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PREFACE

Some pupils have fine appetite for mathematics. They are
not satisfied with the portions of mathematics metered
by the school curriculum. Where should they look for some
more?

Their mathematical knowledge can be extended in breadth
or in depth. In breadth -by studying new branches of ma­
thematics. In depth -by a more thorough analysis of the
problems, comprised by the school curriculum. There is
no branch of mathematics such that one could have the
right to say: )"1 have complete knowledge of this". The most
elementary problem has hidden in it unexpected connec­
tions with other problems, and this process of going deeper
and"] deeper into a problem has no end. We can return
to a familiar branch time after time and (if we think
thoroughly) each time we learn something new.

This booklet will lead the reader into depth. By analy­
zing a very "elementary problem of how to divide a line seg­
ment in a given ratio we shall learn many new things.

The problem as such will be taken up in Chapter I. The
introduction contains some technical data which are neces­
sary to develop the principal subject.





.Introduction

Straight line'

Axis.
FIG. 1

1. Orientation of a straight line and a line segment. There.
are two different directions on a straight line. To ascribe an
orientation to a straight line is to choose one of the two.
A straight line for which one ·of the two orientations has
been chosen is called an orientated line or an axis.

In the following we shall always use the phrase "straight
line" to mean a non-orientated straight line. On this line
the two directions are equivalent.

In a figure the direction chosen is
usually marked by an arrow (Fig. 1). One
can say that an axis is a pair, formed by
the following two elements: (1) a stra­
ight line, (2) one .of the two possible
directions on it. -

A li-ne segment is a .part of a straight line bounded by two
points. These points are the ends oi the segment (and belong to
it too). The ends of the segment can be"ordereod, i.e, one can
take one of them to be the first 'and the other the second.
Usually ~ the former is called the initial point .of the line
segment and the latter the end point, or simply the end. A
segment with the ordered ends is called an orientated seg­
ment. In order to show in a figure that the segment is orien­
tated its ends should be marked differently, say, by diffe­
rent letters, or by an arrow at one of the ends, etc. One can
say that an orientated line segment is a pair, formed by the
following two elements: (1) a segment, (2) one of its two
ends (that which is taken to be the first end or the initial
point).

If a segment is marked by two letters and is not orientated
the sequence of· the letters is arbitrary: AB or BA is the
same line segment. If the segment is orientated the letter
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at the initial point is placed first and that at the end -the
second. In this case AB and BA are different line segments
(they differ in their orientation).

2. Directed line segments. An orientated line segment
on an axis is called a directed line segment.

In Fig. 2a the line segment AB (A is the initial point, B
the end point) is not a directed segment: it is orientated but
the straight line on which it lies is not an orientated one.

The segment in Fig. 2b is not directed
---!---L- (0) either (it is not orientated itself). The

line segment AB in Fig. 2c is a direc­
~ (b) ted segment.

~ ~ • (c) It follows that to specify a directed
line segment we have to give two

FIG. 2 orientations: (1) of the segment itself,
(2) of the straight line on which it

lies. The two orientations are given independently, i.e.
each of them may be given in any of the two possible ways.

Every line segment has a length. The length is a non­
negative number. It can be zero only in case the ends of the
segment coincide, i.e. if the segment degenerates into a
point; for any non-degenerated segment its length is strictly
positive'. The length of the line segment AB will be designa-
ted by the symbol AB. When determining the length of
a segment its orientation is of no consequence.

A sign can be ascribed to a directed segment, besides its
length, according to the following rule: a directed segment is
considered to be positive (negative) if its direction1 coincides
(does not coincide) with the direction of the axis.

If a segment, though orientated, lies on a non-orientated
straight line no sign can be ascribed to the segment.

Thus, directed segments are expressed by real numbers,
positive and negative. For instance, the notation

AB =-3

means that: (1) the length of the line segment AB is 3,
(2) the direction of the segment AB is opposite to the direc­
tion of the axis on which it lies (does not coincide with
the latter direction).

1 The orientated segment is taken to be directed from the initial
point towards the end.
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Here the symbol AB designates simultaneously a geo­
metric figure (a directed line segment) and the number which
corresponds to it.

Practice shows that this use of the symbol does not in­
volve misunderstandings, It is even permissible to use the
following expression: "the directed line segment is equal
to -3".

If A, B, C are any three points lying on an axis, then

AB + BC = AC. (2.1)

This equality is called the chain rule or Chasles' formula.
It has a deep meaning worth being thought about. If,AB,
BC and A C denoted the lengths of line segments, formula (2.1)
would hold true if and only if point B is situated between A
and C. However, if we are dealing with directed segments,
formula (2.1) holds with any relative positions of points A,
B, C. Accordingly it is applicable without specifying any
conditions or looking at the drawing. We have only to re­
member the order of the letters in the symbols of this for­
mula.

The proof of formula (2.1) is obtained easily by conside­
ring all the possible arrangements of point B with respect to
segment AC.

According to (2.1) a segment PO on the axis can be divided
by any point X on the same axis so that

PQ = PX + XQ.
Formula (2.1) can be generalized to read

AB + BC + CD + ... + KL + LM == AM. (2.2)

Formula (2.2) is called the general chain rule. Its proof
is easily obtained by a sequence of contractions: AC is sub­
stituted for A'B + BC, then AD for AC + CD, etc.

It is clear that the orientation of a directed line segment
is changed, when the letters in its symbol are interchanged
and therefore its sign is changed (the absolute length remains
unchanged):

BA = -AB. (2.3)

Formula (2.3) can be obtained in a purely formal way by
substituting in (2.1) letter A for C.

Using directed line segments one can introduce coordi­
nates on the axis. In order to do it we must select on the axis
the origin of the coordinates 0 and a scale unit.
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If A is a point on the axis, the ratio of the directed line
segment OA to the scale unit e is a coordinate (or abscissa)
of point A

OA
x===-.e (2.4)

IE

FIG. 3

Oe
¢

Two important points should be stressed. First, no sign is
ascribed to the scale unit e (i.e. we always take it to be posi­
tive). It follows that the sign of the abscissa x coincides

with that of the directed seg­
ment OA. Secondly, the coor­
dinate is dimensionless, i.e.
it is an abstract number. In
Fig. 3 the coordinate of point
A is 3 (its sign is +).

Let two points on the axis be given by their coordinates:
A (Xl) and B (X2). What is then the expression for the direc­
ted segment AB?

It is undesirable to use a drawing in finding the answer to
this question, because we shall then have to consider many
different cases (which of the coordinates is the greater one,
what are their signs, what is the position of the origin 0 with
respect to the segments AB?). The following simple calcu­
lation solves the above problem:

AB = AO + OB = -OA + OB = X2 - XII.

Thus, always
AB = X2 - Xl. (2.5)

Note: a directed line segment is equal to the coordinate of
its end point .less the coordinate of the initial point.

Last, let us note one more property of directed segments.
If AB == AC, then point C coincides with point B. Expressed
in symbols this statement is written as follows

(AB = AC) ~ (C == B) (2.6)

(=9 means "it follows", and == is the symbol for identity).

1 Here and in the following we take e to be a unit segment, i. e.
we take it to have a length equal to unity.
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CHAPTER I

Simple Ratio

cB

B
o

FIG. 4

A
o

A

3. Statement of the problem. In order to solve any problem
successfully it is necessary first of all to formulate it pre­
cisely.

The formulation "dividing a segment in a given ratio" is
vague in many respects. What segment -orientated or not?
Does.it lie on an axis or on
a straight line? What is • (0)
meantby t'ratio"? .

All these questions will - (b)

be answered later; for the ..~------(:::>----~~a- (c)
present let us consider
a directed line segment AB
and a point C on it (Fig.
4a). We assume (also for the present) that A, Band C
are different points, all of them. The ratio in which

point C divides the segment AB is taken to be ~~. We denote
it by the Greek letter tv:

AC
A== CB • (3.1)

The order of the letters in formula (3.1) should be noted,
for all of them play different roles, viz:

A - is the initial point of the segment,
B - is the end point of the segment,
C - is the point of division.

The ratio in which the point divides the segment is const­
ructed as follows:

the numerator -from the initial point to the point of
division,
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the denominator-from the point of division to the end
point.

In Fig. 4a, for example, point C divides the line segment
AB in the ratio A, = 2.

Note that the definition given does not at all require that
the point of division should lie inside the segment. In Fig. 4b
point C lies outside the segment AB on the side of the end
point. There is nothing to hinder us in the calculation of A
by formula (3.1). In this figure AC > 0, CB < 0, A == -3.
However, it is an unusual expression to say "point C divi­
des the segment AB in the ratio Iv == -3". We are accusto­
med to take the phrase "the point divides the segment" to
mean that the point separates it in two parts, and in Fig. 4b
the point C is outside the segment. However, if the reader is

c
~ ~(a)

A C B (b) A ~(a)-0 00 • 0

B C A • te)
A B C (b)--0 CYO :4 0 00

FIG. 5 FIG. 6

a future mathematician, he should not be afraid of such
difficulties. It is a constant occurrence in mathematics that
notions and theorems get generalized, and the terminology
remains unchanged, so that old terms and formulations are
to be understood in a broader sense.

We say, by convention, that any point which lies inside a
segment divides it internally, and an outside point -exter­
nally. The ratio A is in all cases determined by formula (3.1).
In Fig. 4c, for example, point C divides the segment AB

externally in the ratio t.. = - i .
We have thus made completely clear, what is to be under­

stood by the ratio A, for a directed line segment. Let us now
pose two questions:

(1) Is the fact of the segment being orientated of any
consequence?

(2) Is the fact of the straight line on which the segment
lies being orientated of any consequence?

Fig. 5a shows a non-orientated segment. In what ratio is
it divided by point C? This question cannot be answered.
In Figures 5b and 5c the segment has different orientations.
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FIG. 7

B Co c

And the result? In Fig. 5b point C divides segment AB in

the ratio A. = 2 and in Fig. 5c in the ratio A. = ~ .
So the first of our questions is to be answered in the affir­

mative. The problem 0/ dividing a line segment in a giv n
ratio has no meaning if applied to a non-orientated segme t.

In order to answer the second question let us insp ct
Figures 6a and 6b. They differ only in the direction of t e
axis. It is obvious that if the direction of the axis on which
points A, B, C are lying is changed then all of the directed seg­
ments on this axis will only change their signs and consequently
the ratio A will remain unchanged.

In Fig. 6a AC = 3, CB == -1, A == -3.
In Fig. 6b AC = -3, CB == 1, A == -3.

It follows that our second question is to be answered in
the negative. In determining A the orientation of the straight
line on which the line segment lies is of no interest. Fig. 7
differs from Fig. 6 only in the segment
AB being situated on a non-orientated
straight line. This does not prevent
us from finding that it, = -3.

We cannot ascribe signs to line seg­
ments, which lie on a non-orientated straight line, but we
can ascribe a sign to the ratio of the segments':

One need not know the sign of each individual segment in
order to determine the sign of the ratio. The only relevant
fact is whether the two segments have the same or opposite
directions.

The problem of dividing a segment in a given ratio relates
only to orientated segments, which lie on a non-orientated
straight line.

However, if the straight line is not orientated how can we
determine A? Formula (3.1) does not apply in this case as it
requires the segments to have signs.

If A, B, C are three points on a straight line then the ratio
in which point C divides segment A'B is the number A, whose
absolute value is equal to the ratio of the length of segment
AC to that of CB,

IAI = AC
CB '

1 We remind the reader that the segments are orientated.
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the ratio being positive (negative) if point C is inside (out­
side) segment AB.

This definition is important since it shows that it is
possible to determine 'A on a non-orientated, straight line.

