


SATURDAY 2 APR 1955



SATURDAY 2 1955





THE FOURTH DIMENSION



SOME OPINIONS OF THE PRESS

" Mr. C. H. Hinton discusses the subject of the higher dimensionality of

space, his aim being to avoid mathematical subtleties and technicalities, and
thus enable his argument to be followed by readers who are not sufficiently

conversant with mathematics to follow these processes of reasoning."
NOTTS GUABDIAN.

" The fourth dimension is a subject which has /tad a great fascination for

many teachers, and though one cannot pretend to have quite grasped
Mr. Hinton's conceptions and arguments, yet it must be admitted that he

reveals the elusive idea in quite a fascinating light. Quite apart from the

main thesis of the book many chapters are of great independent interest.

Altogether an interesting, clever and ingenious book." DUNDEE COURIER.
" The book will well repay the study of men who like to exercise their wits

upon the problems of abstract thought." SCOTSMAN.

"Professor Hinton has done well to attempt a treatise of moderate size,

which shall at once be clear in method and free from technicalities of the

schools." PALL MALL GAZETTE.
" A very interesting book he has made of it." PUBLISHERS' CIRCULAR.

"Mr. Hinton tries to explain the theory of the fourth dimension so that

the ordinary reasoning mind can get a grasp of what metaphysical
mathematicians mean by it. If he is not altogether successful it is not from
want of clearness on his part, but because the whole theory comes as such an
absolute shock to all one's preconceived ideas." BRISTOL TIMES.

" Mr. Hinton's enthusiasm is only the result of an exhaustive study, which

has enabled him to set his subject before the reader with far more than the

amount of lucidity to which it is accustomed." PALL MALL GAZETTE.
" The book throughout is a very solid piece of reasoning in tlie domain of

higher mathematics." GLASGOW HERALD.
"
Those who wish to grasp the meaning of this somewhat difficult subject

would do well to read The Fourth Dimension. No mathematical knowledge
is demanded of the reader, and any one, who is not afraid of a little hard

thinking, should be able to follow the argument." LIGHT.
'' A splendidly clear re-statement of the old problem of the fourth dimension.

All who are interested in this subject will find the work not only fascinating,
but lucid, it being written in a style easily understandable. The illustrations

make still more clear the letterpress, and the whole is most admirably adapted
to the requirements of the novice or the student." Two WORLDS.

" Those in search of mental gymnastics ivill find abundance of exercise in

Mr. C. Ht Hinton's Fourth Dimension." WESTMINSTER REVIEW.

FIRST EDITION, April 1904; SECOND EDITION, May 1906;
THIRD EDITION, January 1912.







THE

FOURTH DIMENSION

BY

C, HOWARD HINTON, M.A.

AUTHOR OF " SCIENTIFIC ROMANCES "

"A NEW ERA OF THOUGHT," ETC., ETC.

LONDON

GEORGE ALLEN & CO., LTD.
EUSKIN HOUSE

44, 45 RATHBONE PLACE
1912





PREFACE TO FIRST EDITION

I HAVE endeavoured to present the subject of the higher

dimensionality of space in a clear manner, devoid of

mathematical subtleties and technicalities. In order to

engage the interest of the reader, I have in the earlier

chapters dwelt on the perspective the hypothesis of a

fourth dimension opens, and have treated of the many
connections there are between this hypothesis and the

ordinary topics of our thoughts.

A lack of mathematical knowledge will prove of no

disadvantage to the reader, for I have used no mathe-

matical processes of reasoning. I have taken the view

that the space which we ordinarily think of, the space

of real things (which I would call permeable matter),

is different from the space treated of by mathematics.

Mathematics will tell us a great deal about space, just

as the atomic theory will tell us a great deal about the

chemical combinations of bodies. But after all, a theory

is not precisely equivalent to the subject with regard

to which it is held. There is an opening, therefore, from

the side of our ordinary space perceptions for a simple,

altogether rational, mechanical, and observational way



VI PBEFACE

of treating this subject of higher space, and of this

opportunity I have availed myself.

The details introduced in the earlier chapters, especially

in Chapters VIII., IX., X., may perhaps be found

wearisome. They are of no essential importance in the

main line of argument, and if left till Chapters XI.

and XII. have been read, will be found to afford

interesting and obvious illustrations of the properties

discussed in the later chapters.

My thanks are due to the friends who have assisted

me in designing and preparing the modifications of

my previous models, and in no small degree to the

publisher of this volume, Mr. Sonnenschein, to whose

unique appreciation of the line of thought of this, as

of my former essays, their publication is owing. By
the provision of a coloured plate, in addition to the other

illustrations, he has added greatly to the convenience

of the reader.

C. HOWARD HINTON.
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THE FOURTH DIMENSION

CHAPTER I

POUR DIMENSIONAL SPACE

THERE is nothing more indefinite, and at the same time

more real, than that which we indicate when we speak
of the "

higher." In our social life we see it evidenced

in a greater complexity of relations. But this com-

plexity is not all. There is, at the same time, a contact

with, an apprehension of, something more fundamental,
more real.

With the greater development of man there comes

a consciousness of something more than all the forms

in which it shows itself. There is a readiness to give

up all the visible and tangible for the sake of those

principles and values of which the visible and tangible
are the representation. The physical life of civilised

man and of a mere savage are practically the same, but

the civilised man has discovered a depth in his existence,

which makes him feel that that which appears all to

the savage is a mere externality and appurtenage to his

true being.

Now, this higher how shall we apprehend it ? It is

generally embraced by our religious faculties, by our

idealising tendency. But the higher existence has two

sides. It has a being as well as qualities. And in trying
1
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to realise it through our emotions we are always taking the

subjective view. Our attention is always fixed on what we

feel, what we think. Is there any way of apprehending
the higher after the purely objective method of a natural

science ? I think that there is.

Plato, in a wonderful allegory, speaks of some men

living in such a condition that they were practically

reduced to be the denizens of a shadow world. They
were chained, and perceived but the shadows of them-

selves and all real objects projected on a wall, towards

which their faces were turned. All movements to them
were but movements on the surface, all shapes but the

shapes of outlines with no substantiality.

Plato uses this illustration to portray the relation

between true being and the illusions .of the sense world.

He says that just as a man liberated from his chains

could learn and discover that the world was solid and

real, and could go back and tell his bound companions of

this greater higher reality, so the philosopher who has

been liberated, who has gone into the thought of the

ideal world, into the world of ideas greater and more

real than the things of sense, can come and tell his fellow

men of that which is more true than the visible sun

more noble than Athens, the visible state.

Now, I take Plato's suggestion ;
but literally, not

metaphorically. He imagines a world which is lower

than this world, in that shadow figures and shadow

motions are its constituents
;
and to it he contrasts the real

world. As the real world is to this shadow world, so is the

higher world to our world. I accept his analogy. As our

world in three dimensions is to a shadow or plane world,

so is the higher world to our three-dimensional world.

That is, the higher world is four-dimensional
;
the higher

being is, so far as its existence is concerned apart from its

qualities, to be sought through the conception of an actual



FOUR-UIMENSIONAL SPACE 3

existence spatially higher than that which we realise with

our senses.

Here you will observe I necessarily leave out all that

gives its charm and interest to Plato's writings. All

those conceptions of the beautiful and good which live

immortally in his pages.
All that I keep from his great storehouse of wealth is

this one thing simply a world spatially higher than this

world, a world which can only be approached through the

stocks and stones of it, a world which must be appre-
hended laboriously, patiently, through the material things
of it, the shapes, the movements, the figures of it.

We must learn to realise the shapes of objects in

this world of the higher man
;
we must become familiar

with the movements that objects make in his world, so

that we can learn something about his daily experience,
his thoughts of material objects, his machinery.
The means for the prosecution of this enquiry are given

in the conception of space itself.

It often happens that that which we consider to be

unique and unrelated gives us, within itself, those relations

by means of which we are able to see it as related to

others, determining and determined by them.

Thus, on the earth is given that phenomenon of weight

by means of which Newton brought the earth into its

true relation to the sun and other planets. Our terrestrial

globe was determined in regard to other bodies of the

solar system by means of a relation which subsisted on

the earth itself.

And so space itself bears within it relations of which

we can determine it as related to other space. For within

space are given the conceptions of point and line, line and

plane, which really involve the relation of space to a

higher space.

Where one segment of a straight line leaves off and
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another begins is a point, and the straight line itself can

be generated by the motion of the point.

One portion of a plane is bounded from another by a

straight line, and the plane itself can be generated by
the straight line moving in a direction not contained

in itself.

Again, two portions of solid space are limited with

regard to each other by a plane ;
and the plane, moving

in a direction not contained in itself, can generate solid

space.

Thus, going on, we may say that space is that which

limits two portions of higher space from each other, and

that our space will generate the higher space by moving
in a direction not contained in itself.

Another indication of the nature of four-dimensional

space can be gained by considering the problem of the

arrangement of objects.

If I have a number of swords of varying degrees of

brightness, I can represent them in respect of this quality

by points arranged along a straight line.

If I place a sword at A, fig. 1, and regard it as having
a certain brightness, then the other swords

can be arranged in a series along the

line, as at A, B, c, etc., according to

their degrees of brightness.

If now I take account of another quality, say length,
thev can be arranged in a plane. Starting from A, B, c, I

can find points to represent different

E degrees of length along such lines as

I AF, BD, CE, drawn from A and B and C.

' ' Points on these lines represent different
** 2i

degrees of length with the same degree of

brightness. Thus the whole plane is occupied by points

representing all conceivable varieties of brightness and

length.
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Bringing in a third quality, say sharpness, I can draw,
as in

fig. 3, any number of upright
lines. Let distances along these

upright lines represent degrees of

sharpness, thus the points F and G
will represent swords of certain

definite degrees of the three qualities

mentioned, and the whole of space will serve to represent
all conceivable degrees of these three qualities.

If now I bring in a fourth quality, such as weight, and

try to find a means of representing it as I did the other

three qualities, I find a difficulty. Every point in space is

taken up by some conceivable combination of the three

qualities already taken.

To represent four qualities in the same way as that in

which I have represented three, I should need another

dimension of space.

Thus we may indicate the nature of four-dimensional

space by saying that it is a kind of space which would

give positions representative of four qualities, as three-

dimensional space gives positions representative of three

qualities.



CHAPTER II

THE ANALOGY OF A PLANE WORLD

AT the risk of some prolixity I will go fully into the

experience of a hypothetical creature confined to motion

on a plane surface. By so doing I shall obtain an analogy
which will serve in our subsequent enquiries, because the

change in our conception, which we make in passing from

the shapes and motions in two dimensions to those in

three, affords a pattern by which we can pass on still

further to the conception of an existence in four-dimensional

space.

A piece of paper on a smooth table affords a ready

image of a two-dimensional existence. If we suppose the

being represented by the piece of paper to have no

knowledge of the thickness by which he projects above the

surface of the table, it is obvious that he can have no

knowledge of objects of a similar desciiption, except by
the contact with their edges. His body and the objects

in his world have a thickness of which however, he has no

consciousness. Since the direction stretching up from

the table is unknown to him he will think of the objects

of his world as extending in two dimensions only. Figures
are to him completely bounded by their lines, just as solid

objects are to us by their surfaces. He cannot conceive

of approaching the centre of a circle, except by breaking

through the circumference, for the circumference encloses

the centre in the directions in which motion is possible to
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him. The plane surface over which he slips and with

which he is always in contact will be unknown to him
;

there are no differences by which he can recognise its

existence.

But for the purposes of our analogy this representation
is deficient.

A being as thus described has nothing about him to

push off from, the surface over which he slips affords no

means by which he can move in one direction rather than

another. Placed on a surface over which he slips freely,

he is in a condition analogous to that in which we should

be if we were suspended free in space. There is nothing
which he can push off from in any direction known to him.

Let us therefore modify our representation. Le't us

suppose a vertical plane against which particles of thin

matter slip, never leaving the surface. Let these particles

possess an attractive force and cohere together into a disk
;

this disk will represent the globe of a plane being. He
must be conceived as existing on the rim.

Let 1 represent this vertical disk of flat matter and 2

the plane being on it, standing upon its

rim as we stand on the surface of our earth.

The direction of the attractive force of his

matter will give the creature a knowledge
of up and down, determining for him one

direction in his plane space. Also, since

Fig. 4. he can move along the surface of his earth,

he will have the sense of a direction parallel to its surface,

which we may call forwards and backwards.

He will have no sense of right and left that is, of the

direction which we recognise as extending out from the

plane to our right and left.

The distinction of right and left is the one that we

must suppose to be absent, in order to project ourselves,

into the condition of a plane being.
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Let the reader imagine himself, as he looks along the

plane, fig. 4, to become more and more identified with

the thin body on it, till he finally looks along parallel to

the surface of the plane earth, and up and down, losing

the sense of the direction which stretches right and left.

This direction will be an unknown dimension to him.

Our space conceptions are so intimately connected with

those which we derive from the existence of gravitation

that it is difficult to realise the condition of a plane being,

without picturing him as in material surroundings with

a definite direction of up and down. Hence the necessity

of our somewhat elaborate scheme of representation, which,

when its import has been grasped, can be dispensed with

for the simpler one of a thin object slipping over a

smooth surface, which lies in front of us.

It is obvious that we must suppose some means by
which the plane being is kept in contact with the surface

on which he slips. The simplest supposition to make is

that there is a transverse gravity, which keeps him to the

plane. This gravity must be thought of as different to

the attraction exercised by his matter, and as unperceived

by him.

At this stage of our enquiry I do not wish to enter

into the question of how a plane being could arrive at

a knowledge of the third dimension, but simply to in-

vestigate his plane consciousness.

It is obvious that the existence of a plane being must

be very limited. A straight line standing up from the

surface of his earth affords a bar to his progress. An

object like a wheel which rotates round an axis would

be unknown to him, for there is no conceivable way in

which he can get to the centre without going through
the circumference. He would have spinning disks, but

could not get to the centre of them. The plane being

can represent the motion from any one point of his space
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to any other, by means of two straight lines drawn at

right angles to each other.

Let AX and AY be two such axes. He can accomplish
the translation from A to B by going along AX to C, and

then from c along CB parallel to AY.

The same result can of course be obtained

by moving to D along AY and then parallel

to AX from D to B, or of course by any

diagonal movement compounded by these

axial movements.

By means of movements parallel to

these two axes he can proceed (except for

C

rig. 5.

material obstacles) from any one point of his space to

any other.

If now we suppose a third line drawn

out from A at right angles to the plane
it is evident that no motion in either

of the two dimensions he knows will

carry him in the least degree in the

^"^^ Z direction represented by A z.

Fig. 6. The lines AZ and AX determine a

plane. If he could be taken off his plane, and trans-

ferred to the plane AXZ, he would be in a world exactly

like his own. From every line in his

world there goes off a space world exactly

like his own.

From every point in his world a line can

be drawn parallel to AZ in the direction

unknown to him. If we suppose the square

in fig. 7 to be a geometrical square from

every point of it, inside as well as on the

contour, a straight line can be drawn parallel

to AZ. The assemblage of these lines constitute a solid

figure, of which the square in the plane is the base. If

we consider the square to represent an object in the plane

Fig. 7.
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being's world then we must attribute to it a very small

thickness, for every real thing must possess all three

dimensions. This thickness he does not preceive, but

thinks of this real object as a geometrical square. He
thinks of it as possessing area only, and no degree of

solidity. The edges which project from the plane to a

very small extent he thinks of as having merely length
and no breadth as being, in fact, geometrical lines.

With the first step in the apprehension of a third

dimension there would come to a plane being the con-

viction that he had previously formed a wrong conception
of the nature of his material objects. He had conceived

them as geometrical figures of two dimensions only.

If a third dimension exists, such figures are incapable
of real existence. Thus he would admit that all his real

objects had a certain, though very small thickness in the

unknown dimension, and that the conditions of his

existence demanded the supposition of an extended sheet

of matter, from contact with which in their motion his

objects never diverge.

Analogous conceptions must be formed by us on the

supposition of a four-dimensional existence. We must

suppose a direction in which we can never point extending
from every point of our space. We must draw a dis-

tinction between a geometrical cube and a cube of real

matter. The cube of real matter we must suppose to

have an extension in an unknown direction, real, but so

small as to be imperceptible by us. From every point
of a cube, interior as well as exterior, we must imagine
that it is possible to draw a line in the unknown direction.

The assemblage of these lines would constitute a higher

.'olid. The lines going off in the unknown direction from

the face of a cube would constitute a cube starting from

that face. Of this cube all that we should see in our

space would be the face
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Again, just as the plane being can represent any
motion in his space by two axes, so we can represent any
motion in our three-dimensional space by means of three

axes. There is no point in our space to which we cannot

move by some combination of movements on the directions

marked out by these axes.

On the assumption of a fourth dimension we have

to suppose a fourth axis, which we will call AW. It must

be supposed to be at right angles to each and every
one of the three axes AX, AY, AZ. Just as the two axes,

AX, AZ, determine a plane which is similar to the original

plane on which we supposed the plane being to exist, but

which runs off from it, and only meets it in a line
;
so in

our space if we take any three axes such as AX, AY, and

AW, they determine a space like our space world. This

space runs off from our space, and if we were transferred

to it we should find ourselves in a space exactly similar to

our own.

We must give up any attempt to picture this space in

its relation to ours, just as a plane being would have to

give up any attempt to picture a plane at right angles
to his plane.

Such a space and ours run in different directions from

the plane of AX and AY. They meet in this plane but

have nothing else in common, just as the plane space

of AX and AY and that of AX and AZ run in different

directions and have but the line AX in common.

