L
are: 

A I 
(t * o)Err- o6,rEnnl ,

where the constants are given by

6.248. B -
p(3I * 2p) I

I * p  ' 2 ( I  *  p ) '
or, written the other way round,

6.249.

Specific names are given to these constants:
E is Young's modulus,
o is Poisson's ratio,
I is Lam6's constant,
p is the rigidity.

If we substitute from 6.245 in 6.225, and use 0.210, we
obtain the equations of motion of an elastic body in the form

6.250. pf,: pX,* (I + p)0,,+ pM,,

where A is the Laplacian differential operator. On account of
the assumed smallness of the displacement, we may write /r:
02u,f 0P, Then 6.250 gives a set of three partial differential
equations for three quantitiesl u7.

Exercise. Deduce from 6.250 that if an isotropic elastic body
is in equilibrium under no body forces, then the expansion 0
is a harmonic function (ae : O).

Let us now translate our results from rectangular Cartesian
coordinates a, to curvilinear coordinates *'. This is easy to
do by guessing, and the verification is immediate in each case.

From 6.223 we have

6.251. Tr: Er"tlt, f - E'"ns.

The equations of motion 6.225 read, in contravariant form,

6.252. pf : pX'+ E" 1 ,,
or, in covariant form,

oEE\ -A:(1  
+r ) (1  -2r " ) t  F : i ( [q5 '
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6.253.

where 4| is the mixed stress tensor. The symmetry property

6.232is invariant under general transformations of coordinates,

and so it holds for curvilinear coordinates since it holds for

rectangular Cartesians. On account of this symmetry, we can

write .$ instea d of, F;', since 4' : 4r, so that there is no

risk of confusion in omitting the dot.

Hooke's law 6.233 reads in covariant form

6.254. En : Cr"**C*o,

the coefficients being the covariant components of the first

elasticity tensor. The symmetry relations 6.234,6.235, and

6.236 hold for curvilinear coordinates. The isotropic stress-

strain relation 6.245 reads, in covariant form,

6.255. Err- )wrr'? * ZWr",

where o'" is the metric tensor and

6.256. 0 : omoe^n

Exac,ise. Express the equations of motion 6.250 in curvi-

linear coordinates.

6.3. Electromagnetic radiation. We shall consider only

electromagRetic fields in vacuo. This means that we omit the

application of tensors toelectromagnetic circuits and machines,

and to the propagation of electromagnetic waves through

material media. However, for most practical purposes, air

may be regarded as a vacuum, and so our theory applies to

the ordinary propagation through air of radio waves' radar

waves, heat waves' light waves' and X-rays.
An electromagnetic field in vacuo is characterized by two

vectors, an eledr,ic uectof and a magnet'ic t)ectof . For the pre-

sent we shall use rectangular Cartesian coordinates sr; the

electric vector wilt be denoted by E, and the magnetic vector

by H,. In any given field, the values of the components E'

and H, depend on the choice of units in which they are mea-

sured. We shall use Heaviside or rational units, which are

most convenient for our PurPoses.
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The basic hypothesis from which we start consists of a set
of partial differential equations, Mamtell,'s equations. For right-
handed axes, these read

L AE, L oH,
6'301' 

;  at 
:  G74nH6,'1v, t i :  -  Gr^nEn.*,

6.302. Eo,n: 0, H*,n: Q.

The constant c is a universal constant; if the units of length
and time are the centimeter and the second, its numerical value
isapproximate ly  c :3 X 1010.

There are six equations in 0.301 and two in 6.802. The
equations 6.302 cannot be deduced from 0.401, but they are
connected with them. If we differentiate 6.801 with respect
to z, and note that

6.303. er^nlIn,*, : 0, er*nEn,^ : 0,
on account of the skew-symmetry of the permutation symbols,
we obtain

6.304. 
a a
AtEr , r :  

0 ,  
TtHr , r -  

0 .

Thus 6.301 tells us that Er,, and Hr,, are independent of t,
This conclusion is consistent with 0.302. This interlocking of
6.301 with 6.302 enables us to obtain solutions of what at first
sight appears to be an overdetermined problem-namely, to
find six quantities satisfying eight equations.

If we differentiate the first of 6.301 with respect to l, and
then use the second equation, we get, with the aid of. 4.829,

. 102E, o oHn
6.305. 

; At, 
: er^" 

Az^;

d
:  -  cGrmnTr^GnroEo,o )

:  -  c (6ro6rnq-  6rq6e^)  Eq,p^

:  - c E ^ , ^ r *  c E r , * .
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The first term on
6.302, and so

6.306.

Similarly,

6.307.

Weve EgulrroN

the right-hand side vanishes on

I ozE, n
A a t ,  

-E"^ :$ '
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account of

L AzH,

c2 aP

This form of partial differential equation is called the wave

equation. Thus the el,ectr'i,c anil mognetic oectols sotisfy the wave

equation.

Etcercise. Verify that Er: 8r, Hr: 0 satisfy the wave equa-

tions, but not Maxwell's equations.

It will be noted that Maxwell's equations 6.301 and 6.302

are linear homogeneous partial differential equations. This is

an extremely important property, since it enables us to super-

impose solutions. If (E$r), H$r>) satisfy Maxwell'sequations,

"tti 
if (EQ,), H(?\ satisfy Maxwell's equations, then the field

given by
E,: a9'+ E(?, H,: g$) a gQ,)

also satisfies Maxwell's equations. Further, if (Ar1l , H9))

satisfy Maxwell's equations, then so also do

Er: k4qr), Hr: kU$r',

where k is any constant.
This technique of superposition is useful in connection with

complex solutions of Maxwell's equations. Physically, we are

interested only in real electromagnetic vectors. However, if

(E, H,) is a complex field satisfying Maxwelfs equations, it

is clear that the complex conjugate field (E, Hr) also satisfies

the equations. Hence, the real field

C : +(8,+E), ri : +(n,+ n,)
satisfies Maxwell's equations.

We shatl now study complex solutions of Maxwell's equa-

tions of the form
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6.309.

6.309.

6.3L2.,

6.313.

Er,BcrnouacNErrc Raorerron

Er: E9ta, Hr: Ilo)ttt.

Here E(!) and H(o) are complex vectors independent of time
but, in general, functions of position; ,S is given by

s - ' ] rn -  ct t ,
where )t is a real constant and V a real function of position
only; c is the constant occurring in Ma:rwefl's equations 6.801.
Since c has the dimensions of a velocity, )t has the dimensions
of a length.

lince E, and -EI' involve the time through the factor
t-i(2r/\lct only, equations G.804 imply 0.g02. ittur the only
conditions on E$) , I19,, V, \,are imposed by Maxwell's equa-
tions 6.301. Substitution in these equations leads to

6.310. E(9 : ;)r,**I{9,* - er^nJI(P V.^ ,

6.311. H(9' : - d*e,^nE(?),^ * c,^n E(9 V,^.

we now introduce the following approximation. we shall
assume that )\ is small, or, more precisely, that IEl9l. and
\H(2),* are small in comparison with E(9) and H@,) . The omis-
sion of these small terms is the essential step in passing from
physical or electromagnetic optics to geometrical optics. In
the approximation considered, 6.310 and 6.811 read

E(o) : - Grmn r*J Y,^,

HP : c,*n E$ v,^.
We immediately deduce the following relations

6.314. Eyv,r- o, r/9rv': o, Eo)n<o; : o.
Equations 6.312 and 6.313 are algebraic equations, linear and
homogeneous, in E(9) and ^El9). We can eliminate E(9) rnd
fl9) UV substitutirrg from the second equation into the first,
thus:
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6.315. EP) : - Grmne,,',tE9 V,o V,*
: (6116-o- 6rrr6nn)E(o) V,o V,^

: EYv,^v,* - Ey) v,*v,,
: E(9) v,^ v,-.

We immediately obtain Hamilton's famous partial differential

equation of geometrical optics:

6.316. V,*V,m : 1.

From 6.312, we have

ag ar? : GT,n.nGTpqfltg)rlo] V,* V,e
== ntg u9 v,^v,^- H(9 v,n H$ v,^.

By 6.316 and 6.314, this becomes

6.317. nt?n9: rilo)r*r.
It is now easy to verify the following statement: The com'

pl,er fiaW 6.308 sahi'sfi'es Mowel,l.'s eEuat'ions, to the approxi'
mati,m cons'id,erd,, if V, Eg) , H(o), \ are chosen as foll,ows:

(i) 7 is an arbitrary solution of the partial differential
equation 6.316.

(ii) E(9 is arbitrary except for the first equation 6.314.
(iii) .Er{g) is given by 6.313.
(iv) I is an arbitrary small constant.

It remains to verify that 6.312 is satisfied. But, with 6.313
established by (iii), equation 6.312 is equivalent to 6.315; and
this is satisfied by virtue of (i), i.e., by virtue of 6.316.

We have now obtained fields of the form 6.308 which satisfy
Maxwell's equations approximately- when I is small. Let us
examine these fields more closely.

Consider the surfaces I/ : constant, where 7 is a solution
of 6.316. The vector V,^ is normal to V -' constant, and
points in the direction of. V increasing. By virtue of 6.316,
V,^ is a unit nmma,l,. If we proceed along a curve cutting
the surfaces V : constant orthogonally (i.e., having the unit
tangent V.^at each point), we obtain
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6.313.

and

d
6.319. 

; 
V,^: V,^o

Er,gcuouAGNETrc RaorarroN

ds : l/,^d,zm: d,V,

dzn

ds V,mnV,n: (V,nV,n) :  0.
0

1 -z oz^
The first of these equations tells us that two of the surfaces
7 : constant, say v : 7r and ll - vzt cut off equal inter-
cepts on all orthogonal trajectories to the system of surfaces;
the length of each intercept is Vz- Vr. Equation 6.819 shows
that each normal trajectory to the system of surfaces v -
constant is a straight line, since its tangent vector is a constant,
we summariz.e by saying that z: constant is a system of par-
allel surfaces with rectilinear orthogonal trajectories.

By_6.314, the real and imaginary parts of the vectors E(!)
and f/(9) are tangential to the surfaces z: constant. The same
statement obviously applies to E, and Hr.

The equation S : constant, or

6.320. V - ct: constant,
is the equation of a moving surface, and v,-isthe unit normal
to this surface. To find the normal velocity u with which the
surface moves, we follow a moving point which always lies in
the surface and whose velocity is always normal to the surface.
For such a point we have

6.321. vV,r.

But since the point always
6.320

lies on the surface, we have from

dV
dt

and thus, by 6.321 and 6.316,

6.322. I t : c .

The moving surfaces 6.320 are called phase zoaz)es, and we have
just established the fact that phase waaes are propagated. with
normal velocity c, athere c is the constant occurring in Maxwell, s

dz,
dt

dz,: y,,ii c,
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eguations. Since visible light is a type of electromagnetic

ridiation, c is also known as the veloc'i,ty of l,ight in aacuo.

We observe that E, and, H,vary at tlo*iy tt E(9) and II(or)

over a phase wave S:constant. Over a region of this surface

whose linear dimensions are of the order of tr, and for a time

interval of the order of |r,f c, E, and H, ate constants to the

approximation considered. Moreover, to our approximation,

we get the same value again if S is increased by 2t, or any

small multiple of.2r.
It is clear from 6.309 that, at any fixed point in space, S

is changed by 2r if I is changed by an amount\/c. This is

called the periad, r, andthe freguency v is its reciprocal. Hence

6.323. r : \ / c ,  v : c / \ .

Since )t is small, we have on moving a distance )t along the

normal to a phase wave, without changing the value of l, the

following approximate result :

2zr 2r
A S : 1 4 1 , / - ^ l t : 2 r .

Thus, at any instant, wave surfaces of equal ".phase" edS are

separated by a normal distance )t; I is therefore called the

wave-lmgth,
In exploring the nature of the field, the situation is slightly

complicated bt the fact that B(9) and Hf) arc complex vectors.

Ii we multiply 6.3L2 and 6.313 across by t", we get

6.324. Er: -er^nHnV,*, Hr: cr^nEnV,^.

These relations between the complex vectors .E' f/' (involving

twelve real components) can be replaced by relations between

the real vectors

6.s25. El : t (n, + E), 4 : t (H, + FI),

6.g26. Ai: + i, (8, - E), ff: + i (H, - H).
The vectors Ei and I! wifl be taken as the physical' cornponents

of the electromagnetic field. The vectors .ET, I{ also satisfy

Maxwell's equations, and may be regarded as the physical

components of a complementary electromagnetic field.
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If we take the complex conjugates of. 6.824 and add, w€
obtain

6.927. E|: -  rr^rr l tV,m, I i : :  er^nElV,^.
Hence the vectors v,r, E:, r4 form a right-handed ortho-
gonal triad, and we obtain the relation

6.329. E"E" : I4I4
in the same way as we obtained 6.317, Thus, the physical
electric and, mogneti,c vectors are mutual,ly perpend,hul,ar and lie
in the plwse waocs; their magnittrl,es are eEual,. (Fig. lg.)

Fro. 19. Orthogonality relations in electromagnetic radiation.

Erercise. Prove a similar statement for the electric and mag-
netic vectors of the complementary electromagnetic field.

Each of the vectors E(?', fl(9) aennes a pair of fixed direc-
tions at any point in space, but the directions of the physical
vectors Ei, Il are not fixed. It is true that, if we move with
a phase wave, .8, and H* and consequently also .4 and .EI],
are approximately constant for time intervals of the order of
the period r. But if we remain at a fixed point in space, we
have, by 6.308 and 6.309,

0E, zmi,c 0H, Zrh
6.329. T-  

- - i lE, ,  
T:  

- - i l I / , ,

and so

V -  c o n s t .
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tE
6.330. 

at

Por,anrzlttox

_2o, oo 
aE _ _2"t .,.r*-Ton  
a t  

:  -TH t '
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afr Zrc n- H

at r '-'r '
aEt 2rc -*- : - i -

at r 
L'?'

Hence
a'Fl, . /2rc\t-* A azl{ , f Z-*c\z

6.331. -at, +(T)'r; :0, #+ ('; I It 
:0.

Thus the extremities of the vectors d and.Ef,, which lie in the

fixed plane tangent to the surface I/: constant, follow the

Frc.20. Elliptically
polarized wave trav-
6lling up from paper.

behaviour of a particle attracted to a
fixed point by a force proportional to
the distance from that point. It is well
known that the path of such a particle is
an ellipse, and therefore the extremities
of 4 and I4 describe ellipses, thesevec-
tors bein g at all times perpendicular to
one another. We say that the radiation
is etl,iptical'l'y pol,arirnil (Fig. 20).

A case of particular interest is that in
which the vectois .4 and fr have the
same direction, or opposite directions. It
follows from 6.330 that, in this case' the ellipse degenerates

to a straight line, and the vector Ef maintains a fixed direction,

except for reversals which occur twice in each period. The

rr-" is true f.or It, on account of the orthogonality relation.

We speak then of. a pl,ane-pol,orizeil wal)e.

Exercise. What conditions must be imposed on the fixed

complex vectors E(9) and fl9) in order that the wave may be

plane-polarized?

Our discussion of electromagnetic waves has involved an

approximation and is valid only for a small wave-length tr.

There is, however, an important special case for which our

theory is exact. Consider the linear function
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6.332.  V-  atuzm+b,
where am and b are real constants. we immediately have

6.333. V,^ : &mt
and thus 6.316 is equivalent to

6.334. Am (trm : 1.

This means that a^is a unit vector.
Equations 6.312 and 6.318 become

6.335. EQ): - Gr^nH(|)o^, H(9>: 
"r*nEfrra^.

These are algebraic equations with constant coefficients. We
may therefore take Bt|) and H(?) to be constant compler aectors
without giving rise to inconsistencies. But in this case 6.BBb
follows rigorously from 6.308 and from Maxwell's equations
6.301; no approximation is required.

The phase waves are planes orthogonal to the unit vector
a, and they propagate with velocity c in the direction of a,.
we speak of. plnne electromagnetic waves. For plane electro-
magnetic waves our theory is exact for arbitrarily large wave-
length. The vectors .E and H are rigorously constant over a
phase wave and are also constant in time if we move with the
wave.

Let us now return to the general Maxwell equations 6.801
and 6.302. we shall consider some useful types of solution.

Let tL be an invariant and s, a vector, both functions of
position and time. Let us write tentatively

E, :  -Lao '  . t ,
6.336. c at !,r l

H, : Grpqfq.p.

Let us see what conditions must be imposed on {t and, d, in
order that Maxwell's equations may be satisfied.

The second of 6.301 is satisfied automatically, and the first
gives

r 016,
6.337. 

V At,
. 1 0*,,

+ ;  A t : 6 r , ^ - 6 ^ , ^ r .
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The second
gives

6.338.

6.339.

6.340.
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of 6.302 is satisfied automatically, and the first

6^ , - *  9 , ^ * :0 '

-9 , ^ :0 ,

11
c 0 t

\a*
c A t

L a\,
cz 0t2

If, then, we subject r/ and 0, to the partial differential equa-

tions

,# - e,,^*:0,

+ 6^,n : 0,

we have in 6.336 an electromagnetic field which satisfies

Maxwell's equations. The invariant r/ is called the scolar

potentinl and the vector 0, is called the sector potent'ial'.

If we are given an electromagnetic field satisfying Max-

well's equations, it can be shown that functions r/ and d, exist

so that 6.336 are satisfied. It follows that these functions

must satisfy 6.337 and 6.338. It does not follow that they

necessarily satisfy 6.339 and 6.340. However, other functions

{ and, Qr can be found to satisfy 6.336, 6.339, and 6'340' (Cf'

Exercise 16 at end of chaPter.)
There is another useful type of solution in terms of the

Hertz aector fr.r. Let ft" be a vector function of position and

time, and let us write tentativelY

1 02fr,
E r : f I m , ^ r - A 6 ,

6.341.
1 A

Hr: 
i 

rrooTtfro,o.

On substitution in 6.301 and 6.302, we find that these equations

are satisfied provided the Hertz vectof II, satisfies the wave

equation

i# rrl'6111 : o'6.342.



224 Er.rcrnouAcNEflc RapHrroN

It must not of coursa be assumed that any field satisfying
I\{axwell's equations can be represented in the form 6.-841.
However the. Hertz vector enables us to build up a fairly gen-
eral type of solution, to be discussed below.

I,et z, and f, be any two points in space and let R be the
distance between them, so that

6.343. Rl : (zr"- f-)(g-- f-).
I*t k be any constant, and let us write

6.g&, F(2, g) : 
eihR

R '

the notation indicating that we have here a function of the six
coordinates z' fr; but of course these variables are involved
only in the form R. I,et us denote derivatives with respect to
R by primes, and partial derivatives with respect to z, by 

"comma. By 6.343 we have

0.345.

and

R,- :

6.346. D - @^- l*) F'
/ ' t m :  

R

Hence, since im,m: 3, we obtain

2F'
F,mm: F" * 

}-.
6.347.

But, directly from 6.3M,

6.349. p t _

F " :

and so

6.349.
2F'F,,  + ?-:

* )  
, ,0* ,

zdk
I

r c l

- k' ,.'o*
R -

(e
\n
/ k 2

\ -  R *) 
,".,

=! -kzF .
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On substituting this in 6.347 ,we find that F satisfies the partial

differential equation

6.350. F , ^ *kzF :0 .

It witt be recalled that the comma indicates differentiation
with respect to zr. It is very easy to see that the same equa-

tion is aiso satisfied if the comma indicates differentiation with

respect to ft.
Let us define G(s,l,l) bV

1

6.351. G(z, l , t ) :  , - i *aP1r, f ) :  f ie*<a-at 
'

Then

6.352. G,^*: t'horF,^ , # 
: - Pz6tr-ibatP,

and so, by 6.350, G satisfies the partial differential equation

6.353. G,* -it# :0,

which is the wave equation. The function G may be called
the funita;mm,tal, sol,ution of tlrc wave eEuotdon, the constant k
having any value.

We are now in a position to build up a fairly general class
of solutions of Ma:rwell's equations. We shall confine our
attention to fields with a simple harmonic variation in time,
so that the physical electric and magRetic vectors have the
forms

6.354. 
E::24., cos kct * B, sin kct,
II:: C, cos kct * D, sin kct,

where the coefficients are real functions of position and & is a
real constant. This field coffesponds to a complex field of the
form

6.355. Er: Bp)t-i*a', Hr: H$6-rho',

where E(9) and I{o) are complex vector functions of position

only. (The use of the negative form of the exponential is

merely a notational convenience.) When we substitute 6.355

in Maxwell's equations 6.301, we get
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6.356. -dkE(o) : er^n[ff),-, ikII\|, : G,^oE(|),*.
The equations 6.302 are satisfied identically.

Now we know that Maxwell's equations are satisfied by
expressions of the form G.B4l, provided II, satisfies 6.84j.
Hence 6.356 will be satisfied if we put

6.357. Ifr : 11f) t-ibat,

where nt!) is a vector function of position satisfying

6.358. fr(?,-** frzUtf): 0.
By 6.341 the vectors E(9) and rrf) are given in terms of nf) by

6.359.
E(9: tr9,-r* k'n9),
II\o) : -,ik ernofl(f;)p.

Thus we can build a Maxwellian field out of any vector field
satisfying 6.358. By 6.3b0 we know that 6.859 is satisfied by
a vector

6.360.
oihR

tr(g): ar?,
where B, is any constant vector, and R is the distance from
the variable point z, to a fixed point f", ?s in 6.848. But we
can immediately construct a much more general solution of
6.358 by writing

6.361. u(9)(z) : IrrP,(l)F(2, f)dvr

where F(2, (): cth*/R, Pr(r) is an arbitraryvectorfunction of
the coordinates f, and il'vs isthevolumeelementof d,ld.frdlr.
The integration is carried through a volume zs which does
not contain the point a, under consideration. If. z, did tie
inside the volume Vy we would have to consider carefully
the possibility of differentiating under the sign of integration
with respect to zr. However, this is not the case by hypo-
thesis, and differentiation under the sign of integration is per-
missible. It follows that 6.3b8 is satisfied. The corr"rpotrdittg
Maxwellian field is given by 6.8b5, where
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EQ) : IrrP*$) (F,-,* k2F6*,)dvr,

I{9, : -ike,oofnrrolS; F,.eilVs,

where the comma indicates partial differentiation with respect

to z. It will be noted thatthe vector field P"(f) remains com-

pletely arbitrary. It need not even be continuous through-

out tr/3.
It is not essential that the integration be through a volume;

integration over a surface or along a curve would serve equally

well.