However in solving any problem it is more convenient to,
apply a different method, viz. to give an' orientation to the
straight line, since we know that the value of Iv is indepen­
dent of its orientation. Besides, for an orientated straight
line A, is completely determined (as to its absolute value
and sign) by formula .(3.1). This method is convenientfor
it allows to make use of the properties of directed line' seg­
ments independently of the particular features of the dra­
wing.

It remains to arrange for the cases when pointC coincides
with A or B. In the first case according to formula (3.1)
we shall take A, == O. In the second case formula .(3.1) has no
meaning (the denominator on the right-hand side' becomes
zero). In this case by convention A, = 00, but this should be
considered to be just a shorthand notation for the following
Iact: "the point of division coincides with 'the end of the
segment". The symbol 00 must' not. be treated as 'a number.
No sign is ascribed to it (not always in mathematics, but
in the problem considered) -it is neither + 00 nor - 00,

it is simply 00. There are reasons for this convention, which
will be discussed slightly in. Chapter II ..

As the symbol ~~ is somewhat unwieldy, another, one,

which is simpler, is used, viz. (ABC):

A = (ABC) (3.2)

and a simpler term too: a simple ratio of three points (col­
linear, i.e., on a straight line). In the symbol of a simple
ratio the initial point of the segment is given the first place,
the end point of the segment -the second, and the point
of division the third.

It has been made completely clear what the simple ratio A,
is. We have now to formulate the problem of dividing a line
segment in a given ratio. Here is the formulation:

Given a line segment AB and the number A,. It is required to
find the point C, which divides the segment AB in the ratio A,.

Note. In all problems we shall assume that the segment
given is not degenerated, i.e. take points A and B to be
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different points; 'A can have any real value, i.e. - 00 <
<A< 00.

4. Solution of the problem. Theformulation of a problem
does not necessarily mean that it can be sol ved. And if it
can be solved we do not know whether there is only one solu­
tion.

-1

-2
-3

A=2
(a)

A=-2
(b)

FIG. 8

-1
-2

-3/
. A=-!

(e) 2

2-01.016

It will be demonstrated first of all, that the problem
cannot have more than one solution for any A. Assume that
there are two points C and C', which divide the segment AB
in the same ratio

AC AC'
CB = C'B'

or breaking the segments in the numerators in two parts
by a point B, we get

AB+BC AB+BC'
CB C'B

AB AB
CB -1 == C'B -1,

AB AB
CB = C'B '

Be=== Be'.
Hence, according to (2.6), point C' coincides with point C.
It follows that if the problem has a solution for the given A,
this solution is the only one. Whether the problem has a
solution in all cases is most conveniently determined in the
process of solving.

Let us draw two parallel straight lines through points A
and B (Fig. 8). Let us mark off a uniform scale on the first
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straight line, taking A as the initial point. Let us mark off
one scale unit on the second straight line (I.e. BE = Ai) in
the opposite direction. Everything is now ready for
solving the problem. We now find on the numerical axis
point M which corresponds to the given value of Iv and join'
M to E. The point of intersection of ME and AB is the requi­
red point C.

Indeed, AMC and BEG are similar triangles. Hence,

AC AM
CB == BE .

Note: only the lengths of the segments enter into this
proportion since elementary geometry and in particular the
theory of similar triangles considers segments which have no
signs. Since BE = 1 we can rewrite the above proportion as
follows:

AC =Ilvl.
CB

The same argument holds for all the three cases shown in
Fig. 8.

It remains now to prove that the signs of ~~ and A. coin­

cide. Clearly if A, > 0 point C will be inside the segment
and if A, < 0 -outside the segment. Thus,

AC
CB == A.

This construction does not result in obtaining point G
only in the case, when the straight lines ME and AB prove
parallel, which takes place with 'A == -1. It follows that
for A == -1 either the above construction does not allow to
find a solution, or there is no solution. It can be ascertained
easily that there is no solution. Indeed, what does it mean
to divide the segment AB in the ratio Iv == -1? It means we
have to find a point C, such that (1) is equally distant from
points A and B (since I A, I = 1), and (2) is outside the seg­
ment AB (since 'A < 0). No such point exists, since any
point which lies outside the segment is nearer to one of its
ends than to the other.

Note that for A, == 0 point C coincides with A and for
A = 00 with B.
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The problem of dividing a line segment in a given ratio has
one and only one solution for any A except A == -1. With
"A == -1 the problem has no solution.

To any value of Iv (except Iv == -1) there corresponds a
definite point of the straight line AB and, conversely, for
every point of the straight line AB there is a corresponding
definite value of Iv. The study of this correspondence is of
some interest, i.e. it is interesting to represent clearly how

FIG. 9

the different values of Iv are distributed over the straight
line AB. This can be done geometrically or in analytical
form.

The geometrical representation is based on the construc­
tion shown in Fig. 8. Draw through] point E many straight
lines and transfer along each of the lines the corresponding
mark from the straight line Ai to the straight line AB
(Fig. 9). The negative values less than unity in absolute
value will fall outside the segment on the side of the initial
point, and those greater than unity in absolute value -on
the side of the end point of the segment.

Let us now state the analytical method. We introduce coor­
dinates on the straight line AB. We take point A to be the
origin and the direction of the axis to be from A towards B
(though this is not a necessary condition). Point B will
now have the coordinate a (a > 0), where a is the length
of the line segment AB. Now take any point on the axis
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C (x). Then
AC
CB ==.--. A,

or by formula (2.5)
x-o--==A.a-x

Hence x = 1~1.. • Thus we have two formulas which give A

in terms of x and x in terms of Iv:

A, __X_ }
- a-x'

(4.1)

Choosing different points on the axis we can determine 'A
by the former formula in (4.1). Conversely assuming a value
of A, the latter formula makes it possible to find point x
and plot it in the drawing. The direction of the axis does not
tell on the result.

5. Mechanical interpretation of the problem. Let us place
at points A and B masses m, and m2' respectively, and find
the centre of gravity of these two material points. It lies on
the line segment AB and divides it in two parts inversely
proportional to the adjacent masses, i.e,

AC m2

CB =m;
(C denotes the required centre of gravity). Thus the problem

of dividing a line segment AB in the ratio A. = ~ may be

interpreted as follows: place mass 2 at point A and mass 3
at point B, then the centre of gravity is the required point.

This interpretation has a shortcoming: it can be applied
only for 'A > O. In order to make it serve for the case Iv < 0
we should have to introduce negative masses.

6. Invariant property of a simple ratio with respect to
parallel projection. The term "invariant property" means
that the ratio does not change. The title of this section ex­
presses the following property:

If three points on a straight line (collinear) are projected
by parallel lines (projectors) onto another straight line then
their simple ratio remains unchanged.
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C'
(c)

The meaning of the expression "projected by parallel
lines" is clearly explained by Fig. 10.

Projectors a, b, ~ are drawn t~rough .points A, B., C. ~he
points of intersect~on of the~e Im~s wI~h t~e s~ralght Iine
onto which we project the points, I.e. A , B , C , are called
parallel projections of the points A, B, C.

B

FlU. 10

Proof. By the known theorem on the proportionality of
line segments cut out by parallel straight lines on the sides of
an angle we have

or

IA'G' I ,AC I
C'B' === CB ·

A'G'
It remains to be shown that the simple ratios C'R' and

AC f h ·CB are 0 t e same sign.

This is clearly the case: if point C lies between A and B,
then point C' lies between A' and B' (Fig. iOa), and the two
ratios are positive. If point C is outside the segment AB,
then point C' also is outside the segment A'B' (Fig. 10b
and iOe) and the two ratios are negative. Thus, it has been
proved that

A'G' AG
C'B' = GB '

(6.1 )

or (A'B'C') == (ABC).
This property can be considered from another view­

point:
Three parallel straight lines a, b, c cut out on any straight

line (if it is not parallel to them) the same simple ratio.
Thus in Fig. i1

(AIBICI) == (A,B 2C2) == (AsBsC s) = · · ..
21



FIG. 11

/ ,
/ . /

kf.;f' 8 C3

A ,3
3 /

Since the simple ratio is independent of the cutting line,
it belongs to the three lines a, b, c..

We can now take a further step .. So far we had to do only
with the simple ratio of three points on a straight line,

now we shall introduce the notion
of the simple ratio of three parallel
straight lines.

A simple ratio of an ordered triad of
parallel straight lines is the simple ratio
of three points cut out by these three
lines on any cutting straight line.

7. Permutation of elements in a
simple ratio. Fig. 12 shows three points
on a straight line. What is their simple
ratio? This question cannot be ans­
wered for the points are not ordered.

They can be ordered in various ways .. Therefore to this non­
ordered triad of points there correspond several different
values of 'A. How many?

There are six possible ways of ordering three points: (ABC),
(BAC), (ACB), (CAB), (BGA), (GBA). Let us orientate in
some way the straight line, on which our points are lying,
and denote the simple ratio (ABC) by At:

o 0 0

FIG. 12

AC
'A === (ABC):~ eB · (7.1)

In the following derivation use will be made of the pro­
perties of directed segments, (2.1) and (2.3). Every time
we come across segment AB or BA we shall divide it by
point C..

Let us calculate the remaining five ratios:

BC -CB 1
(BAC) = CA == -=AC == T".

Note: if we interchange the initial point and the end point
of a segment the simple ratio will be changed to its inverse.

Further
AB AC+CB AC

(AGB) === BC::=: -CB == - CB -1 == -(1 +A,).

22



The next simple ratio (CAB) need not be calculated by
the above method; we can apply the rule of permutation of
the initial and end points that has just been stated:

1
(CAB)==- 1+A.

-CB-AC
AC

1+1v== --A,-.AC
CB

Further

(BCA) == BA === BC+CA
AC AC

AC
-1-­

CB

Interchanging once more the initial and end points we
obtain

x
(CBA):== - 1+"" ·

Let us tabulate the results obtained. It is undesirable
to assign definite letters to the points, since in different
cases other letter notations might occur. Only the places
occupied by the elements (possibly not points but straight
lines) of a simple ratio are important. Therefore we shall
substitute numbers 1, 2, 3 for the letters A, B, C.

(123) == A,

1
(213) == T"'

(132):=: - (1+ A),

(312)= - 1~-A.' 1
(231)= _ 1~A., }

A I
(321)::= -1+A· J

(7.2)

Thus, one and the same non-ordered triad generates seve­
ral simple ratios depending on the method of ordering. For
example, the following simple ratios correspond to the triad

shown in Fig. 12: 2, ~, -3, - {, -~ and - ; .
How many different simple ratios correspond to a non­

ordered triad? Generally speaking, six, as the summary (7.2)
shows. Why do we say "generally speaking" in this formu­
lation? Because the values given in table (7.2) are not always
different. With some special arrangements of the points
some of the values may coincide. Let us find these cases.
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The problem is very interesting. It seems at first sight that
there are very many such triads, but it turns out that there
is only one.

To solve this problem we have to take any pairs of the
values in table (7.2), equate them, and find 'A. I t should be
noted, however, that we denoted by Iv not one definite simple
ratio but anyone of the six. It is sufficient to equate 'A
to the remaining expressions. This reduces the number of pos­
sible variants to five. Let us assume that all the three points
are different. Degenerated triads (whose elements coin­
cide) are of no interest: obviously if two points coincide
their permutation does not change the simple ratio. This
means that we must consider as unacceptable the values
At = 0 and Iv = 00.

Consider now the five variants:

(1) A. = ~ , 11.2 = 1, A. = +1. Since A. = -1 is impos­

sible, only the solution Al = 1 holds.
(2) Iv = - (1 + At). Hence A2 = -1/2.

1
(3) A = - 1+A; 'A2 + 'A + 1 == O. The roots are ima-

ginary.
1+tv(4) A = --A- · The same as above.