Omitting all discussion of the manner on which a plane

being might be conceived to form a theory of a three-

dimensional existence, let us examine how, with the means

at his disposal, he could represent the properties of three-

dimensional objects.

There are two ways in which the plane being can think

of one of our solid bodies. He can think of the cube,

fig. 8, as composed of a number of sections parallel to
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Fig. 8.

his plane, each lying in the third dimension a little

further off from his plane than

the preceding one. These sec-

tions he can represent as a

series of plane figures lying in

his plane, but in so representing
them he destroys the coherence

of them in the higher figure.

The set of squares, A, B, c, D,

represents the section parallel

to the plane of the cube shown in figure, but they are

not in their proper relative positions.

The plane being can trace out a movement in the third

dimension by assuming discontinuous leaps from one

section to another. Thus, a motion along the edge of

the cube from left to right would be represented in the

set of sections in the plane as the succession of the

corners of the sections A, B, c, D. A point moving from

A through BCD in our space must be represented in the

plane as appearing in A, then in B, and so on, without

passing through the intervening plane space.

In these sections the plane being leaves out, of course,

the extension in the third dimension
;
the distance between

any two sections is not represented. In order to realise

this distance the conception of motion can be employed.
Let fig. 9 represent a cube passing transverse to the

plane. It will appear to the plane being as a

square object, but the matter of which this

^| object is composed will be continually altering.

{. I
One material particle takes the place of another,

but it does not come from anywhere or go

anywhere in the space which the plane being
knows.

The analogous manner of representing a higher solid in

our case, is to conceive it as composed of a number of
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sections, each lying a little farther off in the unknown
direction than the preceding.
We can represent these sections as a number of solids.

Thus the cubes A, B, c, D,

may be considered as

the sections at different

B C
Fig. 1U

O intervals in the unknown
dimension of a higher

cube. Arranged thus their coherence in the higher figure

is destroyed, they are mere representations.

A motion in the fourth dimension from A through B, c,

etc., would be continuous, but we can only represent it as

the occupation of the positions A, B, c, etc., in succession.

We can exhibit the results of the motion at different

stages, but no more.

In this representation we have left out the distance

between one section and another
;
we have considered the

higher body merely as a series of sections, and so left out

its contents. The only way to exhibit its contents is to

call in the aid of the conception of motion.

If a higher cube passes transverse to our space, it will

appear as a cube isolated in space, the part

that has not come into our space and the part
that has passed through will not be visible.

The gradual passing through our space would

appear as the change of the matter of the cubeFig. 11.

before us. One material particle in it is succeeded by

another, neither coming nor going in any direction we can

point to. In this manner, by the duration of the figure,

we can exhibit the higher dimensionality of it
;
a cube of

our matter, under the circumstances supposed, namely,
that it has a motion transverse to our space, would instantly

disappear. A higher cube would last till it had passed
transverse to our space by its whole distance of extension

in the fourth dimension.
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As the plane being can think of the cube as consisting
of sections, each like a figure he knows, extending away
from his plane, so we can think of a higher solid as com-

posed of sections, each like a solid which we know, but

extending away from our space.

Thus, taking a higher cube, we can look on it as

starting from a cube in our space and extending in the

unknown dimension.

Take the face A and conceive it to exist as simply a

Fig. 12.

face, a square with no thickness. From this face the

cube in our space extends by the occupation of space
which we can see.

But from this face there extends equally a cube in the

unknown dimension. We can think of the higher cube,

then, by taking the set of sections A, B, c, D, etc., and

considering that from each of them there runs a cube.

These cubes have nothing in common with each other,

and of each of them in its actual position all that we can

have in our space is an isolated square. It is obvious that

we can take our series of sections in any manner we

please. We can take them parallel, for instance, to any
one of the three isolated faces shown in the figure.

Corresponding to the three series of sections at right

angles to each other, which we can make of the cube

in space, we must conceive of the higher cube, as com-

posed of cubes starting from squares parallel to the faces

of the cube, and of these cubes all that exist in our space

are the isolated squares from which they start.



CHAPTER III

THE SIGNIFICANCE OF A FOUR-
DIMENSIONAL EXISTENCE

HAVING now obtained the conception of a four-dimensional

space, and having formed the analogy which, without

any further geometrical difficulties, enables us to enquire
into its properties, I will refer the reader, whose interest

is principally in the mechanical aspect, to Chapters VI.

and VII. In the present chapter I will deal with the

general significance of the enquiry, and in the next

with the historical origin of the idea.

First, with regard to the question of whether there

is any evidence that we are really in four-dimensional

space, I will go back to the analogy of the plane world.

A being in a plane world could not have any ex-

perience of three-dimensional shapes, but he could have

an experience of three-dimensional movements.

We have seen that his matter must be supposed to

have an extension, though a very small one, in the third

dimension. And thus, in the small particles of his

matter, three-dimensional movements may well be con-

ceived to take place. Of these movements he would only

perceive the resultants. Since all movements of an

observable size in the plane world are two-dimensional,

he would only perceive the resultants in two dimensions

of the small three-dimensional movements. Thus, there

would be phenomena which he could not explain by his

15
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theory of mechanics motions would take place which

he could not explain by his theory of motion. Hence,
to determine if we are in a four-dimensional world, we
must examine the phenomena of motion in our space.

If movements occur which are not explicable on the sup-

positions of our three-dimensional mechanics, we should

have an indication of a possible four-dimensional motion,
and if, moreover, it could be shown that such movements

would be a consequence of a four-dimensional motion in

the minute particles of bodies or of the el her, we should

have a strong presumption in favour of the reality of

the fourth dimension.

By proceeding in the direction of finer r.nd finer sub-

division, we come to forms of matter possessing properties

different to those of the larger masses. It is probable that

at some stage in this process we should come to a form

of matter of such minute subdivision that its particles

possess a freedom of movement in four dimensions. This

form of matter I speak of as four-dimensional ether, and

attribute to it properties approximating to those of a

perfect liquid.

Deferring the detailed discussion of this form of matter

to Chapter VI., we will now examine the means by which

a plane being would come to the conclusion that three-

dimensional movements existed in his world, and point

out the analogy by which we can conclude the existence

of four-dimensional movements in our world. Since the

dimensions of the matter in his world are small in the

third direction, the phenomena in which he would detect

the motion would be those of the small particles of

matter.

Suppose that there is a ring in his plane. We can

imagine currents flowing round the ring in either of two

opposite directions. These would produce unlike effects,

and give rise to two different fields of influence. If the
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ring with a current in it in one direction be taken up
and turned over, and put down again on the plane, it

would be identical with the ring having a current in the

opposite direction. An operation of this kind would be

impossible to the plane being. Hence he would have

in his space two irreconcilable objects, namely, the two

fields of influence due to the two rings with currents in

them in opposite directions. By irreconcilable objects

in the plane I mean objects which cannot be thought
of as transformed one into the other by any movement
in the plane.

Instead of currents flowing in the rings we can imagine
a different kind of current. Imagine a number of small

rings strung on the original ring. A current round these

secondary rings would give two varieties of effect, or two

different fields of influence, according to its direction.

These two varieties of current could be turned one into

the other by taking one of the rings up, turning it over,

and putting it down again in the plane. This operation
is impossible to the plane being, hence in this case also

there would be two irreconcilable fields in the plane.

Now, if the plane being found two such irreconcilable

fields and could prove that they could not be accounted

for by currents in the rings, he would have to admit the

existence of currents round the rings that is, in rings

strung on the primary ring. Thus he would come to

admit the existence of a three-dimensional motion, for

such a disposition of currents is in three dimensions.

Now in our space there are two fields of different

properties, which can be produced by an electric current

flowing in a closed circuit or ring. These two fields can

be changed one into the other by reversing the currents, but

they cannot be changed one into the other by any turning
about of the rings in our space ;

for the disposition of the

field with regard to the ring itself is different when we
2
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turn the ring, over and when we reverse the direction of

the current in the ring.

As hypotheses to explain the differences of these two

fields and their effects we can suppose the following kinds

of space motions : First, a current along the conductor ;

second, a current round the conductor that is, of rings of

currents strung on the conductor as an axis. Neither of

these suppositions accounts for facts of observation.

Hence we have to make the supposition of a four-

dimensional motion. We find that a four-dimensional

rotation of the nature explained in a subsequent chapter,

has the following characteristics : First, it would give us

two fields of influence, the one of which could be turned

into the other by taking the circuit up into the fourth

dimension, turning it over, and putting it down in our

space again, precisely as the two kinds of fields in the

plane could be turned one into the other by a reversal of

the current in our space. Second, it involves a phenome-
non precisely identical with that most remarkable and

mysterious feature of an electric current, namely that it

is a field of action, the rim of which necessarily abuts on a

continuous boundary formed by a conductor. Hence, on

the assumption of a four-dimensional movement in the

region of the minute particles of matter, we should expect
to find a motion analogous to electricity.

Now, a phenomenon of such universal occurrence as

electricity cannot be due to matter and motion in any

very complex relation, but ought to be seen as a simple
and natural consequence of their properties. I infer that

the difficulty in its theory is due to the attempt to explain
a four-dimensional phenomenon by a three-dimensional

geometry.
In view of this piece of evidence we cannot disregard

that afforded by the existence of symmetry. In this

connection I will allude to the simple way of producing
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the images of insects, sometimes practised by children.

They put a few blots of ink in a straight line on a piece of

paper, fold the paper along the blots, and on opening it the

lifelike presentment of an insect is obtained. If we were

to find a multitude of these figures, we should conclude

that they had originated from a process of folding over
;

the chances against this kind of reduplication of parts

is too great to admit of the assumption that they had

been formed in any other way.
The production of the symmetrical forms of organised

beings, though not of course due to a turning over of

bodies of any appreciable size in four-dimensional space,

can well be imagined as due to a disposition in that

manner of the smallest living particles from which they
are built up. Thus, not only electricity, but life, and the

processes by which we think and feel,1must be attributed

to that region of magnitude in which four-dimensional

movements take place.

I do not mean, however, that life can be explained as a

four-dimensional movement. It seems to me that the

whole bias of thought, which tends to explain the

phenomena of life and volition, as due to matter and

motion in some pecuHar relation, is adopted rather in the

interests of the explicability of things than with any

regard to probability.

Of course, if we could show that life were a phenomenon
of motion, we should be able to explain a great deal that is

at present obscure. But there are two great difficulties in

the way. It would be necessary to show that in a germ

capable of developing into a living being, there were

modifications of structure capable of determining in the

developed germ all the characteristics of its form, and not

only this, but of determining those of all the descendants

of such a form in an infinite series. Such a complexity of

mechanical relations, undeniable though it be, cannot



20 THE FOURTH DIMENSION

surely be the best way of grouping the phenomena and

giving a practical account of them. And another difficulty

is this, that no amount of mechanical adaptation would

give that element of consciousness which we possess, and

which is shared in to a modified degree by the animal

world.

In those complex structures which men build up and

direct, such as a ship or a railway train (and which, if seen

by an observer of such a size that the men guiding them

were invisible, would seem to present some of the

phenomena of life) the appearance of animation is not

due to any diffusion of life in the material parts of the

structure, but to the presence of a living being.

The old hypothesis of a soul, a living organism within

the visible one, appears to me much more rational than the

attempt to explain life as a form of motion. And when we

consider the region of extreme minuteness characterised

by four-dimensional motion the difficulty of conceiving
such an organism alongside the bodily one disappears.

Lord Kelvin supposes that matter is formed from the

ether. We may very well suppose that the living

organisms directing the material ones are co-ordinate

with them, not composed of matter, but consisting of

etherial bodies, and as such capable of motion through
the ether, and able to originate material living bodies

throughout the mineral.

Hypotheses such as these find no immediate ground for

proof or disproof in the physical world. Let us, therefore,

turn to a different field, and, assuming that the human
soul is a four-dimensional being, capable in itself of four

dimensional movements, but in its experiences through
the senses limited to three dimensions, ask if the history
of thought, of these productivities which characterise man,

correspond to our assumption. Let us pass in review

those steps by which man, presumably a four-dimensional
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being, despite his bodily environment, has come to recog-
nise the fact of four-dimensional existence.

Deferring this enquiry to another chapter, I will here

recapitulate the argument in order to show that our

purpose is entirely practical and independent of any

philosophical or metaphysical considerations.

If two shots are fired at a target, and the second bullet

hits it at a different place to the first, we suppose that

there was some difference in the conditions under which

the second shot was fired from those affecting the first

shot. The force of the powder, the direction of aim, the

strength of the wind, or some condition must have been

different in the second case, if the course of the bullet was

not exactly the same as in the first case. Corresponding
to every difference in a result there must be some differ-

ence in the antecedent material conditions. By tracing
out this chain of relations we explain nature.

But there is also another mode of explanation which we

apply. If we ask what was the cause that a certain ship

was built, or that a certain structure was erected, we might

proceed to investigate the changes in the brain cells of

the men who designed the works. Every variation in one

ship or building from another ship or building is accom-

panied by a variation in the processes that go on in the

brain matter of the designers. But practically this would

be a very long task.

A more effective mode of explaining the production of

the ship or building would be to enquire into the motives,

plans, and aims of the men who constructed them. We
obtain a cumulative and consistent body of knowledge
much more easily and effectively in the latter way.

Sometimes we apply the one, sometimes the other

mode of explanation.
But it must be observed that the method of explana-

tion founded on aim, purpose, volition, always presupposes
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a mechanical system on which the volition and aim

works. The conception of man as willing and acting
from motives involves that of a number of uniform pro-
cesses of nature which he can modify, and of which he

can make application. In the mechanical conditions of

the three-dimensional world, the only volitional agency
which we can demonstrate is the human agency. But

when we consider the four-dimensional world the

conclusion remains perfectly open.
The method of explanation founded on purpose and aim

does not, surely, suddenly begin with man and end with

him. There is as much behind the exhibition of will and

motive which we see in man as there is behind the

phenomena of movement
; they are co-ordinate, neither

to be resolved into the other. And the commencement
of the investigation of that will and motive which lies

behind the will and motive manifested in the three-

dimensional mechanical field is in the conception of a

soul a four-dimensional organism, which expresses its

higher physical being in the symmetry of the body, and

gives the aims and motives of human existence.

Our primary task is to form a systematic knowledge of

the phenomena of a four-dimensional world and find those

points in which this knowledge must be called in to

complete our mechanical explanation of the universe.

But a subsidiary contribution towards the verification of

the hypothesis may be made by passing in review the

hiftory of human thought, and enquiring if it presents
such features as would be naturally expected on this

assumption.



CHAPTER IV

THE FIRST CHAPTER IN THE HISTORY
OF FOUR SPACE

PARMENIDES, and the Asiatic thinkers with whom he is

in close affinity, propound a theory of existence which

is in close accord with a conception of a possible relation

between a higher and a lower dimensional space. This

theory, prior and in marked contrast to the main stream

of thought, which we shall afterwards describe, forms a

closed circle by itself. It is one which in all ages has

had a strong attraction for pure intellect, and is the

natural mode of thought for those who refrain from

projecting their own volition into nature under the guise
of causality.

According to Parmenides of the school of Elea the all

is one, unmoving and unchanging. The permanent amid

the transient that foothold for thought, that solid ground
for feeling on the discovery of which depends all our life

is no phantom ;
it is the image amidst deception of true

being, the eternal, the unmoved, the one. Thus says

Parmenides.

But how explain the shifting scene, these mutations

of things !

"Illusion," answers Parmenides. Distinguishing be-

tween truth and error, he tells of the true doctrine of the

one the false opinion of a changing world. He is no

less memorable for the manner of his advocacy than for

23
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the cause he advocates. It is as if from his firm foothold

of being he could play with the thoughts under the

burden of which others laboured, for from him springs
that fluency of supposition and hypothesis which forms

the texture of Plato's dialectic.

Can the mind conceive a more delightful intellectual

picture than that of Parmenides, pointing to the one, the

true, the unchanging, and yet on the other hand ready to

discuss all manner of false opinion, forming a cosmogony
too, false " but mine own "

after the fashion of the time ?

In support of the true opinion he proceeded by the

negative way of showing the self-contradictions in the

ideas of change and motion. It is doubtful if his criticism,

save in minor points, has ever been successfully refuted.

To express his doctrine in the ponderous modern way we

must make the statement that motion is phenomenal,
not real.

Let us represent his doctrine.

Imagine a sheet of still water into which a slanting stick

is being lowered with a motion verti-

cally downwards. Let 1,2,3 (Fig. 13),

be three consecutive positions of the

stick. A, B, c, will be three consecutive

positions of the meeting of the stick,

with the surface of the water. As

the stick passes down, the meeting will

move from A on to B and c.

Suppose now all the water to be

removed except a film. At the meet-

ing of the film and the stick there

will be an interruption of the film.

If we suppose the film to have a pro-
Fig. 13.

perty, like that of a soap bubble, of closing up round any

penetrating object, then as the stick goes vertically

downwards the interruption in the film will move on.
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If we pass a spiral through the film the intersection

will give a point moving in a circle shown by the dotted

lines in the figure. Suppose
now the spiral to be still and

.x^*^ ^J the film to move vertically

f upwards, the whole spiral will

Xf**"*"""*^
be represented in the film of

/^*** "^ the consecutive positions of the

point of intersection. In the

film the permanent existence

of the spiral is experienced as

a time series the record of

traversing the spiral is a point

Fi J 4 moving in a circle. If now
we suppose a consciousness con-

nected with the film in such a way that the intersection of

the spiral with the film gives rise to a conscious experience,

we see that we shall have in the film a point moving in a

circle, conscious of its motion, knowing nothing of that

real spiral the record of the successive intersections of

which by the film is the motion of the point.