Exercise. Show that Maxwell's equations in the form 6.356

are satisfied by

EY :,ikc,no ! r rQo(il 
F,edVg,

HP : Irre*(il (F,-"* k2F6*,) dvr,

where 0"(f) is an arbitrary vector field, and Fis as in 6.344.

So far we have used rectangular Cartesians in discussing

electromagnetic fields. We shall now introduce curvi,lti'near

coorilinates. One method of obtaining Maxwell's equations in

covariant form is bY introducing

6.g64. Irmn: \/A Grmnt n"mn : + ctmn'
! a

We recall from 6.139 that the 4's are absolute tensors, at least

for transformations with positive Jacobian. It is now easy to
guess and verify that Maxwell's equations 6.301 read in tensor

form

L A E '  L O H '
6 .365 .  

; ; :  r ' ^nHnt^ ,  ;  A t  
:  -  n ' *nEn tn ,

and 6.302 read

6.366. Eu I n : 0, Ho 1n : 0.

The stroke indicates covariant differentiation.
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Due to the behaviour of the 7's, Ma:cwell's equations in
the form 6.365 and 0.866 only hold in right-handed turvilinear
coordinate systems; this means that the Jacobian of the trans-
formation to right-handed cartesians must be positive.

However, there is another covariant form of Maxwell's
equations valid in both right- and reft-handed coordinate
systems. For the moment we retain rectangular Cartesian
coordinates. From its usual definition as force on a unit
charge at rest, it follows that E, is a Cartesian vector. Hence,
by 6.301, r/, must be oriented since e"-o is an oriented tensor,
4.3. If we therefore introduce a skew-symmetric magnetic

t ensor by the equations

6.367. Hr* : er*nJIn, H, : $ er^rH^n,

then both E, and Hr*are unoriented. It is easily verified that
Maxwell's equations may be written in the following form:

t aE, I aH,^
6.36g. ; u 

: H'^'^' 
; at 

-- E"*- E^"'

En,n : 0, Hr*,** H*n,, * Hnr,^ : 0.
These equations are equally valid in right- and left-handed
Cartesian coordinates.

Erercise. write out Maxwell's equations in terms of a mag-
netic vector and a skew-symmetric electric tensor.

we have succeeded in getting rid of the permutation sym-
bols in Maxwell's equations for rectangular Cartesians, and
are now in a position to write them in the covariant form, valid
for arbitrary curvilinear coordinates (right- or left-handed):

I aE, t oH,^
6.369. ;  At  

:  a-oHr^tn,  
; ; :  

E, ,^-  E^.r ,c A t
ao*Enlm : 0, Hr*,n* H-** * Hnr,^: 0.

In two of these equations the partial derivatives have been
retained. This is justified since Er,*- E^,, and Hr^* *
H^*,r* IInr,^ are both tensors (cf. Exercises I, No. 8 and
1.707).



$ 6.3

6.370.

Ssacn-TIMp 229

There is a third and most compact form into which

Maxwell's equations can be brought. This entails the intro-

duction of a fourth dimension, but gives the most fundamental

form of Maxwell's equations from the point of view of rela-

tivity.
Introducing Greek suffixes for the range L, 2,3, while re-

serving Latin suffixes for the range L,2,3,4, we may write two

of Maxwell's equations 6.369 in the form

H4,, * Hpyn* Htn,F : 0,

Bo.,.r - 8.7,,* 
#rr' 

- 0.

The coordinates are curvilinear. The dot in En. and "8." is
merely a device to bring into focus the similarity between the
two equations. This similarity suggests the following pro-

cedure: we introduce a fourth coordinate #: ct and the skew-
symmetric quantities F*n, defined by

6.371. Fop: H6, Foq: - Fao: En, Frl :  0.

With respect to transformation of the curvilinear coordinates
tc", it is clear that F"p is a skew-symmetric tensor and F"a
(or Fa.) is a covariant vector. Then the equations 6.370 can
be combined into the single equation

6.372. Fr*,n* F^r,r* Frr,^: 0,

The remaining two of Maxwell's equations can now be
written as follows:

of'H*t, - Ea,l : 0, aqr Ep1l, : 0,

or, equivalently,

6.373. aq'Fotg- Fu,, : 0, oh Fogtr : 0.

The double stroke indicates covariant differentiation with
respect to the 3-metric oop.

I,et us now consider a 4-dimensional manifold, space-time,
in which the four coordinates are !cL, trc2, f, #, where #: et.
Let us adopt in space-time the metric g*o defined by

6.374. g4: aoPt grt: 0, gu: - 1,
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so that the metric form is

6.375. O : g^ndtc^d,$n : a,pd,x"df - (dxn)r, #: ct.
From 6.375 it follows that

6.376. 9 6 : a 6 ,  g o n : 0 ,  g L 4 :  1 .

We have already defined the quantities F-n. We shall under-
stand the symbol Fr*1n to mean

o . g 7 z .  F r m t n : F , * , n - {  1 }  F " * - {  s  
}  F , , .- " " " '  

l rn
which is the formula for the covariant derivative of a tensor in
4-space, the Christoffel symbols being calculated from the g's.
So far the only transformations of coordinates in space-time
have been transformations of the coordinates trr, ecz, f among
themselves, with *4 unchanged. For such transformations
F,^tn has tensor character, as is easily verified (cf. the dis-
cussion of normal coordinate systems in 2.6).

Consider now the equations

6.378. Fr^,n* F^n,r*

g^'F,^ft

The first was established in 6.372. As for the second, the four
equations contained in it are precisely the four equations in
6.373. Equations 6.378 express Maxwell's equations in the
form suitable for the theory of relativity.

Should we wish to use arbitrary coordinates in space-time,
i.e., any functions of 11, fi2, f , #, we have in 6.378 a valid form
for Maxwell's equations provided that the following rule is
observed: under the space-time transformation

6.379. tct?: f (xr, xz, lcs, #) ,

g^n and F^n are to be transformed as covariant tensors. The
fundamental nature of equations 6.378 becomes apparent only
when coordinate transformations of the general type 6.379 are
considered which involve all four coordinates on an equal
footing. These are the transformations of the theory of
relativity.

Fnr,^: 0,
: 0 .
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If rectangular Cartesian coordinates are used in space,
6.375 becomes

6 . 3 8 0 .  O :  ( d x r 1 z + ( d , # ) r * @ * 1 r - @ , # ) r .

The linear transformations of the coordinates in space-time
which preserve the form of this line element are called the
Lorentz transformations. They form the basis of the special
theory of relativity.

Physically, 
" 

Lorentz transformation connects, in general,
the spatial and temporal frames of reference of two observers
moving with uniform velocity relative to each other. The
electromagnetic field is characteriznd for each observer by F*n
which, under a Lorentz transformation, behaves like a four-
dimensional tensor. Since F-,, embodies both the electric
and magnetic fields, these will in general not transform as
separate entities. Physically this means that if, for example,
an observer finds an electric but no magnetic field present, then
a second observer, moving relative to the first, may find both
electric and magnetic fields present. It is obvious that Max-
well's equations preserve their explicit form under Lorentz
transformations. They read as in equation 6.378, with the
simplification that the stroke may be replaced by a comma,
and all the g-" vanish except g11'= gn: gss: -gll: 1.

Etcercise. Show that with homogeneous coordinates a, (zt, zz, za
being rectangular Cartesians in space and 81 : ht : i#)
Maxwell's equations read

Fr^,o* F*n,r* Frr,m: 0, Fr*,^ = 0.

Write out the components of F^o in terms of the real electric
and magnetic vectors, noting which components are real and
which are imaginary.

In the general theory of relativity space-time is a curved
Riemannian 4-space with line element

6.381, O =! g^rd*-d,rn.

231

The coordinate transformations considered are of the generatr
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type 6.379. we can no longer distinguish between an electric
and a magnetic field, even if we restiict ourselves to a ,i"sr"
coordinate system. only the fusion of the electric ."a iig-
netic fields in the tensor F_, has physical significance. The
tensor F-o satisfies Ma:cwell's equations in the covariant form
6.378 in space free of charges.

SUMMARY VI

Hrunoormaurcs
Eulerian description of fluid motion:

or: $r(tc, t).

Equation of continuity:
0p
u + Qw')1,: 0.

Equations of motion of perfect fluid:
0v,
d ,  +  o "o r l r -  X r -p - rp , r .

Vorticity:

&1ru : t (lr,r- or,"), grt : + clmrci-n.
2!a

Irrotatronal flow:
@rr: 0r Or: - 6,r .

Bernoulli's integral for irrotational flow:
00- 
T + t a^nfi,^Q,r* P + U : F(t),

ldb
P  -  l : ,  X , :  -  ( J , r  .

JP

Er,astrcmy
Displacement in elastic medium:

ur(r)
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Extension and strain tensor:

c = cruI?If, ItIr- l,

crr= E (urr* 7t4r).

Stress tensor:
Err: E"r, Tr: Errfl", lltn,": 1.

Equations of motion of continuous medium:

pf :  pX,+ E,p.

Generalized Hooke's law:

Erc: crr^oa*n,

Crctnn: Crtmm: Cctmln: Cmnrr.

Isotropic stress-strain relation :

cremn: \ar0,^n* P(ar*aro* ar*&"*),

Er": lurr"0 * Z9r"r 0:&frnamm.
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Maxwell's equations (Cartesian coordinates) :

! aE, 1 oH,
c At 

:  G7112IIn,6r;T - GrmoEr.,-,

E''n : 0'

Wave equation:

1 02E,,
Er,tom :

c2 aP

Hnrn : 0.

I a2H,
O, V At, Hr,mm: 0'

Electromagnetic waves (small wave-length I):

E,: E(|)eis, H, - H(|)r",S : T (V - a);

V , m V , m :  1  ;

E(9)v,,: Hf'v,,: npnt!: g, B$tatlt- H<ltptgtt
r : \ / c ,  v : c / l r .

Plane waves:
V :  an&^* b,  an&m: 1.
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Electromagnetic potentials :

E, :  - !Qo '  r '- ;  
u  

-  { , r ,  H r -  G rpc f l q ,p i

L 0'0, I 0\l/
V Ot, $r,mm: 0 , V At, {,*m: 0,

LAO
; ;  + 6^,,n:  o.

Hertz vector:

E,: fr , ,1,-,  -  
)  #, H, :  :  r ,r" *[c,p i

1 a2tr,
V At, fr'7'1vn1 : 0'

Fundamental solution:
DihR

I[, - frPe-ih"t, II(9): Ur?.

R2: (z^- l-)(z^- l*).

Maxwell's equations (curvilinear coordinates) :
1

H,^: {ir,^JI", If : 
* 

e?*oH^ni

laa ,  taH
; ; :  

a m i & r n t n , ; T :  8 , , ^ -  E ^ , , ,

anmEn,rr: 0, Hr^,n* H*o,r* Hor,^: 0.

Maxwell's equations in 4-dimensional (space-time) notation :
O : g*rdtc^dacn: agih"itf -(d,f)r, f : ct i
FnB: Hnp, Fnt: - Fb: Eo, Fu: 0 ;
Fr^,o* F^n,r* Fn ,^: 0, g-nFrnln: 0.

EXERCISES VI

1. For a fluid in motion referred to curvilinear coordinates
the kinetic energy of the fluid in any region R is

f - * " [ * F o p t d , V .
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Use the equations of motion 6.147 to show that, if we follow
the particles which compose R, we have

dT

dt 
: -J" Pn,a'd'S + "|"n ePd'V * J^ Pu,x'd'v,

where S is the bounding surface of R, and n, the unit vector
normal to S and drawn outward. Show further that if , instead
of following the particles, we calculate the rate of change of I
for a fixed portion of space, we get the above expression with
the following additional term:

- * J" Pn;)'u"v"d'S'

2. Consider a fluid in which p is a function of P, moving
under a conseryative body force. Show that if the motion is
steady, but not necessarily irrotational, then the following
quantity is constant along each stream line*:

tv$* P + U.
Compare and contrast this result with 6.154.

3. For the general motion of the fluid described in Exercise
2, prove that

d a

A J"s'dx' 
- 0'

where the integral is taken round any closed curve, and d/dt
is the co-moving time derivative.

4. Curves having at each point the direction of the vor-
ticity vector u' are called "vortex lines." Prove that Icsrdx'
has the same value for all closed curves C which lie on the
surface of a tube of vortex lines, and go once round the tube
in the same sense. (Use Stokes' theorem ; cl.. 7.502.)

5. Prove that for the type of fluid described in Exercise 2,
the vorticity tensor satisfies the differential equations

d
ji, ctbe : CtJprr?)ptt- CDpaI)p,r t

*A stream line is a curve which, at each point, has ttre direction of the
velocity vector ur.
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the coordinates being rectangular Cartesians. Write these
equations for curvilinear coordinates.

Deduce from these equations that, if orrr: 0 initially at
some point P in the fluid, tJrese quantities will remain ?ruro
permanently for the particle which was initially at P.

6. By eliminating the three components of displacement
a, from the six equations 6.210, obtain the following Cartesian
equations of compatibility:

Arr,mn* Amr,rc-  Atmrcm- Aatt r tm: Q.

Show that there are only six independent equations here.
Write the equations of compatibility in general tensor form.

7. For rectangular Cartesian coordinates 2", a state of
simple tension is represented by Eu - C (a constant), all the
other components of stress being ?Ero. Find all six covariant
components of stress for spherical polar coordinates r, 0, e.

8. By substitution from 6.247 in the Cartesian equations
of compatibility given in Exercise 6, deduce that in a homo-
geneous isotropic body in equilibrium under body forces X,,
the invariant O : Eonsatisfies the following partial differential
equation' 

,,. - o)o,rr: (1 * a)pxr,r.

9. In a state of plane stress we have Ens: 0, Ess: 0, the
coordinates being Cartesian, and Greek suffixes taking the
values t, 2. Prove that the equations of equilibrium under
no body forces are satisfied if we put

E4 : GnpGFo{,pn,

where r/ is an arbitrary function. Show that this gives

Ett:  *,22, Ep: - 9,n, Ezz: {,r t

10. An isotropic elastic body is in equilibrium under no
body forces. Show that, for rectangular Cartesian coordinates,
the displacement satisfies the partial differential equations

(1 - 2a)Aur* 0,r: 0.
Deduce that 0 is a harmonic function.



Enncrsns VI 237

Show that the above equations are satisfied if we put

ur-9r-# @&,*o), , ,
provided AC : 0, A*r: 0. (Papcovich-Neuber)

11. If, for rectangular Cartesian coordinates art xra is any
symmetric tensor, show that the tensor E-r, defined by

E^n: Gmp$nqeXr.tpq,

is symmetric, and satisfies the equations E-o,,n: 0. (Finzi)
Show that if we choose Xrc: 2r8", thela E^o: -26^o.

12. The determinantal equation lld*, - E^ol : 0 is im-
portant in elasticity because it gives the three principal stresses
at a point. Show that if we introduce the three Cartesian
invariants

A : E**, S - E*oE^o, C = E*rE"pEp,
this cubic equation may be written in the form

rs- /4.)\z+ +(Ar-B) r - (*e' - + AB + + O - 0.
[Hint: Note the Cartesian invarian-ce of this expression, and
use coordinates which make Erc: 0 for r # s.l

13. A plane electromagnetic wa\re in complex form is given,
for rectangular Cartesiars 271 by the formulae

En: Ana6, Es: 0, Ho: -eopApais, Hs: 0,
2n

^g : J (a r -d ) ,

where ,4.. is a constant complex vector, and Greek suffixes take
the values 1, 2. Verify that Manrell's equations are satisfied,
and that the wave is propagated in the positive srdirection.
The wave meets a perfectly conducting wall za- 0, and is
reflected. Given that the condition on such a wall is that the
tangential component of the electric vector for the total fieid
vanishes, show that the reflected wave is given by

EL: -Anois', E's : O, H!: --co#ot*, H{: 0,
2 r -

J [ : - = ( z t+d ) .
A
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14. Taking for the Hertz vector the fundamental solution
of the wave equation 6.342

c-ih(d-R)
Ifr: BrT, R2- Bngmt

where B' is a constant vector, show that, for R much less than
1,, : 2r/&, we have approximately

E,: -#lu**+1,
Hr:  - iker^nBrrrzo+.

Show also that, for R much greater than \, -- 2r/k (wave-
zone), we have approximately

o-ih(d,t-R)

E, : k2 (BrK- B**,)= 
* ,

t-ib(at-R)
H,- -k'er*nBrr , .--p_'

(This is the electromagnetic field of the Hertzian dipole oscil-
lator, which is the simplest model of a radio antenna.)

15. In terms of the magnetic tensor H^n, defined in 6.367,
show that, in curvilinear coordinates in space,

(a) The condition that tr'n be parallel to the magnetic field
is

H^,,S': 0.
(b) The condition that pnlte perpendicular to the magnetic

field is

H*nFr* HorF^* Hr*pn: 0.
(c) The square of the magnitude of the magnetic vector

(IP: II,H') is

Ijp: * H^J:I*t.
16. Show that E, and H, are unchanged if, in equations

6.336, 0r and { arc replaced by

Lev
6'r: 0r+ a,r, t'- {/ - ; Ot,
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where u is an arbitrary function of position and time. (This

transformation of the electromagnetic potentials is called a
gauge transfmmation.) If ?, is any solution of the inhomogen-
eous wave equation

| 02v LAt

A A t ' - o ' m r n : ; O t +  6 ^ ' ^ '

show that, if O, and { satisfy 6.337 and 6.338, then gt, and {'
satisfy equations of the form 6.339 and 6.340.

17. Combining the vector potential 0" (o - 1, 2,3) and the
scalar potential r/ into a single 4-vector rr, given by

Ka: - 
6n, Kt: *t

show that equations 6.336, 6.337, and 6.338, can be written in
the relativistic form

F*n: Km,rt- Kn,mt

g*orc, I  mt- g^ox^l rm: 0,

where F*n is as in 6.371, and gmn as in 6.376. Show further
that equations 6.339 and 6.340 become

g^otcrlmn: 0, g^nx^l ,n : 0.

Show also that the gauge transformation of the preceding
exercise can be written

Ktr :  K7-  1 ) ,7 .

18. Using homogeneous coordinates z" (zr, zr, as being rec-
tangular Cartesians in space and gr: 'ht : ira), and defining

i*o: t ,ronrrFrr,

show that the complete set of Maxwell's equations 6.378 reads

Fr^,n: 0, hr*,^: 0.



CHAPTER VII

RELATIVE TENSORS, IDEAS Or. VOLUME,
GREEN-STOKES TEEOREMS

7.1. Relative tensors, generalized Kronecker delta, per-
mutation symbol. In Chapter r we defined tensors by their
transformation properties. The characteristics to which the
tensor concept owes its importance may be summarized as
follows:

A. The tensor transformation is linear and homogeneous.
Hence if all the components of a tensor vanish in one co-
ordinate system, they vanish in every coordinate system. It
follows that a tensor equation, if true in one system of co-
ordinates, holds in all systems of coordinates.

B. The tensor transformation is transitive.
We shall now study in detail a new set of geometrical

objects which share with tensors both the above properties.
These are the relative tensors which we have already met in 6.1.

As before, w€ denote the Jacobian of the transformation
from coordinates rr to *t'by

7.101. J -
a*l
a"ul'

where the vertical bars denote a determinant. We now define
relative tensors as follows:

A set of Eruntities Tr'. i . are sa,id, to be the conponents of a
relnthte tensor* of weight W, controvar,iant in the supersuipts
r, . . ., and couar,iant in the subscripts, s, . . ., if they tronsform
accord,ing to the equation

tAbuse of language, cf. p. 128.
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7.1o2.

It is understood that we limit ourselves to transformations for
which the Jacobian at the point under consideration is neither
?rlro nor infinite. We shall also assume throughout that the
weight W isan integer, since otherwise Jw isnot single valued.

In accordance with our previous practice, we refer to rela-
tive tensors of orders 1 and 0 as relative vectors and relative
invariants, respectively. To distinguish, where necessary, the
tensors previously considered from relative tensors, we may
refer to the former as absolute tensors, absol,utc vectors, or
absol,utpinvariants. These are, in fact,relative tensorsof weight
0. Relative tensors of weight I are also known as tensor
ilmsities.

Exercise. If, br" is an absolute covariant tensor, show that the
determinant lD,rl ir a relative invariant of weight 2. What are
the tensor characters of lc'"1 ana l1!l I

It follows immediately from 7.L02 that property A, stated
above, holds for relative tensors. In the case of an equation
in relative tensors the two sides must be of the same weight.

Property B follows from the transitivity of the tensor trans-
formation and from what we may term the "transitivity of the
Jacobian." If. r', str, sttr are tlrree systems of coordinates, we
have

7.103. iltc' 0x' iltc'^: -
a$rrs ad^ 6*tta'

Hence, by the rule for multiplying determinants

Rsr,lrrvs Tnxsons

T" r i l : : JwP " ' o ' c "  o t c r
t t . . .  

f i n . , ' #  
o . .  .

la" ' l
l - l  :

I a*""1
ox' | | o*'"
a.^l ' la*

241

7.1o4.

This establishes the "transitivity of tJre Jacobian."
Two relative tensors of the same order, type, and weight

may be added, the sum being a relative tensor of the same
werght. Any two relative tensors may be multiplied, the
weight of the product being the sum of the weights of the
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factors. The process of contraction may be applied to a rela-
tive tensor and does not change the weight. All these results
follow from 7.102 by using arguments quite analogous to those
given in Chapter I for the case of absolute tensors.

we now introduce a set of numerical tensors, the generalizd,
Kronecker ileltas. In a space of .lV dimensions, we define (for
any positive integer l,f)z

7.105. Ofl t ::::X : +1 if k1, . . . , kM are distinct in-
tegers selected from the range
L, 2r. . . , JV, and if sr, . . . , su
is an saefl Wrmutation of. kr,

:  -1  i f  k1r . . . rk6 are d is t inct  in-
tegers selected from the range
l r  2 ,  . .  . ,  t r f ,  and  i f  s1 , . . . ,  . i 14 is
an odd, permutation of k1, . . . ,
hy.