(5) A. = -1~A. Rejecting the unsuitable solution A. = 0,

we have A3 = -2.
We have obtained three values: Al = 1; A2 == -1/2;

A3 == -2.
Recall now, that we seek a non-ordered triad to which

there correspond six values of 'A and not one only.
Using the three values of At, we now construct the six

ratios into which these values enter (see the table on p. 23).
The three rows of this table coincide except for the order

of the values. Consequently the three found values of At
should be considered as one solution. They correspond to a
triad of points one of which is the midpoint of the segment
bounded by the two others.

There are generally speaking six different values of the
simple ratio corresponding to a non-ordered not degenerated
triad. There is one exception, the triad, whose third point is
in the middle 0/ the segment bounded by the two other points
at its ends. There are only three different values of a simple
ratio corresponding to such a triad.
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A 1 -(1+A) 1 1+1.. A,

-r- - 1+"- --",- - 1+A.

1 I 1 I -2
\

-1/2
I

-2
I

-1/2

-1/2
I

-2
I

-1/2 I -2
I

1 I 1

-2 l-i/21 1 I 1
I

-1/2 I -2

Clearly the interchanging of the extreme points of the
segment in such a triad does not tell and cannot change the
value of the simple ratio.

8. Group property of a simple ratio. The notion of a group
is one of the fundamental notions in mathematics. It cannot
be mentioned casually or spoken of glibly. We are going
to speak of the group property of a simple ratio without
any connection with the general notion of a group. The
reader of this booklet should for the present take the contents
of this section as an isolated fact, as an interesting property
of a simple ratio.

Later on, having become familiar with the theory of
grou ps", the reader will see that this pro perty relates to pro­
found ideas. This also is an example of studying in depth!

The group property of a simple ratio can be stated as
follows:

If one of the [olloioing six expressions (for A)

1 }
at=A, a2 == T ' a3== -(1+A),

aq = - i~;>'" , a5= - it;>... , a6= - i~;>"" (8.1)

is substituted for any other, the result will be again one of the
six.

This fact may be considered from another poin] of view.
Each ai is a function of A:

ai = i, (Iv) (i = 1, 2, ... , 6).

1 The reader can start with the books (1) Introduction to the Theory
of Groups, by P. S. Aleksandrov, 2nd ed., Moscow, 1951, (2) Groups
and Their Graphs, by I. Grossman and Vtl. Magnus, New York, 1964.

25



Substituting one of these functions for the argument we
obtain the following expression:

t i [I j (A)] (i == 1, 2, . . ., 6; j == 1, 2, . . ., 6) (a)

(the case where i == j is not excluded). The function (a)
proves to be not a new one, it is one of the same six:

t, [fj ('A)l = i, ('A). (8.2)

Thus the operation under consideration (the substitution
of one of the functions Ii ('A) for A) results in nothing new,
i.e. we do not get beyond the original six functions.

How can this be proved? We can try all of the 36 com­
binations of i and j in formula (8.2.). Take, for example,
i = 3, j = 6. This means that we take

aa == -(1 + 'A)

and substitute a6 = - 1~A. for ')..

-(1 +a6)= - (1- 1~A. ) = - 1~A. = a4'

It follows that
fa [/6(A)] == 14 ('At).

However this method of proving will not satisfy an in­
quisitive reader. If 36 checks confirm our assumption, we
cannot think that we have to do with 36 accidental coinci­
dences. There must exist some simple reason for this fact.
We are going to point out this reason and our proof will
become much more convincing.

We denoted by 'At any of the six simple ratios (ABC),
(BAG), .... In table (7.2) we find, for instance,

1
(123) == A, (213) == r.

Paying no attention to the notations, this means: if the
inverse value is substituted for the value of a simple ratio
this corresponds to the interchanging of the first two ele­
ments of the triad. This statement applies to any of the six
ratios (since it does not matter which of the three points
is denoted by the number 1, etc.). It follows that by sub-

stituting the inverse value for - 1 II.. (i.e, substitute in ~

the value - 1t A. for ')..) we obtain a simple ratio whose two
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first elements have been interchanged; this ratio is of course
tabulated in (7.2). Q.E.D.

Let us turn again to formula (8.2). We have found that for
i == 3, j == 6 we get k = 4. Let us solve the problem com­
prehensively, i.e, find k for any pair i, j.

First, let us remember what is understood in arithmetic
and algebra by a binary operation, i.e. an operation invol­
ving two components (there are operations with one com­
ponent, too, for instance, extracting a square root). Assume
that we are given a certain set M. A binary operation is one
that makes one and only one element of set M correspond to any
ordered pair (a, b) of elements of this set',

Example 1. Let M be the set of natural numbers 1, 2,
3, .... The operation of addition of each pair of numbers
makes one and only one element of the set -their sum -cor­
respond to the pair. The sign of the operation is often written
between the components of the pair: 2 + 3 = 5.

Examp Ie 2. Consider the operation of multiplication of
elements of the same set. This is a different operation. It
makes not 5 but 6 correspond to the same pair (2, 3):
2·3 = 6.

The two operations have the same property, they are
commutative (a + b = b + a, a-b = b·a) and therefore
it does not matter whether the pair is ordered or not. How­
ever if we consider the operation ab = c we see that its com­
ponents are not equivalent in their roles.

Consider now a set M whose elements are the functions
(8.1). We define for this set an operation which we shall call
"multiplication" and denote by the sign 0 (we use quotation
marks and a circle in order to avoid confusion with the opera­
tion of real multiplication).

To "multiply" a, by aj means to substitute aj for A, in a..
I n symbolic form

a, 0 aj == t, [fi (A)] = as: (8.3)

It has been shown above that /3[/6 (A)] =f4(A).
This can now be formulated as follows: if a3 is "multi­

plied" by aa we obtain a4 or

a3 0 aa:::=: ai,

1 This is not absolutely necessary, but we shall limit ourselves
to this case.

27



The reader should find all of the 36 "products" ai0aj. The
results are tabulated below.

Second factor
First

I I I I I

factor
at 02 aS a, as a6

at I a1 I a2

I

a3 I a~

1
as I a6

a2 I a2 I at
I

a~

1

aa
I

a6 I as

a3 I aa
1

as I a1

I

a6
I

a2 I a~

a4 I a4 I a6 I a2 I as I at
I

aa

as I as
I

aa I as I at Ia~ I a2

as
I

a6 I a4 I a5

I

a2

I

a3 I at

(8.4)

Table (8.4) may be called a "multiplication" tablel _ Let
us take a close look at it and make some observations.

1. "Multiplication" is not commutative. We have, for
example, a2 0 a s = a4' but aS0a2 = as- Therefore when saying
"multiply by a/' we must add "on the right" or "on the left".
For example, "multiply a2 on the right by as" means a28 as =
== a4 and "multiply a2 on the left by aa" means aS0 a2 .- as-

2. In "multiplying" the element al plays the same role
as 1 in ordinary multiplication. Multiplying any number by
unity does not change this number.

a·1 = a.

As can be seen from table (8.4) "multiplication" (both on
the right and on the left) of any element by al does not
change the element:

ai0al= al 0 a i = a, (i = 1, 2, ... , 6).

1 In the theory of groups it is known as Cayley square.
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This is why the element al is called "unity".
3. "Multiplication" is associative

(ai8aj)8 ak == ai0(aj0 ak). (8.5)

For example, if we first "multiply" a28aa and then "mul­
tiply" (on the right) the result by a 4 we obtain

(a 20 aa)8 a4 == a40 a4 == as·

But if we first "multiply" aa by a4' a 30 a4, we obtain

a2 8 (a30 a4 ) == a2 8 a6 == a5·

The results are identical.
We can in this way check up all the combinations and

find that the law (8.5) holds.
In writing down the product of three elements and more

the use of parentheses is superfluous due to the associative
law.

We can simply write

ai0aj0 ak

meaning any of the sides of the equality (8.5).
We can define the operation of "division". But, enough!

We must stop. We leave to the reader to think it over by
himself.

A set of elements for which an operation with certain
properties, which we shall not enumerate here, has been
defined is called a group.

The elements (8.1) with the operation, defined by the
formula (8.3)~ form a group.

We just peeped into the theory of groups through a chink,
we wish the reader of this booklet to enter into the theory
later on through a wide open door.

9. Ideal points (points at infinity). In this section we
shall extend the notion of a point, otherwise our further
progress would suffer. The difficulties that could be come
across will be discussed in Section 10. Let us by convention
ascribe a point in common to parallel lines and call it an
ideal point';

Thus we shall further use the expression, that tLL"O paral­
lel lines intersect at an ideal point.

1 It is also called the point at infinity (the point of intersection of
parallel lines). This phrase is less adequate in our case since we shall
never have to do with the distance to this point.
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The reader naturally feels the need to consider this point
just as any other. Where is it? However this point is not a
point like any other -it is an ideal point. It can also be
made palpable but not in the same way as an ordinary point;
we shall now attempt to overcome the natural resistance
of OUf organism to the introduction of new concepts, which
are incompatible with our habitual desire of perceptibility.

(0) (b)

FIG. 13

The ideal point is the one which parallel straight lines
have in common. Two parallel lines have the same direc­
tion. Thus the introduction of ideal points is not a radical
revolution but only a modest renaming: from now on the
term "direction of a straight line" will be replaced by a new
one -"ideal point".

Fig. 13a shows many straight lines which pass through
one and the same" point. This set of lines is called a central
pencil and the point they have in common the pencil centre.
Clearly, the pencil is completely described by giving its
centre, and vice versa. Fig. 13b shows a pencil of parallel
lines, i.e. a set of parallel straight lines lying in one plane.
If instead of points we think of pencils of lines the diffe­
rence between ordinary and ideal points is partly removed:

an ordinary point is a central pencil,
an ideal point is a parallel pencil.

We caution the reader not to ask where the ideal point
is -on the right or on the left. This would be an attempt to
approach new notions using the old intuition. To learn how
to handle ideal points one must develop a new intuition.

There is one and only one ideal point on every straight
line and the notions "on the right", "on the left", "over", "un­
der", etc., are not applicable to it. Fig. 14 shows a straight
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line a and a central pencil S. Let us determine the corres­
pondence between the points of the straight line and the
lines of the pencil: point M corresponds to the straight
line m, and vice versa (see the figure). Can we say that it
is a one-to-one correspondence, i.e. that to every point on the
line a there is a corresponding line of the pencil S and vice
versa, to every line of the pencil S there is a corresponding
point on the line a? Prior to the introduction of ideal points

----------==rF--=--------O'

m

M

FIG. 1~

the second part of the above statement would be wrong:
there is one superfluous straight line a' in the pencil S;
this line is parallel to a. No point on the straight line a
corresponds to the line a'. However after the introduction
of ideal points our statement holds true. There is now on
the straight line a a point which corresponds to the straight
line a', viz. the ideal point. It is neither on the right nor
on the left. If the straight line m is rotated about point S
counterclockwise, then point M will move along the straight
line a to the right, and if m is rotated clockwise, then point
M will move to the left. In both cases at a certain moment
the straight line m will coincide with a'. At this moment
point M will become ideal.

Clearly, there is an infinite set of ideal points in a plane.
Let us denote this set by u. We shall take it, by convention,
to form an ideal straight line. This is a natural assumption
for two reasons.

First of all each ordinary straight line has one ideal
point, i.e. a point in common with the set u. It is natural to
take u to be a straight line.

Secondly, let us consider two parallel planes a and a'
(Fig. 15). Each parallel pencil in plane a corresponds to a
parallel pencil of the same direction in plane a'. In other
words, each ideal point in plane a belongs also to plane a'
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FIG. 15

and vice versa. This means that the set of ideal points of
the parallel planes is common. This is one more argument
for calling this set a straight line.