It is easy to imagine complicated structures of the

nature of the spiral, structures consisting of filaments,

and to suppose also that these structures are distinguish-
able from each other at every section. If we consider

the intersections of these filaments with the film as it

passes to be the atoms constituting a filmar universe,

we shall have in the film a world of apparent motion;
we shall have bodies corresponding to the filamentary

structure, and the positions of these structures with

regard to one another will give rise to bodies in the

film moving amongst one another. This mutual motion

is apparent merely. The reality is of permanent structures

stationary, and all the relative motions accounted for by
one steady movement of the film as a whole.
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Thus we can imagine a plane world, in which all the

variety of motion is the phenomenon of structures con-

sisting of filamentary atoms traversed by a plane of

consciousness. Passing to four dimensions and our

space, we can conceive that all things and movements

in our world are the reading off of a permanent reality

by a space of consciousness. Each atom at every moment
is not what it was, but a new part of that endless line

which is itself. And all this system successively revealed

in the time which is but the succession of consciousness,

separate as it is in parts, in its entirety is one vast unity.

Kepresenting Parmenides' doctrine thus, we gain a firmer

hold on it than if we merely let his words rest, grand and

massive, in our minds. And we have gained the means also

of representing phases of that Eastern thought to which

Parmenides was no stranger. Modifying his uncom-

promising doctrine, let us suppose, to go back to the plane
of consciousness and the structure of filamentary atoms,

that these structures are themselves moving are acting,

living. Then, in the transverse motion of the film, there

would be two phenomena of motion, one due to the reading
off in the film of the permanent existences as they are in

themselves, and another phenomenon of motion due to

the modification of the record of the things themselves, by
their proper motion during the process of traversing them.

Thus a conscious being in the plane would have, #s it

were, a two-fold experience. In the complete traversing
of the structure, the intersection of which with the film

gives his conscious all, the main and principal movements

and actions which he went through would be the record

of his higher self as it existed unmoved and uriacting.

Slight modifications and deviations from these move-

ments and actions would represent the activity and self-

determination of the complete being, of his higher self.

It is admissible to suppose that the consciousness in
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the plane has a share in that volition by which the

complete existence determines itself. Thus the motive

and will, the initiative and life, of the higher being, would

be represented in the case of the being in the film by an

initiative and a will capable, not of determining any great

things or important movements in his existence, but only
of small and relatively insignificant activities. In all the

main features of his life his experience would be repre-

sentative of one state of the higher being whose existence

determines his as the film passes on. But in his minute

and apparently unimportant actions he would share in

that will and determination by which the whole of the

being he really is acts and lives.

An alteration of the higher being would correspond to

a different life history for him. Let us now make the

supposition that film after film traverses these higher

structures, that the life of the real being is read off again
and again in successive waves of consciousness. There

would be a succession of lives in the different advancing

planes of consciousness, each differing from the preceding,

andidiffering in virtue of that will and activity which in

the preceding had not been devoted to the greater and

apparently most significant things in life, but the minute

and apparently unimportant. In all great things the

being of the film shares in the existence of his higher

self, as it is at any one time. In the small things he

shares *in that volition by which the higher being alters

and changes, acts and lives.

Thus we gain the conception of a life changing and

developing as a whole, a life in which our separation and

cessation and fugitiveness are merely apparent, but which

in its events and course alters, changes, develops ;
and

the power of altering and changing this whole lies in the

will and power the limited being has of directing, guiding,

altering himself in the minute things of his existence.
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Transferring our conceptions to those of an existence in

a higher dimensionality traversed by a space of con-

sciousness, we have an illustration of a thought which has

found frequent and varied expression. When, however,
we ask ourselves what degree of truth there lies in it, we
must admit that, as far as we can see, it is merely sym-
bolical. The true path in the investigation of a higher

dimensionality lies in another direction.

The significance of the Parmenidean doctrine lies in

this that here, as again and again, we find that those con-

ceptions which man introduces of himself, which he does

not derive from the mere record of his outward experience,
have a striking and significant correspondence to the

conception of a physical existence in a world of a higher

space. How close we come to Parmenides' thought by
this manner of representation it is impossible to say.

What I want to point out is the adequateness of the

illustration, not only to give a static model of his doctrine,

but one capable as it were, of a plastic modification into a

correspondence into kindred forms of thought. Either one

of two things must be true that four-dimensional concep-
tions give a wonderful power of representing the thought
of the East, or that the thinkers of the East must have been

looking at and regarding four-dimensional existence.

Coming now to the main stream of thought we must

dwell in some detail on Pythagoras, not because of his

direct relation to the subject, but because of his relation

to investigators who came later.

Pythagoras invented the two-way counting. Let us

represent the single-way counting by the posits aa,

ab, ac, ad, using these pairs of letters instead of the

numbers 1, 2, 3, 4. I put an a in each case first for a

reason which will immediately appear.

We have a sequence and order. There is no con-

ception of distance necessarily involved. The difference



THK FIRST CHAPTER IN THK HISTORY OF FOUR SPACE 29

between the posits is one of order not of distance

only when identified with a number of equal material

things in juxtaposition does the notion of distance arise.

Now, besides the simple series I can have, starting from

aa, ba, ca, da, from ab, 66, cb, db, and so on, and forming
a scheme :

da db dc dd
ca cb cc cd

ba bb be bd

aa ab ao ad

This complex or manifold gives a two-way order. I can

represent it by a set of points, if I am on my guard
. . against assuming any relation of distance.

Pythagoras studied this two-fold way of

. counting in reference to material bodies, and

discovered that most remarkable property of

the combination of number and matter that
Fig. 15. , .

bears his name.

The Pythagorean property of an extended material

system can be exhibited in a manner which will be of

use to us afterwards, and which therefore I will employ
now instead of using the kind of figure which he himself

employed.
Consider a two-fold field of points arranged in regular

rows. Such a field will be presupposed in the following

argument.
It is evident that in fig. 1 6 four

of the points determine a square,
which square we may take as the

unit of measurement for areas.

But we can also measure areas
Fig. 16. . ,,

in another way.

Fig. 16 (1) shows four points determining a square.

But four squares also meet in a point, fig. 16 (2).

Hence a point at the corner of a square belongs equally

to four squares.
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Thus we may say that the point value of the square
shown is one point, for if we take the square in fig. 1G (1)

it has four points, but each of these belong equally to

four other squares. Hence one fourth of each of them

belongs to the square (1) in fig. 16. Thus the point
value of the square is one point.

The result of counting the points is the same as that

arrived at by reckoning the square units enclosed.

Hence, if we wish to measure the area of any square
we can take the number of points it encloses, count these

as one each, and take one-fourth of the number of points
at its corners.

Now draw a diagonal square as shown in
fig. 17. It

contains one point and the four corners count for one

* point more
;

hence its point value is 2.

. The value is the measure of its area the

* size of this square is two of the unit squares.
. U-.1 . . Looking now at the sides of this figure

... we see that there is a unit square on each

i'ig. i7. Of them the two squares contain no points,

but have four corner points each, which gives the point

value of each as one point.

Hence we see that the square on the diagonal is equal
to the squares on the two sides; or as it is generally

expressed, the square on the hypothenuse is equal to

the sum of the squares on the sides.

Noticing this fact we can proceed to ask if it is always
true. Drawing the square shown in fig. 18, we can count

the number of its points. There are five

altogether. There are four points inside
*

the square on the diagonal, and hence, with
*

the four points at its corners the point
*

value is 5 that is, the area is 5. Now
the squares on the sides are respectively

of the area 4 and 1. Hence in this case also the square
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on the diagonal is equal to the sum of the square on

the sides. This property of matter is one of the first

great discoveries of applied mathematics. We shall prove
afterwards that it is not a property of space. For the

present it is enough to remark that the positions in

which the points are arranged is entirely experimental.
It is by means of equal pieces of some material, or the

same piece of material moved from one place to another,

that the points are arranged.

Pythagoras next enquired what the relation must be

so that a square drawn slanting-wise should be equal to

one straight-wise. He found that a square whose side is

five can be placed either rectangularly along the lines

of points, or in a slanting position. And this square is

equivalent to two squares of sides 4 and 3.

Here he came upon a numerical relation embodied in

a property of matter. Numbers immanent in the objects

produced the equality so satisfactory for intellectual appre-
hension. And he found that numbers when immanent

in sound when the strings of a musical instrument

were given certain definite proportions of length were

no less captivating to the ear than the equality of squares
was to the reason. What wonder then that he ascribed

an active power to number !

We must remember that, sharing like ourselves the

search for the permanent in changing phenomena, the

Greeks had not that conception of the permanent in

matter that we have. To them material things were not

permanent. In fire solid things would vanish
; absolutely

disappear. Kock and earth had a more stable existence,

but they too grew and decayed. The permanence of

matter, the conservation of energy, were unknown to

them. And that distinction which we draw so readily
between the fleeting and permanent causes of sensation,

between a sound and a material object, for instance, had

-
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not the same meaning to them which it has for us.

Let us but imagine for a moment that material things
are fleeting, disappearing, and we shall enter with a far

better appreciation into that search for the permanent
which, with the Greeks, as with us, is the primary
intellectual demand.

What is that which amid a thousand forms is ever the

same, which we can recognise under all its vicissitudes,

of which the diverse phenomena are the appearances ?

To think that this is number is not so very wide of

the mark. With an intellectual apprehension which far

outran the evidences for its application, the atomists

asserted that there were everlasting material particles,

which, by their union, produced all the varying forms and

states of bodies. But in view of the observed facts of

nature as then known, Aristotle, with perfect reason,

refused to accept this hypothesis.

He expressly states that there is a change of quality,

and that the change due to motion is only one of the

possible modes of change.
With no permanent material world about us, with

the fleeting, the unpermanent, all around we should, I

think, be ready to follow Pythagoras in his identification

of number with that principle which subsists amidst

all changes, which in multitudinous forms we apprehend
immanent in the changing and disappearing substance

of things.

And from the numerical idealism of Pythagoras there

is but a step to the more rich and full idealism of Plato.

That which is apprehended by the sense of touch we

put as primary and real, and the other senses we say
are merely concerned with appearances. But Plato took

them all as valid, as giving qualities of existence. That

the qualities were not permanent in the world as given
to the senses forced him to attribute to them a different
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kind of permanence. He formed the conception of a

world of ideas, in which all that really is, all that affects

us and gives the rich and wonderful wealth of our

experience, is not fleeting and transitory, but eternal;

And of this real and eternal we see in the things about

us the fleeting and transient images.
And this world of ideas was no exclusive one, wherein

was no place for the innermost convictions of the soul and

its most authoritative assertions. Therein existed justice,

beauty the one, the good, all that the soul demanded

to be. The world of ideas, Plato's wonderful creation

preserved for man, for his deliberate investigation and

their sure development, all that the rude incom-

prehensible changes of a harsh experience scatters and

destroys.

Plato believed in the reality of ideas. He meets us

fairly and squarely. Divide a line into two parts, he

says ;
one to represent the real objects in the world, the

other to represent the transitory appearances, such as the

image in still water, the glitter of the sun on a bright

surface, the shadows on the clouds.

A B
1

.

Real things: Appearances:

e.g., the sun. e.y., the reflection of the sun.

Take another line and divide it into two parts, one

representing our ideas, the ordinary occupants of our

minds, such as whiteness, equality, and the other repre-

senting our true knowledge, which is of eternal principles,

such "as beauty, goodness.

A 1 B 1

Eternal principles, Appearances in the mind,
as beauty as whiteness, equality

Then as A is to B, so is A1 to B1
.

That is, the soul can proceed, going away from real

3
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things to a region of perfect certainty, where it beholds

what is, not the scattered reflections
;
beholds the sun, not

the glitter on the sands
;
true being, not chance opinion.

Now, this is to us, as it was to Aristotle, absolutely

inconceivable from a scientific point of view. We can

understand that a being is known in the fulness of his

relations
;

it is in his relations to his circumstances that

a man's character is known
;

it is in his acts under his

conditions that his character exists. We cannot grasp or

conceive any principle of individuation apart from the

fulness of the relations to the surroundings.
But suppose now that Plato is talking about the higher

man the four-dimensional being that is limited in our

external experience to a three-dimensional world. Do not

his words begin to have a meaning ? Such a being
would have a consciousness of motion which is not as

the motion he can see with the eyes of the body. He,
in his own being, knows a reality to which the outward

matter of this too solid earth is flimsy superficiality. He
too knows a mode of being, the fulness of relations, in

which can only be represented in the limited world of

sense, as the painter unsubstantially portrays the depths
of woodland, plains, and air. Thinking of such a being
in man, was not Plato's line well divided ?

It is noteworthy that, if Plato omitted his doctrine of

the independent origin of ideas, he would present exactly

the four-dimensional argument; a real thing as we think

it is an idea. A plane being's idea of a square object is

the idea of an abstraction, namely, a geometrical square.

Similarly our idea of a solid thing is an abstraction, for in

our idea there is not the four-dimensional thickness which

is necessary, however slight, to give reality. The argu-

ment would then run, as a shadow is to a solid object, so

is the solid object to the reality. Thus A and B' would

be identified.
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In the allegory which I have already alluded to, Plato

in almost as many words shows forth the relation between

existence in a superficies and in solid space. And he

uses this relation to point to the conditions of a higher

being.
He imagines a number of men prisoners, chained so

that they look at the wall of a cavern in which they are

confined, with their backs to the road and the light.

Over the road pass men and women, figures and pro-

cessions, but of all this pageant all that the prisoners

behold is the shadow of it on the wall whereon they gaze.
Their own shadows and the shadows of the things in the

world are all that they see, and identifying themselves

with their shadows related -as shadows to a world of

shadows, they live in a kind of dream.

Plato imagines one of their number to pass out from

amongst them into the real space world, and then return-

ing to tell them of their condition.

Here he presents most plainly the relation between

existence in a plane world and existence in a three-

dimensional world. And he uses this illustration as a

type of the manner in which we are to proceed to a

higher state from the three-dimensional life we know.

It must have hung upon the weight of a shadow which

path he took ! whether the one we shall follow toward

the higher solid and the four-dimensional existence, or

the one .which makes ideas the higher realities, and the

direct perception of them the contact with the truer

world.

Passing on to Aristotle, we will touch on the points

which most immediately concern our enquiry.

Just, as a scientific man of the present day in

reviewing the speculations of the ancient world would

treat them with a curiosity half amused but wholly

respectful, asking of each and all wherein lay their
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relation to fact, so Aristotle, in discussing the philosophy
of Greece as he found it, asks, above all other things :

" Does this represent the world ? In this system is there

an adequate presentation of what is ?
"

He finds them all defective, some for the very reasons

which we esteem them most highly, as when he criticises

the Atomic theory for its reduction of all change to motion.

But in the lofty march of his reason he never loses sight
of the whole

;
and that wherein our views differ from his

lies not so much in a superiority of our point of view, as

in the fact which he himself enunciates that it is im-

possible for one principle to be valid in all branches of

enquiry. The conceptions of one method of investigation
are not those of another

;
and our divergence lies in our

exclusive attention to the conceptions useful in one way
of apprehending nature rather than in any possibility we
find in our theories of giving a view of the whole tran-

scending that of Aristotle.

He takes account of everything ;
he does not separate

matter and the manifestation of matter
;

he fires all

together in a conception of a vast world process in

which everything takes part the motion of a grain of

dust, the unfolding of a leaf, the ordered motion of the

spheres in heaven all are parts of one whole which

he will not separate into dead matter and adventitious

modifications.

And just as our theories, as representative of actuality,

fall before his unequalled grasp of fact, so the doctrine

of ideas fell. It is not an adequate account of exist-

ence, as Plato himself shows in his " Parmenides "
;

it only explains things by putting their doubles beside

them.

For his own part Aristotle invented a great marching
definition which, with a kind of power of its own, cleaves

its way through phenomena to limiting conceptions on
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either hand, towards whose existence all experience

points.

In Aristotle's definition of matter and form as the

constituent of reality, as in Plato's mystical vision of the

kingdom of ideas, the existence of the higher Jimension-

ality is implicitly involved.

Substance according to Aristotle is relative, not absolute.

In everything that is there is the matter of which it

is composed, the form which it exhibits
;
but these are

indissolubly connected, and neither can be thought
without the other.

The blocks of stone out of which a house is built are the

material for the builder
; but, as regards the quarrymen,

they are the matter of the rocks with the form he has

imposed on them. Words are the final product of the

grammarian, but the mere matter of the orator or poet.

The atom is, with us, that out of which chemical substances

are built up, but looked at from another point of view is

the result of complex processes.

Nowhere do we find finality. The matter in one sphere
is the matter, plus form, of another sphere of thought.

Making an obvious application to geometry, plane figures

exist as the limitation of different portions of the plane

by one another. In the bounding lines the separated
matter of the plane shows its determination into form.

And as the plane is the matter relatively to determinations

in the plane, so the plane itself exists in virtue of the

determination of space. A plane is that wherein formless

space has form superimposed on it, and gives an actuality
of real relations. We cannot refuse to carry this process

of reasoning a step farther back, and say that space itself

is that which gives form to higher, space. As a line is

the determination of a plane, and a plane of a solid, so

solid space itself is the determination of a higher space.

As a. line by itself is inconceivable without that plane
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which it separates, so the plane is inconceivable without

the solids which it limits on either hand. And so space
itself cannot be positively defined. It is the negation
of the possibility of movement in more than three

dimensions. The conception of space demands that of

a higher space. As a surface is thin and unsubstantial

without the substance of which it is the surface, so matter

itself is thin without the higher matter.