0 i f  any two of k1r.. .  sky are-
equal, or if any two of sr, . . . ,
sy &r€ equal, or if the set of
numbers k1r . . . ,  ku d i f fers ,
apart from order, from the set
S 1 1 . . . 1 5 7 4 .

We immediately notice that for S! this definition agrees with
that given in 1.207. If. M )ff, /V being the dimension of our
space, then

of ;:; 3; : o,
since kr, . . . , kM cannot all be different.

Erercisc. Show that, in three
vanishing components of Olj 

"t"

the only ror-

fr| : a?7 : o$l : ol3 : ;;l| : 63!, : L,
o?l :033 : dll : ol? : 6L? : 6'rL : -1 .
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Exercise. Show that equations 5.231 and 6.128 can be written
as follows:

Mr, : # ,oFr,

e ) r e :  4 S ! a r , * .

To establish the tensor character of the generalized
Kronecker delta, letAr,yh', Aplo',..., A(arh* be M arbitrary
contravariant vectors. Then

o3l : : :!f .4(r)"' . . . A(a)'"
is a sum oL Mt outer products of these vectors, viz.,

A$rh'Aorh'A$)b' . .. A(arh* - A6rh'AorhtA(r)F'. .. A(Mrh'+ . . . .

This sum has the tensor character of, Th'' ' ' hu. Hence, by our
test for tensor character, 1. 6, *l : : 

'.!tr it a m,i*eil absolute tensor
of ord'er 2M.

For purposes of manipulation we shall find the following
formula useful. If. Th'" 'hv is skew-symmetric in all pairs of
superscripts, tJren

7.106. d : l  : :  : l ;  f " . . . sv  :  M!  Th , . . .hv .

The expression on the left side is, by 7.105, a sum of. Mt terms.
The first of these is Th'"'Fr; the other terms are obtained
from it by permuting the superscripts and a minus sign is
attached if the permutation is odd. Since Th, ' " 

pr 
is com-

pletely skew-symmetric, each of the Ml terms in this sum
equals * Th" "hx. This proves 7.106.

Exercise. If. Tpr. . .hu is completely skew-symmetric, determine

ot l  : : : ! i  ro , . . .hx.
We now consider the permutatiun. symbol errr. . . tN, which

was introduced in 4.3 and was there seen to be an oriented
Cartesian tensor. Let us recall its definition:

7.107 . 4t . . . ry : 0 if any two of the suffixes are equal.
: + | if. rtrr21 . . ., rytis an euen Wrmu-

tation of. L, 2, . . ., -nf.
: 1 if 11, t21 . . . , t;yt is an odd, petmu-

tat ion of  L ,2, . .  .  ,  JV.
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This definition is equivalent to stating

7.108. -  G l  z . . . I V
Q g 2 . . . r y :  o r r r r . . . t N -

In order to investigate tJre tensor.character of the permu-
tation symbol under general coordinate transformations, we
note that, by the definition of a determinant, we may write
the Jacobian

a{t

{ n '
7.109.

If, in the right side of this equation, we interchange any two
of the suffixes lr2r. . . , JV, the expression changes sign; if any
two of t:hese suffixes are made equal, the expression vanishes;
for example

0{' 0{,
4g1.  . . ry  

A. ,  A""

: Qtr...r- Y*
axr, o{,

Qp1. . . ry  
A. "  A. "

0{'
4 . r r . . . r *  

; r ,

o{'
# " '  at t*

Qf t . . . r * ; t ,  
f f i  " '  a * r *

The last expression is therefore its own negative, and conse-
quently vanishes. Thus, if we change l, 2,. . . , JV in 7.109
into sr, s21 . . . , srv and divide by -I' we get

7.110. €r"rsr. . .Er:  . I - lErrr . . . rn 
#,  #

This proves that the permutat'iott. symbol' qt...r* is a cwar,ion,
rclatise tcnsm of weight -L.

Similarly to 7.110, we have

7.111. Gtsrsr...sry : Jerrrr...r1. 
Ad:' W'' a{' o*',

, 0{, At6r,
J :  Ctpr. .  . r*  

f f i  Ad,

a{n' o '  
f f i

0{,
a a a

0*'2

0x'*
" ' f f i

a{, a{N

: - 0{, iltc'*

0tc"n

a{.
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This shows tlrat the permutat'i,on symbol' is also a contravar'iant
relatfue tensor of weight *L. We therefore use the alternative
notation {r"'rn .

If the transformation is a positive orthogonal transformation,
4.3,we have J:L,and 7.110,7.111 become the transformation
formulae for an absolute tensor, covariant and contravariant
respectively. This verifies the fact, indicated in 4.3, that the
permutation symbols are components of an oriented Cartesian
tensor.

Exerc'ise. Show that

7.t12. { t -  
' r r  

Qg1" ' 47  :  N t

Since the permutation symbol is completely skew-sym-
metric, we have, by 7.1.06, tlre following formulae

O!|:  :  :  3 i  . t '  " '  s l r i t  " '  r t -u :Ml e*t" '  hrr ' " '  r r - r t

7.113.
of : : : 3X .o ... hy =: JV/ e", . . . sp, €tc.

For later work we also require the formulae
G t ' l  " ' h v \ " '  ' v - y  

G E 1  . . .  E y  1 1  . c . ? a - y

7.Lt4. : (JV- t0r ali ..!:" ,

, h " ' & "  G s r . . . s p  -  o f : : : t f , .

The proof is straightforward, and is left as an exercise.
Having established the tensor character of the permutation

symbol for general transformations, not necessarily orthogonal,
we can generalize concepts such as that of the vector product
and the curl to general 3-spaces and to arbitrary curvilinear
coordinates. It is interesting to note that the idea of metric
is not involved here, nor indeed throughout this section.

l*t X^, Y*be absolute covariant vectors in a general 3-
space. We put

7.115. Irm - c-o',xnY, : * {"', (x"Yr- xrYn) .

Comparing this with 4.319, we note the similarity between Pil
and the vector product of the Cartesian vectors X- and Y-.
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However, P- is now a contravariant relative vector of weight l.
Similarly, if. X^ and V^ are absolute vectors,
7.116, P^: G*orXnV,: t r^n, (X"Yr- Xry")

is a covariant relative vector of weight -1.
A generalization of the curl of a covariant vector field is

given by the equation

7.!17. p- : ,*rrfr - $ rmnr (W- q&\
iltco 

- 
\Ar" 0x'/ 

-

The expression in tjre parenthesis is an absolute tensor (cf.
Exercises I, No. 8).

The permutation symbols may be used to generate relative
tensors from other relative tensors, the process in general
changing the order. we illustrate with a particular example
in four dimensio^ns (Ir - 4). r-et Tnn be a covariant relative
tensor, and let Tn b, defined by

7.118.
A

T^o : t ,rr^oTrr.

Then f* ir a contravariant relative tensor whose weight
exceeds by unity that of T^n, since the weighl sf ,rtmn is *1.
It is obvious that Ttu" is skew-symmetric.

rf. T*nis skew-symmetric, we can solve the equations z.ll8
f.or T^nin terms of the components of i^". Multiplying Z.llg
bV i Ghtmmt we obtain, by use of 7.L14,

* "to" 
n fn" -- t ,rr^o crt^o Trt.

: t fi' 7,,
:  + (T*,_7,*)
: Th".

In the last step the skew-symmetry of T^* has been used.
Renaming the free suffixes we can write the result as follows:
7.119. Trt : * rrr^oT'^o,

The symmetry between the equations 7.118 and 7.11g is quite
striking. Two skew-symmetric relative tensors T*n and f-,
related by these equations are said to be ilual. The symmetry
of the relationship of duality is also exhibited by writing out
explicitly all components of 7.118 :
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A A A

F: Tu, 7ro,r: Tx, Tr2: Tu,
A A A

Tra: Tzr, Tu: Tln, T4: T:.r..
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Exerc,ise. If T^ is an absolute skew-symmetric tensor in a
4-space, show that TuTzt* TuT'xl* TuTnis a tensor density.

The concept of duality can be generalized. If Tr. . . . ty
is a covariant relative tensor which is completely skew-sym-
metric and if M < JV, then we define

7.l1l.  frr . '  .  , t t-r :  
:- .  csl " '  srtr ! ' '  rr-u Isr .  .  .  8r.
MI

This equation can be solved for I",. . . rr by multiplying by
GDr... hu rt.. cta-y. We then have, using 7-LL4 and 7.106,

GFr . .  hv t1 . . . r x - * fu ' ' r t - r  = !  
r yo i l : : : f I  

r * . . . " ,

:  ( jV  -  M) l  Tn , . . .0 , .
We can write this

7.L22. 7:,  .  .  .  rrr :  *.  Gr, .  .  .  sy"t.  .  .r* -yi ' t  
'  ' ' tn ' t .-  

(N  -  W 
5s1 "  '  sY \ " ' rN  -Y

Two skew-symmetric relative tensors f *r ... &,, and io' ' ' ' hx - v

related by 7,L2L, ofr equivalently by 7.122, ar3e called duals.
Equation 7.119 is a particular case of 7.L22 I'or M :2 and
lV : 4. The weight of the contravariant relative tensor in a
pair of duals always exceeds by unity the weight of the co-
variant relative tensor. It is easily seen from 7.L22 that if
s1, . . . , syr kb.. . ,kx-ais an even permutation of Lr?r... .
JV, then

A ,

I " r . . . s r f , :  T h t " ' h Y - Y '

This result enables us to write out immediately the explicit
equations relating the components of a pair of duals.

fuercise. Show that, for rectangular Cartesian coordinates,
the vorticity tensor and the vorticity vector of a fluid are duals
(cf. 6.130).
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7.2. change of weight Difierentiation. Thus f.ar our
discussion of relative tensors has run parallel to the develop-
ment of absolute tensors as given in chapter r. AII conclusions
were based on the transformation propertie s 2.102. We now
consider Riemannian spaces and introduce a metric form
7,201. O : a-od,*^d,xo.

In addition to the operations of lowering and raising suffixes
by use of the metric tensor, we also have a proce$s of changing
the weight of a relative tensor, as will now be explained.

As we wish to cover indefinite as well as definite forms, and
transformations with negative Jacobian as well as those with
positive Jacobian, certain symbols (r(o) and e(-/) ) described
below are introduced. For the simpler case of positivedefinite
metric forms and transformations with positive Jacobian, rr€
may substitute e(o) -- e(J) : 1 in the formulae given below.

Consider the determinant lo*"lto be denoted by o. Under
a coordinate transformation, we have

7.202.

This shows that a is a relative invariant of weight z. If a is
positive-definite, then a is positive (cf. Exercises II, No. 1B);
but if o is indefinite, a may be negative, and to take care of
that case we introduce a symbol e(a): { L such as to make
e(a)apositive. we note that, since I is positive, e(o) does
not change sign under the transformation. Thus e(a) is an
absolute invariant and e(a)a a relative invariant of weight 2:
7.203. c'(a)a' - .Pe(a) a.

If 7^I:: is a relative tensor of weight W, and, w is any
positive or negative integer, then * .:, defined by
7.204. Ti : :  :  (c(a) a)- Tl . :  ,
is a relative tensor of weight W * 2w. In a Riemannian space
we mayregard ri:: and r1l. as two representations of the
same geometrical object. We shall now consider how to gen-
eralize tJris result when zr is half of an odd integer, so that the

I ax, or"1a, : la,*nl : 
I o,, uft;kl: .pa.
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weight of a relative tensor may be changed by an odd number.
We have throughout considered only coordinate trans-

formations whose Jacobian does not vanish or become infinite
in any region under consideration. It follows that the

Jacobian J is everywhere positive or everywhere negative. In
the former case we call the transformation positive, in the
latter case negative.* Let €(, : + 1 or - 1 according as the
transformation is positive or negative. We now define oriented
relative tensors as follows: A set of quantities I! : : is said to
form an or,iented, relntfue tensor of weight W, if it transforms
according to the equation

7.205. 7 ' i : : :  r ( f )JwTtr"Y'  '  ' {  ' '  '
" 0r^ 0*" 

'

If, J is positive, then e(O: l, and this transformation law
reduces to 7.102.

The product of two oriented relative tensors is a relative
tensor which is not oriented. Note that the word "oriented"
is used here in a more restricted sense than in 4.3, since 7.205
determines the transformation properties of. Ti. I under nega-
tive transformations as well.

Taking the positive square root on both sides of equation
7.203, we have

7.206. (l (a)a')' : ,(J)J k @) a)r.

This shows that (e(o)o)r is an oriented relative invariant of
weight f 1. We can now interpret 7.204 without difficulty if
u is half an odd integer iTi:;is then an oriented relative tensor.
In particular, we can associate with every relative tensor fI : .
of weight W an absolute tensor fi ::, which is oriented if. W
is odd and not oriented if. W is even; it is given by

7.207. Ti : : : (e (a) o) -rw Ti:: .
The permutation symbol %.. . rsr or dr ", gives rise to

two oriented absolute tensors:

r t r r . . . ? a  -  Q @ ) a ) '  Q 1 . . . r y l
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: (e(a)6)-\ E, "' x

using these, rather than the permutation symbols e, in equa-
tions 7.115 and 7.117, we can, in three dimensions, define the
vector product and the curl as oriented absolute vectors. In
a similar manner we may define the dual of a skew-symmetric
absolute tensor as an oriented absolute tensor.

In one respect our notational conventions are violated by
the permutation symbols, when there is a metric. This is not
serious as long as the following caution is kept in mind:
.rt' ' ' tr and % . . . ry ?r€ not obtained from one another by
raising or lowering suffixes with the metric tensor. Instead,
we have the relatlons:

250

7.209.

7.21o.

7.211,

1
Gr r . . . t y  :  

i on  
.  .  .@7"sn€s r  " ' s r ,

{r "'rtr ,: a a"tt . . . alnt*Grr. . ..91y .

These equations are established by an argument com-
pletely analogous to that used in deriving 2.110.

Erercise. Show that

4rr...?p : e(a) an . . . a4tsN ?"t "'"" ,
q4 "' 'lv : e(a) anl . . . alntn ?s1 .. . c1, .

we now turn to the problem of defining the absolute and
covariant derivatives of a relative tensor. We can proceed as
we like, provided that the definition agrees with the old defi-
nition of, 2.5 when the weight of the relative tensor is zero.
The absolute derivative of tlre metric tensor a^o is znro (cf..
2.526); we shall now make sure that the absolute derivative
of the determin ant o : lo^nl is also zaro. This suggests the
following definition of the absohtte il,eriflatfue of o relative tensor
T'r::: of weight Wz

A  , -  A7.zrz. * fi::: =: (e(a)a)rw * tf.@ a)-tw f!: :J.
6 u  

\  \ - - l  '  
6 *  

L \  \  '  '

The operation of absolute differentiation on the right side of
this equation can be carried out by the process of.2.5 since the
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bracket expression (e(o)a)-'w 11: : : is an absolute tensor

(which is, however, oriented if. W is an odd integer). Note

6
that *r'r'.,, 

is a relative tensor which is not oriented, even

if. W is odd.
The absolute derivative of a, for which W -' 2, is, by 7 '212,

X: e(a)afir{,{o)o)-,ol
D

: e(a)a 
ar@) 

: o,

7.213.

since e(a) is an absolute invariant, and 1 constant. Also in

the case of the invariant density (e(a)a) l, for which W : l,

it is easily seen that the absolute derivative is 7nro.

The definition of the covariant derivative of a relative

tensor is now obvious:

7.2t4. ri :: . | * : (e (a)a) lw[(e (a)o)-sw Tl. ] .lr r '

Neither absolute nor covariant differentiation alters the weight

of a relative tensor.*
We have already seen that the operation of absolute (or

covariant) differentiation, when applied to a product of abso-

lute tensors, proceeds according to the laws of ordinary (or

partial) differentiation. Thus, for example,

D 6sl, . 6'f:*n
7.2L5. 6u(g,T^") 

:; T^"+ S:, 6u 
'

The same holds good for relative tensors. This is easily proved

from the definition 7.2L2. Alternatively, we may take Rie-

mannian coordinates with an arbitrary point O as origin. At

O, all Christofiel symbols vanish and further d(e(o)alf Ax':0,
since \a*nf dx': Q. Thus, at O, the absolute derivative of a

relative tensor, as defined by 7.2L2, reduces to an ordinary
derivative. We then know from elementary calculus that
7.2L5 holds for relative tensors at the origin of a Riemannian

coordinate system. But this being an equation in relative
*For an alternative (but equivalent) definition of absolute and covariant

differentiation of relative ten6ors, see Exercises VIII, Nos. 18, n,2L.
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tensors, it must be true in all systems of coordinates; and o
being an arbitrary point, it must hold generally

Exuc'ise. using Riemannian coordinates, prove that

7.216. E r . . . r x l h  :  g t " ' r N 1 h  :  0 ,

l l r r . . . r y1h  :  r ? r " ' ' * l h  :  0 .

we shall now establish a simple but useful formula for the
divergence of a contravariant vector density. rf Tn is a vector
density, i.e., a relative vector of weight 1, then

7.2t7. tt : (e(a)a)-rF
is an absolute vector (oriented). Then, by
generalized slightly to include the case of a
minant a, we have

7.2t8. tnln: (e(a)a)-l 
ft rcA)o), tol .

Multiplying ac-ross by (e(o)a)' and substituting from z.zlz ,
we get

(e(a)a) l 11.1a1a1 
-Lr*l,- : 

aTn
' l  1 Jlro - 

1Xn 
.

Since tjre covariant derivative of (e(a)a)l is zero, this reduces
to the simple result

aTn
TWt  l n -  l x n .

Note that this striking result holds only in the case of a contra-
variant vector density.

E*ercise. Prove that if. Tn is a relative vector of weight w
then

7.22O. ?t o: (e(a)a)'w - t' d | (.(o\,.\r(t'
ff t(e(a)a)o"-w-t T"l .

7.3. Extension. In l.B the infinitesimar displacement
was studied as the prototype of a contravariant vector. The
infinitesimal displacement was characterized by the vector dac".
only later, in 2.1, did we introduce a metric and the concept

equation 2.545,
negative deterl
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of a length ds associated with the displacement dr'. This
indicates that the vector displacement is more fundamental
than its length. Both magnitude (in a sense) and direction
of the displacement are determined by the vector ih'; for
example, it is possible to say that one displacement (il'x') is

twice another (dx') if. d,'r': Zd,tc'. It is only when we wish
to compare the magnitudes of infinitesimal displacemen ts at
different points or in different directions that we require the
concepts of metric and length.

We are all familiar with the ideas of area (2-volume) and
ordinary volume (3-volume). In this section we shall be con-
cerned with the more fundamental non-metrical, concept of
extens'ion* which bears the same relationship to volume as the
vector displacement bears to length. We shall work from the
beginning with a general number of dimensions, since the
tensor notation is such that little is gained by restriction to
a special number of dimensions.

In a space of .lldimensions, in which no metric is assigned,
consider a subspace Vw of. .&/ dimensions (M < /V) defined
by the parametric equations

7 . 3 0 1 ,  * h : * r 0 ' r f r . . . r y M ) .

In this 73a consider a certain region Ry. Let us divide Ry

lnto a system of cells by M families of surfaces

7.302. f " > ( y )  :  cb l ,  o -  1 ,  2 , . .  - ,  M ,
where c@) are constants, each taking on a number of discrete
values and so forming a farnily of surfaces (Fig. 21). Here and
throughout the remainder of this chapter the Greek letters
a, F,,l assume values from I to M and the range and summation
convention will apply to them unless an explicit statement to
the contrary is made. Note that this applies only to the first
few letters of the Greek alphabet. Others, such as 0, pt ct t
will be reserved for special ranges of values as required.

It is easy to attach a precise meaning to the statement that
a point P of V y lies in a certain cell; for P may be said to lie
between two surfaces of the same family, say family o, if the
expression /(o) 0) - c(") changes sign when we change c(") from

*Historically, this concept is quite old. It is due to Grassmann (18a2)
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the value belonging to one of these surfaces to the value be-
longing to the other: here y refers to the parameter values at
the point P.

ft ' ly) ' c'

t'01y1= 4n16.tn

Bt , t

(yl+Aoyl, y2+\,,y2,Y3+ AorY3 )

Frc. 21.-A cell in subspace %; tle coordinates of z{ arc s&, and tha of
.861 are *h + AcrlL

r-et A be a corner of a cell (Fig. 21). Through L there passes
one surface of each family. I-et.the coffesponding values of
the constants be 6(D t cb't, . . . , ,('). Passing alotrg the edge
for which 6(r) alens changes, we arrive at another corner B 6,t,
for which the constants have values 6(r).u 66(r) t c(z) ,. o . , c(M).
In passing from A to B11y the parameters change from, say,
y" at A to y"+ A(r)y" at B(1), and thecoordinates from rh to
rh I a61xr. Similarly the parameter values and the coordinates
of al l  the corners 8111, Be),. . . ,  Bgty, of thecel l  which are
reached by passing from L along an edge of the cell may
respectively be written

y"+ A<p>y";
and rh+ aq)xk.

We now form the determinants

Atr;r&, A(r)l',
A<r>*, ae)r4,

, AGr**
, Aortch*

7"303. 4& " ' hu :

Ag41xhrA64*r. . . , A(*t*"
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Introducing the generalized Kronecker delta Ofl ::;f;, tltese

determinants can be written compactly as follows:

z.go4. 6rr'' 'hx: 
4:: ; !1 l<t)rq. . . A(tr/)s"'.

Had the edges of the cell been taken in a different order, the
determinants might all have had the opposite signs; apart from

this common change in sign, the determinants are independent
of the order of selection.