Thus, there exists one and only one ideal straight line in a
plane. Each ordinary straight line has one and only one ideal
point, and the ideal straight line consists of only ideal points:

If two ideal points are found on a straight line, then this
line is an ideal one.

The set comprising all ideal points of space is called
an ideal plane. We shall not have to do with it, since OUf

booklet is devoted to plane geometry.
We have extended the set of points on the plane by intro­

ducing new points. Can it be assumed that these new points
are equivalent to the old ones, i.e, that
they differ in nothing from the ordi­
nary points? No. Ideal points are equi­
valent to the ordinary ones only~ in
several respects. Let us point out in
what respects.

In positional problems, i.e. in pro­
blems relating to the coincidence of
a point with a point in the straight
line there is no difference between

ordinary and ideal points. Indeed, the positional proper­
ties in a plane follow from two axioms.

1. Two different points determine one and only one straight
line (passing through them, it is implied).

2. Two different straight lines determine one and only one
point (belonging to both, it is implied).

The first axiom is illustrated in Fig. 16. Each point is
given by a pencil. To draw a straight line through two points
means to find a straight line which the two pencils have in
common. In Fig. 16a the two points are ordinary ones.
This is the "old" well-known case. In Fig. 16b one of the
points is ordinary and the other ideal. Clearly, they deter­
mine one and only one straight line in this case too. In
Fig. 16c the two points are both ideal. In this case there
is also one and only one straight line on which these points
lie: it is an ideal line.

For checking up the second axiom we shall consider three
cases.

(1) The two straight lines are ordinary non-parallel lines.
They intersect at an ordinary point.
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(2) The two straight lines are ordinary parallel lines.
They have one point in common -an ideal one.

(3) One of the lines is ordinary, the other ideal; the only
point which they have in common is the ideal point of the
first line.

In metrical problems, i.e. in problems relating to the
measurement of line segments and angles ideal points are not

~~ (0)

PIG. 16

equivalent to ordinary ones. We cannot speak of a distance
between two ideal points (but we can speak of an angle!).
One and only one perpendicular can be dropped from an
ordinary point onto an ordinary straight line, but either
none or an infinite number of perpendiculars can be dropped
from an ideal point, etc.

The axiom on parallel lines does not hold either for the
case when either the straight line or the point outside it
are ideal.

Let us now turn back to the subject of this booklet. If two
points A and B are ordinary and U is the ideal point of the
straight line AB, then what is the simple ratio (ABU)?
This certainly is a matter of convention, but the convention
must be reached in the most natural way.
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If all the three points are ordinary, then

'A = (ABC) == AC == AB+BC AB -1.
CB CB CB '

if point C tends to U (this means it moves away along the

line indefinitely), then lim ~; = O. Therefore if C coincides
C~U

with U it is natural to ascribe 'A the limit value:

'A = (ABU), = . ..-1.

So far the value 'A = -1 was considered impossible­
Now it proved just suitable for the ideal point.

From now on it. is possible to divide the segment AB
in any ratio.

Let us further consider the cases when the initial point
or the end point of a line segment is an ideal point.

If A -+ U then the numerator of the expression A. = ~~
increases indefinitely and the denominator is a constant
value, and vice versa if B ~ U. Therefore it is natural to
take .,

(UBC) = 00, }

(AUC) = 0,
(ABU) = -1.

(9.1)

Not all of the properties of a simple ratio, discussed above,
hold also for ideal elements.

10. Separation of points on a straight line. The number
of points on a straight line is infinite. We have added one

*J$)C B
FIG. 17

more point to it -the ideal one. Does it really matter?
Oh, yesl The addition of the ideal point produces an

essential change in the properties of -a straight line. In
particular, the notion of "betweenness" loses its meaning
after the introduction of the ideal point .

.So far we assumed that of three points of a straight line
two are always extreme points and the third interstitial,
i.e, lying between the extreme ones. We also say that one of
the points separates the other two. If there is a wolf at point
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A, and a sheep at point B (Fig. 17) then we can provide for
the safety of the sheep by placing at point C an insurmoun­
table barrier (it is assumed that the wolf can move only
along the straight line). In SUCll a case the barrier separates
the wolf from the sheep. These properties of a straight line
do not hold on a circle. Among three points on a circle there
is no definite interstitial point. If it is required to separate

FIG. 18

o

M o

FIG. 19

a'

a

the wolf from the sheep then one barrier is not enough.
The barrier at point C (Fig. 18) will not prevent the wolf
from reaching the sheep, moving clockwise. Two barriers
are now necessary -at C and D, then only can the sheep feel
safe.

Thus, on a circle one point cannot separate a pair of
points, and two -can. Moreover, a tetrad of points on a circle
breaks up into two separate pairs in one and only one way.

After the introduction of the ideal point this difference
between the straight line and the circle vanishes. Now the
straight line is a closed one.

Fig. 19 shows that between points on a circle and points
on a straight line there is a correspondence which is called
a stereographic projection. The straight line touches the circle
a' at point O. The diametrically opposite point U' is the
centre of projection. A point M' on the circle corresponds
to each point M on the straight line, and vice versa a point M
corresponds to each point M'. Until the introduction of the
ideal point this mapping was not a one-to-one mapping:
there was one superfluous point, U'. Now the ideal point U
of the straight line a corresponds to point U'.
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In a central pencil of lines a single straight line cannot
separate two lines of the pencil either. Let a and b be two
lines in the pencil (Fig. 20). Whatever the third straight
line C, the line a or b can always be rotated in such a way
that it does not pass through the position occupied by c.
However two straight lines can separate a and b. Moreover,
a tetrad of straight lines in a central pencil breaks up into uoo
separate pairs in one and only one way.

Consider again Fig. 14. One can easily ascertain that the
following statement holds true.

FIG. 20

A C

0'

FIG. 21

Let a tetrad of points on a straight line be projected from
a certain point by a tetrad 0/ straight lines. I n this case sepa­
rate pairs of points are projected by separate pairs of straight
lines.

Thus, the mutual separateness of two pairs of points re­
mains with central projection. This is true also of the pro­
jection of one straight line on another one. The property
of a triad of points of a straight line to break up into a pair
of extreme points and one interstitial point (only with
a straight line that has no ideal point!) remains only with
parallel projection (see Fig. 11), but not with central pro­
jection. Fig. 21 shows three points A, B, C on a straight
line a with point C lying between A and B. These points are
projected from centre S onto the straight line a' and point C'
does not lie between A' and B'.

Let the reader pause in looking at Fig. 21 and think over
the question: is the line segment A'B' the projection of the
segment AB? The question as it stands is not quite clear,
since there are two segments AB on the straight line a:
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the internal one and the external one, i ,e. the one that
has an ideal point. It can be seen clearly in Fig. 21 that
any internal point of the line segment AB (for instance, C)
is projected onto an external point of the segment A'B' .
If, however, we project the ideal point U of our straight
line (the projecting ray is parallel to a) we obtain the point
U' inside the segment A'B'. It follows that the internal
segment A'B' is the projection of the external segment A'B.

These abstract reasonings are of practical value for the
wolf A (Fig. 17). After the introduction of the ideal point
the barrier C will not prevent the wolf from reaching the

S

a
c

b

~m~ ~
-7f---,i1TC----...{)~

FIG. 22

sheep at point B, he will only have to move via the ideal
point. Let us imagine that all the three points are projected
from point S (Fig. 22). The straight line a rotates clockwise
about point S. The wolf must run to the left in a way such
that at any given moment he is at the point of intersection
of line a with m, When a becomes parallel to m the wolf
will be at the ideal point. With further rotation of line a
the wolf will appear on the right and reach the sheep.

However the wolf must be a racer of the highest class.
If the line a rotates about S at a uniform speed, then the
speed of the wolf, when a nears the position parallel to m,
must increase indefinitely. We should not feel any surprise
at this. Speed is a metric notion related to the measuring
of distances, and the reader was warned not to consider
metric problems in connection with ideal points.

11. Ceva's theorem. The medians of a triangle pass through
one and the same point. There is no converse to this theorem:
from the fact that straight lines AL, BM and CN pass through
the same point (Fig. 23), it does not follow that these lines
are medians. The absence of the converse of the theorem
means .that its formulation comprises more conditions than
are required: in order to conclude that the straight lines
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AL, BM and CN pass through the same point it is not neces­
sary to require them to be medians (or heights or bisectors);
we can content ourselves with weaker conditions. It is inte­
resting to find the minimum condition, i.e, such, that if it
is not observed, the lines AL, BM and eN cannot have a point

in common. Such a theorem
will have a converse. This
condition will be sufficient
and necessary.

This minimum condition
was found by the Italian
mathematician Giovanni
Ceva (1647-1734). Before
formulating the theorem let
us give precise definitions
of some terms.

FIG. 23 We shall use the phrase
"the side of a triangle" not

for a line segment, but for the whole line of indefinite extent.
Given a triangle ABC we shall select one point on each
side (which does not coincide with any of the vertices of
the triangle):

on side AB we take point N,
on side Be we take point L,
on side CA we take point M.

In order to determine the ratios in which these points
divide the sides of the triangle we must order its vertices.
Let us agree to go around the triangle in any of the two di­
rections: either ABC or ACB. In the first case the pairs of
vertices will be ordered as follows:

AB, Be, CA,

in the second the order will be reversed

BA, AC, GB.

For definiteness we shall choose one direction, the first,
and denote
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Ceva's theorem says:
If the straight lines AL, BM and C'N pass through one and

the same point, then All" = 1.
Note. Points A, B, C are ordinary and points L, M, N

and 0 can be of any kind (ordinary or ideal).
Proof. Assume first that all seven points are ordinary.

Point 0 can be inside the triangle and outside it.
In order to make our proof more palpable we give two

drawings, Figs. 24a and b. The following reasoning applies
to both drawings.

B' A'

FIG. 2~

Draw a straight line c' II AB through point C. Denote by
A' and B' the points of intersection of AL and BM with
c', respectively. Further in our proof we use proportions
which follow from the similarity of triangles and, conse­
quently, regard all line segments and their ratios as positive.

From similar triangles OA'e and OAN we get

AN ON

CA' == OC •

From similar triangles OB'C and OBN we obtain

NB ON
CB' = OC·

Equating the left-hand sides of the proportions we can write
AN NB
CA' = CB' '

39



or, permutating the terms of the proportion,

AN CA'
NB = CB' · (a)

From similar triangles ABL and A I CL we have

BL AB
LC = CA'· (b)

From similar triangles ABM and CB'M we obtain

eM B'C
MA = AB • (c)

Multiplying (a), (b) and (c) we obtain

AN.BL.CM=1. (d)
NB LC MA

(11.2)5
3

2

It remains to find out what will be the result of introduc­
ing into the left-hand side of (d) the ratios (11.1) with their
signs. If point 0 is inside the triangle, as shown in Fig. 24a,

then each of the points L, M and N
is between two vertices of the trian­
gle and, consequently, all of the
three ratios (11.1) are positive. This
means that in this case instead of
(d) we can write

AN BL eM
NB • LC · MA = 1.

FIG. 25 If point 0 is outside the trian-
gle (but not on its side) it lies

either inside an angle of the triangle (domains 1, 2, 3
in Fig. 25) or inside one of the corresponding vertical
angles (domains 4,5, 6 in Fig. 25). Let, for example, point
o lie inside angle A or its corresponding vertical angle.
In this case the straight line AO will intersect the side BC
at point L, which is between Band C, and the lines BO
and CO will intersect the sides CA and AB outside the line
segments CA and AB. Thus, if point 0 is outside the tri­
angle ABC, of the three ratios (11.1) one will be positive
and two negative. This means that the product "-!-Lv in any
case will be positive and proves that the relationshi p (11.2)
holds true.
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(e)

Let now one of the points of division, for instance L,
be ideal, i.e, AL II Be (Fig. 26). It follows from similar
triangles AON and BeN that

AN OA
NB == Be ·

From similar triangles OMA and BMC we have

MA OA
eM == BC·

Equating the left-hand sides we obtain

AN ~lA

NB = eM·

Since point 0 must lie on the straight line AL which is
parallel to Be, the point is in the hatched domain in Fig. 27.