Just as Aristotle invented that algebraical method of

representing unknown quantities by mere symbols, not by
lines necessarily determinate in length as was the habit

of the Greek geometers, and so struck out the path
towards those objectifications of thought which, like

independent machines for reasoning, supply the mathe-

matician with his analytical weapons, so in the formulation

o
v
the doctrine of matter and form, of potentiality and

actuality, of the relativity of substance, he produced
another kind of objectification of mind a definition

which had a vital force and an activity of its own.

In none of his writings, as far as we know, did he carry it

to its legitimate conclusion on the side of matter, but in

the direction of the formal qualities he was led to his

limiting conception of that existence of pure form which

lies beyond all known determination of matter. The

unmoved mover of all things is Aristotle's highest

principle. Towards it, to partake of its perfection all

things move. The universe, according to Aristotle, is an

active process he does not adopt the illogical conception
that it was once set in motion and has kept on ever since.

There is room for activity, will, self-determination, in

Aristotle's system, and for the contingent and accidental

as well. We do not follow him, because we are accus-

tomed to find in nature infinite series, and do not feel

obliged to pass on to a belief in the ultimate limits to

which they seem to point,
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But apart from the pushing to the limit, as a relative

principle this doctrine of Aristotle's as to the relativity of

substance is irrefragible in its logic. He was the first to

show the necessity of that path of thought which when
followed leads to a belief in a four-dimensional space.

Antagonistic as he was to Plato in his conception
of the practical relation of reason to the world of

phenomena, yet in one point he coincided with him.

And in this he showed the candour of his intellect. He
was more anxious to lose nothing than to explain every-

thing. And that wherein so many have detected an

inconsistency, an inability to free himself from the school

of Plato, appears to us in connection with our enquiry
as an instance of the acuteness of his observation. For

beyond all knowledge given by the : senses Aristotle held

that there is an active intelligence, a mind not the passive

recipient of impressions from without, but an active and

originative being, capable of grasping knowledge at first

hand. In the active soul Aristotle recognised something
in man not produced by his physical surroundings, some-

thing which creates, whose activity is a knowledge
underived from sense. This, he says, is the immortal and

undying being in man.

Thus we see that Aristotle was not far from the

recognition of the four-dimensional existence, both

without and within man, and the process of adequately

realising the higher dimensional figures to which we
shall come subsequently is a simple reduction to practice

of his hypothesis of a soul.

The next step in the unfolding of the drama of the

recognition of the soul as connected with our scientific

conception of the world, and, at the same time, the

recognition of that higher of which a three-dimensional

world presents the superficial appearance, took place many
centuries later, {f we pass over the intervening time
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without a word it is because the soul was occupied with

the assertion of itself in other ways than that of knowledge.
When it took up the task in earnest of knowing this

material world in which it found itself, and of directing

the course of inanimate nature, from that most objective

aim came, reflected back as from a mirror, its knowledge
Of itself.



CHAPTER V

THE SECOND CHAPTER IN THE HISTORY
OF FOUR SPACE

LOBATCHEWSKY, BOLYAI, AND GAUSS

BEFORE entering on a description of the work of

Lobatchewsky and Bolyai it will not be out of place

to give a brief account of them, the materials for which

are to be found in an article by Franz Schmidt in the

forty-second volume of the Mathematische Annalen,
and in Engel's edition of Lobatchewsky.

Lobatchewsky was a man of the most complete and

wonderful talents. As a youth he was full of vivacity,

carrying his exuberance so far as to fall into serious

trouble for hazing a professor, and other freaks. Saved

by the good offices of the mathematician Bartels, who

appreciated his ability, he managed to restrain himself

within the bounds of prudence. Appointed professor at

his own University, Kasan, he entered on his duties under

the regime of a pietistic reactionary, who surrounded

himself with sycophants and hypocrites. Esteeming

probably the interests of his pupils as higher than any

attempt at a vain resistance, he made himself the tyrant's

right-hand man, doing an incredible amount of teaching
and performing the most varied official duties. Amidst

all his activities he found time to make important con-

tributions to science. His theory of
parallels

is
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closely connected with his name, but a study of his

writings shows that he was a man capable of carrying
on mathematics in its main lines of advance, and of a

judgment equal to discerning what these lines were.

Appointed rector of his University, he died at an

advanced age, surrounded by friends, honoured, with the

results of his beneficent activity all around him. To him
no subject came amiss, from the foundations of geometry
to the improvement of the stoves by which the peasants
warmed their houses.

He was born in 1793. His scientific work was

unnoticed till, in 1867, Houel, the French mathematician,'
drew attention to its importance.
Johann Bolyai de Bolyai was born in Klausenburg,

a town in Transylvania, December loth, 1802.

His father, Wolfgang Bolyai, a professor in the

Reformed College of Maros Vasarhely, retained the ardour

in mathematical studies which had made him a chosen

companion of Gauss in their early student days at

Gottingen.
He found an eager pupil in Johann. He relates that

the boy sprang before him like a devil. As soon as he

had enunciated a problem the child would give the

solution and command him to go on further. As a

thirteen-year-old boy his father sometimes sent him to fill

his place when incapacitated from taking his classes.

The pupils listened to him with more attention than to

his father for they found him clearer to understand.

In a letter to Gauss Wolfgang Bolyai writes :

" My boy is strongly built. He has learned to recognise

many constellations, and the ordinary figures of geometry.
He makes apt applications of his notions, drawing for

instance the positions of the stars with their constellations.

Last winter in the country, seeing Jupiter he asked :

is it that we can gee him from here as well as from
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the town ? He must be far off.' And as to three

different places to which he had been he asked me to tell

him about them in one word. I did not know what he

meant, and then he asked me if one was in a line with

the other and all in a row, or if they were in a triangle.
" He enjoys cutting paper figures with a pair of scissors,

and without my ever having told him about triangles

remarked that a right-angled triangle which he had cut

out was half of an oblong. I exercise his body with care,

he can dig well in the earth with his little hands. The

blossom can fall and no fruit left. When he is fifteen

I want to send him to you to be your pupil."

In Johann's autobiography he says :

" My father called my attention to the imperfections
and gaps in the theory of parallels. He told me he had

gained more satisfactory results than his predecessors,

but had obtained no perfect and satisfying conclusion.

None of his assumptions had the necessary degree of

geometrical certainty, although they sufficed to prove the

eleventh axiom and appeared acceptable on first sight.
" He begged of me, anxious not without a reason, to

hold myself aloof and to shun all investigation on this

subject, if I did not wish to live all my life in vain."

Johann, in the failure of his father to obtain any

response from Gauss, in answer to a letter in which he

asked the great mathematician to make of his son " an

apostle of truth in a far land," entered the Engineering
School at Vienna. He writes from Temesvar, where he

was appointed sub-lieutenant September, 1823 :

"
Temesvar, November 3rd, 1823.

"DEAR GOOD FATHER,
"I have so overwhelmingly much to write

about my discovery that I know no other way of checking

myself than taking a quarter of a sheet only to write on,

I want an answer to my four-sheet letter,
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"
I am unbroken in my determination to publish a

work on Parallels, as soon as I have put rny material in

order and have the means.
" At present I have not made any discovery, but

the way I have followed almost certainly promises me
the attainment of my object if any possibility of it

exists.

" I have not got my object yet, but I have produced
such stupendous things that I was overwhelmed myself,

and it would be an eternal shame if they were lost.

When you see them you will find that it is so. Now
I can only say that I have made a new world out of

nothing. Everything that I have sent you before is a

house of cards in comparison with a tower. I am con-

vinced that it will be no less to my honour than if I had

already discovered it."

The discovery of which Johann here speaks was

published as an appendix to Wolfgang Bolyai's Tentamen.

Sending the book to Gauss, Wolfgang writes, after an

interruption of eighteen years in his correspondence :

" My son is first lieutenant of Engineers and will soon

be captain. He is a fine youth, a good violin player,

a skilful fencer, and brave, but has had many duels, and

is wild even for a soldier. Yet he is distinguished light

in darkness and darkness in light. He is an impassioned
mathematician with extraordinary capacities. ... He
will think more of your judgment on his work than that

of all Europe."

Wolfgang received no answer from Gauss to this letter,

but sending a second copy of the book received the

following reply :

"You have rejoiced me, my unforgotten friend, by your
letters. I delayed answering the first because I wanted

to wait for the arrival of the promised little book,

"Now something about your son's wor^,
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"
If I begin with saying that '

I ought not to praise it,'

you will be staggered for a moment. But I cannot say

anything else. To praise it is to praise myself, for the

path your son has broken in upon and the results to which

he has been led are almost exactly the same as my own

reflections, some of which date from thirty to thirty-five

years ago.
" In fact I am astonished to the uttermost. My inten-

tion was to let nothing be known in my lifetime about

my own work, of which, for the rest, but little is com-

mitted to writing. Most people have but little perception
of the problem, and I have found very few who took any
interest in the views I expressed to them. To be able to

do that one must first of all have had a real live feeling

of what is wanting, and as to that most men are com-

pletely in the dark.
"

Still it was my intention to commit everything to

writing in the course of time, so that at least it should

not perish with me.

"I am deeply surprised that this task can be spared

me, and I am most of all pleased in this that it is the son

of my old friend who has in so remarkable a manner

preceded me."

The impression which we receive from Gauss's in-

explicable silence towards his old friend is swept away

by this letter. Hence we breathe the clear air of the

mountain tops. Gauss would not have failed to perceive
the vast significance of his thoughts, sure to be all the

greater in their effect on future ages from the want of

comprehension of the present. Yet there is not a word

or a sign in his writing to claim the thought for himself.

He published no single line on the subject. By the

measure of what he thus silently relinquishes, by such a

measure of a world-transforming thought, we can appre-
ciate his greatness.
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It is a long step from Gauss's serenity to the disturbed

and passionate life of Johann Bolyai he and Galois,

the two most interesting figures in the history of mathe-

matics. For Bolyai, the wild soldier, the duellist, fell

at odds with the world. It is related of him that he was

challenged by thirteen officers of his garrison, a thing not

unlikely to happen considering how differently he thought
from every one else. He fought them all in succession

making it his only condition that he should be allowed

to play on his violin for an interval between meeting each

opponent. He disarmed or wounded all his antagonists.
It can be easily imagined that a temperament such as

his was one not congenial to his military superiors. He
was retired in 1833.

His epoch-making discovery awoke no attention. He
seems to have conceived the idea that his father had

betrayed him in some inexplicable way by his communi-

cations with Gauss, and he challenged the excellent

Wolfgang to a duel. He passed his life in poverty,

many a time, says his biographer, seeking to snatch

himself from dissipation and apply himself again to

mathematics. But his efforts had no result. He died

January 27th, 1860, fallen out with the world and with

himself.

METAGEOMETRY

The theories which are generally connected with the

names of Lobatchewsky and Bolyai bear a singular and

curious relation to the subject of higher space.

In order to show what this relation is, I must ask the

reader to be at the pains to count carefully the sets of

points by which I shall estimate the volumes of certain

figures.
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No mathematical processes beyond this simple one of

'
counting will be necessary.

Let us suppose we have before us in

. . .
fig. 19 a plane covered with points at regular

. . . . intervals, so placed that every four deter-

..... mine a square.
.big. iy. Now it is evident that as four points

determine a square, so four squares meet in a point.

Thus, considering a point inside a square as

belonging to it, we may say that a point on

the corner of a square belongs to it and to

. . . four others equally : belongs a quarter of it

Fig. 20. to each square.

Thus the square ACDE (fig. 21) contains one point, and

D

'E^C'-
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the end of a line would come when it turned about a

point keeping one extremity fixed at the point.

We can solve this problem in a particular case. If we

can find a square lying slantwise amongst the dots which is

equal to one which goes regularly, we shall know that the

two sides are equal, and that the slanting side is equal to the

straight-way side. Thus the volume and shape of a figure

remaining unchanged will be the test of its having rotated

about the point, so that we can say that its side in its first

position would turn into its side in the second position.

Now, such a square can be found in the one whose side

is five units in length.

Ing. 23.

In fig. 23, in the square on AB, there are

9 points interior . . .

4 at the corners

4 sides with 3 on each side, considered as

1 on each side, because belonging

equally to two squares . . ,

The total

on BC.

is 16. There are 9 points in the square
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In the square on AC there are

24 points inside 24

4 at the corners ..... .1

or 25 altogether.

Hence we see again that the square on the hypothenuse
is equal to the squares on the sides.

Now take the square AFHG, which is larger than the

square on AB. It contains 25 points.

16 inside 16

16 on the sides, counting as . . .8
4 on the corners 1

making 25 altogether.
If two squares are equal we conclude the sides are

equal. Hence, the line AF turning round A would

move so that it would after a certain turning coincide

with AC.

This is preliminary, but it involves all the mathematical

difficulties that will present themselves.

There are two alterations of a body by which its volume

is not changed.
One is the one we have just considered, rotation, the

other is what is called shear.

Consider a book, or heap of loose pages. They can be

slid so that each one slips

y over the preceding one,

a b and the whole assumes

the shape b in fig. 24.

This deformation is not shear alone, but shear accom-

panied by rotation.

Shear can be considered as produced in another way.
Take the square ABCD (fig. 25), and suppose that it

is pulled out from along one of its diagonals both ways,

and proportionately compressed along the other diagonal.

It will assume the shape in fig. 26.

4
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This compression and expansion along two lines at right

angles is what is called shear; it is equivalent to the

sliding illustrated above, combined with a turning round.

In pure shear a body is compressed and extended in

two directions at right angles to each other, so that its

volume remains unchanged.
Now we know that our material bodies resist shear

shear does violence to the internal arrangement of their

particles, but they turn as wholes without such internal

resistance.

But there is an exception. In a liquid shear and

rotation take place equally easily, there is no more

resistance against a shear than there is against a

rotation.

Now, suppose all bodies were to be reduced to the liquid

state, in which they yield to shear and to rotation equally

easily, and then were to be reconstructed as solids, but in

such a way that shear and rotation had interchanged

places.

That is to say, let us suppose that when they had

become solids again they would shear without offering

any internal resistance, but a rotation would do violence

to their internal arrangement.
That is, we should have a world in which shear would

have taken the place of rotation.



A shear does not alter the volume of a body : thus an

inhabitant living in such a world would look on a body
sheared as we look on a body rotated. He would say
that it was of the same shape, but had turned a bit

round.

Let us imagine a Pythagoras in this world going to

work to investigate, as is his wont.

Fig. 27 represents a square unsheared. Fig. 28

Fig. 27. Fig. 28.

represents a square sheared. It is not the figure into

which the square in fig. 27 would turn, but the result of

shear on some square not drawn. It is a simple slanting

placed figure, taken now as we took a simple slanting

placed square before. Now, since bodies in this world of

shear offer no internal resistance to shearing, and keep
their volume when sheared, an inhabitant accustomed to

them would not consider that they altered their shape
under shear. He would call ACDE as much a square as

the square in fig. 27. We will call such figures shear

squares. Counting the dots in ACDE, we find

2 inside = 2

4 at corners = 1

or a total of 3.

Now, the square on the side AB has 4 points, that on BC

has 1 point. Here the shear square on the hypothenuse
has not 5 points but 3

;
it is not the sum of the squares on

the sides, but the difference.
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This relation always holds. Look at

fig. 29.

Shear square on hypothenuse

7 internal

4 at corners

Fig. 29.

Square on one side which the reader can draw for

himself

4 internal

8 on sides .

4 at corners

Fig. 29 bis.

and the square on the other

side is 1. Hence in this

case again the difference is

equal to the shear square on

the hypothenuse, 91 = 8.

Thus in a world of shear

the square on the hypothen-
use would be equal to the

difference of the squares on

the sides of a right-angled

triangle.

In fig. 29 bis another shear square is drawn on which

the above relation can be tested.

What now would be the position a line on turning by
shear would take up ?

We must settle this in the same way as previously with

our turning.
Since a body shear, d remains the same, we must find two

equal bodies, one in the straight way, one in the slanting

way, which have the same volume. Then the side of one

will by turning become the side of the other, for the two

figures are each what the other becomes by a shear turning.
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We can solve the problem in a particular case

In the figure ACDE

(fig. 30) there are

15 inside . . 15

4 at corners
r

1

a total of 16.

Now in the square ABGF,

there are 16

9 inside . . 9

12 on sides . . 6

4 at corners . 1

16

Hence the square on AB

would, by the shear turn-

ing, become the shear square
ACDE.Fig. 30.

And hence the inhabitant of this world would say that

the line AB turned into the line AC. These two lines

would be to him two lines of equal length, one turned

a little way round from the other.

That is, putting shear in place of rotation, we -get a

different kind of figure, as the result of the shear rotation,

from what we got with our ordinary rotation. And as a

consequence we get a position for the end of a line of

invariable length when it turns by the shear rotation,

different from the position which it would assume on

turning by our rotation.

A real material rod in the shear world would, on turning
about A, pass from the position AB to th*e position AC.

We say that its length alters when it becomes AC, but this

transformation of AB would seem to an inhabitant of the

shear world like a turning of AB without altering in

length.
If now we suppose a communication of ideas that takes

place between one of ourselves and an inhabitant of the
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shear world, there would evidently be a difference between

his views of distance and ours.

We should say that his line AB increased in length in

turning to AC. He would say that our line AF
(fig. 23)

decreased in length in turning to AC. He would think

that what we called an equal line was in reality a shorter

one.

We should say that a rod turning round would have its

extremities in the positions we call at equal distances.

So would he but the positions would be different. He

could, like us, appeal to the properties of matter. His

rod to him alters as little as ours does to us.