If we employ the same cell, but a different corner to start

from, the determinants formed in the same manner would in
general have different values. But if the cell is infinitesimal,
itt"t is, if the AcG) are infinitesimals, the differences will be

infinitesimals of a higher order than the determinants 7.304,
which we shall no\nr write

7.305. d,r<ulh'''tts- otl: : : tI dtor". . . d\t *t*'

We are therefore to regard this sct of determinants as some-
thing which, except for the possibiliff of a common change in
sign, is uniquely determined by an infinitesimal M+ell whose

Bitr edge is-d'6yrb. The sd of Etnntiths dr<*lh ' " hs 'is called

the wtms,im of thc infinitasi,mal, M-al,l^ This tensor is the
nearest approach to the concept of elementary volume possible
in a non-metrical space.

.E*erc,isc. Shou' that 7.305 may be written in the equivalent
form

7.306. dr<*lh"' fu' - dOr "' U* d*r*. . . d1p*'1!ch'.

In this equation, what is the tensor character of the permu-
tation symbol {t' ' 'Fu7

The edges of an infinitesimal .tlf-ell oL Vu can obviously
be written in tlre form

7.307.

We therefore obtain the following alternative expression for

the e:ctension of the .lr'-cell

d$>*h : 
#, 

duryn.
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7.308. d,rg)\""hY

- .oFr . . . n,-ilft at'r ,: oii ::: s?;p . . . 
@ 

de)y'. . . d(u)y"'.

The expression on the right side of this equation is essentially
a sum, the first term of which is

7 '309 '  *  " ' * ,  d 'G)) tq . . .d (uryo" -
oy' oy'

The other terms in the sum are obtained from this by per-
muting the subscripts fr1, ke,,..., kM, a minus sign beingat-
tached to a term if ttre permutation is odd. However 

" 
p"r-

mutation ol ku. . . , kva in 7.809 is equivalent to the corres-
ponding permutation of 411 . . . 1 etrs in d11,1!%. . . d(Mrynt .
For example,

oxh, oxh a*"
Ay" Oyr. ay*d$7Yqd\')Ynn ' ' 'd(urY"*

orh a*4 o*h,: 
6 Ay"' ' '  ay*aP1lqdp'1Ye . .  .  d(urYou,

and this becomes, on interchangrng the dummy suffixes o1s c21
ark o* . . .o*" ,
ay", 6r"i Aywd(t1!qdp7!". . . d(u)y"*.

It follows tlrat 7.308 may be rewritten in the form

7.310. d,rgl i ' '  '  h 'r  :*.  .  .W 6:::  ' . i , !-dgyf ' .  . .d(u)y'r.- 
|Yo 

'  '  
yyo* 

- 'r t ' ' " t l r"

Introducing the permutation symbols eo''o c ' o71 for the range
1, . . .  ,  M,  we can,  by 7.114,  wr i te  Gar. .  .  n"  Grr . . . . tu  for
a|:: : |"". But

7.311.

: ldrog'l ,
say. Then 7.310 becomes

G,,...r,dsyva,. . . d64yya,: 
I!:".0.u': '  . '  

'  ' .dovul
" l

l .  .  .  .  .  .  .  .  .  .  I
ldglyr d,16)y2 . . . dwy'l
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7.g12. d,r1y.1lk" ' lr:

The most useful expressions for the extension of an infinitesimal

M-cell are given by 7.305 and 7.312.

Etcercise. Let *h be rectangular Cartesian coordinates in
Euclidean 3-space. Introduce polar coordinates r, 0, {, and

consider the surface of the sphere r : o. On this sphere form

the infinitesimal 2-cell with corners (0, O), @ + d0, O), @, 0 + d 6),
(0 + il|, Q + dO). Determine the extension of this cell and
interpret the rectangular componenG. In particular, show
that the three independent components of the extension are
(apart from slgn) equal to the areas obtained by normal pro-
jection of the cell onto the three rectangular coordinate planes.
Does this interpretation remain valid if the sphere is replaced
by some other surface?

From the fundamental theorem of multiple integration it
follows that, if A is a continuous function of the parameters
yin Ry, and if the (M - l)-space which bounds R;a is suffi-
ciently smooth, then

7.313. l im2olAoy" l
exists and is independent of the manner in which the region
Ru is divided into cells. In 7.313 the summation extends
over all complete cells in Ry, O is evaluated at a point inside
each cell, and the limit is that in which the size of each cell
tends to zero, that is, Ac@+ 0. The limit in question may
be written

7.314. {"o I aar I
This theorem we shall accept without formal proof which
properly belongs to the subject of analysis rather than to the
tensor calculus. However, we give in Appendix B an intui-
tive and somewhat incomplete argument which may help to
make the theorem plausible.

If we choose the functions 1(n) in 7.302 as

Exgrsrox 257

oxk o*h" , r
c * t " ' w -  A y *  l d g y ' l -
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dob) : !n,
then dafl':0 if F * "r, Writing simply d,ya f.or ds>y, when
F - ,f ,7.314 becomes

7.316. I rD dyr. . . dyo,
RI'

the more familiar form for a multiple integral. The expression
7.314 has the advantage that it exhibits the integral in a form
valid for an arbitrary choice of cells.

Let us now take as integrand in z.gr4 the orpression

( [ . =  € a r ' '  
' o t l r h t . . . U * *  

^ .
oyo oy"' '

where { is another arbitrary function of position in Rrr, that
is of the parameters y. Then, by z.Br2, w€ can write the
integral 7.314 in the form

I  oa r r t rh " ' r " ,
R1
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7.315.

7.317.

which is thus also independent of the choice of celrs.
So far our considerations have been confined to a single

coordinate system, and no ideas of tensor character have been
introduced. The infinitesimal displacement d<o*h along the
pth edge of an M<,ell is by definition an absolute 

"ontt"-variant vector. Then, by 7.30b, and by virtue of the skew-
symmetry and the tensor character of the generalized
Kronecker delta, we immediately have: The extension
dr ( u)h' "' h 7a of an'infinites imal, M - celt,is an ab s olute c ontr ovariant
tensor of order M whhh is skeut-symmetric in ail, poirs of suft,rcs.

Let us now consider the integral

7.319.

we might call it the extension of the region Rra, but it is of no
interest in general as it has no tensorial character. This is, in
essence, due to the fact that we are here combining the com-
ponents of a tensor at different points; the result of such addi-
tion is not a tensor. For example

(Il)e * (I*)s

I * * ' u 'o ' ' ' h r '



$ 7.3

7.324.
where

7.325.

Mur.trpr.n lxmcne,r,s

is not in general tensorial, A and B being different points'

since the transformation coefficients 0r'k/0x' at A may differ

from those at B. On the other hand, if T* ... t' is a co-

variant tensor of order M, then

Tpr. . . **dtgt1ht "' hu

is an invariant, and so is its integral

7 .g [g .  I  Tor , . .h rdr1Mrht " 'h$ '
R1

In the special case when lJ[ - JV, the extension dr4ok'' ' ' Ep

of an lf-cell is determined by the single component of il, Gt)r' 
' ' ' ]v.

In fact it follows immediately from the skew-symmetry of

d,r4rht' " &1 that

7.g2O. dre'r)rz' ' '  l r  :  
+,€&r. 

.  .  p*d'or ' t \ ' ' '  hv :  d'r1w1,

say, and that

7'g2l' i l<n\" ' rtY: &" ' &P d'rrlt)'

We immediately see that ilrofi is arelative invariant of weight
-1; it is the dual of. d,rg,1hr"'&r. Asthere is little danger

of confusion we shall refer to drgvy also as the extension of the

JV-cell. It follows from 7.305 and 7.320 that dtrx,t is the

determinant

7.gZZ. drgtt: ld1"yr& l.
If we regard the parameters y as intrinsiccoordinates in the

subspace Va, we may define dtg't by the equation

dr@, : ldo>y" l,7.323.
We can now rewrite 7.312 in the form

f , , 7g )h ' ' '  
h74  :  r \ ' ' '  

hY  d t1wy ,

vh r . . .  ha  : €o r . . .  r "U t  .  .  . 4 .
oyo oy""

Thus the extension of an infinitesimal M-cell can be written

as a product of two factors which we shall now discuss.
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The factor d,r<w is an intrinsic quantity determined (apart
from sign) by the cell. we may c"lt it the intrinsh ,*t*rioo
of the infinitesimal cell in the subspace v74. The intrinsic
extension is an absolute invariant with respect to transfor-
mations of the coordinates *1 but it behaves like a relative
invariant of weight - L under transformations of the para-
meters y, which 9an bp regarded as intrinsic coordinates ii v*.

The factor vr' " ' hv is quite independent of the cell butls
determined by the subspace Vva, including its relation to the
parent space V ut and by the point P in [a under consider-
ation. It is a generalization of the tangent vector to a curve
(M : 1) and may therefore be called the M-d,irection of. vy
at the point P. The Mdirection ,k' ' ' hu is a skew-sy--
metric, absolute, contravariant tensor of order M wth respect
to transformations of the coordinates *; under transformrdorc
of the parameters y it is easily seen to behave like a relative
invariant of weight +1.

The sign of the intrinsic e:<tension of an infinitesi mal M-cell
depends on the adopted order of its edges. If we permute the
order of the edges this sign does or does not change according
as the permutation is odd or even. we thus distinguish be-
tween two or'inntatiotts of an M-cell: huo infinitairnal, M-cetts
at the satne ?oi,nt P in Vva are sa,id, to lwve the same orientation
or oppos'ite oripntations accord,i,ng as theirintrinsdc extensions
lrunte the same sogn o, opposite stgns. Since the fut-direction at a
point P in vy is quite independent of any cell under considera-
tion, we see from 7.324 that if. d.rgayh'' ,hu and, d,,r1arh -. .hu
are two infinitesimal M-cells at the same point in va, then

7.326. d,'\a\h" 'hY - 0 ilrealq " 'hu 
,

where 0 is positive or negative according as the orientation
of the cells are the same or opposite.

The intrinsic extension of an infinitesi mal M-cell was seen
to behave like a relative invariant of weight - 1 under trans-
formations of tjre parameters y. Thus it changes sign under
a parameter transformation with negative Jacobian. We can
therefore grve no invariant meaning to, say, the statement that
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the intrinsic extension of a cell is positive. However, if two
infinitesimal M-cells have intrinsic extensions of equal (ot
opposite) signs for one system of parameters, this fact remains
true for all systems. Thus comparison of the orientation of
two M-cells at the same point is of invariant nature,

Comparison of M-cells at two different points A and B in
a region Rpa of. the subspace Vyis achieved as follows: The
infinitesimal cell at A, soyr is moved in a continuous manner
to B, along a path C lying in R76, such that, at each stage of
the continuous motion, the intrinsic ortension of the cell is
non-zero. The orientations of the two cells are then com-
pard at the point B.

For many types of regions this comparison of orientations
is unique. Such regions are called orianteil or hto-sidd,. As
an example, consider a region R1a with intrinsic coordinates
which are continuous and single valued functions of position
in Ry. In the process outlined above, the extension of the
M-cell changes continuously during tlre motion from A to B,
and is never zero. Hence it does not change sign. It follows
that, in the case considered, the orientations of the M-cells
at A and B can be compared by simply comparing the signs
of their extensions. This procedure is obviously unique.

There are, however, regions where the orientations of cells
at different points cannot be
compared because the proced-
ure adopted above is not uni-
que. Such regions are called
unor,iented, or one-sid'ed,. Ex-
amples of unoriented regions
are the two dimensional polar
space of constantcutwature (cf.
4. 1., Fig. 22) andthe well-known
M6bius strip.

In the case of an oriented
region, we distinguish between
two orientations for the whole
region. It should be noted

Frc. t2, The pair of rrcctors, (1)
and (2), changes orientation after
trarrersing tbe closed pth AB CD EA
of ttre polar 2-spae of constant
curvatune. This spae is therefore
uncieoted.

I

A ( t )(2 '  I<'-io
,,

I
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that in formulae such as 7.8i4 or Z.B1g, where integrals taken
over a region Ry were considered, the region Ry is tacitly
assumed to be oriented and all infinitesimal cells are assumed
to have the same orientation.

7.4. volume. In this section we shall introduce a metric
(in general not positivedefinite), and by means of it pass from
the extension tensor to the concept of volume element. The
volume is invariant, and can be integrated to give the volume
of a finite domain. The extension tensor cannot be used in
this way, although, as we have seen, certain integrals involving
it have invariant character.

In the previous section we have defined the extension of
an JV-cell

7.401. d,rrn:  I  d, ,4cch l ,
and we have seen that it is a relative invariant of weight - l;
It follows that ih<$ retains or changes sign under a coordinate
transformation according as the Jacobian of the transformation
is positive or negative. Defining e(r): =k l, such that
e(r)ihsrt is positive, it is immediately seen that e(r)drsry is an
oriented relative invariant of weight - 1.

I-et us now consider a Riemannian space with the metric
tensor a^n. We have seen earlier that (e(a)a)t is an oriented
relative invariant of weight +1. We can therefore form the
absolute invariant

7.402. dl4,tr: Q@)a)re(r)d,rq1,
which is not oriented. We define it to be the solume of the
infinitesimal.l/-cell. The integral

z.4og. e(rD : [- dor*r: I G@)") I .(") | d.p1xh ,
Rr Rrt

taken over a region Ry, is an absolute invariant, the volume
of tlre region. Note that 7.403 always gives a positivevolume.

To show that the above definition of volume agrees with
the ordinary definition in the case of Euclidean B-space, we
take rectangular Cartesian coordinates, and define tjre cells
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as in ?.315, that is, d1q*F : d,xh if s '= & and dp'1rb: 0 if s * k.
Then we have e(a): !, o : 1, e(r) - 1, and so the element of

volume is

7.404.
as it should be.

In a general Vrv, the square of the element of volume of a
cell is

7.405. dns>z: ,(a)ol dpyxh lt == .(a) lardgxhd('s' | .
If the edges of the cell are orthogonal, the only surviving
elements in this determinant are in the leading diagonal
(s'= l), and they are, to within a sign, the squares of the
lengths of the edges. Hence, since we have defined dulg to
be positive, we have for the volume of an infinitesimal rec-
tangular cell

7.406, dotn== dsr ds2, ,. dSJv,

where d.sr, . . . , dsly are the lengths of the edges.

Exarcise. Using polar coordinates in Euclidean 3-space find
the volume of an infinitesimal cell whose edges are tangent to
the coordinate cunres. Obtain the volume of a sphere by
integration.

A subspace Yu in a Riemannian space tr|p possesses a
metric by virtue of its immersion in V2,7. I*t Vu have the
equation 7.301. Then the distance between two adjacent
points of. Vy is given by

7.407. dss == a4S**d*t,

since the points in question are also points of V1s. Here
e(: =t 1) is the indicator of the direction d*F. But if we
adopt the range L to M for Greek suffixes a, F,7, this is

z.4og. dsr 
o*h oxt ',!= nr,fi u-f or" df * &"p ity"d'f.,

where
axh a*'

boa:a*n 
6,tf 

.

ilo$l: d'dd*dtcl,

7.409.
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Then D.p is the metric tensor of Vw for the intrinsic coordinate
system y". since vva is itself a Riemannian space, any por-
tion of it possesses a volume. Thus in a VN we have to con-
sider .M-volume, (tr-1)-volume, (/V-2)-volume, etc. A Z-
volume is also called an area, a l-volume a length.

The volume of an infinitesimal ll,t-cell is the invariant

7.4rA. iht(a): G(D)b)le(r)d.rst : G(D)D)I.k)l dofl"l.
Since Gar"' n"rr. 

o e oy - Mt, we obtain

7.4L!. dntg>r: p.€q. . . o* ,r. . . n*b d,r(u)z.
MI

We easily see that

7.4L2. €q. . . nrb : 6h' " 0t brhbo#r. . . bnu a,
A:' !r"' orororr. . . apus*# 

#-#
0lctu

ffi'
11 we im-by 7.409. Substituting from this into equation 7.4

mediately have, by use of. 7.312,

. e €(b)
dalil : 

ffi 
&t\rr. . . ap*g, dr(ulht' " hv d,r(a)tt' ' ' sr,

or, equivalently,

itv1frt :'#, d,r<a)h "' hx d,r<u)r,r . . . Teul7.413.

e (b) : * L and must be such as to make the right-hand side
of this equation positive.

Given a region Ry in the M-space V*r, the invariant
integral

7.414. I drr*,
Ry

is defined to be the M-volume of the region. The volume
integral of an invariant I,

f ,roo,,,7.415.

is itself an invariant. But the integral of a vector or tensor
of higher order, such as
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I Thitvst,
Rlt'

does not possess tensor character.

265

Exerc'ise. In the relativistic theory of the finite, expanding
universe, the following line element is adopted:

dsz: Rldtz* sinT(d,fi* sin20d,g2)1- dtz,

where ft : R0) is a function of tlre "time" ,. The ranges of
the coordinates may be taken to be 0 ( r ( o, 0 < 0 ( 

",
0 < d 12r, - oo < t < @. Find the total volume of "space,"
i.e., of the surface t : constant, and show that it varies with
the "time" t as Rt(t).

In a space Izr with no metrie, the normal to a surface
Vu-t has no meaning, but we do have an extension tensor
associated with every element of Vx-t We shall now show,
when there is a metric, the connection between the normal and
the extension tensor.

Let us take in Vx-t an infinitesimal cell with edges
d$'trhr.. . , d1t-rrrk The extension of the cell is

7.416, drw-r\k"'&r-r - 0:l:::tf,:lda)ff"'. . . d(N-rw"'-,.

According to 7.122 the dual of. d,r67-r)*' ' " &r-r ir (- l)"-trr,

where z' is the covariant relative vector defined by

7.4!7, rr: --J- c4...ftr-r, dre{418r"'&x-1.
( iv  -  1) !  " ' I " '

Then, by 7.4L6,

v1. d6yst: 
# 

G&...&y_1 r oil : : : :f:i

i lof . .. d,1y-l)rsr-r de)x'
=! €"r. .. str-r i d(t tctt.. . dgv-t)trtt-t d$r*'

:0 ,
since d,orx'd,G;rs' is symmetric in the suffixes / and sr, and
€", . .. sr_r z is skew-symmetric. Similarly, \il€ can show that
vrde)x': 0, etc., and thus
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7 .418 .  v rd$>xr :  0 ,  E  :  l ,  2 r . . . ,  JV  -  1 .
This shows that the vector with covariant components z, is
orthogonal to the vectors d,67*ri . . . , det_Dtc', and hence to
every infinitesimal displacement in VN_r. In short, z, is
normal to Vp-1.

We now normalize vrby introducing the vector* a,:

7.419. e(n)n,: .(r) mr,
=' e(r) 

ffi* ffi 
drev-r)h'''' &r-r r

e(n) denoting the indicator of nr(e(n): =t 1, such that
e(n)nrn' is positive); .(") is also =tl and determines the sense
?I o,; its significance will be discussed shortly. obviously o,
is also normal to Zar-r. We shall now show that a, has Lnit
magnitude, so that n, is the unit norm,ol to Zal_r. Using the
metric tensor to move suffixes up and down, we have, ayi.+ts
and 7.211,

ttTrt? : 
# 

' 
#; 

G& "' kr -r ?€st " ' 'r'-r ?

drw-r>h. . .lrv-r drev_r)s, . . . Ef,_r

:#'#'el:::ix:l
d"w-rl& ' '  '  &p -t dr$t-r)s1 ... Etr _r

e(a) 1=t 
ffi'ffid'6'-'th"'rr-r
de6y-11q .. .ltr*1

=E c(a)e(D),

the last stage of simplification being justified by 7.418. This
establishes that z, is a unit vector, and also shows that

*The definition of z, breaks down if dulp__j - 0 and we therefore exclude
this possibility; dulpr; vanishes if dr61-r1k "'}r-r:0; howe\rer, even
if this equation is not satisfied, duQ-n, can .yanish in the case of an in_
definite metric-for example, if the ell lies in a null cone (cf. Ex. z at
end of chapter).
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7.420.

267

At any point P of. Vx-tthere are, of course' two unit vectors
which differ in sign. Let us assume that Zy is oriented, or, at
least, a region Rry of it which includes all points of Zr-1, thus,
in particular, also P. Let us adopt an orientation in Rivl and
let e(r) be *1 or - 1 according as an elementary .ll-cell of this
orientation has, at the point P, a positive or negative extension
d'r(N,t. With this convention concerning e(r) we are now in a
position to discuss which of the two possible unit normals is
given by the n, of 7.4L9.

Let
d'tc': n'd's,

where ds is a positive infinitesimal; dx' is codirectional with
the unit normal n'. Thus

e(n)nl,r' > 0.

Substituting in this relation from 7.419 and 7.4L6, we obtain
on division by positive factors

e(r)err...srv-r, d$rft.. . dev-r)df,-r d'x' 7 0.

This can be written

7.42L. c(r)ilrs1) 0,

where d,rw,tistheextensionof anlV-cell atP whosefirst.l/ - 1
edges, taken in order, are those of the (ItI - l)-cell whose
extension tensor is the dr<*-r'tk"'Frv-r which occurs in 7.419,
and whose last edge has the direction of tJre normal n'. Thus,
by 7.421, the unit vector n'must be such that this .l[-cell has
the orientation adopted for the .l[-space.

7.5. Stokes' theorem. Let x'be rectangular Cartesian
coordinates in Euclidean 3-spac€, Rz a finite two dimensional
region on a surface Vzin this 3-space, and Rr the closed curve
bounding Rz. I*t n, be the normal to Vz, and T, a vector
field assigned on R2. Stokes' well-known theorem* states

*R. Courant, Differential' ottd Intagrol Cakul'us, New York: Inter-
science Publishers, Inc., 1936, II, chap. v, sect. 6.

Unrr Nonrnr,

e(n):  e(o)e(D).



268

7.501. aril
o*t ) "'

GnBpN-SroREs Tuponpus

Hn,*(#It(#
Rr

+ffi #)nfo,*,
: J(n dx'* Tz it*z* Ts dt'l) .