FIG. 26 FIG. 27

It is easily ascertained that in this case either point N lies
between A and B and point M -outside the line segment AC,

· "th ti AN d MA f itor VIce versa, I.e. e ra lOS NB an CAl are 0 opposi e

signs. Therefore (e) can be rewritten as follows:
AN A/A
NB =---= - eM '

or
AN 1
NB == - CM '

MA
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i.e.
1

v== --.
J1

Thus, f-t" = -1. Point L is an ideal one, i.e. A, = -1.
Thus,

Af.!" = 1.

Consider further the case when two points of division, for
example Land M, are ideal. In this case the figure ACBO
is a parallelogram (Fig. 28), and point N is the midpoint
of the side AB. In this case A, = -1, J1 = -1, v = 1 and,
consequently, A,l-t" = 1.

o

FIG. 28 FIG. 29

All three points L, M, N cannot be ideal (if it is given
that the lines AL, BM and C'N have a point in common).
A possible case is that 0 is an ideal point, i.e. the straight
lines AL, BM and C'N are parallel (Fig. 29). It is easily
ascertained that in this case one of the ratios is positive and
the two remaining negative. In Fig. 29 'A, < 0, f.L < 0, v > 0
Let us denote the line segments AN and NB by ex and ~,

respectively. Then
AN a

v= NB =T'
11_ BL = _ a+~
I'w- LC a '

CM ~

f.!= A-1A == - a+~ ·
Multiplying we find
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FIG. 30

Ceva's theorem is now proved completely.
Converse. It we take on each side of a triangle one point

(which does not coincide toith. a vertex) such that the product
of the ratios in which these points divide the sides is equal
to unity, then the straight lines which join the vertices of the
triangle to the points taken on
the sides opposite to the vertices
pass through one and the same
point.

Shortly: if All" ~ 1, then
AL, BM and c» pass through
one and the same point.

Proof. Let us assume that
the lines AL, BM and eN do
not pass through one and the
same point (Fig. 30). Deno­
ting by 0 the point of inter-
section of AL and BM, draw the straight line CO and
denote the point of intersection of CO and AB by N'.

Let us denote the simple ratio (ABN') by 'V'. We have
A~V == 1 (given),

All-v' == 1 (by Ceva's theorem).

Hence v == v'. This contradicts the assumption that N
and N' are different points. The theorem is proved.

In what follows we shall give the name "Ceva's theorem"
to any of the two theorems. They can be combined by using
the Iol lowing formulation:

The necessary and sufficient condition for the passing of
straight lines AL, BM and C'N through one and the same
point is that AI1V ==: 1.

If we had not introduced ideal points the two theorems
would not prove so simple. The first would have to be for­
mulated as follows. If the straight lines AL, BM and C'N
pass through one and the same point then three cases are
possible:

either the product of the three ratios A, !l, v is equal to
unity,

or one of the lines is parallel to the opposite side of the
trianglel and the two others cut the opposite sides in the
ratios whose product is minus unity,

• 1 If AL II Be, then AL is the notation of a straight line, 'and point L
In this case does not exist.
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or two of the lines are parallel to their opposite sides
and the third line divides the opposite side (the segment)
in halves.

The case shown in Fig. 29 is an impossible one since it
is given that the lines pass through one and the same point.

The second theorem would be formulated as follows.
If A~'V == 1 then the straight lines AL, BM and C'N either
pass through one and the same point or are parallel. Cases
like AL II BC are excluded, since the existence of points L,
M, N is given.

The introduction of ideal points makes it possible to com­
bine these (seemingly!) various cases in one formulation.

The tendency to combine cases, which have the same
form (though differing in their content), is a characteristic
feature of mathematics. A mathematician must be able
to notice this unity.

The well-known from the school curriculum theorems
on the intersection of medians, bisectors and heights are
particular cases of the second of the above theorems. Let us
demonstrate it. .

If AL, BM and CN are medians, then 'A, == f.! == " == 1.
Hence, A,f.L" == 1.

c a
If AL, BM and eN are bisectors, then A, = b' fl ==c '

b
v == a. Hence, Allv :=:: 1.

If AL, BM and cs are heights, then 'A tan C
tanB'

tan A tanB
II == tan C ' v == tan A· Hence, A.IlV = 1.

This theorem comprises a special case: the right-angled
triangle. Ceva's theorem cannot be applied in this case
for it requires that points L, M and N should not coincide
with the vertices of the triangle. Of course, the theorem
saying that the heights of a triangle pass through one and
the same point holds in this case too, but in referring to
Ceva's theorem the case of a right-angled triangle must be
considered separately.

A historical comment. The author of the theorem, Giovanni
Ceva, derived it from mechanical considerations. Let three
masses tru, m 2 , rna be placed at the vertices A, B, C, res­
pectively. Let L, M, N be the centres of gravity of the pairs
(m2 , rna), (ma, mt ) , (m1 , m2) , respectively. The centre of
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gravity of two material points lies on the line segment which
joins these points and divides it in a ratio, which is inver­
sely proportional to the ratio of the masses, i.e,

L divides the segment Be in the ratio A= )
BL Ins

== LC === m2 '

M divides tIle segment CA in the ratio fl. =
cu Int (11.3)

= MA = m3'

N divides the segment AB in the ratio V=

AN rna
= NB =~.

It is clear that A.flv == 1.
Statics tells us that the centre of gravity of three points

lies on the segment, which joins one of these points to the
centre of gravity of the remaining pairs", It follows that the
centre of gravity of three masses nu, m 2 , m a is a point,
which lies on each of the segments AL, BM, CN, i.e, that
all three segments have a point in common.

It can be easily proved that if AflV = 1 it is possible to
choose the masses m1 , m2 , ma such that the conditions (11.3)
be satisfied.

Using the notion of the centre of gravity it is possible to
obtain much interesting in geometry." This method can be
extended to comprise also negative values of A, fl.' v.

12. Menelaos' theorem". With the notation used above
the two following theorems hold true:

1. If points L, M and N lie in one straight line, then All" =
= -1.

2. If Af.tV = -1, then points L, M and N lie in one straight
line.

The reader should remember that the vertices of the
triangle ABC are always assumed to be ordinary points,
and L, M, N can be ordinary and ideal.

1 This is true for any set of material points, broken up into two
subsets.

2 See M.B. Balk, Geometric Applications of the Notion of the Centre
of Gravity, Moscow, 1959 (in Russian).

3 Menelaos of Alexandria, Greek geometer, flourished 98 A.D.

45



A straight line cutting the sides of a triangle is called
(with respect to this triangle) a transversal. If the transversal
does not pass through any vertex of the triangle it cuts either
two sides internally and the third one externally (Fig. 31a)
or all three sides externally (Fig. 31b). The points at which
the transversal intersects the sides Be, CA and AB will be
designated L, M and N, respectively.

Let us give the proof of the first theorem. Draw through
the vertices of the triangle straight lines parallel to the
transversal (in Fig. 31 only one of them is drawn, BM').
If the transversal is not parallel to a side of the triangle,

L

N

(0)

FIG. 31

(b)

then the three lines are different lines. All ratios, which are of
interest to us will be replaced by ratios of line segments on
one of the sides of the triangle, for example, on CA.

Denoting by M' the point at which the parallel line
which passes through B intersects the side CA we have
(note -in all the proportions take account of their signs)

BL M'M }
LC = MC '

(a):=;Z,·
Using (a) we compute the product A~V

BL CM AN M'M·CM·AM
Aflv== LC • MA • NB == MC·MA·MM' =

M'M CM AM
== MM' · Me - MA =(-1)-(-1).(-1)=-1.
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If the transversal is parallel to one of the sides (Fig. 32)
we have a simpler case

AN AM MA 1
NB = Me = eM = eM '

MA

i.e. v = -! or J.L" = 1. In this case point L is an ideal one,
Jl.

i.e. A = -1. Hence Aflv = -1.
Lastly we have to consider one more case, when the trans­

versal is an idealjstraight line. In this case all three points
L, M, N are ideal, 'A, = ~ = v = -1 and A~V == -1. The
first theorem is completely proved.

A

FIG. 32

B

Let us prove the second one. Given that A!1V = -1. Assu­
me that points L, M and N do not lie in one straight line.
Let us take the straight line LM to be the transversal and
denote by N' the point of intersection of LM and AB and
by Vi the simple ;ratio (ABN'). We have

AJ.LV = -1 (given),
AJ.LV' = -1 (according to the preceding theorem).

Hence v == Vi. This contradicts the assumption that N
and N ' are different points. The theorem is proved.



CHAPTER II

Cross Ratio

13. Notion of a cross ratio. Take a segment AB on a straight
line and t\VO points of division C and D (the points must
be ordered: for instance, C is taken to be the first and D
the second one). Then we obtain two simple ratios:

point C divides segment AB in the ratio A == (ABC),
point D divides segment AB in the ratio f.t == (ABD).

The ratio of these two ratios is called a cross (or double)
ratio and denoted by the symbol (ABeD):

A (ABC)
w== (ABCD) === -;== (ABD) • (13.1)

Interpreting the meaning of the simple ratio we can obtain
a direct definition of a cross ratio:

AC AD AC·DB
llJ=== (ABCD) == cn : DB == CB.AD-'

Of, denoting the points by digits,
13 14 13·42

(1234)=32:42= 32.14

(13.2)

(13.3)

(of course "13" denotes a segment directed from point 1 to
point 3 with a chosen direction of the straight line).

It must be stressed that in the symbol (ABCD) each
point plays its particular role:

{
A - is the initial point of the segment,
B -is the end point of the segment,

{
C -is the first point of division,
D -is the second point of division.



(13.4)

It is expedient to combine the points into pairs as shown
above by braces.

It will be made clear in Sec. 15 that the pairs are equiva­
lent, i.e. we may take C and D to be the initial and end
points of the segment, and A and B -the first and second
points of division.

A C 0 B (0)00 0 c

C A B 0
(b)

A C B 0 (c)0 0 000-

A D B C (d)0 0 00-

FIG. 33

In nearly all cases we shall assume all these four points
to be different. The points of division can be arranged with
respect to the segment AB in four ways (Fig. 33):

(a) the two points are inside the segment,
(b) the two points are outside the segment,
(c) the first point is inside, the second outside,
(d) the first point is outside, the second inside.
We now determine the sign of the cross ratio in the above

cases:
(a) A> 0, f.1 > 0; w > 0,
(b) Iv < 0, r-t < 0; w> 0,
(c) Iv > 0, f.t < 0; w < 0,
(d) Iv < 0, f.1 > 0; w < 0.
Thus, the cross ratio is positive if the two points of divi­

sion are "equally" arranged with respect to the segment and
negative if these points are arranged in a different way;
as was explained in Sec. 10 this can be formulated as follows:

If the pairs of points do not separate one another the cross
ratio is positive, and if they do-it is negative.