Now, is there any standard to which we could appeal, to

say which of the two is right in this argument ? There

is no standard.

We should say that, with a change of position, the

configuration and shape of his objects altered. He would

say that the configuration and shape of our objects altered

in what we called merely a change of position. Hence
distance independent of position is inconceivable, or

practically distance is solely a property of matter.

There is no principle to which either party in this

controversy could appeal. There is nothing to connect

the definition of distance with our ideas rather than with

his, except the behaviour of an actual piece of matter.

For the study of the processes which go on in our world

the definition of distance given by taking the sum of the

squares is of paramount importance to us. But as a ques-
tion of pure space without making any unnecessary

assumptions the shear world is just as possible and just as

interesting as our world.

It was the geometry of such conceivable worlds that

Lobatchewsky and Bolyai studied.

This kind of geometry has evidently nothing to do

directly with four-dimensional space.
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But a connection arises in this way. It is evident that,

instead of taking a simple shear as I have done, and

defining it as that change of the arrangement of the

particles of a solid which they will undergo without

offering any resistance due to their mutual action, I

might take a complex motion, composed of a shear and

a rotation together, or some other kind of deformation.

Let us suppose such an alteration picked out and

defined as the one which means simple rotation, then the

type, according to which all bodies will alter by this

rotation, is fixed.

Looking at the movements of this kind, we should say

that the objects were altering their shape as well as

rotating. But to the inhabitants of that world they
would seem to be unaltered, and our figures in their

motions would seem to them to alter.

In such a world the features of geometry are different.

We have seen one such difference in the case of our illus-

tration of the world of shear, where the square on the

hypothenuse was equal to the difference, not the sum, of

the squares on the sides.

In our illustration we have the same laws of parallel

lines as in our ordinary rotation world, but in general the

laws of parallel lines are different.

In one of these worlds of a different constitution of

matter through one point there can be two parallels to

a given line, in another of them there can be none, that

is, although a line be drawn parallel to another it will

meet it after a time.

Now it was precisely in this respect of parallels that

Lobatchewsky and Bolyai discovered these different

worlds. They did not think of them as worlds of matter,

but they discovered that space did not necessarily mean

that our law of parallels is true. They made the

distinction between laws of space and laws of matter,
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although that is not the form in which they stated their

results.

The way in which they were led to these results was the

following. Euclid had stated the existence of parallel lines

as a postulate putting frankly this unproved proposition
that one line and only one parallel to a given straight

line can be drawn, as a demand, as something that must
be assumed. The words of his ninth postulate are these :

" If a straight line meeting two other straight lines

makes the interior angles on the same side of it equal
to two right angles, the two straight lines will never

meet."

The mathematicians of later ages did not like this bald

assumption, and not being able to prove the proposition

they called it an axiom the eleventh axiom.

Many attempts were made to prove the axiom
;
no one

doubted of its truth, but no means could be found to

demonstrate it. At last an Italian, Sacchieri, unable to

find a proof, said : "Let us suppose it not true." He deduced

the results of there being possibly two parallels to one

given line through a given point, but feeling the waters

too deep for the human reason, he devoted the latter half

of his book to disproving what he had assumed in the first

part.

Then Bolyai and Lobatchewsky with firm step entered

on the forbidden path. There can be no greater evidence

of the indomitable nature of the human spirit, or of its

manifest destiny to conquer all those limitations which

bind it down within the sphere of sense than this grand
a<sf>rtir.r. t^f "Rnlvai and Lobatchewsky.

^ ft
Take a line AB and a point c. We

say and see and know that through c

^ Q can only be drawn one line parallel

i'ig. 3i. to AB.

But Bolyai said :

"
I will draw two." Let CD be parallel
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to AB, that is, not meet AB however far produced, and let

lines beyond CD also not meet

AB; let there be a certain

region between CD and CE,

in which no line drawn meets

AB. CE and CD produced
lackwards through c will give a similar region on the

other side of c.

Nothing so triumphantly, one may almost say so

insolently, ignoring of sense had ever been written before.

Men had struggled against the limitations of the body,

fought them, despised them, conquered them. But no

one had ever thought simply as if the body, the bodily

eyes, the organs of vision, all this vast experience of space,

had never existed. The age-long contest of the ^oul with

the body, the struggle for mastery, had come to a cul-

mination. Bolyai and Lobatchewsky simply thought as

if the body was not. The struggle for dominion, the strife

and combat of the soul were over; they had mastered,

and the Hungarian drew his line.

Can we point out any connection, as in the case of

Parmenides, between these speculations and higher

space ? Can we suppose it was any inner perception by
the soul of a motion not known to the senses, which re-

sulted in this theory so free from the bonds of sense ? No
such supposition appears to be possible.

Practically, however, metageometry had a great in-

fluence in bringing the higher space to the front as a

working hypothesis. This can be traced to the tendency
the mind has to move in the direction of least resistance.

The results of the new geometry could not be neglected,
the problem of parallels had occupied a place too prominent
in the development of mathematical thought for its final

solution to be neglected. But this utter independence of

all mechanical considerations, this perfect cutting loose
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from the familiar intuitions, was so difficult that almost

any other hypothesis was more easy of acceptance, and

when Beltrami showed that the geometry of Lobatchewsky
and Bolyai was the geometry of shortest lines drawn on

certain curved surfaces, the ordinary definitions of measure-

ment being retained, attention was drawn to the theory of

a higher space. An illustration of Beltrami's theory is

furnished by the simple consideration of hypothetical

beings living on a spherical surface.

Let A BCD be the equator of a globe, and AP, BF,

meridian lines drawn to the pole, p.

The lines AB, AP, BP would seem to be

perfectly straight to a person moving
on the surface of the sphere, and

unconscious of its curvature. Now
AP and BP both make right angles
with AB. Hence they satisfy the

Fig. 33. definition of parallels. Yet they
meet in P. Hence a being living on a spherical surface,

and unconscious of its curvature, would find that parallel

lines would meet. He would also find that the angles
in a triangle were greater than two right angles. In

the triangle PAB, for instance, the angles at A and B

are right angles, so the three angles of the triangle

PAB are greater than two right angles.

Now in one of the systems of metageometry (for after

Lobatchewsky had shown the way it was found that other

systems were possible besides his) the angles of a triangle

are greater than two right angles.

Thus a being on a sphere would form conclusions about

his space which are the same as he would form if he lived

on a plane, the matter in which had such properties as

are presupposed by one of these systems of geometry.
Beltrami also discovered a certain surface on which there

could be drawn more than one "straight" line through a
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point which would not meet another given line. I use

the word straight as equivalent to the line having the

property of giving the shortest path between any two

points on it. Hence, without giving up the ordinary

methods of measurement, it was possible to find conditions

in which a plane being would necessarily have an ex-

perience corresponding to Lobatchewsky's geometry.
And by the consideration of a higher space, and a solid

curved in such a higher space, it was possible to account

for a similar experience in a space of three dimensions.

Now, it is far more easy to conceive of a higher dimen-

sionality to space than to imagine that a rod in rotating

does not move so that its end describes a circle. Hence,
a logical conception having been found harder than that

of a four dimensional space, thought turned to the latter

as a simple explanation of the possibilities to which

Lobatchewsky had awakened it. Thinkers became accus-

tomed to deal with the geometry of higher space it was

Kant, says Veronese, who first used the expression of
" different spaces

" and with familiarity the inevitable-

ness of the conception made itself felt.

From this point it is but a small step to adapt the

ordinary mechanical conceptions to a higher spatial

existence, and then the recognition of its objective

existence could be delayed no longer. Here, too, as in so

many cases, it turns out that the order and connection of

our ideas is the order and connection of things.

What is the significance of Lobatchewsky's and Bolyai's

work ?

It must be recognised as something totally different

from the conception of a higher space ;
it is applicable to

spaces of any number of dimensions. By immersing the

conception of distance in matter to which it properly

belongs, it promises to be of the greatest aid in analysis
for the effective distance of any two particles is the



60 THE FOURTH DIMENSION

product of complex material conditions and cannot be

measured by hard and fast rules. Its ultimate signi-

ficance is altogether unknown. It is a cutting loose

from the bonds of sense, not coincident with the recognition
of a higher dimensionality, but indirectly contributory

thereto.

Thus, finally, we have come to accept what Plato held

in the hollow of his hand
;
what Aristotle's doctrine of

the relativity of substance implies. The vast universe, too,

has its higher, and in recognising it we find that the

directing being within us no longer stands inevitably

outside our systematic knowledge.
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IT is indeed strange, the manner in which we must begin
to think about the higher world.

Those simplest objects analogous to those which are

about us on every side in our daily experience such as a

door, a table, a wheel are remote and uncognisable in the

world of four dimensions, while the abstract ideas of

rotation, stress and strain, elasticity into which analysis

resolves the familiar elements of our daily experience are

transferable and applicable with no difficulty whatever.

Thus we are in the unwonted position qf being obliged
to construct the daily and habitual experience of a four-

dimensional being, from a knowledge of the abstract

theories of the space, the matter, the motion of it
;

instead of, as in our case, passing to the abstract theories

from the richness of sensible things.

What would a wheel be in four dimensions? What
the shafting for the transmission of power which a

four-dimensional being would use.

The four-dimensional wheel, and the four-dimensional

shafting are what will occupy us for these few pages. And
it is no futile or insignificant enquiry. For in the attempt
to penetrate into the nature of the higher, to grasp within

our ken that which transcends all analogies, because what

we know are merely partial views of it, the purely
material and physical path affords a means of approach
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pursuing which we are in less likelihood of error than if

we use the more frequently trodden path of framing

conceptions which in their elevation and beauty seem to

us ideally perfect.

For where we are concerned with our own thoughts, the

development of our own ideals, we are as it were on a

curve, moving at any moment in a direction of tangency.
Whither we go, what we set up and exalt as perfect,

represents not the true trend of the curve, but our own

direction at the present a tendency conditioned by the

past, and by a vital energy of motion essential but

only true when perpetually modified. That eternal cor-

rector of our aspirations and ideals, the material universe

draws sublimely away from the simplest things we can

touch or handle to the infinite depths of starry space,

in one and all uninfluenced by what we think or feel,

presenting unmoved fact to which, think it good or

think it evil, we can but conform, yet out of all that

impassivity with a reference to something beyond our

individual hopes and fears supporting us and giving us

our being.
And to this great being we come with the question :

"
You, too, what is your higher ?

"

Or to put it in a form which will leave our conclusions in

the shape of no barren formula, and attacking the problem
on its most assailable side :

" What is the wheel and the

shafting of the four-dimensional mechanic ?
"

In entering on this enquiry we must make a plan of

procedure. The method which I shall adopt is to trace

out the steps of reasoning by which a being confined

to movement in a two-dimensional world could arrive at a

conception of our turning and rotation, and then to apply
an analogous process to the consideration of the higher

movements. The plane being must be imagined as no

abstract figure, but as a real body possessing all three
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dimensions. His limitation to a plane must be the result

of physical conditions.

We will therefore think of him as of a figure cut out of

paper placed on a smooth plane. Sliding over this plane,
and coming into contact with other figures equally thin

as he in the third dimension, he will apprehend them only

by their edges. To him they will be completely bounded

by lines. A "
solid

"
body will be to him a two-dimensional

extent, the interior of which can only be reached by

penetrating through the bounding lines.

Now such a plane being can think of our three-

dimensional existence in two ways.

First, he can think of it as a series of sections, each like

the solid he knows of extending in a direction unknown
to him, which stretches transverse to his tangible

universe, which lies in a direction at right angles to every
motion which he made.

Secondly, relinquishing the attempt to think of the

three-dimensional solid body in its entirety he can regard
it as consisting of a number of plane sections, each of them
in itself exactly like the two-dimensional bodies he knows,
but extending away from his two-dimensional space.

A square lying in his space he regards as a solid

bounded by four lines, each of which lies in his space.

A square standing at right angles to his plane appears
to him as simply a line in his plane, for all of it except
the line stretches in the third dimension.

He can think of a three-dimensional body as consisting
of a number of such sections, each of which starts from a

line in his space.

Now, since in his world he can make any drawing or

model which involves only two dimensions, he can represent
each such upright section as it actually is, and can repre-

sent a turning from a known into the unknown dimension

as a turning from one to another of his known dimensions.
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To see the whole he must relinquish part of that which

he has, and take the whole portion by portion.

Consider now a plane being in front of a square, fig. 34.

The square can turn about any point
in the plane say the point A. But it

cannot turn about a line, as AB. For,

in order to turn about the line AB,

the square must leave the plane and

move in the third dimension. This
" & motion is out of his range of observa-

tion, and is therefore, except for a

process of reasoning, inconceivable to him.

Rotation will therefore be to him rotation about a point.

Rotation about a line will be inconceivable to him.

The result of rotation about a line he can appprehend.
He can see the first and last positions occupied in a half

revolution about the line AC. The result of such a half revo-

lution is to place the square ABCD on the left hand instead

of on the right hand of the line AC. It would correspond
to a pulling of the whole body ABCD through the line AC,

or to the production of a solid body which was the exact

reflection of it in the line AC. It would be as if the square
ABCD turned into its image, the line AB acting as a mirror.

Such a reversal of the positions of the parts of the square
would be impossible in his space. The occurrence of it

would be a proof of the existence of a higher dimensionality.

Let him now, adopting the conception of a three-

dimensional body as a series of

sections lying, each removed a little

farther than the preceding one, in

direction at right angles to his

plane, regard a cube, fig. 36, as a

series of sections, each like the
*

square which forms its base, all

Fig. 35. rigidly connected together.
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tf DOW he turns the square about the point A in the

plane of xy, each -parallel section turns with the square
he moves. In each of the sections there is a point at

rest, that vertically over A. Hence he would conclude

that in the turning of a three-dimensional body there is

one line which is at rest. That is a three-dimensional

turning in a turning about a line.

In a similar way let us regard ourselves as limited to a

three-dimensional world by a physical condition. Let us

imagine that there is a direction at right angles to every
direction in which we can move, and that we are pre-
vented from passing in this direction by a vast solid, that

against which in every movement we make we slip as

the plane being slips against his plane sheet.

We can then consider a four-dimensional body as con-

sisting of a series of sections, each parallel to our space,
and each a little farther off than the preceding on the

unknown dimension.

Take the simplest four-dimensional body one which

begins as a cube, fig. 36, in our

space, and consists of sections, each

a cube like fig. 36, lying away from

our space. If we turn the cube

which is its base in our space
about a line, if, e.g., in fig. 36 we

turn the cube about the line AB,

not only it but each of the parallel

cubes moves about a line. The
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In this case all that we see of the pjane about which

the turning takes place is the line AB.

But it is obvious that the axis plane may lie in our

space. A point near the plane determines with it a three-

dimensional space. When it begins to rotate round the

plane it does not move anywhere in this three-dimensional

space, but moves out of it. A point can no more rotate

round a plane in three-dimensional space than a point
can move round a line in two-dimensional space.

We will now apply the second of the modes of repre-
sentation to this case of turning about a plane, building

up our analogy step by step from the turning in a plane
about a point and that in space about a line, and so on.

In order to reduce our considerations to those of the

greatest simplicity possible, let us realise how the plane

being would think of the motion by which a square is

turned round a line.

Let, fig. 34, ABCD be a square on his plane, and repre-
sent the two dimensions of his space by the axes AX Ay.
Now the motion by which the square is turned over

about the line AC involves the third dimension.

He cannot represent the motion of the whole square in

its turning, but he can represent the motions of parts of

it. Let the third axis perpendicular to the plane of the

paper be called the axis of z. Of the three axes x, y, z,

the plane being can represent any two in his space. Let

him then draw, in fig. 35, two axes, x and z. Here he has

in his plane a representation of what exists in the plane
which goes off perpendicularly to his space.

In this representation the square would not be shown,

for in the plane of xz simply the line AB of the square is

contained.

The plane being then would have before him, in fig. 35,

the representation of one line AB of his square and two

axes, x and z, at right angles. Now it would be obvious
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to him that, by a turning such as he knows, by a rotation

about a point, the line AB can turn round A, and occu-

pying all the intermediate positions, such as ABi, come
after half a revolution to lie as AX produced through A.

Again, just as he can represent the vertical plane

through AB, so he can represent the vertical plane

through A'B', fig. 34, and in a like manner can see that

the line A'B' can turn about the point A' till it lies in the

opposite direction from that which it ran in at first.

Now these two turnings are not inconsistent. In his

plane, if AB turned about A, and A'B' about A', the con-

sistency of the square would be destroyed, it would be an

impossible motion for a rigid body to perform. But in

the turning which he studies portion by portion there is

nothing inconsistent. Each line in the square can turn

in this way, hence he would realise the turning of the

whole square as the sum of a number of turnings of

isolated parts. Such turnings, if they took place in his

plane, would be inconsistent, but by virtue of a third

dimension they are consistent, and the result of them all

is that the square turns about the line AC and lies in a

position in which it is the mirror image of what it was in

its first position. Thus he can realise a turning about a

line by relinquishing one of his axes, and representing his

body part by part.

Let us apply this method to the turning of a cube so as

to become the mirror image of itself. In our space we can

construct three independent axes, x, y, z, shown in fig. 36.

Suppose that there is a fourth axis, w, at right angles to

each and every one of them. We cannot, keeping all

three axes, a;, y, z, represent iv in our space ;
but if we

relinquish one of our three axes we can let the fourth axis

take its place, and we can represent what lies in the

space, determined by the two axes we retain and the

fourth axis.
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Let us suppose that we let the y axis drop, and that

we represent the w axis as occupy-

ing its direction. We have in fig.