R,

Here, the integral on the left side is taken over the region
R2, d'vpy denoting an element of surface area (2-volume), and
the integral on the right side is taken along the bounding
cunre Rr. The sense in which the closed curve Rr is described
depends on the choice of the normal n. which is determined
by v, only to within an arbitrary sign. Introducing the sum-
mation convention and the permutation symbol e'e", 2.b01
simplifies to

7.5O2. 
f,rrrr"To, "n, 

d,vg: 
{

where the comma denotes partial differentiation.
We shall now introduce the extension of. Vz by means of

7.419, which in the special case of Euclidean B-space and
rectangular Cartesian coordinates glves

7.503. nd,a<zl: t cnond,rpy*o

Remembering the definition 7.80b of elementary extension, we
have, trivially, d,*'- dtg'. Thus we can rewrite stokes'
theorem in the form

t ,,^o d,rp,fn : 
[. 

T,d,rg1r,

which immediately simplifies to

7.5o4. : 
{ 

T, d'rp'1'

Consider now a transformation to a curvilinear coordinate
system. Since 0T7r/0x" differs from the tensor l(Ta,"- Tr,ro)
by an expression symmetric in &, s and dtp1h" is an absolute
tensor, skew-symmetric in these suffixes, it follows that the
integrand on the left is an invariant. Thus 2.5a4 is a tensor

I*r" 'otTr ' ,

L'o'" 
d'rp1k'
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equation and therefore valid in all coordinate systems. How-
ever, this last form of Stokes' theorem has another very impor-
tant advantage: the metric of the parent space is completely
absent in the formulation of 7.504. This reveals the true non-
metrical nature of Stokes' theorem.

Our purpose in this section is to generalize Stokes' theorem
to arbitrary numbers of dimensions. Possibilities for such
generalization are immediately suggested by 7.504. The for-
mulation is as follows:

I*t Va be an M-dimensional subspace of the non-metrical
JV-space Vw (M < /f). I.et RM be an oriented finite region of
V y, bounded by the closed (M - l)-space Ru-r, and let
Th...hu-t be a set of functions* of the coordinates. Then the
generalized Stokes' theorem, states

7.505. I
R!.

:  
f , " - r 'o " '  ha-rdt(a-Dh' '  "  hu-1'

provided the orientations of
the M-cell (with e:rtension
d"sf, 'r'') and the(M-l)-cett
(with extension d, w-rf"'rr-t)
are related as follon's: If to ttre
edges of the (M - l)-cell there
is added as an Mth edge an
infinitesimal vector lyrng in V u
and pointing out from Ry, then
the orientation of the .Ir'-cell
so formed is to be the same as
that of the M-cell with exten-
sion drsfr' 'nx (Pig. zg).

In proving 7.505, it is con-
venient to establish it first for
the particular curse M : N.
Thus we set out to prove

*Sine we do not need to transform the coordinates in establishing
7.505, the questioa of tle tenstr cbanacer of, T1 . .. lcl-, does not arise.

Frc. 23. Cell at P with edges
i16,1*, d61*h, a*h hasthe same orien-
tationascell (1), (2), (3) at Q in Ry.

(3)
f

.<::' Rr
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7.506. I  fnr . . . la-1,  e* drqf ' " 'hY
hr

: J Ttr. .. &rv_r dtw_tk. . . *r-r .
frr_,

We recall that the extension tensor is skew-symmetric;
hence in any surviving term in 7.506 no two &'s can take the
same value. Thus we can write

7.507.  I_  Tnr . . .h . - r ,nndrg14" 'hv:  . [ r *  Iz* . . .  *  4v,
Rp

where
(Tor. .  .  Fy- ' , ,  dr lu\hr ' ' '  &r-r  t ) (**r) ,

(Tr^. .  .  &ry-r , ,  drwrh' ' '  [ r - r ' )  
@*r, , ,

the symbol k * 1 indicating that no & is to take the value I
and fr # 2, o o . , having similar meanings.

Let us choose the cells in Rry with edges along the para-
metric lines of the coordinates, in order, in the sense of in-
creasing values of the coondinates. This establishes an orien-
tation in Rry, and we have

7.509. d r W h . . . l y  -  J A . . . h n d , * r . . .  d f r N ,

the infinitesimals being positive.
Then by 7.508, we may write

7 .510 .  h : J  T r r . . . r n , ,
frlY

€o r " ' t n td t c ' . . . d { .

Here and throughout the rest of
this section, the Greek suffix 0
refers to the range of values
2r3r. . . , JV. We proceed to
evaluate this integral by in-
tegrating first along thin tubes
made up of parametric lines of
d (Fig. 24). Any such tube,
taken in the sense of rr increas-

h- r
hrt

Iz :  I
Rp

Frc. 24 Thin tube in Rl.
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ing, cuts Rr-t in two (If - l)-cells, the tube entering Rry at
a point A and leaving Rry at a point B.* Any one of the cells
cut out on Rry-1 by the tube has the .n'r- 1 edge

(t,z d#, dr', 0, 0, . . . . 0)'
( f , rdd ,  0 ,  d f ,  0 , . . . .  0 ) '

(f ,*d{, 0, 0, 0, . . . . d,f),
where the terms in the first column involve the partial deri-
vatives of the function f bV which Rat-t is given in tlre form
x,: f(x',..., ril). Carrying out the integration with respect
to 11 in 7.510, we have

7'sr2' rr: t- 
f; r:t.,,.r,'i T ;.* d.{,-  
L - '  

t e t ' ' ' o N

the integrals being evaluated respectively over the B-points
and the ^r{-points.

We now ask an important question: Have the (.1[ - 1)-
cells 7.5tL the prescribed orientations? To test this, we add
at a B-point an Mth or final edge with components

7.513. ( d * ' r  0 r . . .  , 0 ) ,

with dr1 positive; this edge points out from Rry. Equation 7.322
gives us, with substitution from 7.511and 7.513, the following
expression for the determinantal extension of the M-cell so
obtained:

f ,z d*2, d#, 0,

f,rdf, 0, df, .
7.514.

27r

0
0

I,N dd, o,
dtc', 0,

0,
0,

d{
0

This is equal to
(-r;w-tddd#. . . d&N,

which is the determinantal extension of an JV-cell of Rry, multi-
*If the tube meets R"_, more than twice, we sball consider each con.

nected portion of the tube, which lies in R", as a separate tube.
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plied bv (- 1)"-t. Accordin gly, the or,ienwion of the (/V - 1)-
cel,l, 7.5LL is conect at B if N is oild, and, ,incmrect if /V is eaen.
Similarly, at A, where the final edge to be added is

( - dx r r0 r . . . r 0 ) ,
the oricntation of 7.5t1 is correct if N ,is euen and, incorrect if N
is oilil.

Let (dr1ry-l)&' ' ' pr-'),1 
and (dz1r-r)&' ' ' tr-r)a denote the

extensions of the (tr - l)-cells in which the rltube cuts Rr-r,
with the proper orientations. Introducing the appropriate
factors to correct for orientation, where necessary, w€ have

_r)q.  .  . r r -r)a:  (- l )"- tOt l : :  :  : i - '

(d,rq-g\ "' tr-r)a :

dp,1*t'. . . d17g1!Ctr,

( -1)"ol l : : :3 i l - '
ilpl*. . . d,1yytrcsr,

where dp1x"(0 :2,.. . , ff) are the 
"dges 

7.5!L, taken in order.
Now if no k in 7.5L5 is given the value 1, no s can take the
value 1 if the term is to suryive. So we have

7.516. (drw-Dt," '  e")a: (-1)r-r5e': : :  i$" d*. .  .  d,tcN,
But

f; ::. tf : al'%::: iI: r"," ' ot :(- r;"-t ce,. . . oN'.

and so, with the similar result for the cell at A,

7.5L7.
(d r<o t - r t t r " ' t * )u :  $ " ' t * t  d# .  .  .  dacN,
(dr4-rr t ' ' ' ' ' " )o :  -  6et ' ' '  t * '  dd.  .  .  d, tcN .

Substitution in 7.5L2 gt res

(drr

7.515.

7.519.

Similarly,

7.519.

tt: 
{- ,''r. 

. . e* drln-t1a'' ' ' a"

: 
{_,(4t.. 

. &a-1 drw-rr\ "' *"-') 
.*r.

,r: 
f*_,(t*r. 

. . *y-1 d,rg-t1\' '' o*-') 
rnr,

f t: I*._Qo. . . ry-1 dtly-t1hr' ' ' o"-t) 
*rr,
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We have now very nearly proved 7.506; by 7.507,7.518, and
7.519, we have shown that the left-hand side of 7.506 is equal
to the sum of a set of terms of the general type of the right-
hand side of 7.506, but with the understanding that in the
first term no k takes the value 1, in the second term no & takes
the value 2, and so on. However, since there are JV - 1 suf-
fixes in the right-hand side of 7.506, and the extension is skew-
symmetric, it is easy to see that we can break down the
summation occurring in 7.506 into precisely the restricted sum
considered above. Hence Stokes' theorem in the form 7.506
is proved.

The general case for an arbitrary M(M < /D is easily
proved from the above result, as will now be shown. Let the
M-dimensional subspace Vabe given by

7.520. x h : x h ( 1 r J r . . .  r t l M ) .

The parameters y may be regarded as intrinsic coordinates of
Vy. I-et Ru be a finite region in Vu, bounded by the closed
(M - l)-space Ra-u whose parametric equations are

7.521. y" :  y" (z t r . . ,  za- ' ) .

As in the previous section, the Greek letters o, Fr T range from
I to M,but the Greek letters p,otr range from I to M - 1. We
can disregard the fact that Vw is a subspace oI VN, and apply
our previous result 7.506 to the region Ry. In order to avoid
confusion, the erctensions of the elementary cells will be written
in explicit form (cf. equation 7.312). We then have

7.522. n,,-rGh" 
' t'l da>Y'I[.#'"'

: . | *_ -u . . . cx ,-,vu*. . . f f i&"'eu-rl i lu>{ l ,

where ,or, . .,r-, is a set of quantities defined at each point
of Ry.

If. Th. . . hu-t is any set of quantities defined in the full
space tr/rv, then the orpression
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7.523.
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a**-,
|y"u-t

,r. a*
r  l ' . . . t r - r 8 - . -

is a function of position in Ry. Substituting this expression
for 1", . . . a1-1 in 7.522, and simplifyingt, we obtain

7.s24. | ,0, a* .a*6e ' ' ' '*l a*>f I
J_ 

.. ,  .  , .1t1-1, hu@t 
0y"" 

= I I

Ry

| ^ a* a*"-':  
J  

T4, . ,ha- t  
* .  

.  . fu&" '  er - '  I  d6z, l .
Rr-r

This is the generalized Stokes' theorem. By 7.3t2, it may be
written

f,"'o. 
. . Dv'-1, p*d'gf' ' " hY7.525.

Ihr . . .hu-r i l rg- t f t  '  '  'hu-rs

as in 7.505.
So far no assumption has been made regarding the tensor

character of Iq... Fr_r in establishing the generalized Stokes'
theorem. If Thr...hu-r is an absolute covariant tensor, it
is at once evident that the integrand on the right-hand side
of, 7.525 is an invariant, and so consequently is the integral.
Due to the skew-symmetry of. drwf'"'h*, the integrand ot
the left-hand side is also an invariant. This may be proved
in a few lines, preferably with use of the compressed notation
of L.7; the proof is left as an o<ercise for the reader. Thus
both s,id.es of 7.525 are inaariants.

kt us add a final remark. Stokes' theorem holds for an
arbitrary collection of. NM-L functions ?a ...hx-r of position
in R^r. However, the two integrals in Stokes' theorem have
tensor character only if. Thr...hy-r is an absolute covariant
tensor of order M - L. Consider, for example, a tensor
Th...hy-rff2of order M + 2. We still have Stokes'theorem
in the form

*The second derivatives of r's with respect to the y's disappear on
account of the skew-symmetry of the e-symbol.
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7.526.
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This equation holds for all values of 11, tzt rst but neither side
of this equation is a tensor. In 7.525 we may use different
coordinate systems to evaluate the two sides of the equation;
we cannot do this in the case of. 7.526.

Exerche. The skew-symmetric part of a tensor lkt . .. r' is

defined to be

Tv,, . . . kut : (Mt;-t51' ll l iXT ",. .. ty.
Show that the left-hand side of equation 7.525 is unchanged
it Th, . . . ku-r is replaced by its skew-symmetric part. Show
that the same is true for the right-hand side.

7.6. Green's theorem. If a metric is given in the .l/-space
tr/iv, Stokes' theorem, for llf - tr[, can be thrown into a dif-
ferent form which is an obvious generalization of Green's
theorem.*

We start with Stokes' theorem in the form

7.601. t T\. .. &y-1, p* dr6t,1h ' ' ' f,P
R1;

: I Tk . .. &r_r d,rg-tyh' ' ' &rv-r,
Rr-r

where Tor... h.-r are skew-symmetric functions of position,
not necessarily components of a tensor. This, by 7.321, can
be written

7.602.

fnne*r. . .nudr l*- l )F, '  '  '  h ' - r ,

A

where 7*" is given

*In the case of an indefinite metric there are ex@ptional surfaces, such
as null cones, for which the transition to Green's theorem breaks down.
For such surfaces Stokes' theorem, as formulated in the previous section,
must be used.

GnrnN's TsnoREM

f r 'rrrrr, h"dt (urh'' 
' ' hY

*, 
t  kt '  'hr-.o

f a ,- 
lu-r'r" 

'  bs1-1r1'g, dtlu-lft" 'ha-'

d"(t 
- l) t**.io*d,,r*,

:J
Ry

by
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fu*-.  1
t  -  

( f f  -  1 ) ; & "  
' * x T \ . . .  

h p - 1 t

by

Tht... &r-r : Ghr,...r*i*n,

since T4. .. &y-1 is skew-symmetric in all its suffixes.
If we now define T by

2.605. lv : (e(a)a)_rfu,
the left-hand side of 7.602 may be written, by Z.4OZ,

7.606. (iV - r)te(r){_ Sft.t"l af r-16@)o)-, dvrut.

By 7.419, the right-hand side of 7.G02 may be written

7.607. I TQ@)o)rrh...&r_r ,dr(u-rr\... &n-r
Rr-r

:= (lV - l)!e(r) [ e(n)Tn, d,v1x-r),
8r-r

a'. being the unit normal to Rry-1, and e(n) being its indicator.
From our convention, 7.5, linking the orientations of Rp and
Rrv-r, and from the discussion at tjre end of z.4,it follows that
n, is the outtpard unitnormal to Ry-1. From 2.606 and 2.602,
we have Green's theorem in the form

^a
7.608. I ; tG(o) Ot Tl Q@)a)-td,os)ft* ot'

: 
[.-:@)Tndvs-r7 '

In this formula, we must in general use the same coordinate
system in evaluating the two sides. But if. T, is an absolute
contravariant vector, then Green's tJreorem may be written

{"t 1,das) - 
{"-, 

e(n)T'n,do1N-r)-

n6

7.603.

or, equivalently,

7.604.

7.609.

It is obvious that each side is an invariant.
In Euclidean 3-space, with rectangular cartesian coor-

dinates *n, 7.609 reduces to the well-known form of Green's
theorem
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L#,d'v@': L'n'd'apv'
ITr/Lx'being the divergence of the vector 2nf and T'n' the

,oiar produci of T and the unit normal n,. This formula has

already been used earlier in the treatment of hydrodynamics'

7.610.

Relative tensor of weight Wz

7"1" "  :  JwYn

Generalized Kronecker delta,

af l : : :3 i

Ctl. . . ff,

{ t " ' r x

E

SUMMARY VII

atc" ilxo
. . . . ' ' ' ' ' ' . . . : . . . .

" ' 0 * ^  A f "

permutation sYmbols:

relative tensor of weight 0, or

absolute tensor,

relative tensor of weight - 1,

relative tensor of weight * 1 ;
' t t r - u  -  M l  & " ' h Y  

1 1 " ' r N - Y ,

. . Eyr1. . .rx-s: (iV- ltlt*:,: : : :i '
o f  : : 1 3 ;  t " ' ' ' ' s Y r l ' '

J4. . .hu4.  "  t t - ta" r .

Dual tensors:

i t ' ' ' ' r . - t  :  
# r t s r ' ' '  

s r d i ' ' ' ' * - " T ' r - n  E v l

1 | r , . .  . ta-y
I * . . . " r  :  

@ 1 t c s r . . . $ d r  " ' r x - Y

Determinant of metric tensor:

o - | on^ | relative invariant of weight 2'

Differentiation of relative tensor:

Ar',1' .1 
:  (e(a)a) 'w 5otG1 tt.tolo )-'* T','.'.'.1. l l l l '

T .'.'. rp =B (e(a)a)'w tG(o)a) 
-*w T'e. . . I t r;

a l t o : 0 ,  € r r . o . i y l t o : 0 ,  4 " ' r Y 1 r  :  0 ;

aTn
Ti 1o - h 

if. T' is of weight 1.
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Extension of M-cell:

dr(rro'" ' hx - 031 :::* d,rr1t' '. . . d,1741ec8o,

d t ( u \ h r " ' h v : c % " . a u g .  a * *  '  I
oyo,' ' ';frdts>' d'r1u) : ld<oY"l'

Volume:
d,v G,r, : Q@)a)' e(r)d,r gy,
drw): d,st d,sz. . . d,s1g for rectangular cells.

Generalized Stokes' theorem :

I*"r0, . . . h1s-1, hyd, (*ro'' ' ' hu

: 
L_, 

Tn,. . .  hu-r d,r<*-tf , ' ' '  hv-1.

Green's theorem:

[*.r' t r dttg1", : 
{rr_, 

e(n)T'n, da)q-q. 
\

EXERCISES VII

1. show from 7.3t2 that the number of independent com-
ponents of the extension of an M-cellin JV-space is

NI

Mt (N - M)r'
2, Prove that the covariant derivative of a generalized

Kronecker delta is zero.
3. Show that

dt::: lx :

4. Il. 7,, is a symmetric tensor density and S," a skew-
symmetric tensor density, show that

Tlr, :  *orr- i r ,o#,
$"t, '= #O".

4 af i . . .df i  
I

::::::1.
6f," d,o. . . *# I



ExpncrsBs VII

5. Let b*obe an absolute covariant tensor. Show that the
cofactors of the elements b^n inthe determinant I b^* | are the
components of a relative contravariant tensor of weight 2.

6. Determine the tensor character of the cofactors in the
determinants formed by the components of (a) a mixed abso-
lute tensor, (b) a relative contravariant tensor of weight 1.

7. In the space-time of relativity, with metric form

(d*r)r* (d#)r+ (d*12- (d,#)',

the 3-space with equation
(nl)'+ (rP)'+ (f)'- (#)' - 0

is called a null cone. Prove that the 3-volume of any portion
of the null cone is zero.

8. Prove that a polar .lfl-space of constant curvature is

oriented if /V is odd and unoriented if lV is even, but that an
antipodal /V-space of constant curvature is always oriented.

9. Show that the total volume of a polar 3-space of con-
stant cunrature Ra is lK, and that the volume is 2zfR8 if the
space is antipodal.

10. If. r** is an
defined by

is an invariant density. Discuss the tensor character of f"
and g*n, defined by

AL
f^o: #,,  

g^o- f" l l re l- t ,

and also of g^n, defined by

9*"got - 6n'

Prove that lg*^l : lf^"1. (Schrcidinger)

11. In a non-metrical space Ve there is a skew-symmetrtc
absolute tensor field F^n satisfying the partial differential
equations

F*n,r* Fnr,^* F*,o: 0.

Show that, iI U, and Wo are two closed 2-spaces in Vu de-
formable into one another with preservation of orientation

279

absolute tensor in 4-space, show that L,

f .  :  l r** l ' ,
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then [_ F^ndr(2r-o : I F^nd,r(z)-o.
U, W2

12. In a flat space % there is a skew-symmetric Cartesian
tensor field F*n, satisfying the partial difierential equations
F^n,o: 0. Show that il tls and Wa are two closed B-spaces
in zr, deformable into one another with preservation of the
sense of the unit normal nr, then

[,'@) 
f'"n"d'v6'1 : 

dn,'@) 
F'"n"do@) '

13. In a non-metrical space trZa there is given an absolute
covariant vector field or. Then the derived vector field
(o'- c*rur,- determines an invariant direction at each point
of trZs and hence a congruence of curves in Vs. A tube I is
chosen, composed of such curl/es, and C, C, are two closed
curves lyrng in I, and such that they may be deformed into
one another without leaving T. Prove that

I vl,r': ,f vdr' ,
C U

the integrals being taken in senses which coincide when one
curye is deformed into the other. (Note that this is a general-
ization of Exercises VI, No. 4.)

14. show that, if. vz is a closed subspace of a non-metrical
space 7a, and vr any alsolute covariant vector field assigned
in Va, then I ,r,"drrr)" : 0.

v,
15. Generaliz.e Ex. 14 to the case of a closed va immersed

in a non-metrical Vx in the form

L ooror... hu_r, nrdr1a,yhrhr... &r : 0.
vu

16. In a flat space of lY dimensions, with positive definite
metric form, tlre volume V of the interior of a sphere of radius
R is Z : [ . . . I drr. . . d,zy rwhere zp otarectangular Cartesian
coordinates, and the integration is taken over all values of the
coordinates satisfying znzn{ Rz. Show at once that V: KRN
where K is independent of R. Further show that

v: 2N R* f* ar* l'*-' or*-1 . . . .l" drrl" or,
J O  J O  J O  J O
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F r :  ( 1  - 2 7 + r - o . .  -  s ? i t ,

and that

frr+r Gp)P dzp+r:!t !?: t l l (Fr+,)P+r;
Jo  

\  ' r  ' '  z t ( *P+* ) t
hence prove that the volume of a sphere in .f/-space is

rl -tlffRrvv:i i lrfv+lr.
Check this result for J[ - 2 and JV : 3.

L7. In a flat JV-space, as in Ex. 16, if we putr2: Bpzp, then
a

zp - 
urG l), and the outward-drawn unit normal to the

sphere 8p8p: R2 is fip: so/R. Use these facts and Green's
theorem to prove 

"T -.-- lv
Jr'dv 

- 
iYf2 NV'

where the integral is taken throughout the interior of the
sphere, and Y is the volume of the sphere.

18. Using Ex. L7 , or otherwise, prove that the fourth-order
moment of inertia tensor (cf. equation 5.330) for a sphere of
uniform density p and radius R, calculated with its centre as
origin, is

281

where

r - PVRg
J nr,?s - JV + 26'"!r.