It is interesting to find what the cross ratio is if any
two points coincide. Let us limit ourselves to cases when the
fourth point coincides with one of the three others. Substitut­
ing points A, B, C one after the other for point D in for­
mula (13.2) we obtain:

(ABCA) === 00, }

(ABCB) === 0,
(ABCC) === 1.
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14. Invariant property of a cross ratio with respect to
central projection. The central projection di fiers from the
parallel one (see Fig. 10, p. 1H) in that the projectors
(projecting straight lines) are not parallel and pass through
one and the same point (ordinary) called the centre of
projection. With parallel projection from one straight line
onto the other the lengths of segments are changed, but
their ratios remain constant (unchanged). With central
projection not only the lengths are changed but their ratios

PIG. 34

A'

FIG. 35

too. For example, in Fig. 34 point C is the midpoint of the
segment AB, but C' is not the midpoint of the segment
A'B'. Even the sign of the ratio can change. For example,
(ABC) > 0 (see Fig. 21), but when projected from S onto
the straight line a' we obtain (A'B'C')"< O. Nevertheless,
the ratio of the two ratios does not change.

If four points on a straight line are projected onto another
straight line their cross ratio remains unchanged),

Do not think that there is a misprint: the word "central"
has been omitted. The theorem holds true for both kinds of
projection -parallel or central. For parallel projection the
statement is trivial: since the two separate simple ratios
are invariant, their ratio must be invariant too.

1 In German "werlen" means to throw, "der Wurf"-a throw. The
German geometer K.G. Standt (1798-1867) used this term for the
cross ratio on the ground that the ratio does not change in "throwing"
a tetrad of points from one straight line onto another. This is why the
cross ratio is often denoted by ui,

50



(3)

Proof. Draw straight lines parallel to a projectin g line,
SA, say, through two corresponding points, for example B
and B'; mark the points at which these two straight lines
intersect the other two projectors (Fig. 35). We have:

AC SA
-=-=~,

cs CtB

AD SA
-===- === """""="""",
DB D 1B

AC AD DiB
CB : DB :=:: C

1
B ·

In the same way we obtain:

A'e' A'D' D'B'__ . __ -_1_

C'B' . D'B' - CiB' .
(b)

The right-hand sides of (a) and (b) are equal (for the tri­
angles SBD t and SB'D; are similar). Consequently, the
left-hand sides are equal too

AC AD A'C' A'D'

CB : DB = C'B' : D'B' •

Noticing that the two cross ratios both have similar signs
we can write:

AC AD A'C' A'D'
CB : DB ~ C'B' : D'B' ,

or
(14.1)(ABCD) = (A'B'C'D').

Q.E.D.
This property can be considered from another point of

view:
Four straight lines a, b, c, d of a central pencil cut out

on any straight line (which does not pass through the centre
of the pencil) the same cross ratio.

Since a cross ratio is independent of the cutting line it
belongs to the same tetrad of lines a, b, c, d. This makes it
possible to introduce the notion of a cross ratio of four
straight lines of a central pencil.

The cross ratio of an ordered tetrad of straight lines oi a cen­
tral pencil is the cross ratio of the four points, which are cut
out by these lines on any cutting straight line (of course, if
the line does not pass through the centre of the pencil).
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(14.2)

The cross ratio of four straight lines is denoted by the
symbol (abed).

The cross ratio of four straight lines can be expressed in
terms of the angles formed by these lines, i.e. without re­
course to a cutting line. It is left to the reader to prove the
following formula:

( b d)
_ sin (a, c) • sin (a, d)

a c - . ( b)· . (d b •SID C, SIll,)

Formula (14.2) will not be used in this booklet.
15. Permutation of elements in a cross ratio. In studying

(Sec. 7) the permutation of elements in a simple ratio, we
found straightway the values of a simple ratio for all the
six ways in which three elements can be ordered. With four
elements there are twenty-four ways of ordering and to
find the values for each of them would be a tedious task.
Therefore we shall prove Iour general rules. Recall that
the tetrad ABCD consists of two pairs: AB and CD.

Rule 1. A eross ratio is not changed when the two pairs
are interchanged.

Indeed, by formula (13.3)
CA·BD

(CDAB)= AD.CB •

Formula (13.2) shows that this coincides with (ABeD):

(CDAB) = (ABeD).

Rule 2. A cross ratio does not change if the elements in
each of the two pairs are interchanged simultaneously.

By formula (13.3)
BD·CA

(BADC) == DA.BC = (ABCD).

Clearly the cross ratio will not change if the two permu­
tations are performed one after the other. The sequence in
which they are performed proves to be of no consequence: in
both cases starting with (ABCD) we come to (DCBA) (when
the elements are written down in reversed order):

(DCBA) = (ABCD).
Thus

w == (ABCD) == (CDAB) == (BADe) == (DCBA).
(15.1)
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Rules 1 and 2 force us to change the names of the roles
played by elements which we introduced in Sec. 12. We
cannot treat as different "the initial point and the end point
of a segment" and "the points of division" since these pairs
are equivalent. From now on we shall say that the cros~'"
ratio (ABCD) is formed by two pairs AB and CD, without
giving different names to the pairs. According to Rule 2
we must regard these pairs as unordered.

The sequence of the elements in a pair is of no conse­
quence, but there is a correspondence between the elements of the
pairs: in a cross ratio (ABCD) element C of the second pair
corresponds to element A of the first pair, and element D
corresponds to element B. This means that if the sequence of
the first pair is taken to be AB, then that of the second must
be CD, and if the first pair is BA, then the second one is DC.

Rule 3. If elements are interchanged only in one pair, then
the value of the cross ratio is changed to its inverse.

Indeed,

(BAeD) _ BG·DA _~
- GA·BD - w •

Using formula (15.1) we can write

i- = (BAeD) = (CDBA) = (ABDC) = (DCAB).
w

Rule 4. If non-corresponding elements of different pairs
are interchanged, then the value of a cross ratio is its difference
from unity.

Indeed, interchanging in the cross ratio (ABeD) the
elements Band C, we have

AB·DG
(ACBD) = BC.AD •

Comparing this expression with (13.2) we find in the nume­
rator segments, which are absent in (13.2). In order to over­
come this difficulty let us divide in two parts segment AB
by point C, and segment DC -by point B:

(ACB D) == -(AC+CB) (DB+BC) _
CB·AD -

AC ·DB +AC ·BG+CB .DB+CB ·BG
CB·AD

Let us interchange the letters in the notation of the two
segments in the second factor of the numerator and then
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factor out CB of the three last terms:

(ACBD ) - _ AC·DB+·CB(DB+BC+CA)
- CB·AD

__ AC.DB+CB.DA AC·DB + 1-1-
- CB.AD - CB.AD - w.

Four elements can be permuted in 24 ways. Our four
rules make it possible to determine the values of the corres­
ponding cross ratios without any further computations:

1 - w ~ (ACBD) ~ (BDAC) == (CADB) == (DBCA).

Applying Rule 3 we have

1~w = (CABD) = (BDCA) = (ACDB) = (DBAC).

Applying Rule 4 to i. we obtain:
w

w-1 ~~ (BCAD) == (ADBC) =:= (CBDA) == (DACB).
w

Applying Rule 3 to the last cross ratios we have:

w: 1 === (CRAD) =:: (ADCB) === (BCDA) == (DARC).

We have exhausted all the 24 permutations of four ele·
ments. We give below a summary of the results obtained
substituting digits for letters in the notation of the elements.

w == (1234) == (3412) == (2143) === (4321), ,

~ = (2134) = (3421) = (1243) = (4312),

1 -IV == (1324) == (2413) =-= (3142) == (4231),

1~w ,= (3124) == (2431) = (1342) == (4213), (15.2)

w-1 =-= (2314) -:= (1423):=: (3241) ==~ (4132),
w

w~ 1 == (3214):= (1432) === (2341) == (4123). J

Notice that there is one essential difference between this
result and that of Sec. 7 (see table (7.2)). Six permutations
can be made with three points in a straight line and, general­
ly speaking, a different simple ratio corresponds to each of them.
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24 permutations are possible with four points in a straight
line and, generally speaking, only six different cross ratios
correspond to themi . The 24 permutations break up into
six tetrads with equal cross ratios in each of them.