37 a drawing of what we should

then see of the cube. The square

ABCD, remains unchanged, for that
-

: is in the plane of xz, and we
still have that plane. But from

this plane the cube stretches out

in the direction of the y axis. Now the y axis is gone,
and fo we have no more of the cube than the face ABCD.

Considering now this face ABCD, we
see that it is free to turn about the

line AB. It can rotate in the a? to w
direction about this line. In fig. 38

it is shown on its way, and it can

evidently continue this rotation till

A * it lies on the other side of the z

axis in the plane of xz.

We can also take a section parallel to the face ABCD,

and then letting drop all of our space except the plane of

that section, introduce the w axis, running in the old y
direction. This section can be represented by the same

drawing, fig. 38, and we see that it can rotate about the

line on its left until it swings half way round and runs in

the opposite direction to that which it ran in before.

These turnings of the different sections are not incon-

sistent, and taken all together they will bring the cubt-

from the position shown in
fig. 36 to that shown in

fig. 41.

Since we have three axes at our disposal in our space,

we are not obliged to represent the w axis by any particular

one. We may let any axis we like disappear, and let th

fourth axis take its place.

In fig. 36 suppose the z axis to go. We have then
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w
simply the plane of xy and the square base of the

cube ACEG, fig. 39, is all that could

be seen of it. Let now the w axis

take the place of the z axis and

we have, in fig. 39 again, a repre-
sentation of the space of xyiv, in

A C which all that exists of the cube is

its square base. Now, by a turning
of x to w, this base can rotate around the line AE, it is

shown on its way in
fig. 40, and

finally it will, after half a revolution,

lie on the other side of the y axis.

In a similar way we may rotate

sections parallel to the base of the

xw rotation, and each of them comes

to run in the opposite direction from

that which they occupied at first.

Thus again the cube comes from the position of fig. 36.

to that of fig. 41. In this x
to w turning, we see that it

takes place by the rotations of

sections parallel to the front

face about lines parallel to AB,

or else we may consider it as

consisting of the rotation of

sections parallel to the base

about lines parallel to AE. It

H

C A *

2-posificn I-position

Fig. 41.

is a rotation of the whole cube about the plane ABEF.

Two separate sections could not rotate about two separate

lines in our space without conflicting, but their motion is

consistent when we consider another dimension. Just,

then, as a plane being can think of rotation about a line as

a rotation about a number of points, these rotations not

interfering as they would if they took place in his two-

(Ijrnensjonal space, so we can think of a rotation about a
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plane as the rotation of a number of sections of a body
about a number of lines in a plane, these rotations not

being inconsistent in a four-dimensional space as they are

in three-dimensional space.

We are not limited to any particular direction for the

lines in the plane about which we suppose the rotation

of the particular sections to take place. Let us draw

the section of the cube, fig. 36, through A, F, C, H, forming a

sloping plane. Now since the fourth dimension is at

right angles to every line in our space it is at right

angles to this section also. We can represent our space

by drawing an axis at right angles to the plane ACEG, our

space is then determined by the plane ACEG, and the per-

pendicular axis. If we let this axis drop and suppose the

fourth axis, w, to take its place, we have a representation of

the space which runs off in the fourth dimension from the

plane ACEG. In this space we shall see simply the section

ACEG of the cube, and nothing else, for one cube does not

extend to any distance in the fourth dimension.

If, keeping this plane, we bring in the fourth dimension,

we shall have a space in which simply this section of

the cube exists and nothing else. The section can turn

about, the line AF, and parallel sections can turn about

parallel lines. Thus in con-

sidering the rotation about

a plane we can draw any
lines we like and consider

the rotation as taking place
in sections about them.

To bring out this point
more clearly let us take two

parallel lines, A and B, in

the space of xyz, and let CD

and EF be two rods running

If we

8*

Fig. 42.

above a.n4 below the plane pf xy, from these lines.
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turn these rods in our space about the lines A and B, as

the upper end of one, F, is going down, the lower end of

the other, c, will be coming up. They will meet and

conflict. But it is quite possible for these two rods

each of them to turn about the two lines without altering
their relative distances.

To see this suppose the y axis to go, and let the w axis

take its place. We shall see the lines A and B no longer,
for they run in the y direction from the points G and H.

Fig. 43 is a picture of the two rods seen in the space
of xzw. If they rotate in the

direction shown by the arrows

in the z to w direction they
move parallel to one another,

keeping their relative distances.

Each will rotate about its own

line, but their rotation will not

be inconsistent with their form-

ing part of a rigid body.
Now we have but to suppose

a central plane with rods crossing

it at every point, like CD and EF cross the plane of xy,

to have an image of a mass of matter extending equal
distances on each side of a diametral plane. As two of

these rods can rotate round, so can all, and the whole

mass of matter can rotate round its diametral plane.

This rotation round a plane corresponds, in four

dimensions, to the rotation round an axis in three

dimensions. Rotation of a body round a plane is the

analogue of rotation of a rod round an axis.

In a plane we have rotation round a point, in three-

space rotation round an axis line, in four-space rotation

round an axis plane.

The four-dimensional being's shaft by which he trans-

mits power is a disk rotating round its central plane
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the whole contour corresponds to the ends of an axis

of rotation in our space. He can impart the rotation at

any point and take it off at any other point on the contour,

just as rotation round a line can in three-space be imparted
at one end of a rod and taken off at the other end.

A four-dimensional wheel can easily be described from

the analogy of the representation which a plane being
would form for himself of one of our wheels.

Suppose a wheel to move transverse to a plane, so that

the whole disk, which I will consider to be solid and

without spokes, came at the same time into contact with

the plane. It would appear as a circular portion of plane
matter completely enclosing another and smaller portion
the axle.

This appearance would last, supposing the motion of

the wheel to continue until it had traversed the plane by
the extent of its thickness, when there would remain in

the plane only the small disk which is the section of the

axle. There would be no means obvious in the plane
at first by which the axle could be reached, except by

going through the substance of the wheel. But the

possibility of reaching it without destroying the substance

of the wheel would be shown by the continued existence

of the axle section after that of the wheel had disappeared.
In a similar way a four-dimensional wheel moving

transverse to our space would appear first as a solid sphere,

completely surrounding a smaller solid sphere. The
outer sphere would represent the wheel, and would last

until the wheel has traversed our space by a distance

equal to its thickness. Then the small sphere alone

would remain, representing the section of the axle. The

large sphere could move round the small one quite freely.

Any line in space could be taken as an axis, and round

this line the outer sphere could rotate, while the inner

sphere remained still. But in all these directions of
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revolution there would be in reality one line which

remained unaltered, that is the line which stretches away
in the fourth direction, forming the axis of the axle. The

four-dimensional wheel can rotate in any number of planes,

but all these planes are such that there is a line at right

angles to them all unaffected by rotation in them.

An objection is sometimes experienced as to this mode
of reasoning from a plane world to a higher dimensionality.

How artificial, it is argued, this conception of a plane
world is. If any real existence confined to a superficies

could be shown to exist, there would be an argument for

one relative to which our three-dimensional existence is

superficial. But, both on the one side and the other of

the space we are familiar with, spaces either with less

or more than three dimensions are merely arbitrary

conceptions.
In reply to this I would remark that a plane being

having one less dimension than our three would have one-

third of our possibilities of motion, while we have only
one-fourth less than those of the higher space. It may
very well be that there may be a certain amount of

freedom of motion which is demanded as a condition of an

organised existence, and that no material existence is

possible with a more limited dimensionality than ours.

This is well seen if we try to construct the mechanics of a

two-dimensional world. No tube could exist, for unless

joined together completely at one end two parallel lines

would be completely separate. The possibility of an

organic structure, subject to conditions such as this, is

highly problematical ; yet, possibly in the convolutions

of the brain there may be a mode of existence to be

described as two-dimensional.

We have but to suppose the increase in surface and

the diminution in mass carried on to a certain extent

to fi,nd a region which, though without mobility of the
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constituents, would have to be described as two-dimensional.

But, however artificial the conception of a plane being

may be, it is none the less to be used in passing to the

conception of a greater dimensionality than ours, and

hence the validity of the first part of this objection

altogether disappears directly we find evidence for such a

state of being.
The second part of the objection has more weight.

How is it possible to conceive that in a four-dimensional

space any creatures should be confined to a three-

dimensional existence?

In reply I would say that we know as a matter of fact

that life is essentially a phenomenon of surface. The

amplitude of the movements which we can make is much

greater along the surface of the earth than it is up
or down.

Now we have but to conceive the extent of a solid

surface increased, while the motions possible tranverse to

it are diminished in the same proportion, to obtain the

image of a three-dimensional world in four-dimensional

space.

And as our habitat is the meeting of air and earth on

the world, so we must think of the meeting place of two

as affording the condition for our universe. The meeting
of what two ? What can that vastness be in the higher

space which stretches in such a perfect level that our

astronomical observations fail to detect the slightest

curvature ?

The perfection of the level suggests a liquid a lake

amidst what vast scenery ! whereon the matter of the

universe floats speck-like.

But this aspect of the problem is like what are called

in mathematics boundary conditions.

We can trace out all the consequences of four-dimen-

sional movements down to their last detail. Then, knowing
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the mode of action which would be characteristic of the

mioutest particles, if they were free, we can draw con-

clusions from what they actually do of what the constraint

on them is. Of the two things, the material conditions and

the motion, one is known, and the other can be inferred.

If the place of this universe is a meeting of two, there

would be a one-sideness to space. If it lies so that what

stretches away in one direction in the unknown is unlike

what stretches away in the other, then, as far as the

movements which participate in that dimension are con-

cerned, there would be a difference as to which way the

motion took place. This would be shown in the dissimi-

larity of phenomena, which, so far as all three-space
movements are concerned, were perfectly symmetrical.
To take an instance, merely, for the sake of precising
our ideas, not for any inherent probability in it

;
if it could

be shown that the electric current in the positive direction

were exactly like the electric current in the negative

direction, except for a reversal of the components of the

motion in three-dimensional space, then the dissimilarity
of the discharge from the positive and negative poles
would be an indication of a one-sideness to our space.

The only cause of difference in the two discharges would

be due to a component in the fourth dimension, which

directed in one direction transverse to our space, met with

a different resistance to that which it met when directed

in the opposite direction.



CHAPTER VII

THE EVIDENCES FOR A FOURTH DIMENSION

THE method necessarily to be employed in the search for

the evidences of a fourth dimension, consists primarily in

the formation of the conceptions of four-dimensional

shapes and motions. When we are in possession of these

it is possible to call in the aid of observation, without

them we may have been all our lives in the familiar

presence of a four-dimensional phenomenon without ever

recognising its nature.

To take one of the conceptions we have already formed,
the turning of a real thing into its mirror image would be

an occurrence which it would be hard to explain, except on

the assumption of a fourth dimension.

We know of no such turning. But there exist a multi-

tude of forms which show a certain relation to a plane,

a relation of symmetry, which indicates more than an acci-

dental juxtaposition of parts. In organic life the universal

type is of right- and left-handed symmetry, there is a plane
on each side of which the parts correspond. Now we have

seen that in four dimensions a plane takes the place of a

line in three dimensions. In our space, rotation about an

axis is the type of rotation, and the origin of bodies sym-
metrical about a line as the earth is symmetrical about an

axis can easily be explained. But where there is symmetry
a.bout a plane no simple physical motion, such as we
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are accustomed to, suffices to explain it. In our space a

symmetrical object must be built up by equal additions

on each side of a central plane. Such additions about

such a plane are as little likely as any other increments.

The probability against the existence of symmetrical
form in inorganic nature is overwhelming in our space,

and in organic forms they would be as difficult of produc-

tion as any other variety of configuration. To illustrate

this point we may take the child's amusement of making
from dots of ink on a piece of paper a life-like repre-

sentation of an insect by simply folding the paper

over. The dots spread out on a symmetrical line, and

give the impression of a segmented form with antenna

and legs.

Now seeing a number of such figures we should

naturally infer a folding over. Can, then, a folding over

in four-dimensional space account for the symmetry of

organic forms ? The folding cannot of course be of the

bodies we see, but it may be of those minute constituents,

the ultimate elements of living matter which, turned in one

way or the other, become right- or left-handed, and so

produce a corresponding structure.

There is something in life not included in our concep-
tions of mechanical movement. Is this something a four-

dimensional movement?
If we look at it from the broadest point of view, there is

something striking in the fact that where life comes in

there arises an entirely different set of phenomena to

those of the inorganic world.

The interest and values of life as we know it in our-

selves, as we know it existing around us in subordinate

forms, is entirely and completely different to anything
which inorganic nature shows. And in living beings we
have a kind of form, a disposition of matter which is

entirely different from that shown in inorganic matter.
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Right- and left-handed symmetry does not occur in the

configurations of dead matter. We have instances of

symmetry about an axis, but not about a plane. It can

be argued that the occurrence of symmetry in two dimen-

sions involves the existence of a three-dimensional process,

as when a stone falls into water and makes rings of ripples,

or as when a mass of soft material rotates about an axis.

It can be argued that symmetry in any number of dimen-

sions is the evidence of an action in a higher dimensionality.
Thus considering living beings, there is an evidence both

in their structure, and their different mode of activity, of a

something coming in from without into the inorganic
world.

And the objections which will readily occur, such as

those derived from the forms of twin crystals and the

theoretical structure of chemical molecules, do not in-

validate the argument ;
for in these forms too the

presumable seat of the activity producing them lies in that

very minute region in which we necessarily place the seat

of a four-dimensional mobility.

In another respect also the existence of symmetrical forms

is noteworthy. It is puzzling to conceive how two shapes

exactly equal can exist which are not superposible. Such

a pair of symmetrical figures as the two hands, right and

left, show either a limitation in our power of movement,

by which we cannot superpose the one on the other, or a

definite influence and compulsion of space on matter,

inflicting limitations which are additional to those of the

proportions of the parts.

We will, however, put aside the arguments to be drawn

from the consideration of symmetry as inconclusive,

retaining one valuable indication which they afford. If

it is in virtue of a four-dimensional motion that sym-

metry exists, it is only in the very minute particles

of bodies that that motion is to be found, for there is
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no such thing as a bending over in four dimensions of

any object of a size which we can observe. The region

of the extremely minute is the one, then, which we

shall have to investigate. We must look for some

phenomenon which, occasioning movements of the kind

we know, still is itself inexplicable as any form of motion

which we know.

Now in the theories of the actions of the minute

particles of bodies on one another, and in the motions of

the ether, mathematicians have tacitly assumed that the

mechanical principles are the same as those which prevail

in the case of bodies which can be observed, it has been

assumed without proof that the conception of motion being

three-dimensional, holds beyond the region from observa-

tions in which it was formed.

Hence it is not from any phenomenon explained by
mathematics that we can derive a proof of four dimensions.

Every phenomenon that has been explained is explained
as three-dimensional. And, moreover, since in the region
of the very minute we do not find rigid bodies acting
on each other at a distance, but elastic substances and

continuous fluids such as ether, we shall have a double

task.

We must form the conceptions of the possible move-

ments of elastic and liquid four-dimensional matter, before

we can begin to observe. Let us, therefore, take the four-

dimensional rotation about a plane, and enquire what it

becomes in the case of extensible fluid substances. If

four-dimensional movements exist, this kind of rotation

must exist, and the finer portions of matter must exhibit

it.

Consider for a moment a rod of flexible and extensible

material. It can turn about an axis, even if not straight ;

a ring of india rubber can turn inside out.

What would this be in the case of four dimensions ?
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Let us consider a sphere of our three-dimensional

matter having a definite

thickness. To represent
this thickness let us sup-

pose that from every point
of the sphere in

fig. 44 rods

project both ways, in and

out, like D and F. We can

only see the external por-

tion, because the internal

parts are hidden by the

sphere.

In this sphere the axis

of x is supposed to come

towards the observer, the

Fig. 44.

Axis ofx running
the observer.

axis of z to run up, the axis of y to go to the right.

Now take the section determined by the zy plane.

This will be a circle as

shown in fig. 45. If we

let drop the x axis, this

circle is all we have of

the sphere. Letting the

w axis now run in the

place of the old x axis

we have the space yzw,
and in this space all that

we have of the sphere is

the circle. Fig. 45 then

represents all that there

is of the sphere in the

space of yzw. In this space it is evident that the rods

CD and EF can turn round the circumference as an axis.

If the matter of the spherical shell is sufficiently exten-

sible to allow the particles c and E to become as widely

separated as they would be in the positions D and F, then

45<
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the strip of matter represented by CD and EF and a

multitude of rods like them can turn round the circular

circumference.

Thus this particular section of the sphere can turn

inside out, and what holds for any one section holds for

all. Hence in four dimensions the whole sphere can, if

extensible turn inside out. Moreover, any part of it

a bowl-shaped portion, for instance can turn inside out,

and so on round and round.

This is really no more than we had before in the

rotation about a plane, except that we see that the plane

can, in the case of extensible matter, be curved, and still

play the part of an axis.

If we suppose the spherical shell to be of four-dimen-

sional matter, our representation will be a little different.

Let us suppose there to be a small thickness to the matter

in the fourth dimension. This would make no difference

in fig. 44, for that merely shows the view in the xyz

space. But when the x axis is let drop, and the w axis

comes in, then the rods CD and EF which represent the

matter of the shell, will have a certain thickness perpen-
dicular to the plane of the paper on which they are drawn.

If they have a thickness in the fourth dimension they will

show this thickness when looked at from the direction of

the iv axis.

Supposing these rods, then, to be small slabs strung on

the circumference of the circle in fig. 45, we see that

there will not be in this case either any obstacle to their

turning round the circumference. We can have a shell

of extensible material or of fluid material turning inside

out in four dimensions.