/ | 63'IZry\.
I Prove first that I zns&V : :.
\  r  N+2/
Show also that the tensor f 

"u 
if. defined by 5.335, has com-

ponents 
/V _ 1

f et - oVPc-* 
* 26*.

(Note that the fraction (lV - D/W + 2) gives for /V : 2,3,
respectively, the values of. l/4, 2/5, f.amiliar in the evaluation
of the moments of inertia of a circular disc and a sphere, about
diameters).



CHAPTER VIII

NON-RTEMANNHN SPACES

8.1. Absolutederivative. spaceswithalinearconnection.
Paths. This concluding chapter lays no claim to completeness.
It is rather of an introductory nature and its only object is to
give the reader an idea of some of the more modern develop-
ments of differential geometry. It may be added that the
generaliz.ations from Riemannian geometry, considered in this
chapter, have found application in the many unified relati-
vistic theories of gravitation and electrodynamics.

In chapter rr we introduced the Riemannian .lI-space with
metric tensor @-,.. Perhaps the most important use which we
made of the metric tensor was to define by means of it absolute
and covariant differentiation. It is our purpose here to show
that the ideas of absolute and covariant differentiation can be
introduced without going as far as to require a metric, i.e.,
without asserting the possibility of associating a length with
an infinitesimal displacement d,r'or an angle with two vectors.
Thus we are led to consider non-Riemannian spaces, which are
more general than Riemannian spaces but more specialized
than the "amorphous" space of Chapter r and of parts of
Chapter vu.

In order to simplify our discussion, w€ shall restrict our-
selves throughout this chapter to absol,ute tensors and refer to
them as tensors without any qualifying adjective. General-
ization to the case of relative tensors presents no difficulty
(see exercises 17 to 2l at tlre end of this chapter).

Given a contravariant vector field I', defined along a curye
tc': $'(u), the ordinary derivative of. T'is easily seen to trans-
form according to the equation
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8.101.

specialized-until it reduces to Riemannian space or,
commutativity of absolute differentiation is added,

AssolurB Drnrvarrvn
l

dTP dT' dx"

d 
: 

au Xi+ Xl,TA,

E6U6V
su@n 

:  
6uV + U; ; '

where the compressed notation of. 1.7 is used. Thus, as we
already know, ilT/d'u is not tensorial. We now search for
avector 6T/6u associated with the vector field 2T; this we shall
call the absolute deripatiae of T'. Similarly, we require absolute
derivatives of covariant vector fields and of other tensor fields
defined along a curve.

We shall assume that the absolute derivative of a tensor
satisfies a certain minimum number of requirements. The
smaller the number of these propertieswhich the absolute deriv-
ative is required to possess, the more general is the resulting
space. As more conditions are added, the space becomes

if the
to flat

space.
We shall impose the following basic postulates on the

absolute derivative of a tensor field, defined along the curve
x': x'(u)z

A. The absolute der&,ative of a tensm ,is a tensor of the same
order and type.

B. The obsofute ilpriwtiue of an outer proitruct of tensors is
giaen, in terms of the fa,ctors, by the usual' rule fm d,if|erentia,ting
a prod,uct Symbolically:

9.102.

C. The absolute der&tatfue of the sum of tensors of the sanue
type is egtal, to the sum of the absolute d,er&tat'iues of the tensors.
Symbolically:

DT
6u

8.103. *rr '+ n:Y+Y
D. The absoh,te dpr,iantfues of contravar,iant and cwaria,nt

vector s ar e r es pectively :

dTt d,x,
:6  +  Y^rTn du ,
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6?:, dT,
6u ilu

where the coffic,icnts l'-r,IIL, are functions of the coordinates.
We know that these postulates are consistent, becausS they

are all satisfied in Riemannian geometry, where I'-, : iL, :

1 :-l . Riemannian geometry was constructed out of a sym-
lftrn t
metric tensor o-" with tiV(/V + 1) components. Now we have
2/VE quantities f-r, f^r- a larger number. Thus, in a sense,
our new geometry is more complicated than Riemannian geo-
metry; but, in another sense, it is simpler, because Riemannian
geometry contains results which are not necessarily true in the
new geomeE5l.

The four postulates A, B, C, D define explicitly the abso-
lute derivatives of vectors only. We shall now show that they
also determine uniquely the absolute derivative of a tensor of
arbitrary order.

I'et T be an invariant and S' an arbitrary contravariant
vector. Applying 8.104 to SF and to the vector ?St, we imme-
diately find

6

6,, (rs!)

But, by postulate B, we have
d 0r osr
; (rSr) : 6o5r+ T 6'

Thus

284

9.105.

8.106.

dx"
- ttfr T'L n 1  m  

d u '

dT 0s!:ASr+ f  *

dT
- - Q r

t L )

du

0r
;s

and, since SF is arbitrary,
6T dT
D" :  du '

This proves that the absol,ute derfuatise of an imtar,ia,nt is its
or il,inar y derivatht e.

Before we consider tensors of higher orders, we must estab-
lish the following lemma:
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Any tensor ca,n be etcpressed, as a sum of sutu products of

vectors.
For the sake of concreteness we shall prove this lemma for

the case of a third-order tensor T;o;'. The extension of our

proof to a tensor of arbitrary order and type will then be

Lbnio,rs. We introduce one set of /VE vectors and two sets of

JV vectors each, and we denote these vectors b! X @,qym, Y 67''.,
Z(n)*. Here the letters p and q assume allvalues from 1 to JV

rttd 
"t" 

used to label the individual vectors of the set; za is a

suffix and denotes the component of a vector (e.g., X1z,a1- is a

covariant vector and Z 6,1^ is a contravariant vector). In some

fixed coordinate system we define those /W+ 2/V vectors as

follows:

8.107. X(p,q)* : Tkio, Y@r^ - 6!r, Z(pt*: 6T,

where T;io is the given tensor. Then, with summation under-

stood for repeated labels f and 9, the equation

8.108. T;;' - X (p,qr^Y @yoZ ey'
is obviously true in the coordinate system considered. But
8.108 is a tensor equation and therefore true generally. This
establishes our lemma.

Exerc,ise. Show that any tensor T^" may be written in the
form

T*o: X(n*Y(o)n,

and use this result to prove problem 11, Exercises III.

Taking the absolute derivative on both sides of 8.108, we
have, by postulates B and C,

8.109.

* X @,qr^Y(orn*rtror.

*,rrr,: (* x @,q)*)vp1*zs;

*  x@,qr - ( *Y@ro)r ,or '
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8.113.
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Using 8.104 and 8.10b, this easily reduces to
d - d d r t

8.110. 
irT;;,  

:  
iTho, 

- iL4;,;

d,rt d.rt- t'*T;;,; * r,,,7;;";.

Thus the absolute derivative of the tensor T;;, is uniquely
determined by our postulates. It is clear tr,.i tni, *"it oa
may be extended to establish a unique absolute derivative of
an arbitrary tensor.

E*ercise. show that, if the parameter along the curve
x': *'(u) is changed from u, to v, then the absolute derivative
of a tensor field with respect to u is du/d,v times the absolute
derivative with respect to tc. Symbolically:

0  du6
6u &t 6u

so far we have not considered the consequences of the
tensor character of the absolute derivative, which is postulated
in A. It is easy to see that the vector character of. 6Tr/6a
and 67^,/0rz determines the transformation properties of the
quantities llo, rlr; in the compressed notation of 1.2, the
transformations are as follows:

len,: l;"xixtrX: + $,xr,
ib:-*"xlxtrE+nxP,.

Note that rlr*, F-o ttattsform exactly like Christofiel symbols
of the second kind (cf. 2.508).

Exercise. Prove that 4o, defined by
8.114. C-o : TL, - i;r,
is a tensor.

Exercise. show that the right-hand side of 9.110 may also
be obtained formally by the method of 2.516, i.e., by difier-
entiating the invariant T;orX^[nZn and using AX-f6u - 0,
6Y"/6u- 0, 62,/6u : 0.
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Consider an .trfi-space in which two sets of quantities 1l'*r,

i'-, ^t" assigned as functions of the coordinates in some co-

ordinate system r'. When the coordinate system is changed,

the functions f-o, to arc to be transformed according to

8.112 and 8.113. Thus, having assigned ILr, I',,o in one

system of coordinates they are defined in all. We_then say

that the space has a l,inwr connectinn and that TL^ Ito are the

coeffi,ci,ents of linear cofl,nect'iofr. In a space with a linear con-

tt""tioo, the absolute derivative of a tensor field, assigned along

some curye *': tr'(It), is defined by an expression of the form

8.110; the absolute derivative of an invariant is given by 8.106.

Having set up this technique of absolute differentiation,

guided by the postulates ,{. to D, it remains to show that these

postulates are in fact satisfied without imposing on the

efficients of linear connection any conditions other than

formulae of transformation 8.112' 8.113.
As regards postulate A, it is clear from 8.106 that the

absolute derivative of an invariant is an invariant. The for-

mulae 8.112, 8.113 have been developed expressly to secure

the tensor character of. 6T/6u and 6Tr/6u. As for the tensor

character of 8.110, this is established by inspection of 8.109;

this argument may be extended to cover any absolute deri-

vative, and so we see that postulate .4 is completely satisfied.

As regards postulate B, the method (cf. 8.109) which

we have used to define the absolute derivative of a tensor

ensures that postulate B is satisfied for any outer product of

vectors, and hence for any outer product of tensors.
The linear character of 8.104, 8.105, and 8.110 ensures the

satisfaction of postulate C. As for postulate D, it has been

incorporated in the technique. Hence all the postulates are

satisfied.
Following the analogy of the Riemannian case, we define

the coqtariant derfuative of. a tensor field Tl;:. by the relation

n . - . . . .  d ' x o  - ! r r . . .I .  s . . l o  d U  
-  

6 U a  
.  s . . r

co-
the

this relation being assumed to hold for all cunres *': tc'(u).
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It is easily seen that T! ;:. r ,, is a tensor field given by

8.116.  T  r ' . .  1 , ,  :  T  ; : ' . ,o  *  
l , r ( j : :  +  .  .  .
I S Z  . I  .  m . .  

-  . .  o

where the comm a in I i . . ,r, denotes partial differentiation.

Exercise. Prove that { | ,,: Cjo, where 4" is defined by
8.114.

we are now in a position to introduce ideas of cunrature
in a manner analogous to the method of Chapter ru (cf. Ex-
ercises 2,3 atend). However, we shall not do tjris at present; to
obtain simpler formulae, we shall wait until we have specialized
our space to tlre case of a symmetric connection.

we say that a tensor T. ;'.; is propagated parallel,Iy along a
cun e C if iK absol,ute d,erfuat&te along C vanhhes:

d

ur!  ' : :  :  0 '
The property 8.111 insures that this definition of parallel pro-
pagation is independent of the choice of parametir along the
curye.

Ererc'ise. Prove that an invariant remains constant under
parallel propagation.

we are now ready to examine the possibility of defining
cunres analogous to the geodesics in Riemannian space. Ob-
viously the property of stationary lengttr cannot te applied
since no length is defined in our space. Let us, however, recall
the important property of a geodesic, that a vector, initially
tangent to the curve and propagated parallellyalongit, remains
tangent to the curve at all points. This is the content of
equation 2.427 and of the argument following it. The property
just quoted is, in fact, sufficient to define geodesics in- Rie-
mannian space. This definition is immediately generalized to
spaces witb a linear connection. We shall call these curves
t tpathstt:
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A path in a space with a linear connection is a cun)e such tlwt

a aectir, initi,atly tangent to the cun)e and propogated parallelly

along'it, remains tongent to the curae at all, points.
ih,rt a path *': r'(u) must be such that the equation

6T/6u: 0 has a solution Tv: 0tr', where

8.118.

and d is an invariant function of u. Hence 6(ilr')/6u: 0, or

9.119.
0tr'
6 :  F) r "

where p is an invariant function of. u,.
Eliminating p from the system of equations 8.119, we easily

see that a necessary and sufficient condition for a curye to be

a path is that it satisfy the differential equations

0r' 0I"
; l t "  

-  \ ' 6 ,

dx'
\ f  -  -n  -  

d u '

8.120.

or, more e:rplicitly,

8.121.

Exercise, Show that by a suitable choice of the parameter z

along a path, the differential equation 8.119 simplifies to

6\ ' /6u:  Q.

Attention must be drawn to the fact that postulate B

concerned the eutu products of tensors, i.e., expressions such

as [JnV^o and not contracted (inner) expressions such as
(Jr V*n. In fact, the postulate is not in general true for inner
products, and in this respect our new geometry differs from

Riemannian geometry. Let us consider the invariant fJ'V,
where (J' and V, ate two vectors defined along a curve with
parameter u,. Since U'V, is an invariant, 8.106 gives

( d'*'r n, d'x^ d'xo\ dr"

\ d", + L'*oE d" ) d,"

-w*ffi+ r;"#H)'
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d d

6u(AV) :  T.(AV,)
du, dw:6v'+ w * '

Hence, by 8.104 and 8.105, with tr': d*"/d,u,
0 0u,__ 6v,
f,uV'v,) :; V, * U'; - FL,- f'-") [Jmv,]\n.

Thus
a /6w oI / " \s.rzz. 6"Vv,)- \; 

v, + u,; 
) 

: - cL*IJ^v,>\".
The right-hand side of this equation will vanish only under
special circumstances. Hence we may say that, if U; and, V,
are both propagated, parallelly along a cu.rue, the inner prod,uct
u'v, will not be propagated. paraltelty; in fact we shail have

*r*v,) : - c^,(J^v,t\n.8.123.

If g*" are of the form

8.124. 4r :  f , -Cn,
where Co are functions of the coordinates, then g.12g may be
written

d

du(u'v,) : - c"r"(ry,v,).
Under these circumstances the relation UrVr: 0 is satisfied
along a curye if it is satisfied at one point and the vectors
U', Vrare propagated parallelly. Although we have no metric,
the invariant condition [J'v,: 0 may be said to imply the
orthogonality of the vectors [J' and Yr. Since, under condition
8.124, this orthogonality is conserved under parallel propa-
gation of the two vectors, we call a linear connecti on oriho-
invaria,nl if it satisfies 8.124.

Exercise. Show that, in a space with ortho-invariant linear
connection, the Kronecker delta is propagated parallelly along
curves satisfying Co\": 0.
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What we have been considering in 8.t22 is actually the

question of the commuting of the operations of contraction

and absolute differentiation, and we have seen that in general

these operations do not commute. To simplify our geometry,

we shall now add a fifth Postulate:
E. The operations of contraction anil absolute d'ifferent'iation

corr,rnute.
Let us examine the consequences of this postulate. Starting

with the outer product fI'V, we first contract to WV, and

then take the absolute derivative 6(U'V) /6u. Next, we first

take the absolute derivative
0 6U'  _6v"

; r (U 'V, ) :6  V,+ U'T,

and then contract, obtaining

ffr,+t,Y.
The difference between the two results is given by 8.122. If

this is to vanish, for all vectors A, V, and for all tangent

vectors Io, we must have

9.125. ckr: 0,
or, equivalently,

By the method used above (expressing a tensor as a sum

of outer products) it can be shown that 8.126 is si.rfficient to

ensure that contraction and absolute differentiation commute
for any tensor.

If a connectionsatisfies postulate E, ot equivalently 8.126'
it may be called contraction'imariant. However, since the
relation 8.126 shows that we have to deal withonly oneset of

coefficients of connection (.lF of them instead of 2N8 in the
general case), we shall call a space for which 8.126 is satisfied
a space with a single connection,* A single connection is of
course ortho-invariant (C": 0). In the following sections
only single connections will be considered.

*If 8.126 is not satisfied, we may speak of a d.oabl'e connution, i.e., one

connection for contravariant components and the other for corariant.
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Show that in the case of a single connection,
0

6uft 
: Q'

8.2. spaces with symmetric connection. curvature.
To the five postulates L to E of the previous section we
now add a sixth:

F. The coeffhients of the s,i,ngle linear connection satisfy
8.201. ILn: I'n*.
Such a connection is called symmetrh or aff,ine.

The significance of this requirement becomes clearer by
considering two statements each of which is completely 

"q.ri-valent to 4 namely:
Fr. There exist infinitesimal parallelograms.
Fz. Given any point o, there exists a coordinate system

such that, at O, the absolute derivative of a tensor reduces to
its ordinary derivative.*

The statement F1 is rather loosely formulated, but its pre-
cise meaning will become clear in proving the equivalencl of
F and F1.

Let us remember the condition for the parallel propagation
of a vector It along a curye rr: rr(u):

67" dT, d,rn
9.202, T:  ' -+ t ; rTn+:0 .6u du

Frc. 25. Infiniesimalparallelogram.

For a small displacement
dtc', the increment of Tr

c^ under parallel propagation
" is given by

8.203. d,Tv : - rt_oT*dr",

to the first order in the
small quantities d,tcr.

LetOAB (FiS. 25) be an
infinitesimal triangle, the

flr3z ,au

displacem ent OA being given by dp1r., and OB by dp1r,. If we
*Such a coordinate system is often called geodesic.

d,.,x'- lT. d,.,r" d,,
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-+
OA parallelly from O to B we obtain an infini-

tesimal vector BCr, given bY

8.204. dq,i1tc'- Tr*nd'67xmdP1*n'

Similarly, if we propagate OB parallelly from O to A we obtain

an infinitesimal vector ACz, given by

8.205. ilpyx'- l'"sil\z1x^dg1ec''

The expressions 8.204and 8.205 are correct to the second order

in the differentials d1r1*' and dpltc'. This remains true if, in

8,204 and 8.205, f-,, is evaluated at O. The infinitesimal

displacem ent CrCe is now easily seen to be

8.206. (T;"- f;*)d161r,ndP1tcr,

corTect to the second order. This always vanishes if and only

if 8.201 holds. Thus, neglecting third order terms, Cr and Cz

coincide in a single point C and OACB is an infinitesimal

parallelogram. This establishes the equivalence of F and Fr.

Let us now consider the statement Fz. Assuming F2 to

hold and given an arbitrary point O, we have acoordinate system

sr, say, in which the absolute derivative of any tensor field

reduces to its ordinary derivative at O. This immediately

implies the vanishing at O of all the components of t;,' in the

coordinates r'. If. f is any other coordinate system*, the

components of the linear connection at O are given in the new

coordinate system by the transformation equation 8.112-

These, by virtue of the vanishin g of f-", reduce to

9,207. T1, : )481'.
Since )(u,: Xfu, the I!, are symmetric in the two lower suf'

fixes. But O being an arbitrary point and the coordinate

system rf being arbitrary also, this symmetry property holds

generally. Thus we see that Fz implies R
We shall now prove the converse, namely, that F implies

Fz. Let *, be an arbitrary coordinate system and O an arbi-
*The compressed notation of 1.7 is used.
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trary point in space. The coordinates of. o are denoted by 16
and the coefficients of linear connection at o by (rl,)0. w.
introduce new coordinates f by the equations
8.208. f : 6l(x'- tc} - t [F;)o(tc^- r{)(tc"- x[),
where d! is unityif p andr have the same numerical value and
0 otherwise. We immediately have

8.209. (Xilo: dl, XLo: 6l(f|*)0,
where, in the second expression, use is made of the symmetry
of. I'-". Using the relation

xix, =: 6,

(4)o - 4.
identity 1.706, the transformation equation

8.211. Il,: T;"XlXtrXf - X,-"XtrX:.
using 8.209 and 8.210, we see that at o,8.2rr reduces to
8.212. (Ii,)o: 6o,A||ii [(I!,")o- (Il")o ] : 0.
Thus the coordinate system rf satisfies the requirements of. Fz.
This completes the proof of the equivalence of statements
F and Fg.

Erercise. Deduce immediately from Fz that
T 1 ^ o  :  T 1 o  ,

where T is an invariant.

we shall now investigate the cuntoture of a space with
symmetric connection. If we carry out the operations which
led to 3.105, using the coefficients of connection instead of
Christoffel symbols, we obtain, for any covariant vector field
7,,
8.213.
where

8.2t4.

T, | ̂ o- T, I nm: TrE r^n,

P.,^,:# -tft * tlnr'p-- ro,-ri,.
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By 8.213, Er^n is a tensor; we call it the curuature tensor of

the space with symmetric connection. The curvature tensor
satisfies the following identities, analogous to those of
Chapter rrr:
8.2L5. R.7qv1 : - Ero*,

9.216.

9.217.

R f r - o * f f - , n ' * ( " r - : 0 ,

-q r - , r l *  +  8 r ,n r l -  *  E r * * l  n  :0 '

Exercise. Prove the above identites by using a coordinate

system of the type considered in Fz.

Note that we can not define a covariant curvature tensor

as in 3.112 since there is now no metric which enables us to

lower a sumx. Thus the curvature tensor -q'no does not

possess any symmetry property involving the contravariant

suffix s. In fact, by contracting the curyature tensor, r1re can'

in contrast to the Riemannian case, form two distinct tensors

of second order' as follows:

ar:. ar:-g.2l}. R,^: E,^":#-# + ry"4-- rl-rt,

- / aIF"" arL \
8 .2 !9 ,  F*n :  + " ( .mn:  + (U*  -  

*  ) '

Eruc,ise. Verify that F*o is skew-symmetric and that

R^r* F-r, is symmetric. Show also directly from 8.219 that
F^o varrishes in a Riemannian space.

It is obvious from 8.214 that if f*, all vanish identically
in some coordinate system then tlre curvature tensor is iden-
tically ?Eroz
8.220. tr{t-r, : 0.
This last equation, being tensorial, must hold in all coordinate
systems; but the F-" will, of course' not vanish in a general

coordinate system.
A space in which the curvature tensor vanishes identically

is called flat.
By methods closely analogous to those employed in 3.5,

which, honrever, w€ shall not repeat here, it can be shown
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that the aanishing of E r*n is suffi,ci,ent (as wel,l as necessary)
for the e*istence of a coord,i,nate system in whhhthe coeffhi,ents-of
connection &re al,l,,id,enticall,y zero.