16. Harmonic tetrads. Are there any special arrangements
of four points in a straight line wi th less than six values
of cross ratios, which correspond to these arrangements? In
order to answer this question we must find the values of w

~~~i:::~s:~:to:st::;:::~::n;os::::a:~ ~:~::a:h~1:~::_::?;
sides, w say, to each of the rest. The reason for this is (the
same as the one given in Sec. 7. .

Remark 2. We seek a tetrad of points, without fixing
their roles (i.e. all the points are equivalent and cannot be
designated either by letters, or digits or in any other way).
Such a tetrad is characterized not only by one but by six
values of the cross ratio.

Rermark 3. We assume that all the four points are diffe­
rent, i.e. we seek a real tetrad and not a triad. If two of the
points coincide the problem becomes a trivial one, since it
is clear beforehand that interchanging points which coin­
cide changes not hing.

We are going now to carry out our plan.

(1) w == !., w2 == 1, to === + 1.
w

The value w == 1 must be rejected since it corresponds to
a degenerated tetrad (see formulas (13.4)). We retain the
value Wl === -1.

t
(2) w == 1 - W, W2 === 2" ·

1
(3) w === -- lV2

- W + 1 == O. Imaginary roots.1-w'
w-1(4) W == ---W-, lV2

- W + 1 == O. The same as above.

w
(5) w == w-t . The value w == 0 corresponds to a dege-

nerated tetrad. We retain the value W3 = 2.
For each of the found values of w we list the six corres­

ponding values:

1 With a certain special arrangement of the points-even less
(see Sec. 16).
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w t 1-w

I
1 w-1

I

w
1-w - w-1w w

-1
I

-1 I 2
I

1

I 2 I
1

2: 2"

1

I

2 I
1

I

2 I -1
\

-12 2:

2
1

-1 -1
1

22 2

PIG. 36

A
c

In all the rows we have the same numbers. This means
that the three found values of w should be considered as
representing the same solution: they correspond to the same
tetrad of points, ordered in different ways. Such a tetrad
is called harmonic (below we shall give a more direct for­

mulation of the definition
of a harmonic tetrad).

What does a harmonic
tetrad look like? Any tetrad
of points ABCD in a straight

line can be broken into two pairs in three ways: (1) AB
and CD, (2) AC and BD, (3) AD and BC. With any arrange­
ment of the points one of these ways gives separated pairs
and the other two non-separated ones'.

Let us break the harmonic tetrad into two separated
pairs. Such a break corresponds to the value w = -1. Re-

call that w = ~ . It follows that 'A = -fl. It is now clear
I.t

how a harmonic tetrad can be represented. Take a segment
AB and a point C inside it, which divides it in a certain
ratio A, and outside it a point D, which divides the segment
in the same (as to its absolute value) ratio.

Example. In Fig. 36 (a scale is marked in it, for conve­
nience of use) point C divides the segment AB in the ratio
'A, = 3 and point D divides the same segment in the ratio
f! = -3. The tetrad ABCD in Fig. 36 is a harmonic set.

1 The algebraic equivalent of this statement is as follows: of the
. b 1 1 1 w-1 W f iti d

SIX num ers w, w' - w, 1-w' -w-' w-1 our are POSl ive an
two negative.
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We shall state now several properties of a harmonic tet­
rad. Their substantiation is left to the reader.

1. In a harmonic tetrad as in any other the pairs are equi­
valent. This means that we can take C and D to be the extreme
points of the segment and A and B to be the points, which
divide the segment in the same (as to its absolute value)
ratio internally and externally.

For example, in Fig. 36:

point A divides the segment CD in the ratio A1 = - ~ ,

point B divides the segment CD in the ratio 1-t1 = ;.

However a harmonic tetrad differs from any other i;r
that there is no correspondence in it between the points;of
the two pairs, I.e, point !

C cannot be taken to cor- ~ 0 A C~ 8 "
respond to point A. Indeed, 0 00 e>--+--.

with permutation of the FIG. 37

elements in one pair the
cross ratio w == -1 will be changed to its inverse, i.e,
will not change. For example, in Fig. 36:

point C divides the segment BA in the ratio Aa = ~ ,

point D divides the segment BA in the ratio I-ta = - i .
A harmonic tetrad consists 0/ two separate pairs. Each pair

is unordered. The pairs are equivalent. The points of one pair
are conjugate with respect to the other pair.

2. To make this point palpable: if C inside the segment is
close to A, then D outside the segment is close to A too.
If C moves to the right, then D begins to move to the left
(Fig. 37). When C reaches the midpoint, then D becomes
the ideal point (A === 1, J.1 = -1). This fact should be
especially noted.

The midpoint of the segment is harmonically conjugated
with the ideal point.

When C is to the right of the midpoint, D appears on the
right and will move towards C in the opposite direction.
Points C and D will approach point B from different sides.

Let us consider now what harmonic tetrads of straight
lines look like. In order to obtain a harmonic tetrad of
straight lines a harmonic tetrad of points must be projec-
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ted from some point S. Take an arbitrary triangle ABS
(Fig. 38) and mark on its base AB a harmonic tetrad of
points: (1) the vertices A and B, (2) the midpoint of the
side C and the ideal point D. Projecting this tetrad from
the vertex S we find:

For each vertex of a triangle there is a harmonic tetrad of
straight lines: (1) two sides of the triangle, (2) a median and
a line parallel to the base.

This proposition enables us to draw easily a harmonic
tetrad of straight lines. Cutting it by various straight lines,

FIG. 38 FIG. 39

various harmonic tetrads of points can be obtained: see,
for example, the tetrad A'B'G'n' in Fig. 38.-

Another simple method of obtaining harmonic tetrads of
straight lines can be given:

Two intersecting straight lines and their two bisectors form
a harmonic tetrad (Fig. 39).

17. Finding the fourth point given a cross ratio. Section 4
showed how to sol ve the problem: given two points A, B
and the simple ratio "A == (ABC), find the third point C.
It is natural to pose an analogousJproblem for the cross
ratio: having three points of the tetrad ABGD' in a straight
line and knowing the cross ratio to = (ABeD) find the fourth
point.

We shall first solve an auxiliary problem.
Given three straight lines 0/' a central pencil a, b, c and

three points in a straight 'line A o, B o, Co (Fig. 40). Draura
line on which the straight lines a, b, c cut out a triad of points
A, B, C which is 'congruent with A o, e; Co.

It is expedient to start with plotting the points A o, B o,
Co and then to construct the angles between the lines a,
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Ao

·c

o

80

a

bl c. Point So must lie on the arc AoSoBo which contains the
angle (a, b) (Fig. 41). There are two such arcs. For defini­
teness we shall take one of them. Point So must lie at the
same time on the arc BoSoCo which contains the angle (b, c)
(we take this arc on the side of straight line A oBo where
the arc A oSoB0 lies). Point So will be the second (besides B o)
point of intersection of two circles. The case of two circles
touching one another cannot occur as the condition for this
is that (a, b) + (b, c) =·180°. We now turn back to Fig. 40

5

FIG. 40' FIG. ~1

ABC p
--0---0----0---

Co
o

FIG. ~2

80o

and mark off on the straight lines a, b, c "from point S the
segments SA == SoA o, SB = SoB o, BC = SoCo, arran­
ged as in Fig. 41. The straight line ABC-is the line we sought.
There are two solutions to the
problem. The second straight
line ABC is symmetrical to
the first one, with respect to
point S. .

If one' of the points, for
example, C is ideal, then the
problem has a simpler solution: we must cut the triad a,
b, c by a straight line, which is parallel to c and then replace
the drawing by a similar one.

We" now pass on to the main problem.
. Three points A, B, C are given in a straight line p (Fig. 42),
and four points A 0, B0' Co, Do-in line q. This tetrad givas
in graphic form the cross ratio w = (AoBoCoD o). It is re­
quired to find point D such that it forms with the triad ABC
the same cross ratio.

Solution. From an arbitrary' point S project the given
points A, B, C. Cut the triad of lines a = SA, b = SB,
c = se by a straight line so as to obtain a triad of points
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A~B~C~ (Fig. 43) which is congruent with AoBoCo. We now
plot point D~ (the tetrad A~B~C~D~ is: congruent with
AoBoCoDo). Join D~ to S. The point at which D~S cuts
line p is the point we seek. It is obvious that there is only
one solution.

Let us now consider the particular and moreover most
interesting case of a harmonic tetrad. Given a triad of points

FIG. 43

in a straight line, it is required to supplement it by a fourth
point such that we obtain a harmonic tetrad. There is no
need to order the triad given; we have only to point out
which two points are a pair. Given are three points ABC,
and it is known, that points A and B, for example, are a
pair, and C is one point of the other pair. It is required to
find point D such that (ABCD) = -1. The problem can
be formulated shortly thus:

Find point D, which is harmonically conjugated with e
with respect to A and B.

This problem can be solved by the above method and
also by many simpler ones. We give here two such methods,
based on the properties of harmonic pencils (Figs. 38 and 39).

1. Project the three given points ABC from an arbitrary
point S (Fig. 44). We now have to draw through point C
a straight line whose segment inside the angle ASB would
divide in halves at point C. .

For this purpose mark off eel = SC and draw CtA 1 If BS
and C1B1 II AS. The figure SA 1C1B1 is a parallelogram.
Its diagonals at the point of intersection cut each other
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FIG. 45

into halves. Consequently, SC is a median of triangle A 1B1S .
It remains to draw through S a straight line parallel to
AIBI • This line cuts AB at point D, which is the point sought.

2. Draw a circle through points A and B (Fig. 45). Find
the midpoint C1 of the arc AB (no matter which of the two).
Draw the straight line GtC and mark S, the point of its
intersection with the circle. The straight line c == SC is
the bisector of the angle
(a, b). It remains to draw
the bisector d of the other
angle (adjoining) and d will
cut AB at the point sought,
D.

These methods are role
of thumb and require labo­
rious investigations of all
possible particular cases.
We shall not take up this
investigation, and are going to show a much better way.
It is independent of the arrangement of elements and .of
the existence among the given points of an ideal one. Besi-
des, its application requires the use of only a ruler. "

18. Theorem on a complete quadrilateral. A complete
quadrilateral is a plane figure formed by the following ele­
ments: (1) four points of general position (this means that
no three of them lie in one line), (2) six straight lines, joi­
ning these points in pairs", The four points are called
vertices of the complete quadrilateral, and the six straight
lines its sides.

The term, quadrilateral, is used to avoid using the word
"quadrangle", which can give rise to familiar associations.
The quadrilateral is not a part of a plane -it has no inside.

A complete quadrilateral is shown in Fig. 46. Its vertices
are marked by small circles and designated by the letters A,
B, C, D; this does not mean that the vertices are ordered.
The vertices of a complete quadrilateral are equivalent.
it has no "next" or "opposite" vertices.

The sides of a complete quadrilateral intersect, besides
the vertices, in three more points.

These points are called diagonal points.

1 A simple quadrilateral is an ordered tetrad of points and four
straight lines, which join the points in consecutive order, i.e. 1 to 2,
2 to 3, 3 to 4 and 4 to 1.
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In Fig. 46 they are marked by small squares and designa­
ted by P, Q, R.

Consider the straight line joining two diagonal points,
for example, PO. Two sides of the quadrilateral intersect at
each of these points. A quadrilateral has two more sides.
They intersect the straight line PQ (or QR, or RP) at two
points. All such points are marked in Fig. 46 by small
triangles. It is found that two "squares" and two "triangles"
form a harmonic tetrad.

FIG. 4:6

Theorem on a complete quadrilateral" The two points at
which the straight line joining a pair1 of diagonal points
of a complete. quadrilateral is cut by the two remaining sides
of the quadrilateral form with this pair of diagonal points a
harmonic tetrad.

Proof. Project the tetrad' PQ XY from point A onto the
straight line BD. The points P, Q, X, Y when projected
will become B, D, X, R, respectively. A cross ratio does
not change with central projection

w = (PQXY) = (BDXR). (a)

Project the tetrad (BD·XR) from point C back onto the
line PQ. When projected it becomes the tetrad QPXY:

(BDXR) = (QPXY). (b)

It follows from (a) and (b) that

w = (PQXY) = (QPXY). (18.1)

1 Any pair.
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FIG. 47

If (PQXY) = ur, then (QPXY) = ~ (see (15.2». Thus,

w = ~; hence w = +1. However w cannot be equal to unity,w

since P, Q, X, Yare all different points. Therefore w =
= (PQXY) = -1, i.e. PQXY is a harmonic tetrad,
Q.E.D.

This reasoning is applicable to analogous tetrads QRZU
and R'PVW. Moreover, it has been found in. the process of
reasoning that the tet- ~

rad BDRX is a harmo­
nic one too. This applies
also to analogous tetrads
ABPZ, AeRY, ADQV,
BCQWand CDPU.

The proof will change
in nothing if some of the
points prove ideal.

This theorem makes it
possible to find the fourth
harmonic point by com­
pleting with the use of
the given triad the construction of a complete quadrila­
teral. The steps of this construction are shown.. in
Fig. 47.

(1) Draw two straight lines through one of~the "squares".