And we must remember that in four dimensions there

is no such thing as rotation round an axis. If we want to

investigate the motion of fluids in four dimensions we
must take a movement about an axis in our space, and

6
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find the corresponding movement about a plane in

four space.

Now, of all the movements which take place in fluids,

the most important from a physical point of view is

vortex motion.

A vortex is a whirl or eddy it is shown in the gyrating
wreaths of dust seen on a summer day ;

it is exhibited on

a larger scale in the destructive march of a cyclone.

A wheel whirling round will throw off the water on it.

But when this circling motion takes place in a liquid

itself it is strangely persistent. There is, of course, a

certain cohesion between the particles of water by which

they mutually impede their motions. But in a liquid

devoid of friction, such that every particle is free from

lateral cohesion on its path of motion, it can be shown

that a vortex or eddy separates from the mass of the

fluid a certain portion, which always remain in that

vortex.

The shape of the vortex may alter, but it always con-

sists of the same particles of the fluid.

Now, a very remarkable fact about such a vortex is that

the ends of the vortex cannot remain suspended and

isolated in the fluid. They must always run to the

boundary of the fluid. An eddy in water that remains

half way down without coming to the top is impossible.

The ends of a vortex must reach the boundary of a

fluid the boundary may be external or internal a vortex

may exist between two objects in the fluid, terminating
one end on each object, the objects being internal

boundaries of the fluid. Again, a vortex may have its

ends linked together, so that it forms a ring. Circular

vortex rings of this description are often seen in puffs of

smoke, and that the smoke travels on in the ring is a

proof that the vortex always consists of the same particles

of ai:
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Let us now enquire what a vortex would be in a four-

dimensional fluid.

We must replace the line axis by a plane axis. We
should have therefore a portion of fluid rotating round

a plane.

We have seen that the contour of this plane corresponds
with the ends of the axis line. Hence such a four-

dimensional vortex must have its rim on a boundary of

the fluid. There would be a region of vorticity with a

contour. If such a rotation were started at one part of a

circular boundary, its edges would run round the boundary
in both directions till the whole interior region was filled

with the vortex sheet.

A vortex in a three-dimensional liquid may consist of a

number of vortex filaments lying together producing a

tube, or rod of vorticity.

In the same way we can have in four dimensions a

number of vortex sheets alongside each other, each of which

can be thought of as a bowl-shaped portion of a spherical

shell turning inside out. The rotation takes place at any

point not in the space occupied by the shell, but from

that space to the fourth dimension and round back again.
Is there anything analogous to this within the range

of our observation ?

An electric current answers this description in every

respect. Electricity does not flow through a wire. Its effect

travels both ways from the starting point along the wire.

The spark which shows its passing midway in its circuit

is later than that which occurs at points near its starting

point on either side of it.

Moreover, it is known that the action of the current

is not in the wire. It is in the region enclosed by the

wire, this is the field of force, the locus of the exhibition

of the effects of the current.

And the necessity of a conducting circuit for a current is
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exactly that which we should expect if it were a four-dimen-

sional vortex. According to Maxwell every current forms

a closed circuit, and this, from the four-dimensional point
of view, is the same as saying a vortex must have its ends

on a boundary of the fluid.

Thus, on the hypothesis of a fourth dimension, the rota-

tion of the fluid ether would give the phenomenon of an

electric current. We must suppose the ether to be full of

movement, for the more we examine into the conditions

which prevail in the obscurity of the minute, the more we

find that an unceasing and perpetual motion reigns. Thus

we may say that the conception of the fourth dimension

means that there must be a phenomenon which presents
the characteristics of electricity.

We know now that light is an electro-magnetic action,

and that so far from being a special and isolated pheno-
menon this electric action is universal in the realm of the

minute. Hence, may we not conclude that, so far from

the fourth dimension being remote and far away, being a

thing of symbolic import, a term for the explanation of

dubious facts by a more obscure theory, it is really the

most important fact within our knowledge. Our three-

dimensional world is superficial. These processes, which

really lie at the basis of all phenomena of matter,

escape our observation by their, minuteness, but reveal

to our intellect an amplitude of motion surpassing any
that we can see. In such shapes and motions there is a

realm of the utmost intellectual beauty, and one to

which our symbolic methods apply with a better grace
than they do to those of three dimensions.



CHAPTER VIII

THE USE OF FOUR DIMENSIONS IN
THOUGHT

HAVING held before ourselves this outline of a conjecture
of the world as four-dimensional, having roughly thrown

together those facts of movement which we can see apply
to our actual experience, let us pass to another branch

of our subject.

The engineer uses drawings, graphical constructions,

in a variety of manners. He has, for instance, diagrams
which represent the expansion of steam, the efficiency

of his valves. These exist alongside the actual plans of

his machines. They are not the pictures of anything

really existing, but enable him to think about the relations

which exist in his mechanisms.

And so, besides showing us the actual existence of that

world which lies beneath the one of visible movements,
four-dimensional space enables us to make ideal con-

structions which serve to represent the relations of things,

and throw what would otherwise be obscure into a definite

and suggestive form.

From amidst the great variety of instances which lies

before me I will select two, one dealing with a subject
of slight intrinsic interest, which however gives within

a limited field a striking example of the method
85
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of drawing conclusions and the use of higher space

figures.*

The other instance is chosen on account of the bearing
it has on our fundamental conceptions. In it I try to

discover the real meaning of Kant's theory of experience.
The investigation of the properties of numbers is much

facilitated by the fact that relations between numbers are

themselves able to be represented as numbers e.g., 12,

and 3 are both numbers, and the relation between them
is 4, another number. The way is thus opened for a

process of constructive theory, without there being any

necessity for a recourse to another class of concepts
besides that which is given in the phenomena to be

studied.

The discipline of number thus created is of great and

varied applicability, but it is not solely as quantitative
that we learn to understand the phenomena of nature.

It is not possible to explain the properties of matter

by number simply, but all the activities of matter are

energies in space. They are numerically definite and also,

we may say, directedly definite, i.e. definite in direction.

Is there, then, a body of doctrine about space which, like

that of number, is available in science ? It is needless

to answer : Yes
; geometry. But there is a method

lying alongside the ordinary methods of geometry, which

tacitly used and presenting an analogy to the method
of numerical thought deserves to be brought into greater

prominence than it usually occupies.
The relation of numbers is a number.

Can we say in the same way that the relation of

shapes is a shape ?

We can.

* It is suggestive also in another respect, because it shows very

clearly that in our processes of thought there are in play faculties other

than logical; in it the origin of the idea which proves to be justified is

drawn from the consideration of symmetry, a branch of the beautiful.
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To take an instance chosen on account of its ready

availability. Let us take

two right-angled triangles of

a given hypothenuse, but

having sides of different

lengths (fig. 46). These

triangles are shapes which have a certain relation to each

other. Let us exhibit their relation as a figure.

Draw two straight lines at right angles to each other,

the one HL a horizontal level, the

other VL a vertical level (fig. 47).

By means of these two co-ordin-

ating lines we can represent a

double set of magnitudes ;
one set

j
as distances to the right of the ver-

Fig. 47. tical level, the other as distances

above the horizontal level, a suitable unit being chosen.

Thus the line marked 7 will pick out the assemblage
of points whose distance from the vertical level is 7,

and the line marked 1 will pick out the points whose

distance above the horizontal level is 1. The meeting

point of these two lines, 7 and 1, will define a point

which with regard to the one set of magnitudes is 7,

with regard to the other is 1. Let us take the sides of

our triangles as the two sets of magnitudes in question.

Then the point 7, 1, will represent the triangle whose

sides are 7 and 1. Similarly the point 5, 5 5, that

is, to the ricrht of the vertical level and 5 above the

.5,5 horizontal level will represent the

triangle whose sides are 5 and 5

Thus we have obtained a figure

consisting of the two points 7, 1,

Fig. 48. and 5
? 5^ representative of our two

triangles. But we can go further, and, drawing an arc
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of a circle about o, the meeting point of the horizontal

and vertical levels, which passes through 7, 1, and 5, 5,

assert that all the triangles which are right-angled and

have a hypothenuse whose square is 50 are represented

by the points on this arc.

Thus, each individual of a class being represented by a

point, the whole class is represented by an assemblage of

points forming a figure. Accepting this representation
we can attach a definite and calculable significance to the

expression, resemblance, or similarity between two indi-

viduals of the class represented, the difference being
measured by the length of the line between two repre-

sentative points. It is needless to multiply examples, or

to show how, corresponding to different classes of triangles,

we obtain different curves.

A representation of this kind in which an object, a

thing in space, is represented as a point, and all its pro-

perties are left out, their effect remaining only in the

relative position which the representative point bears

to the representative points of the other objects, may be

called, after the analogy of Sir William K. Hamilton's

hodograph, a "Poiograph."

Representations thus made have the character of

natural objects; they have a determinate and definite

character of their own. Any lack of completeness in them

is probably due to a failure in point of completeness
of those observations which form the ground of their

construction.

Every system of classification is a poiograph. In

Mendeleeff's scheme of the elements, for instance, each

element is represented by a point, and the relations

between the elements are represented by the relations

between the points.

So far I have simply brought into prominence processes

and considerations with which we are all familiar. But
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it is worth while to bring into the full light of our atten-

tion our habitual assumptions and processes. It often

happens that we find there are two of them which have

a bearing on each other, which, without this dragging into

the light, we should have allowed to remain without

mutual influence.

There is a fact which it concerns us to take into account

in discussing the theory of the poiograph.
With respect to our knowledge of the world we are

far from that condition which Laplace imagined when he

asserted that an all-knowing mind could determine the

future condition of every object, if he knew the co-ordinates

of its particles in space, and their velocity at any

particular moment.

On the contrary, in the presence of any natural object,

we have a great complexity of conditions before us,

which we cannot reduce to position in space and date

in time.

There is mass, attraction apparently spontaneous, elec-

trical and magnetic properties which must be superadded
to spatial configuration. To cut the list short we must

say that practically the phenomena of the world present

us problems involving many variables, which we must

take as independent.
From this it follows that in making poiographs we

must be prepared to use space of more than three dimen-

sions. If the symmetry and completeness of our repre-

sentatation is to be of use to us we must be prepared to

appreciate and criticise figures of a complexity greater

than of those in three dimensions. It is impossible to give
an example of such a poiograph which will not be merely

trivial, without going into details of some kind irrelevant

to our subject. I prefer to introduce the irrelevant details

rather than treat this part of the subject perfunctorily.

To take an instance of a poiograph which does not lead
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us into the complexities incident on its application in

classificatory science, let us follow Mrs. Alicia Boole Stott

in her representation of the syllogism by its means. She

will be interested to find that the curious gap she detected

has a significance.

A syllogism consists of two statements, the major and

the minor premiss, with the conclusion that can be drawn

from them. Thus, to take an instance, fig. 49. It is

evident, from looking at the successive figures that, if we
know that the region M lies altogether within the region

p, and also know that the region s lies altogether within

the region M, we can conclude that the region s lies

altogether within the region P. M is P,

major premiss; s is M, minor premiss; s

is p, conclusion. Given the first two data

we must conclude that s lies in p. The

conclusion s is P involves two terms, s and

p, which are respectively called the subject

and the predicate, the letters s and P

being chosen with reference to the parts

the notions they designate play in the

conclusion, s is the subject of the con-

clusion, P is the predicate of the conclusion.

The major premiss we take to be, that

which does not involve s, and here we

always write it first.

There are several varieties of statement

possessing different degrees of universality and manners of

assertiveness. These different forms of statement are

called the moods.

We will take the major premiss as one variable, as a

thing capable of different modifications of the same kind,

the minor premiss as another, and the different moods we

will consider as defining the variations which these

variables undergo.

Fig. 49.
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There are four moods :

1. The universal affirmative
;

all M is p, called mood A.

2. The universal negative ;
no M is P, mood E.

3. The particular affirmative
; some M is p, mood I.

4. The particular negative ;
some M is not p, mood o.

The dotted lines in 3 and 4, fig. 50, denote that it is

not known whether or no any objects exist, corresponding

4.

Mood o.

Fig. 50.

to the space of which the dotted line forms one delimiting

boundary ; thus, in mood I we do not know if there are

any M'S which are not P, we only know some M'S are P.

Representing the first premiss in its various moods by

regions marked by vertical lines to

the right of PQ, we have in fig. 51,

running up from the four letters AEIO,

four column?, each of which indicates

that the major premiss is in the mood
denoted by the respective letter. In

the first column to the right of PQ is

Q
o

o sR PA E I

Fig. 51.

the mood A. Now above the line RS let there be marked

off four regions corresponding to the four moods of the

minor premiss. Thus, in the first row above RS all the

region between RS and the first horizontal line above it

denotes that the minor premiss is in the mood A. The
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And now we can represent the third variable in a precisely

similar way. We can take the conclusion as the third

variable, going through its four phases from the ground

plane upwards. Each of the small cubes at the base of

the whole cube has this true about it, whatever else may
be the case, that the conclusion is, in it, in the mood A.

Thus, to recapitulate, the first wall of sixteen small cubes,

the first of the four walls which, proceeding from left to

right, build up the whole cube, is characterised in each

part of it by this, that the major premiss is in the mood A.

The next wall denotes that the major premiss is in the

mood E, and so on. Proceeding from the front to the

back the first wall presents a region in every part of

which the minor premiss is in the mood A. The second

wall is a region throughout which the minor premiss is in

the mood E, and so on. In the layers, from the bottom

upwards, the conclusion goes through its various moods

beginning with A in the lowest, E in the second, I in the

third, in the fourth.

In the general case, in which the variables represented
in the poiograph pass through a wide range of values, the

planes from which we measure their degrees of variation

in our representation are taken to be indefinitely extended.

In this case, however, all we are concerned with is the

finite region.

We have now to represent, by some limitation of the

complex we have obtained, the fact that not every com-

bination of premisses justifies any kind of conclusion.

This can be simply effected by marking the regions in

which the premisses, being such as are defined by the

positions, a conclusion which is valid is found.

Taking the conjunction of the major premiss, all M is

p, and the minor, all s is M, we conclude that all s is P.

Hence, that region must be marked in which we have the

conjunction of major premiss in mood A
;
minor premiss,
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mood A
; conclusion, mood A. This is the cube occupying

the lowest left-hand corner of the large cube.

Proceeding in this way, we find that the regions which

must be marked are those shown in fig. 53.

To discuss the case shown in the marked

cube which appears at the top of fig. 53.

Here the major premiss is in the second

wall to the right it is in the mood E and

is of the type no M is P. The minor

premiss is in the mood characterised by
the third wall from the front. It is of

the type some s is M. From these premisses we draw

the conclusion that some s is not P, a conclusion in the

mood o. Now the mood of the conclusion is represented

in the top layer. Hence we see that the marking is

correct in this respect.

It would, of course, be possible to represent the cube on

a plane by means of four

squares, as in fig. 54, if we
consider each square to re-

present merely the beginning
of the region it stands for.

Thus the whole cube can be

represented by four vertical

squares, each standing for a

kind of vertical tray, and the
Fig. 54.

markings would be as shown. In No. 1 the major premiss
is in mood A for the whole of the region indicated by the

vertical square of sixteen divisions
;
in No. 2 it is in the

mood E, and so on.

A creature confined to a plane would have to adopt some

such disjunctive way of representing the whole cube. He
would be obliged to represent that which we see as a

whole in separate parts, and each part would merely

represent, would not be, that solid content which we see.
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The view of these four squares which the plane creature

would have would not be such as ours. He would not

see the interior of the four squares represented above, but

each would be entirely contained within its outline, the

internal boundaries of the separate small squares he could

not see except by removing the outer squares.

We are now ready to introduce the fourth variable

involved in the syllogism.

In assigning letters to denote the terms of the syllogism
we have taken s and p to represent the subject and

predicate in the conclusion, and thus in the conclusion

their order is invariable. But in the premisses we have

taken arbitrarily the order all M is P, and all s is M.

There is no reason why M instead of P should not be the

predicate of the major premiss, and so on.

Accordingly we take the order of the terms in the pre-

misses as the fourth variable. Of this order there are four

varieties, and these varieties are called figures.

Using the order in which the letters are written to

denote that the letter first written is subject, the one

written second is predicate, we have the following pos-

sibilities :

1st Figure. 2nd Figure. 3rd Figure, 4th Figure.

Major MP PM MP PM
Minor SM SM MS MS
There are therefore four possibilities with regard to

this fourth variable as with regard to the premisses.
We have used up our dimensions of space in represent-

ing the phases of the premisses and the conclusion in

respect of mood, and to represent in an analogous manner
the variations in figure we require a fourth dimension.

Now in bringing in this fourth dimension we must

make a change in our origins of measurement analogous
to that which we made in passing from the plane to the

solid.
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This fourth dimension is supposed to run at right

angles to any of the three space dimensions, as the third

space dimension runs at right angles to the two dimen-

sions of a plane, and thus it gives us the opportunity of

generating a new kind of volume. If the whole cube

moves in this dimension, the solid itself traces out a path,
each section of which, made at right angles to the

direction in which it moves, is a solid, an exact repetition
of the cube itself.

The cube as we see it is the beginning of a solid of such

a kind. It represents a kind of tray, as the square face of

the cube is a kind of tray against which the cube rests.

Suppose the cube to move in this fourth dimension in

four stages, and let the hyper-solid region traced out in

the first stage of its progress be characterised by this, that

the terms of the syllogism are in the first figure, then we

can represent in each of the three subsequent stages the

remaining three figures. Thus the whole cube forms

the basis from which we measure the variation in figure.