In such a coordinate system the equations of a path are
linear in the coordinates, i.e., a path is given by tr/ - 1 inde-
pendent equations of the form
8.221. 4,fr,* Bn: 0, c : L r 2 r . . . r N - 1 ,
where ff is the dimension of the space and Ao^ Bn are con-
stants. The proof of this statement is quite simple and, since
we shall not require the result in our later work, it is left as an
exercise.

In a coordinate system in which the r'*n are all identically
zero, the parallel propagation of a tensor along an arbitrary
curve leaves each of the components of the tensor unchanged.
(This is immediately seen from the definition 9.112 of parallel
propagation and the fact that absolute differentiation coincides
here with ordinary differentiation.) It follows that parailel
propagat'ion of a tensor from a point A to another point B is
independ'ent of the path, joining A and, B, ahng whhh the tensor
is propagatd,. This last statement is of an invariant nature
and tJrus holds for flat space whatever the coordinate system
used. In fact, using the arguments of B.b, it ."tt be
shown that this statement is equivalent to the vanishing of
the curvature tensor and may thus be used as an alternalve
definition of flat space with symmetric connection.

8.3. sreyl spaces. Riemannian spaces. projective spaces.
In this final section we shall start with a space wittr- sym-
metric connection. First, by two specializations, we shall
arrive at Weyl's geometry and Riemannian geometry in this
order. Next, we shall consider briefly the generuliz.aaon to
projective space. This generalization does not consist in
loosening tJre restrictions imposed on the coefficients of con-
nection (which would merely lead back'to unsymmetric con-
nections); it is obtained by introducing a new type of trans-
formation affecting the coefficients of connection but not the
coordinates of the space.
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A Weyl, space is obtained by imposing on a spam with syfn-

metri,c connectiort T'o,n the following requirement:
w. There exists a cosar,iant vector 6, and, a symmetrh tensor

a^n uthose deterrninant is il,on-zero, such that

a m n l r * a ^ * 6 r : 0 ,

& :  lo^* l  *  0 .
We shall treat amn as a metric tensor and defin e a,nn as in

2.203. The tensors amr and a*n will be used to lower or raise

suffixes in the usual manner. Thus we can associate with the

coefficients of connecti on I|-o the new quantities defined by

8.303. I*n, : aroflLo, I''^o : arElmnc'

The I-,, r 2ite close analogues of the Christoffel symbols of the

frrst kind and share their transformation properties, while the

f*o areanalogues of the Christoffel symbols of the second kind,

as was remarked earlier.
Writing 8.301 out in full, we have

8.304. (tmm,, - ILratn - fo&*" * @^n6, : 0,

where, as usual, the commain a^^, denotes partial differen-

tiation. By 8.303, this becomes

8.305. l^rn * Inr^ : amn,r * a^n6r.

If, in this equation, we permute the suffixes rn fl, r cyclicly we

obtain, in addition to 8.305, two further equations.' Adding

those two equations and subtracting 8.305' we obtain

8.306. I^*, : lmn,rl + t (a^r6o* anr6^- a^n6),

where lmn,rl is the Christoffel symbol of the first kind:

8.307. lmnrrl : + (a*r,o * anr,^ - a*n,).

If we raise the suffix r by means of the contravariant metric

tensor o", 8.306 becomes
r - )

8.308. fl-n- 1**l + t (f,*6" * fn6^ - a*np),

where

9.309.
{;} 

: a" lmn'sl' Q': n'r'6c'
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Etcercise. Prove that 8.801 implies

8"310. a^n l, - a^oe, : 0.
If we are given a vector 6, and a symmetric covariant

tensor a*n, then 8.308 gives us a symmetric connection for
which 8.301 is satisfied. However, we can look at the question
the other way round: Given an arbitrary symmetri" torrr""-
tion, do a*o and ,6, exist to satisfy 8.801 and g.802 ? The
answer is "No", but we shall not attempt to establish this
(cf. Ex. 22 atend). (If the answer were "yes", then postulate
17 would not restrict the connection; every space with sym-
metric connection would be a Weyl space.)

we shall now show that, given a symmetric connection
satisfying w, the choice of. a^n and c, is far from unique.

Consider ot ̂ o, .f'r, defined by

8.311. (r '*o: l@^n, Q'r:  e, - ( lnl);r  :  e, -

where )t is an arbitrary invariant function of position. Then
8'312' a' mn | 

: #' :;*;,f 
*^'r' - a'vnl\ 

"
: 0 ,

by virtue of 8.301. Thus if a^n, f, satisfy 8.801, then a'^n, 6, ,
defined by 8.311, satisfy a relation of the same form.

A weyl space therefore contains an infinite set of tensor
pairs (a-o, Qr), (o'^n, 6' ,) r. o . , mutually related by equa-
tions of the form 8.311. There is no a priaiireason why one
such tensor pair should be preferred over all others. Thus the
fundamental relations and quantities in Weyl's geometry are
those which do not depend on the particular choice ol th"
tensor pair (a^n, Q).

The process of replacing the tensor paft (a*n, 6) by a new
paft (a'*o, Q'r), defined by 8.811, iscalled agaage transfortno-
tion. we can now restate the content of the previous para-
graph by saying that in weyl's geometry we are concerned
with gouge'inwr,iont relattons and gouge.inwr,iaal quantities,

tr,r
T'
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under all gaugei.e., with relations and quantities
transformations.

We shall conclude our brief sun/ey of Weyl's geometry by
an enumeration of the most important gauge-invariant rela-
tions and quantities.

The squared magnitude of a contravariant vector
8.313. X2 - a,^nX*Xo

is not gauge-invariant since it gains a factor tr under a gauge

transformation. However, the property of having zeto mag-
nitude, i.e., to be a null vector, is gauge-invariant. Moreover,
the ratio of the magnitudes of two contravariant vectors at the
same point is a gauge-invariant quantity. The angle 0 between
two contravariant vectors X' and Y', defrned in the usual
way by

a*rX^Yo
9.314. cos 0 :=

(aooXnXear"Y'ts')l t

is gauge-invariant. Since a gauge transformation preserves
angles it is conformnl.

Exercise. Is d! a gauge-invariant tensor?

Exercise. Show that, under the gauge transformation 8.311,
a*' and a transform as follows:

a,rnn :lo^o, a, : ltN a.

Any geometrical object either involves (a*n, d'), ordoes not
involve them. In the former case, it may, or may not be
gauge-invariant. In the latter case, it is certainly gauge-
invariant, because it is unaltered by the transformation 8.311.
The connection fL" is in a peculiar position; it is supposed
given a priori, subject only to the condition that (a^n, 6,)
exist to satisfy 8.301 and 8.302; but it is expressible in terms
of. (a*n, d") by 8.308. Any doubt regarding its gauge-invari-
ance can be removed by substituting 8.311 in 8.308, and
showing that it remains unchanged.

Any quantity defined in terms of the I'-" exclusively must
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of course be gauge-invariant. Thus the curyature tensor,
defined by

8.316. P.,^n: ++ - {} + Tlnt'o-- r!-to*ilrm ilxn
is a gauge-invariant tensor.

Etcercise. The covariant curyature tensor is defined bv
R"r^o: a"pR!r*n,

How does it behave under gauge transformations?

contracting the curvature tensor E.r^o with respect to s
and n we obtain the gauge-invariant tensor
8.317. Rr^ : 4r-".

8.319.

It is easy
fined by

8.319. R^n : G-n- F^r,

is symmetric (cf. Exercise following 8.21g).
In weyl's unified relativistic field theory an important role

is played by relative invariants of weight 1 which are gauge-
invariant. It follows immediately from 8.315 that for.ltr : 4,
the following relative invariants of weight 1 are gauge-
invariant*:

*We limit ourselves to gauge transformations with positive I.

Contractirg {r-,. with respect to s and r, we obtain the
gauge-invariant tensor

F^o: + R: amn :  +(*-  ++\
\ dr- 0x" /

By 8.308, we have

rl,n : 
t* * tN o*,

where .l/ is the dimension of the Weyl space. Substituting this
into the expression for F^n and using 2.542, we find

n'r
F^n :7(Or,^  -  6^,n) ,

to show that the gauge-invariant tensor G*n, de-
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A -AA k@)a)*N, (c(o)a)l Fq*Wn,
r''5zv' 

G@)a)rG*nG*o, (e (a)a)tR 
",^nRE?m*,

where R : a*oR*o and e(a): 4 1 such as to make e(a)a

positive. Note that the tensor densities 8.320 are gauge-

invariant only if the Weyl space is four dimensional. As a

consequence Weyl's unified field theory gives special signi-

ficance to the fact that space-time has four dimensions.

We shall now make the transition from a Weyl space to a

Ri,emann'in'n sPace.
Consider a Weyl space in which tJre tensor F^n, given by

8.318, vanishes identicallY :

F*n : Yn {ro,* - Q*,n) :. o.

A necessary and sufficient condition for the vanishing of F-'

is that d" be the gradient of some invariant {:

8.322. 6r : Q,r.
The sufficiency of the condition is immediately obvious. The

necessity will now be proved by actual constr.uction of the
function {. Let O be a fixed point and P a variable one. We

P

o(P,C) : l  6dx"
o(c)

where the integral is taken over some

curve C joining O arrtd P. Then as indi-

cated in 8.323 O is a function of the
coordinates of P and also depends on the
choice of the cur:\re C. Consider any
other curve Cr which joins O to P. The
two cun/es C and Cr together form a
closed curye OCPCO which we denote
by I. Let S be any 2-space which is
bounded by I (FiS. 26). Then

o(P, c) - 6(P, c) : i 6dx'
o(c)

P O

I  edx,+ [  6dx,
0.6'. p(Cr)

Flc.26.
P

I  ed*'
6Gi

:T
T

Qdr ' .
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By Stokes' theorem 7.50b, this becomes
O(P, C) - 6(P, C) : [ 6,,drpy,'

t P - 
s

:  *J  (d ' , ,  -  d" , r )  d tpy" ,

and the last integral vanishes by 8.821. Thus

6(P, C) : 6(P, Cr),
and this shows that ,f is independent of the path of integration
so that { is a function of position only. we may now write
8.323 in the differential form

d6 : 6dtcr,
and 8.322 follows immediately. This establishes the equi-
valence of 8.321 and 8.322.

Under a gauge transformation dr goes into
8.324. Q', : 0, - (n)\),r.
It follows that if and only if 6, is the gradient of an invariant,
8.322, there exists a gauge transformation such that 6,, yan-
ishes identically. This is the case if. F^o is zero everywhere.
Then, with Q'r: 0, equation 8.312 reads
8.325. a'^nt r : 0.

The tensor pair (a'*rr, 0) is distinguished from all other pairs
(a^n, dr) by its greater simplicity. It is therefore natural to
reserve the name of metric tensor f.or o'^o alone and to drop
the requirement of gauge-invariance. The resulting geometry
is that of a Riemannian space; by 8.308 the coefficients of
connection are the Christoffel symbols.

More directly, we can introduce a Riem,annia,n space as a
space with symrnetrh connectioa in which the following require-
ment is satisfied:

R. There exists a symmetrh tensor a^n, rohose determinant ,is
non-zero, such that
9.326. ( t rm*lr  :  0.

Repeating the process which led from 8.301 to 8.306 and 8.808,
we obtain

8.327. l^n, :  lmnrrl ,  TLn: 
l ;)
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The whole structure of Riemannian geometry, as discussed in

the earlier chapters, follows from these equations.

We shall now give a very brief account of the generali-

zatton of. a space with symmetric connection to a projectfue

space. This generalization is similar to that by which we pass

from a Riemannian space to a Weyl space.
In classical projective geometry the basic elements are the

points and straight lines and the basic relation between them

is that of incidence. Concepts such as parallelism, length, or

magnitude of an angle are outside the domain of projective

geometry. In differential geometry the obvious analogues of

straight lines are tJre paths. While retaining the significance of

paths we must attempt to exclude the concept of parallelism or,

rnore precisely, of parallel propagation along a cure' a concept

well defined in a space with symmetric connection. The result

of this generalization will be a projective space within the

framework of differential geometry.
The equations 8.120 of a path are orplicitly as follows:

/d>, ,  \  - lax '  .  - - - \
8.328. ̂"(; * r'-,\^^" ) 

: ^'\; * ri,"tr-^ ),
where

d,r,
trr -- n'

White retaining the coordinate system used, we consider all
possible changes in the coefficients of connecti on l'*n which
leave the equations 8.328 of a path invariant. We shall regard

all symmetric connections obtained in this manner as equally
fundamental. All quantities or relations which are common
to the spaces with these different symmetric connections will

be called projectiga quantities or relations. Let l'ko be the

coefficients of another such symmetric connection. Then the
equations

l i l r '  \  - / d \ '  .  - \
9.330. r"( = *r"*o\-r 'n l ,= r ' l ;  *r 'Ln).-tr" I

\ d u  /  \ o i l  /

must be identical with 8.328. Subtracting 8.328 from 8.330
we obtain
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9.331

where

8.332.
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(6JA',.n- 6!ra'*") ),r1-1" : 0,

A k o : A ' o - : I ' L o - f k , , .

since I.'^o and r"-otransform according to g.l 12 under changes
of coordinates, it is easily seen that i,*o i, a tensor. with a
little manipulation of dummy suffixes, g.BB1 can be brought
into the form

8.333. (6lA;"+ 6iA'i_+ 6'*Aio_ 6iAL,_ {,Ai_
6LAio) r?)r-l,o : 0.

The bracket on the left-hand side of this expression is sym-
metric in the suffixes p, ffi, n. Since N is an arbitrary lr""to,
it follows that this bracket must be zero:

8.334. f,oA'-o * f,oA'o^ + f-Aio - 6'oAL,
t "A 'o^ -  t *A \ r :0 .

Contracting with respect to s and pt we obtain

8.335. A'-, : 6;*^ + O;rlr*,

where I, is a vector given by

8.336.
I

. t ,  AsY r  - . n f  
* l - t " '

conversely, if 8.335 is substituted in g.BBl, the equation is
satisfied identically in )r'and ry',. By 8.882, the coefficients of
the new symmetric connection must be of the form

8.337. f'-, : I1-o* 6'r*^ * f,-tr.

It is now clear that the paths are the same for two sym-
metric connections if and only if their coefficients are related
by 8.337, *, being an arbitrary vector. The changes g.BB7 of
the connection are called projectfue transformat'ions of the
connection. We may now say that projective geometry con-
sists of the quantities and relations which are project&te*inuor-
,iant, i.e., invariant under projective transformations.
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In a projective space the notion of parallel propagation is

lost since there is an infinite set of equivalent symmetric con-

nections with conflicting equations for parallel propagation.

We conclude with a short statement on the curvature pro-

perties of projective space, omitting all proofs'*

By direct computation of its behaviour under projective

transformations, the following tensor can be shown to be a

proj ective-invariant :

8.338. W.r*n: Rt r*n

2  L  . _

fr6lF*n+[_ r(d;R"' 
- d;R"-)

,

lP-L(dF,- 
6LF,n),

where iV is the number of dimensions of the space, and E,^n,

Rr^, F^n aregiven by 8.214, 8.218, 8.219. The tensor W.,^n,

discovered by H. Weyl, is called the projecthte cursature tensor.

In two dimensions (nf - D the projective curvative tensor

vanishes identicallY.
In higher dimensional spaces (N > 3), it can be shown

that the vanishing of the projective cunrature tensor is neces-

sary and sufficient for the existence of a projective transfor-

mation which makes the space flat. In more mathematical

language: If Wl,*o: 0 and if ^ltr 7 3, then there exists a

vector 9", such that the projective transformation induced by it

transforms Rlr-,. into R'fr*o: 0. A projective space of 3 or

more dimensions with vanishing projective curvature tensor

is called ProjectiaelY fl,at.
It can also be shown that if and only if a space is projec-

tively flat, there exists a coordinate system such that the

equations of all paths are linear in the coordinates, i.e., such

that paths are given by equations of the form 8-221-

*For proofs see the books by Eisenhart (Non-Riemannian Geometry),

Schouten (Der Ricci-Kalk0l) and Thomas (Differential Invariants of

Generalized Spaoes) listed in tbe bibliography.
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SUMMARY VIII
Coefficients of linear connection:

lko' T'-o'
Io,,: r;"Xixtr$+ $Xi, iou":

Absolute derivative:

d _ d
_ 7 - ?  -  

n t . . .
6 t t , ' '  

t "  -  
d u t  

- t . .

Il'""xfxtrry+ 4,X1.

d.*o

d,u T

d.*r

du

+ cL"TT;: :

i:i
Covariant derivative:

r i  ; : .  I  o  :  r i ; : . , , ,  *  r ; ,7 : ; : :  -
Parallel propagation:

d

ur : i l l :  o '
Path:

ig r: +.

6I' 6r' dr,
t r r :  - .

au

:+

; I "  :  \ ,Tr ,

Ortho-invariant connections :
I ; " - f | o : 6 ! - C o .

Single (contraction-invariant)

ILr: Ir'-o,

*r',,,t s;::):#
6

a8:  0 .

Symmetric connection : T'n,, : Irr^ ;
given a point o, there exists a coordinate system such that

l ' - n : 0 a t O .

Curvature tensor:

Rs--- - qrt', - o'l* - nr rra-.rmn: 
Ar^ yrn , -rrPtp^- I.l,.Ison,
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frr-": - .(ro-, ffr-rr* fr-rrr* Rtor^: 0,

8r-r, t ** {'a h 1m* {rt- 1 n: 0r

Rr^: ;gr-r, F^n: ! E ,*n: } f++ - 9I:- \- 5 
\;r- 

- 
Att )'

Flat space:
N.76:  0 .

Weyl space:

amtl,  * &^n6, :  0, amn: (trnmt a # 0,
(  - )

rL, : \Jrrl * + (f,-o"+ 6io^- a^nl)'

Gauge transformation:

at^n: \0*o, f ,: 6r- (ln)\),r, t'L, : f^*.

Riemannian space:

( t rmn l r  :  O ,  t ; r :  {  
t  

} '
\mnt'

Projective transformation :

I"*r:  l '*n* f ,r t^* {-*o'

Projective curvature tensor:

w.,^,: {"-o -# ilF*o+#(D'-R"- 6;R"-)

2
- jw_1 (f,oFr* - t' Fr").

Projectively flat space (iV ) 3) :

W. r *n :  0 '

EXERCISES VIII

1. In a space with a general linear connection, show that

the expressions

f*r- T'o-, 7*r- i'n

are tensors of the type indicated by the position of the suffixes.
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2, If T is an invariant in a space with a single linear
connection, show that

T 1 ^ n - T l n m :  - 2 T t r t - o ,

where

Il**: - L'o^: + (I;" - t;_).

3. lf. T, is a covariant vector field in a space with a single
linear connection, show that

T, | ̂ n- Tr I nm : T"E r*n- 2 Tr 1 " 
Lt-o,

where LL"is defined in Ex. 2, and where

Rl"-o :# =ffi * r!,T't^- r!'-t'r*.
4, In a space with a single linear connection, show that iJ

there exists a coordinate system for each point o of. space such
that, at o and for all curves through o, the absolute and
ordinary derivatives of any tensor differ by a multiple of the
tensor, then the coefficients of linear connection satisfy a rela-
tion of the form

IL"- l'r : f-An- 6'14^,
where 1., is some covariant vectgr. (Such a single linear con-
nection is said to be sem'i-symmetric).

5. Prove the converse of Ex. 4.
[Hint: consider the coordinate transformation (in the

notation of 8.208):

ro-- 6l(x,- tc6) + + | +ale;" * r'o_)o
1- 

, _ .' 6i!i^- tr*)ol (*^- 8)@"- rd).]r r -1
6. Show that

T r l r -  T " 1 r :  T r , e  -  7 " . r ,

?" being a covariant vector, if the connection is symmetric
but not, in general, if the connection is unsymmetric.

7. show that, in the generalized stokes' theorem 7.b05, the
partial differentiation in the integrand on the left-hand side
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can be replaced by covariant differentiation if the space has

a symmetric connection.

8. In a Weyl space' the rate of change of the squared

magnitude .I3 of a vector X' under parallel propagation of X'

along some curve x': *'(u) is given bY

A d '-a Ymvn\ - -fu^n YmYrtJ- ' dx*

*X' 
: 

*(a*rrX*X") 
: € 

d,u 
zL 1L , Zca*nX*T,

where da*n/d,u is the ordinary derivative along the curve of

a*n (which is defined throughout the space), whereas dX" / du

is obtained by parallel propagation, i.e.,

dx" df
6: 

-  r fa x 'A'
Show that

A dx'

AuX,  
:  -  X,Q,  

d" .

Hence prove that the change in -trP under parallel propagation
of X'around an infinitesimal circuit, bounding a 2-element of
extension d,rpy-n, is given by

2
AXz'= 

frXrF^"d,r12,1^r.
(Hint: Use Stokes' theorem).

9. Verify that the projective curyature tensor 8.338 is in-
variant under all projective transformations.

10. In a projective space' the coeffhicnts of proiectitte con-
nection P'*o are defined as follows:

I
P*o: tLo - jtr+ 1 

(f-ti" + 6;r?r*)'

Show that P*n is invariant under projective transformations
ol }1'*n. Verify that P^r: Po-, 4o: 0. Find the transfor-
mation properties of. F*o under changes of the coordinate
system. (f. V. Thomas.)

11. Show that the differential equation of a path can be
written in the form
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- ^ / d \ '  \  / d \ , "  \^" \, * P-,\-^"/ : ^'(;f * 4,,,r-^" ),
where P*o are the coefficients of projective connection defined
in Ex. 10. Deduce that no change in the rfoo other than a
projective transformation leaves the P-o invariant.

12. Defining

4,^n:# -# + P,*Fr^- P!^Pln,
D D Tz t m  -  t . t m a ,

where P^o are the coefficients of projective connection of Ex.
10, show that 

Ar
F . " o : 0 , P r ^ : -  

* * 4 r H r ^ .
Prove that

I
W. r^n- p.r^o*, 

_, (f,_prn - f,rpr^),

where W.r^n is the projective curvature tensor.

13. Show that

W t "  n : 0 ,  W t r r n  -  0 ,  W t * , : 0 ,
Wt r^o: - Wt rn , Wt r^n * W'.^n, * Wt orm : 0.