(2) Draw a line through the "triangle". Its intersections with
the first two lines determine two of the vertices of the com­
plete quadrilateral ("circles"). (3) Join the "circles" to the
other "square". This determines the remaining two "circles".
(4) Draw the last .side (join the last two "circles"). This
line cuts the given straight line at the second "tri-
angle". .

Exercise. Using the theorem on the complete quadrila­
teral, prove that the line which joins the point of intersec­
tion of the lateral sides of a trapezium to that of the diago­
nals divides the parallel sides of the trapezium in halves.
Compare this with the elementary proof.

19. Group property of a cross ratio. The expressiorrs on
the left-hand sides of the formulas (15.2) possess a group
property, for the same reasons as those in Sec. 8: if any
of the expressions is substituted in any other for w we obtain
again one of them.
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(19.1)
1 w-1 w}

a~= 1-w ' a5::::':-w- , a6= w-1 ·

Let us use the notation:
1

a1 == w, a2= w' a3= 1-w,

We define "multiplication" as in Sec. 8: "To multiply"
a, by aj means to substitute aJ in a, for w. For example,

1 w
a3 8 a4==1- 1-w = w-1 = a6·

Performing these operations with various pairs we obtain
the "multiplication" table ("Cayley square"). The reader
should draw up the table by himself. He will be probably
surprised to find that his table coincides with the table (8.4).

The groups (8.1) and (19.1) from a geometric point of
view are different. One consists of simple ratios, the other of
cross ones. If we pay no attention to the concrete meaning
of the elements and consider only their interrelation in the
"multiplication" there is no difference between them. This
reminds us of the fact, that from the viewpoint of abstract
arithmetic there is no difference between the equalities
"2 apples and 3 apples == 5 apples" and "2 pencils and 3 pen­
cils == 5 pencils", though an apple and a pencil are not the
same thing. Arithmetic tells us that 2 + 3 = 5 abstracting
from the nature of the objects being added. In just the same
way a specialist in group theory considers the group of
simple ratios and that of cross ratios to be one and the
same group. This group has many other concrete contents
(for instance, the group of substitutions of three elements­
see the books of P.S. Aleksandrov and I. Grossman and
w. Magnus, referred to on page 25).



PROBLEMS

We have come to the end of the booklet. If its subject
attracted the reader's interest, let him solve a few problems.
Some of them are considerably more difficult than the matter
expounded in the booklet.

1. Given segment AB. Find in AB a pair of points CD,
which divide AB harmonically. Given besides (a) CD = 3/4
AB, (b) CD = K ·AB (K > 0) (AB is the length of seg­
ment AB).

Problems on "division". What is meant by "divide b by
a"? It means that we have to solve the equation ax == b.
Since for the group (8.4) the "multiplication" is not com­
mutative, it is natural to define two different "divisions",
viz: "left division" of b by a means to solve the equation
a0x == b, and "right division" of b by a means to solve the
equation y0a = b (a, b, x and y denote the elements of a
group, a and b are given, x and yare the unknowns).

2. Perform the "left division" of as by aa.
3. Perform the "right division" of as by aa.
4. Prove that the "division" (right or left) of a, by

aj is always (with any elements a, and aj) possible and the
solution is single-valued.

An element of group ai is termed cyclic if there is a natu­
ral number m such that aT' == al (the m-th power of a is
defined as the "product" of m factors ai0 ai0 · · · 0 ah al
is a unit element). If af =1= a l with n = 1, 2, ..•, m - 1
(i.e. if m is the least exponent with which aT' == at), then m
is the order of the cyclic element ai.

5. Prove that all the elements of group (8.4) are cyclic
and find their orders.

6. Compute (a) a:0a:0a6, (b) a:50a:.

7. The connection between Ceva's and Menelaos' theorems.
Two points are taken on each side of the triangle ABC (the
sides are straight lines of indefinite extent), which separate
harmonically the vertices of the triangle: on side BC--­
points Land L', on CA -M and M', on AB -N and N'.
To prove that: (a) if straight lines AL, BM and CN pass
through one and the same point U, then points L', M'
and N' lie in one straight line u (straight line u is called
the harmonic polar of point U with respect to the triangle
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ABC). (b) Conversely: if points L', M' and N' lie in one
straight line u, then lines AL, BM and C'N pass through
one and the same point U (point U is called the harmonic
pole of the straight line u with respect to the triangle ABC).

In Problems 8 through 10 the triangle ABC is considered
with points L, M and N on its sides, the straight lines AL,
BM and CN not necessarily passing through one and the
same point. In this case they form a triangle A'B'C'
(Fig. 48). The vertices of the triangle A'B'C' are pro­
jected onto the opposite sides as pairs of points LL',

FIG. 48

MM' and NN'. The simple ratios in which points L, M
and N divide the sides of the triangle ABC are denoted as
before by A, fA. and v, and the analogous ratios for points
L'; M' and N' - by 'A', ~' and v':

8. Prove (Izvolsky's theorem, 1929) that (BCLL') ===
== (CAMM') === (ABNN') = AJ.!V.

Derive from this Ceva's theorem.
9. Prove (Routh's theorem, 1896) that the ratio of the

areas of the triangles A'B'C' and ABC is expressed as fol­
lows:

S' {AJ-L'V -1)2
S === (1+ A, +AJ!) (1+ ~ -t-. J1'V) (1+ 'V + 'V,~) •

Derive from this Ceva's theorem.
10. Prove that the ratio of the areas of the triangles

LMN and ABC is expressed as follows:

So AJ.A.'V +1
Y= (1+A,)(1+J.t)(1+v) •
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Derive from this Menelaos' theorem.
11. Prove the following theorem, that may be called

Ceva's theorem for three-dimensional space.
Given an arbitrary tetrahedron A oA1A 2A 3.

On each edge A iA i (the edge is a straight line of indefinite
extent) we take a supplementary point A i j» which coincides
neither with Ai nor with A j • If in the triangle AiAjA k the
straight lines A iA [k» A jA ik and AkA i i all pass through one
and the same point we say Ceva's phenomenon is present in
this triangle and this point is called Ceva's point and denoted
by A i j k •

Theorem. If Ceva's phenomenon is present on three faces
of the tetrahedron AoA1A 2A 3, then: (1) it is present on the
fourth face, too; (2) the seven straight lines AoA 1 2S, A1A o2S,

A 2A o1 S , A sA o1 2 , A 01A 2 S , A 02A 1 3 , and A osA 1 2 pass through
one and the same point (it is natural to designate this point
by A 012 3 and call it Ceva's point of the tetrahedron).



ANSWERS AND SOLUTIONS

1. Use the second of formulas (4.1) (p. 18)
The problem has two solutions: (a) 'Ac = -'AD == 3 or

1 V1+k2 +1Ac = -AD == 3; (b) Ac = -'AD = k or ')..,0 ==

= -AD = V~-1 .
2. a2. 3. a6. 4. That "left division" is possible follows

from the fact that all elements of the group are contained
in each row of table (8.4), and the single value of the solu­
tion is the consequence of each element occurring only once.
That "right division" is possible and the solution in this
case is single-valued follows from the analogous properties of
the columns. 5. Element al is of the first order, a2 , a3 and
a6 -of the second, a4 and a5-of the third. 6. In solving
this problem one must use the results of the preceding
one. For example, knowing that a3 is a cyclic element of
the second order, one can exclude the 2-s in the exponent of
a~5: a:o = a~ == as- (a) a3; (b) a4. 7. If AL, BM and CN
pass through one and the same point, then Af.LV == 1. But
"A' = -Iv, Jl' == -Jl, v' == -v. If Ivl-l" ::::::: 1 then 'A' Jl'V' ==
== -1 and consequently points L', M' and N' lie in one
straight line. The proof of the converse is analogous. 8.
Project the tetrad of points BCLL' from A onto the straight
line CN, then the tetrad obtained from B onto CA. These
tetrads have equal cross ratios (BCLL') == (NCB'A') =
== (ACM'M). Interchange the elements in each pair of
the last cross ratio (Rule 2, Sec. 15):

(BCLL') == (CAMM').

In an analogous way one can prove that the third cross
ratio is equal to each of the two first ones:

(BeLL') = (CAMM') == (ABNN')_

Now note that the straight lines AL', BM and CN all pass
through point A'. So, by Ceva's theorem,

BL' cu AN
L'e • JlJA • NB == 1

or
l' 1 1,=_1_.
I\, f.1v= , I\,

J.tv
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Compute the cross ratio (BeLL'):

(BCLL') = :~ : :~~ = ~ : ~' = ~: Jl~ = ~f1".
If the straight lines AL, BM and C'N pass through

one and the same point, then point L coincides with L'
and consequently A~V == (BeLL') == (BeLL) = 1 (formu­
las (13.4».

9. This theorem can be proved easily by the analytical
method. The reader who has not begun to study analytical
geometry should better leave the proof for the future. We
shall take the rays AB and AC as axes of coordinates (obli­
que-angled system!) and the line segments AB and AC
as (unequal!!) scale units. The points of interest to us will
have the following coordinates: A (0, 0), B (1, 0), C (0, 1),

L ( 1~). , 1~ ),), M (0, 1~Jl)' N (1; v ' 0). The equation
of AL is A,X - Y = 0, the equation of BM is x +
+ (1 + JL) Y == 1, the equation of C'N is (1 + v) x +
+ vy = 'V. Solving these equations in pairs we obtain:

A' (J.LV 1)
1+J.L+p,v ' 1+J.L+IJv '

B' (V VA)
1+V+'VA' 1+-V+VA '

C' ( 1+),1+).Jlj' 1+:+AJl)·
The ratio of the areas of the triangles is expressed by

using determinants of the third order:

XA' YA' 1 XA YA 1
S' : S = XB' YB' 1 XB YB 1

Xc' yo' 1 xc Yo 1
JA.V 1 1

1+J.t+p,v 1+J..L+J..Lv
v vA.

- 1+v-tv/'" 1+V+VA 1
1 A

1+A+AJ.t 1+h+A.~ 1
f-tv 1 1+11+~v

1 v vA, 1+v+vA, •
(1 + At+AJ.t) (f + JL +J.t \1) (1. +'Y+"A,)

1 At 1+1+Af.1
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Subtract the sum of the two first columns 'of the deter­
minant from the third column

(1+. it.,+AfJ.) (1'+J-t +Il") (1+v +'VAt) •

If the straight lines A·L, BM and eN pass through one
and the same point, then S' = 0 and consequently AIlV = 1.

If the reader is familiar only with Cartesian coordinates
(axes at right angles with equal scales on them), he can
ascribe to the original points the coordinates A (0, 0),
B (a, 0), C (b, c) and repeat the above reasoning, as stated
here, The derivation will be more laborious, but the final
result will be the same,

It can be seen' how important it is to select for every prob­
lem the most suitable tools.

10. Having] solved the preceding problem very little
remains to be done. The coordinates of points L, M and N
are already found, the ratio of the areas is computed in
the same way as in the preceding 'problem. If points L, M
and N are in one straight line, then So = 0 and consequent­
ly Aflv = -1. .

11. In place of the notation A, Il, v we introduce Aij =
AA . .

= A~ ~~. Clearly Aij·Aji = 1_ (a). Assume. that Ceva's
li } ,

phenomenon is present on the faces, which pass through the
vertex A o- Then "'Ol-A12- A20 = 1, Ao2-A2s·Aso = 1, AosX
XA31·AIO = 1_ Multiplying these equalities and using (a)
we obtain A12-A23·A31 = 1, i.e. Cava's phenomenon is pre-
sent on the face AlA 2A a too. .

In order to 'prove the second part of the theorem let us
construct two triads of planes

a~ == AoAtA 23, } Ct~ == AtAoA23 , }

a~ = AoAzAu, (b) a~ == AAtA2Aos' . (c)
a~ == AoA3AI 2 • Ct3 == tA3A02.·

All the planes (b) contain point A 1 2 S and the planes
(c) -point A 0 2 S• This means that the planes (b) pass through
the- straight line A oA 12 3 and the planes (c) through the
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straight line A IA 0 2 3• a,~ and a,~ are one and the same plane.
Thus the straight lines A oA1 2 3 and A 1A 0 2 3 lie in the same
plane and consequently intersect (maybe in an ideal point).
It can be proved by an analogous reasoning that any two
straight lines which join the vertices of the tetrahedron
with Ceva's points of the 'opposite faces intersect. Thus
the straight lines A oA 1 2 3 , A 1A 0 2 3 , A 2A o1 3 and A sA 012 form
intersecting pairs. This is possible only in two cases: (1) all
four straight lines have a point in common, (2) all four
straight lines lie in one plane. The second case is excluded,
since these straight lines contain all the vertices of the tet­
rahedron, i.e. the realization of the second case would mean
that all the vertices of the tetrahedron lie in one plane.
Only the first case remains, Q.E.D. We denote the point of
intersection of the four straight lines by A 0123.

It remains to prove that the straight lines which join
the supplementary points of opposite edges also pass through
point A 0123. These three straight lines lie in the planes (b)
and consequently intersect the straight line A oA 12 3• They
lie also in the planes (c) and consequently intersect the
straight line AlA 023. The last straight lines have only one
point in common. This means that the straight lines A 01A 2 3,

A 0 2A l 3 and A oaA1 2 either pass through this point, or lie in
the plane which contains the straight lines A OA 1 23 and,-AlA023.

The second possibility must be rejected since points A 23'

A l 3 and A 1 2 lie on the face A 1A 2A 3 , and points A ol , A 0 2'

and A 03 cannot lie in this plane. This means that the straight
lines A 01A 2 3 , A 02A 1 3 and A 0 3A 12 pass through point A 012 3'

Q.E.D.
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The booklet describes various theories to which a deep study 
of the problem of dividing a line segment in a given ratio 
leads. Considering this elementary and those related to it, 
the reader will make a short travel over some branches of 
mathematics come into contact woth affine and projective 
geometry and the theory of groups, though in most cases 
without mentioning those names.

The book is intended for pupils of the senior forms; in its 
main parts it can be easily grasped by pupils of the seventh 
and eighth forms.
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