14. In a space with a linear connection, we say that the
d,irections of two vectors, X, at a point A and y at B, are
parallel with respect to a curve C which joins A and B if the
vector obtained by parallel propagation of. x, along c from
A to B is a multiple of. Y, Prove that the most general change
of linear connection which preseryes parallelism of directions
(with respect to all curves) is given by

I 'Ln: t '*"+ 26L**,
where 9" is an arbitrary vector. rf, r;" are the coefficients of
a symmetric connection, show that T'L, are semi-symmetric
(cf. Exercise 4).

15. In a space with symetric connection, show that
T 1^o- T' I tm: - T'ry 

"-n.
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16. By use of the lemma of 8.1, or otherwise, show that
in a space with symmetric connection

r i ; ' . . 1 ^ n -  r :  i . . 1 o - :
-  r l i . l  Ko^o+  T :  i : :  R ! , ^o l  . . .

17. Using the compressed notation of 1.7, show that, in a
space with a double linear connection, the contractions of the
connections. Ifo, rL transform as follows:

LAJrf,,:4ri" *iut,

Tf,": xf;i'ro *j#,
where I - [ Xl I ir the Jacobian of the transformation.

18. Irt Ti ;: be a relative tensor field of weight W, so
that its transformation character is given by 7.102. In a
space with a double linear connection, we now define the
absolute derivative of. Ti; ; along a curve x': *'(u) as follows:

d d d,xt

auf i ; : :  TrT i , :+r ; [ : ; :  du  +  . .  .

d,x'
T3r '  ; '+-  . .  .  -  wtkTr "2.r s t 4  .  - .  

d U  
r r  L r t u '  .  t .  

d U

Prove that afl; ./6uis a relative tensor of the same type and
weight as T1 ; : . Verify that the absolute derivatives of outer
products and sums of relative tensors obey the usual rules for
differentiating products and sums (cf. 8.102, 8.103).

19. Are the statements of Ex. 18 correct if, in the definition
of the absolute derivative , ITt is replaced by (a) Tk, 0)
tFH,+ fk) ? Show that, in the special case of a single con-
nection, postulate E applies to relative tensors.

20. From the definition of Ex. 18 and from 8.115, deduce
an expression for the covariant derivative of a general relative
tensor.
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(a)

(b)
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21. In the special case of a Riemannian space

( r ; , :  ?- , :  { '  } .
\ " ' ' t  l*nJ / '

verify that the definition of Ex. 18 agrees with z.zl2.

22. Substituting into the equations (trnn;r - a*r,r, : 0
from 8.304, and using 8.318, 8.219, show that, in a weyl-space,
the metric tensor aro satisfies the algebraic equations

aooG!!^nr! : 0,
where €.!*r, is a function of the Ii,,, and their derivatives,
given by

G!! *n,, : + (50-N. or r* 6l,R! nr r* 60rK ^r, * fjl,R! ̂, )
I- 
/V (6r-6i, + 6#eil fr,,,.

By repeated covariant differentiation of (a) and by use of g.801,
deduce the following set of algebraic equations for a,oo:

anoQ!^nrr I h - aooG!!^nr. I hhE . . . E 0.
(Note: A symmetric connection can always be chosen such
that, in some fixed system of coordinates and at a fixed point,
the quantities 1i"", Ik,r, Ilr*,rr, etc., assiume arbitrarily
assigned values subject only to certain symmetry requirements,
such as lf,,n : Ilr^, Itr*,r, : ftrm,ut etc. Ilence, in a space
with a general symmetric connection, the infinite set (.), (b)
of linear algebraic equations for a*, (: an*) has, in general,
only ttre trivial solution anpt :0. It follows that postulate [Z
does not restrict the connection, as was stated on p. 298.)
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REDUCTION OF A QUADRATTC FORM
(Reference to p.58)

In the reduction of a metric form to a sum of squares, 2.6,
a number of pertinent considerations have been omitted from
the text so as not to detract from the essential simplicity of
the basic arguments. Some of the subsidiary questions will be
ansvrered here.

1. The process by which 2.601 was obtained breaks down if
@rr: 0. Even if. on*O, the same difficulty may arise at some
of the following stages which lead to 2.603.

lf. an: 0, and if any one of the remaining "diagonal"
coefficients of the metric form, i.e., azz, astt .. . I @lyy' does not
vanish, then we renumber the coordinates so as to make this
coefficient the first and proceed as in the text. The only re-
maining possibility is that (Lrr: arz: . . . E @rvrv: 0. Then,
since iD cannot vanish identically (we assume a # 0), at least
one of the nondiagonal coefficients must be different from ?nro,
&p # 0, s&y. In this case we frrst perform the simple coordinate
transformation

A  1 . 1  # :  x 4 *  * ' 2 ,  f i ^ :  d ^  t n  : 1 1  3 ,  4 r . . . ,  J V .

Then at rL: futn # 0, and we can proceed as in the text.
If the difficulty considered here arises at any other stage

of the process which leads to 2.603, the device outlined above
can be used again. An alternative procedure is indicated in
Exercises II, No. 15.

2. We shall now consider another question. It appears that
when we apply the process described in the text to O, and
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obtain e Vr+r and a (Dr+r, more than one differential may con-
ceivably be eliminated so that we end up with fewer than /V
forms v- in 2.603. We shall now show that this is not possible.

We can always write O in the form
a 2 .1 . (P : erVr2* ez:Pzz*...* eJvVrv2,
if we temporarily permit e- to assume the value 0 in addition
to the usual values +1. Put

L 2.2. E r t : e r i f r : s
: 0 i | r # s .

Then, by 2.604,

A 2.3. (D : Er"VtV" : Errbr-brrd,r^d,xo: a^nd,r^dtcn,
and tlrerefore, since Er"br^brn is symmetric in m and n,

a 2.4. Amt: Er"br*bro.

Taking the determinant of both sides, we have

L 2.5. o : lErrl lD-"|, : GtGz. . . rnlbnnnlr.
Since a # 0, we deduce that no €m vanishes and that lb*"| # 0,
The first conclusion proves our assertion. The non-vanishing
of la-"1 shows that Vr, Vz, . o . , Vry are independent linear
combinations of. ilxr, dtcr, . . . , d,ril, i.e., the set of equations
2.604 can be solved and the d,*^ expressed linearly in terms
of the V-.

3. The last question we shall consider here concerns the
signs of the e- in A 2.L. sylvester's famous themem of inertia
states: If a quadratic form tD : amndr*d*n (with a # 0) is
reduced to a sum of squares, A 2.1, then the number R of e's
which have the value * 1 and the number .lI - R of e's which
have the value -1 are invariants of the quadratic form; this
means that these numbers do not depend on the manner in
which the reduction to a sum of squares is accomplished. The
difference between invariants R and If - R is called the
signature of the quadratic form.

We proceed to prove the theorem of inertia. By renum-
bering the V's in A 2.1 we can make the first R e's positive and
the remaining ones negative. Then
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O : Vr2* Vez*. . .* Vnr
- Vn+r2- Vn+rg-o o o - 9rt,

Vrr.: b^od,*o, lo^"1 # o.
Let us consider any other reduction of O to a sum of squares,
such as

A 3.2. A : Xr2* Xa2*. . .* Xst
- Xs+rt- Xs+e2-. . .- Xw',

X-: c^nd,!cn, lt-"| # O.

We must show that R : S. We first assume that this is not
so, i.e., that R # S. Then we can, without loss of generality,
take

A 3.3. s>R.
Combining A 3.1 and R 3.2 we have

a 3.4. Vr2*. . .* VR2f Xsaf*. . .* Xrv2
: Xrz*. . .* Xs2* i[n+rr*. . .* Vrvr.

Now consider the set of linear homogeneous equations

A 3.5. V^- b^nd.*n: 0, m : lr2, . .  .  ,  R,

xm:  cmnd, *n :  0 ,  f f i , :  s  +  1 ,  s  +  2 r . . . ,  . l r .
By A 3.3 the number of equations (/V - S + R) in this system
is less than the number of unknowns dr-(.hI). Therefore equa-
tions A 3.5 have a non-trivial solution where the drr are not
all znro.* Obviously the left-hand side of A 3.4 vanishes for
this solution. Since la-"| # 0, the set of equations

A 3.6. I!*: b-ndro: 0, ,n : tr2, .. . , .lf,
has only the trivial solution d,r': O. Hence for the non-trivial
solution of A 3.5, at least one of VR+rr o . . , Viy must be dif-
ferent from zero. Thus the right-hand side of A 3.4 is positive
while the left-hand side vanishes. This contradiction shows
that the assumption A 3.3 is untenable and thus establishes
the theorem of inertia.

*M. Bdcher, Introiluatiott ta Higlrer Atrgebro, New York, The Macmillan
Company, 19ff/, sect. 17, Thm.8, Cor. 1.
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APPENDIX B

MIILTIPLE INTEGRATION
(Reference to p.2571

In this appendix u'e present a plausibility argument in
favour of the theorem on multiple integration stated in Z.B.

Consider the edge ABo> of the M-cell ABot. . . Blyy intro-
duced earlier in 7.3. Along this edge c(D alone changes. Sub-
divide this edge by points 81i1, Bi;r,. . . ,lying on it and let
c[)t, c(L)t'r. . . , be the corresponding values olt(.I'1. Then the
(M - 1) dimensional spaces

lD(y)  
-  6( r ) t , / ( t ) (y )  :  6( t )n ,o  .  . ,

divide the cell into subcells. If the original cell, and therefore
also the subcells, are infinitesimal, then

B 1. de)y": dcity"* d<ity"+. . . ,
where d$r!", dri>y", il(g!"r. . . , denote the increments in the
parameter y" in passing from A to B(r), from A to B<it, from
B1i1 to B(i\, o . . , respectively. l-et A : lil<p.ty"l and let A',
A", .. . , denote the corresponding determinants for the sub-
cells. Then

A : €c1... 
""(dtiltr+ 

d(ly"*. . .)de)y"r. , . d{a>y"*
-- Gar... ,"il<ilyqiler!%. . . d(M\yn"

+ G, , , . . .  , *d( i lyq i lo) !%.. .  d(ary"* f  . . .  ,
or, equivalently,

s -2 . [  :  A '+  A" * . . . .
Thus the determinant A is the sum of the corresponding deter-
minants for the subcells.

We may proceed in the manner described above to choose
points B(il, B(h,. . o , Brit, B(:,), , , on the other edges of
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our original cell, and so subdivide it further. Obviously our
result still holds, namely, that A is the sum of the corresponding
determinants for the subcells.

If the region Ry is divided into sufficiently small cells by
the M families of surfaces

B 3. /') (y) : cG) ,
then for any further subdivision of these cells, of the type
considered above, equation B 2 may be assumed to hold.
Also, if A is a continuous function in the region Ry (including

the boundary Ry-t), then, neglecting terms of the order of the
Ac's, iD is a constant in each cell. Thus any finer subdivision
of Ry, obtained by adding new members of the families B 3
to those already considered, changes the expression

84 . >ola<ety"l, or )iDA,
by a small quantity of the order of the Ac's. This indicates
that if a definite subdivision of, Ry is continually refined in
the manner just considered, such that all the Ac's tend to z.ero,
then the sum B 4 tends to a finite limit.

Equation B 2 also indicates that lim EOA is independent
of the manner in which Ry is divided into cells-provided
these cells have edges that are tangent to the curves of inter-
section of the (M - l)-spaces B 3. For, given two such divi-
sions of Ry into infinitesimal cells, we can subdivide each
further to obtain a common division into smaller cells; this
process of subdivision changes the sum B 4 by an infinitesimal
only, as was seen above.

Let us again consider an infinitesimal M-cell AB $r. . . B (a)
in Vya, the edgesbeing charactenzndby dAly". We say that
a displacement d.y" is copla,nar with some of these edges, say
with AB<t), AB$), AB$), if numbers tr1' ozrotexist such that

85 . dy": atd$ry"* azdply"l aad,$r!".

Now if we give to the further extremity of an edge, say ,B11y, a
displacement coplanar with some or all of the other edges, say
with ABe>, AB$>, ABer, we do not alter the value of the
determinant ld61y"l . For we merely add to the elements of

317
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one row of the determinant quantities proportional to the
elements in the other rows. obviously any cell may be de-
formed in this way into anotlrer cell whose edges assume ry'
prescribed (non-coplanar) directions in Vy.

Our last result indicates that the limit of B 4 is completely
independent of the manner in which Ry is divided into cells.
For we can start with an arbitrary division and deform each
cell, in the manner just indicated, such that its edges are tangent
to the curves of intersection of the (M - l)-spaces, B 3.
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IIIDEX

Absolute, derivative, 49, 250, 283,
311; tensor, 198, %1

Acceleration, 149, 163, 170
Action metric, 177
Affine connection, 292
Amorphous spacer 282
Anglg 84,36
Angular, momentum, 156; velocity,

159
Antipodat spaa, 116
Antisymmetry, 16

BsRr.roul,r,r's integral, 202
Br.llrcsr identity, 87
Bipolar ooordinates, 79
Body force, 200

Cartesian, coordinates, L4ili ten-
wt, Ltl

Cell,25.3
Centrifugal force 167
Csnrsrorrtr. symbols, 41
Coefficients of connectio& 287
C,omoving timederivative, 191
Compatibiliry equations, 286
Compleely applicable, U9
Componentl, 9, 144
Compressed notation, 2X)
Configuration, 4
Configuration apaa, 1S
Conforural,200
Conjugate metric bnsor, 31
Connection, coeficients, %37i

double, 291; linear, 287; ortho-
invariang 290; projectirrc, 309;
semi-symmetric, ii08; single or
@ntraction-invariang 291; sym-
metric or affrne, W2

Conservation of mass, 195
Continuity equation, 196
Contraction, 17, 88, 295
Contraction-invariant connection,

291
Contravariant, tensor, Ll ; vector, 10
Coordinates, 8; bipolar, 79; Car-

tesian, l42l curvilinear, 26;
geodesic, 292; geodesic normal,
69; homogeneous, 119; local Car-
tesian, 58; normal or orthogonal
trajecbry, 62; orthogonal, 71,
t48; Riemannian, 59; spherical
polar,54

Coptaoar vectorc, 94, 317
Conror.rs force, 167
Cornriant derivative, 51, 251, 287,

311; tcnsor, 13; nector, 12
Curl, 135,246
Cunrature,81, 294: constanf 1l8r'

C'aussian, 96; geodesic, 154;
invariang 89; of curve, 73; pno'
jective,305; Riemannian, 93, 94;
tensor, &3, 85,294

Cunrer S
Curved space,82
Cuntilinear coordinates, 26

D'Ar.suBpnr's principle, 159
Density, L92, z/L:L
Derirratirze, absolute, 49, z-ffi, 2f33,

811 ; covariant, 5L, 25L, 287, ilLL
Debnrinant of metric tensor, 30
Dilatation,211
Dimension of space, 4
Displaemenq infinibsimal, 9; null,

m
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Distance, 28; geodesic, 122
Divergence, 57, 134, 198
Double connection, 291
Dual tensors, 246
Dummies, T
Dynamics, general systerr, 168;

particle, 1a9; rigid body, 156

Erxstntx, 14jl; tensor, 89
Elasticity, 202; tensor, 210
Electromagnetic radiation, 213
Elliptic spae, 116
Energy, 177
Equilibrium of continuous medium,

208
Ewpn equations, calctrlus of vari-

ations, lO; rigrd body, 168
Eulerian method, 191
Event, 126
Exoess of angle sum,96
Expansion,lg41zlL
Extension" of e[ 253, 255; strain,

208

FtNz4 NI
First currrature, 73
First inegral,46
Flat spaog 82, 118, 2€,6; pno-

iectively,306
Force, 150, 171
Frame of reference, 162
F*nrpr formulae, T4
Frequency,219
Fundamental, fotm, XI, Ni tensor,

%r 8, 8l
Future, 126

Gaugp, invariance, 298; transforma-
tion,298

Gluss, n, go
Gaussian cuntaturc, 96
Gluss'theorem, 193
Ceodesiq 37; circle, 165; oordi-

nates, 292; curvature, 1&4; derri-

ation, 90; distance, LD; normal
coordinates, 69; null line, 46

C'eometrical, object, 10; optics. 216
Gnrpx's theorcm, L98, n5

Hlnntor's, equation, 217i princi-
ple, 187

Hertzian oscillator, 238
Hpntz vector, 223
Homeomorphic, 179
Homogeneous coordinates, 119
Hoore's liaw, A)O
Hydrodynamics, 190
Hyperspaer 4
Hypersurface, S

Indefinite,29
Indicator, 29
Infinitesirnal displaement 9
Inner poducQ 17
Instantaneous axis, 159
Integral, multiple, 258, 316
Invariang 12; cunrature, 89; rela-

ti\rc, 198
Irrotational flow, 199
Isotropic, medium,210; point, 111

Jacobian, 6, ?A

Kinematical metrir; 169
Kinetic energ:f, 151, 168
I(norpcrrn delta, 8; generalized,

242

t agrangiau, equatione, 151, t74;
method, 191

Llro6's mstant,212
Laplacian,58
Least action, 177
L€ngth,29
Lrm-Cruu,, 1CI
Linear onnectio,n, 2S7
Line dement, //
Lineg of foroe, 174

Irorx
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I-ocal Cartesians, 68
LonBxtz trandormation, Un, %L
Lowering suffixes, 31

Magnitude of vector, &3
Manifold,4
Mlxwpn's equations, 2L4\ 228' m
Metric, action, L77i forn, %1, Ni

kinematical, 169; tetrstr, %r 8,
81; tensor, determinant, 30, 248

Mixed tensor, 13
Mdsrus strip,261
Moment, of force, 156; of inertia,

161
Motion, continuous medium, 208;

Newtonian law, 150; perfect fluid,
X)1; relativistic equations, 155

Multiple integral, 257, 316

Negative trandornration, l.zL, ztLg
Nrusrn,237
NBmox's bw of motion, 150
Non-Riemannian spaoe, 282
Normal coordinates, 62
Normal viector, 63, 265
Null, cone, l2i; displaoement,2gi

geodesiq 46

One-sided region, 261
Order of tensor, 11
Orientation of ell, 260
Oriented, region, 261; tensor, 130,

zthg
Orthogonal, coordinates, 71, 145;

trajectories, 63; traiectory co-
ordinates, 62 ; transformation, lAn

Orthogonality, 36
Ortho-inrrariant @nnection, 290
Outer producg 17

Pl,ncovrcar 23T
Parallelogram,292
Parallel propagation, 49, 99, 288
Parametric line, 70

Past, 126
Path,289
Perfect fluid, 199
Period,219
Pernrutation symbol, LgL,2R, 249,

zffi
Perpendicularity, 36
Phase wave, 218
Physical components, 144
Plane waver 2D
Point,3
Porssox's ratior2L2
Polarization, T2L
Polar space, 116
Positi\rc-definite, 29
Positive transformadon, l2l, 249
Potenthl, electromagne 6c, t?8, 89 ;

energy, 152
Preseng 126
Pressure, 190

.Product, inner, 17; outer, l7i wlar,
134; vector, t3/' Ag5

Projective, connection, 309; curva-
ture, 305; flatness, 305; invari-
a,nae, 804; spaoe, 303; trandorma-
tion,8O4

Proper transformation, 121

Raising suffixeq 31
Range oonvention, 7
Reoncilable curves, 100
Relative, inrrariant, 198; tensor, 198,

2n,3t1,3L2
Relativity, general thuory, 231;

special Suoty, 125, 155, 231
Rrccq 142; principal directions, 1@;

tensor, 88, 295
Rrou.el.ru, 28
Riemannian, coordinates, 59 ; cunra-

ture,94; spac€, 28,802; tensor, 85
Rigid body, 156
Rigidity,212

Scalar product, 134
ScsR0orNcpnr2T9
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Scsun's theorem, 112
Semi-symmetric connection, 308
Signature, 314
Single connection, 291
Skew-symmetry, 15
Space, 4; amorphous, 282; antipodal

or spherical, 116; configuration,
168; curved, 82; flat, 82, 118, 295;
non-Riemannian, 282 i of constant
curyature, 111, 113; polar or
elliptic, 116; projective, 303; Rie-
mannian, 28, 8O2; Wew, 297

Space-time, L25,Ym
Special theory of relativity, 125
Sphere, 128
Spherical, polar oordinates, 54i

spae, 116
StorBs' theorem, 267; generalized,

269
Straight line, 123
Strain, W\ n5
Stneam line, 235
Stress, W, n8
Subinrariant,67
SuGpa,e, 6,253
Subtensor, 67
Subvector,67
Summation convention, 7
Surface, 5
Swwsrpn's theorem,314
Symmetric connection, 292
Symmetry, 15

Tangent vector, 10
Tensor, absolute 198, 24li Car-

tesian, 1?7; contranariant, 11;
co\rariant, 13; cunnature or Rrp-
rf,.&NN, S, S, 294; density,24li
drnl,24$i Erxsrrrx, 89; field, 14;

fundamenbl or metric, 26,8,3L;
mixed, 18; order of, 11, L2
oriented, L , 7l!9i relatine, 198,
240; fuccr,88

Tests for tensors, 18
TEoul,s,309
Topology, lL6,lAL, t79
Torsion, 73
Transfomation, gauge, 298; Loa-

Er{rz, t4A, 2i}t;negative, l2l, %Lg i
of Cm.rsrorrsl symbols, 48; of
coordinates, 6; orthogonal, 120;
positive or proper, 121,24!!9i prc.
jective, 3(X

Transitivity, L4\ ?lL
Translation, 157
Two dimensiong 89
Two-sided region, 261

Unit first norrnal" 73
Unit norrnal, 266
Unit angent vector, Ur72
Unoriented region, Zi1

Variety,4
Vector, 9; contranarlant ,10; covari-

an\ L2; magnitude, 83; produc!
LW 245

Velocity, 147, 153, 169; of lighg 219
Volume,262
Vortor line 236
Vorticity, 196, 197

Wave equation, 215
Wave-length,219
Weighg 240
WnYT, spae, 297

YouNc's modulus, 212
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