The first figure holds good for the cube as we see it, and

for that hyper-solid which lies within the first stage ;

the second figure holds good in the second stage, and

so on.

Thus we measure from the whole cube as far as figures

are concerned.

But we saw that when we measured in the cube itself

having three variables, namely, the two premisses and

the conclusion, we measured from three planes. The base

from which we measured was in every case the same.

Hence, in measuring in this higher space we should

have bases of the same kind to measure from, we should

have solid bases.

The first solid base is easily seen, it is the cube itself.

The other can be found from this consideration.

That soli(J from which we measure figure is that in
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which the remaining variables run through their full

range of varieties.

Now, if we want to measure in respect of the moods of

the major premiss, we must let the minor premiss, the

conclusion, run through their range, and also the order

of the terms. That is we must take as basis of measure-

ment in respect to the moods of the major that which

represents the variation of the moods of the minor, the

conclusion and the variation of the figures.

Now the variation of the moods of the minor and of the

conclusion are represented in the square face on the left

of the cube. Here are all varieties of the minor premiss
and the conclusion. The varieties of the figures are

represented by stages in a motion proceeding at right

angles to all space directions, at right angles consequently
to the face in question, the left-hand face of the cube.

Consequently letting the left-hand face move in this

direction we get a cube, and in this cube all the varieties

of the minor premiss, the conclusion, and the figure are

represented.
Thus another cubic base of measurement is given to

the cube, generated by movement of the left-hand square
in the fourth dimension.

We find the other bases in a similar manner, one is the

cube generated by the front square moved in the fourth

dimension so as to generate a cube. From this cube

variations in the mood of the minor are measured. The

fourth base is that found by moving the bottom square of

the cube in the fourth dimension. In this cube the

variations of the major, the minor, and the figure are given.

Considering this as a basis in the four stages proceeding
from it, the variation in the moods of the conclusion are

given.

Any one of these cubic bases can be represented in space,

and then the higher solid generated from them lies out of
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our space. It can only be represented by a device analogous
to that by which the plane being represents a cube.

He represents the cube shown above, by taking four

square sections and placing them arbitrarily at convenient

distances the one from the other.

So we must represent this higher solid by four cubes :

each cube represents only the beginning of the correspond-

ing higher volume.

It is sufficient for us, then, if we draw four cubes, the

first representing that region in which the figure is of the

first kind, the second that region in which the figure is

of the second kind, and so on. These cubes are the

beginnings merely of the respective regions they are

the trays, as it were, against which the real solids must

be conceived as resting, from which they start. The first

one, as it is the beginning of the region of the first figure,

is characterised by the order of the terms in the premisses

being that of the first figure. The second similarly has

the terms of the premisses in the order of the second

figure, and so on.

These cubes are shown below.

For the sake of showing the properties of the method

of representation, not for the logical problem, I will make
a digression. I will represent in space the moods of the

minor and of the conclusion and the different figures,

keeping the major always in mood A. Here we have

three variables in different stages, the minor, the con-

clusion, and the figure. Let the square of the left-hand

side of the original cube be imagined to be standing by

itself, without the solid part of the cube, represented by

(2) fig. 55. The A, E, I, o, which run away represent the

moods of the minor, the A, E, I, o, which run up represent
the moods of the conclusion. The whole square, since it

is the beginning of the region in the major premiss, mood

A, is to be considered as in major premiss, mood A.
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From this square, let it be supposed that that direc-

tion in which the figures are represented runs to the

left hand. Thus we have a cube (1) running from the

square above, in which the square itself is hidden, but

the letters A, E, I, o, of the conclusion are seen. In this

cube we have the minor premiss and the conclusion in all

their moods, and all the figures represented. With regard

to the major premiss, since the face (2) belongs to the first

wall from the left in the original arrangement, and in this

(D

Fig. 55.

4321

arrangement was characterised by the major premiss in the

mood A, we may say that the whole of the cube we now
have put up represents the mood A of the major premiss.
Hence the small cube at the bottom to the right in 1,

nearest to the spectator, is major premiss, mood A; minor

premiss, mood A; conclusion, mood A; and figure the first.

The cube next to it, runn'ng to the left, is major premiss,

mood A
;
minor premiss, mood A

; conclusion, mood A
;

figure 2.

So in this cube we have the representations of all the

combinations which can occur when the major premiss,

remaining in the mood A, the minor premiss, the conclu-

sion, and the figures pass through their varieties.

In this case there is no room in space for a natural

representation of the moods of the major premiss. To

represent them we must suppose as before that there is a

fourth dimension, and starting from this cube as base in

the fourth direction in four equal stages, all the first volume

corresponds to major premiss A, the s^pond to major
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premiss, mood E, the next to the mood I, and the last

to mood o.

The cube we see is as it were merely a tray against
which the four-dimensional figure rests. Its section at

any stage is a cube. But a transition in this direction

being transverse to the whole of our space is represented

by no space motion. We can exhibit successive stages of

the result of transference of the cube in that direction,

but cannot exhibit the product of a transference, however-

small, in that direction.

To return to the original method of representing our

variables, consider fig. 56. These four cubes represent
four sections of the figure derived from the first of them

Fig. 5(:

.

by moving it in the fourth dimension. The first por-
tion of the motion, which begins with 1, traces out a

more than solid body, which is all in the first figure.

The beginning of this body is shown in 1. The next

portion of the motion traces out a more than solid body,
all of which is in the second figure; the beginning of

this body is shown in 2; 3 and 4 follow on in like

manner. Here, then, in one four-dimensional figure we
have all the combinations of the four variables, major

premiss, minor premiss, figure, conclusion, represented,

each variable going through its four varieties. The dis-

connected cubes drawn are our representation in space by
means of disconnected sections of this higher body.
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Now it is only a limited number of conclusions which

are true their truth depends on the particular combina-

tions of the premisses and figures which they accompany.
The total figure thus represented may be called the

universe of thought in respect to these four constituents,

and out of the universe of possibly existing combinations

it is the province of logic to select those which corre-

spond to the results of our reasoning faculties.

We can go over each of the premisses in each of the

moods, and find out what conclusion logically follows.

But this is done in the works on logic ;
most simply and

clearly I believe in " Jevon's Logic." As we are only con-

cerned with a formal presentation of the results we will

make use of the mnemonic lines printed below, in which

the words enclosed in brackets refer to the figures, and

are not significative :

Barbara celarent Darii ferioque [prioris],

Caesare Camestris Festino Baroko [secundae].

[Tertia] darapti disamis datisi felapton.

Bokardo ferisson habei [Quarta insuper addit].

Bramantip camenes dimaris ferapton fresison.

In these lines each significative word has three vowels,

the first vowel refers to the major premiss, and gives the

mood of that premiss, "a" signifying, for instance, that

the major mood is in mood a. The second vowel refers

to the minor premiss, and gives its mood. The third

vowel refers to the conclusion, and gives its mood. Thus

(prioris) of the first figure the first mnemonic word is

"
barbara," and this gives major premiss, mood A

;
minor

premiss, mood A
; conclusion, mood A. Accordingly in the

first of our four cubes we mark the lowest left-hand front

cube. To take another instance in the third figure
"
Tertia,"

the word " ferisson
"
gives us major premiss mood E e.g.,

no M is P, minor premiss mood I
;
some M is s, conclusion,

mood p
5

some s is not p. The region
to be marked then
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in the third representative cube is the one in the second

wall to the right for the major premiss, the third wall

from the front for the minor premiss, and the top layer

for the conclusion.

It is easily seen that in the diagram this cube is

marked, and so with all the valid conclusions. The

regions marked in the total region show which com-

binations of the four variables, major premiss, minor

premiss, figure, and conclusion exist.

That is to say, we objectify all possible conclusions, and

build up an ideal manifold, containing all possible com-

binations of them with the premisses, and then out of

this we eliminate all that do not satisfy the laws of logic.

The residue is the syllogism, considered as a canon of

reasoning.

Looking at the shape which represents the totality

of the valid conclusions, it does not present any obvious

symmetry, or easily characterisable nature. A striking

configuration, however, is obtained, if we project the four-

dimensional figure obtained into a three-dimensional one
;

that is, if we take in the base cube all those cubes which

have a marked space anywhere in the series of four

regions which start from that cube.

This corresponds to making abstraction of the figures,

giving all the conclusions which are valid whatever the

figure may be.

Proceeding in this way we obtain the arrangement of

marked cubes shown in fig. 57. We see

that the valid conclusions are arranged
almost symmetrically round one cube the

one on the top of the column starting from

AAA. There is one breach of continuity
however in this scheme. One cube is

Fig. 57.
unmarked, which if marked would give

symmetry. It is the one which would be denoted by the
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letters I, E, o, in the third wall to the right, the second

wall away, the topmost layer. Now this combination of

premisses in the mood IE, with a conclusion in the mood

o, is not noticed in any book on logic with which I am
familiar. Let us look at it for ourselves, as it seems

that there must be something curious in connection with

this break of continuity in the poiograph.

M

2nd figure.

8rd figure.

Fig. 58.

4th figure.

The propositions I, E, in the various figures are the

following, as shown in the accompanying scheme, fig. 58 :

First figure : some M is p
;
no S is M. Second figure :

some P is M
;
no S is M. Third figure : some M is p

;
no

M is S. Fourth figure : some p is M
;
no M is s.

Examining these figures, we see, taking the first, that

jf some M is P and no S is M, we have no conclusion of
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the form s is p in the various moods. It is quite inde-

terminate how the circle representing s lies with regard
to the circle representing p. It may lie inside, outside,

or partly inside P. The same is true in the other figures
2 and 3. But when we come to the fourth figure, since

M and s lie completely outside each other, there cannot

lie inside s that part of p which lies inside M. Now
we know by the major premiss that some of P does lie

in M. Hence s cannot contain the whole of p. In

words, some P is M, no M is s, therefore s does not contain

the whole of P. If we take P as the subject, this gives
us a conclusion in the mood about p. Some P is not s.

But it does not give us conclusion about s in any one

of the four forms recognised in the syllogism and called

its moods. Hence the breach of the continuity in the

poiograph has enabled us to detect a lack of complete-
ness in the relations which are considered in the syllogism.

To take an instance : Some Americans (p) are of

African stock (M); No Aryans (s) are of African stock

(M) ; Aryans (s) do not include all of Americans (p).

In order to draw a conclusion about s we have to admit

the statement,
"
s does not contain the whole of p," as

a valid logical form it is a statement about s which can

be made. The logic which gives us the form,
" some p

is not s," and which does not allow us to give the exactly

equivalent and equally primary form,
" S does not con-

tain the whole of P," is artificial.

And I wish to point out that this artificiality leads

to an error.

If one trusted to the mnemonic lines given above, one

would conclude that no logical conclusion about s can

be drawn from the statement,
" some P are M, no M are s."

But a conclusion can be drawn : s does not contain

the whole of p.

}t is not that thp result is given expressed Jn another
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form. The mnemonic lines deny that any conclusion

can be drawn from premisses in the moods I, E, respectively
Thus a simple four-dimensional poiograph has enabled

us to detect a mistake in the mnemonic lines which have

been handed down unchallenged from mediaeval times.

To discuss the subject of these lines more fully a logician

defending them would probably say that a particular

statement cannot be a major premiss; and so deny the

existence of the fourth figure in the combination of moods.

To take our instance : some Americans are of African

stock
;
no Aryans are of African stock. He would sav

that the conclusion is some Americans are not Aryans ;

and that the second statement is the major. He would

refuse to say anything about Aryans, condemning us to

an eternal silence about them, as far as these premisses
are concerned ! But, if there is a statement involving
the relation of two classes, it must be expressible as a

statement about either of them.

To bar the conclusion, "Aryans do not include the

whole of Americans," is purely a makeshift in favour of

a false classification.

And the argument drawn from the universality of the

major premiss cannot be consistently maintained. It

would preclude such combinations as major o, minor A,

conclusion o i.e., such as some mountains (M) are not

permanent (p); all mountains (M) are scenery (s) ;
some

scenery (s) is not permanent (p).

This is allowed in " Jevon's Logic," and his omission to

discuss I, E, o, in the fourth figure, is inexplicable. A
satisfactory poiograph of the logical scheme can be made

by admitting the use of the words some, none, or all,

about the predicate as well as about the subject. Then
we can express the statement,

"
Aryans do not include the

whole of Americans," clumsily, but, when its obscurity

is fathomed, correctly, as
" Some Aryans are not all
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Americans." And this method is what is called the
"
quantification of the predicate."

The laws of formal logic are coincident with the con-

clusions which can be drawn about regions of space, which

overlap one another in the various possible ways. It is

not difficult so to state the relations or to obtain a

symmetrical poiograph. But to enter into this branch of

geometry is beside our present purpose, which is to show

the application of the poiograph in a finite and limited

region, without any of those complexities which attend its

use in regard to natural objects.

If we take the latter plants, for instance and, without

assuming fixed directions in space as representative of

definite variations, arrange the representative points in

such a manner as to correspond to the similarities of the

objects, we obtain configuration of singular interest
;
and

perhaps in this way, in the making of shapes of shapes,

bodies with bodies omitted, some insight into the structure

of the species and genera might be obtained.



CHAPTER IX

APPLICATION TO KANT'S THEORY OP
EXPERIENCE

WHEN we observe the heavenly bodies we become aware

that they all participate in one universal motion a

diurnal revolution round the polar axis.

In the case of fixed stars this is most unqualifiedly true,

but in the case of the sun, and the planets also, the single

motion of revolution can be discerned, modified, and

slightly altered by other and secondary motions.

Hence the universal characteristic of the celestial bodies

is that they move in a diurnal circle.

But we know that this one great fact which is true of

them all has in reality nothing to do with them. The

diurnal revolution which they visibly perform is the result

of the condition of the observer. It is because the

observer is on a rotating earth that a universal statement

can be made about all the celestial bodies.

The universal statement which is valid about every one

of the celestial bodies is that which does not concern

them at all, and is but a statement of the condition of

the observer.

Now there are universal statements of other kinds

which we can make. We can say that all objects of

experience are in space and subject to the laws of

geometry.
wr



108 THE FOURTH DIMENSION

Does this mean that space and all that it means is due

to a condition of the observer ?

If a universal law in one case means nothing affecting

the objects themselves, but only a condition of observa-

tion, is this true in every case? There is shown us in

astronomy a vera causa for the assertion of a universal.

Is the same cause to be traced everywhere?
Such is a first approximation to the doctrine of Kant's

critique.

It is the apprehension of a relation into which, on the

one side and the other, perfectly definite constituents

enter the human observer and the stars and a trans-

ference of this relation to a region in which the con-

stituents on either side are perfectly unknown.

If spatiality is due to a condition of the observer, the

observer cannot be this bodily self of ours the body, like

the objects around it, are equally in space.

This conception Kant applied, not only to the intuitions

of sense, but to the concepts of reason wherever a universal

statement is made there is afforded him an opportunity
for the application of his principle. He constructed a

system in which one hardly knows which the most to

admire, the architectonic skill, or the reticence with regard
to things in themselves, and the observer in himself.

His system can be compared to a garden, somewhat

formal perhaps, but with the charm of a quality more

than intellectual, a besonnenheit, an exquisite moderation

over all. And from the ground he so carefully prepared
with that buried in obscurity, which it is fitting should

be obscure, science blossoms and the tree of real knowledge

grows.
The critique is a storehouse of ideas of profound interest.

The one of which I have given a partial statement leads,

as we shall see on studying it in detail, to a theory of

mathematics suggestive of enquiries in many direptjon?.
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The justification for my treatment will be found

amongst other passages in that part of the transcendental

analytic, in which Kant speaks of objects of experience

subject to the forms of sensibility, not subject to the

concepts of reason.

Kant asserts that whenever we think we think of

objects in space and time, but he denies that the space
and time exist as independent entities. He goes about

to explain them, and their universality, not by assuming
them, as most other philosophers do, but by postulating
their absence. How then does it come to pass that the

world is in space and time to us ?

Kant takes the same position with regard to what we
call nature a great system subject to law and order.
" How do you explain the law and order in nature ?

" we
ask the philosophers. All except Kant reply by assuming
law and order somewhere, and then showing how we can

recognise it.

In explaining our notions, philosophers from ether than

the Kantian standpoint, assume the notions as existing
outside us, and then it is no difficult task to show how

they come to us, either by inspiration or by observation.

We ask " Why do we have an idea of law in nature ?
"

" Because natural processes go according to law," we are

answered,
" and experience inherited or acquired, gives us

this notion."

But when we speak about the law in nature we are

speaking about a notion of our own. So all that these

expositors do is to explain our notion by an assumption
of it.

Kant is very different. He supposes nothing. An ex-

perience such as ours is very different from experience
in the abstract. Imagine just simply experience, suc-

cession of states, of consciousness ! Why, there would

be no connecting any two together, there would be no
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personal identity, no memory. It is out of a general

experience such as this, which, in respect to anything we

call real, is less than a dream, that Kant shows the

genesis of an experience such as ours.

Kant takes up the problem of the explanation of space,

time, order, and so quite logically does not presuppose
them.

But how, when every act of thought is of things in

space, and time, and ordered, shall we represent to our-

selves that perfectly indefinite somewhat which is Kant's

necessary hypothesis that which is not in space or time

and is not ordered. That is our problem, to represent
that which Kant assumes not subject to any of our forms

of thought, and then show some function which working
on that makes it into a " nature

"
subject to law and

order, in space and time. Such a function Kant calls the

"Unity of Apperception"; i.e., that which makes our state

of consciousness capable of being woven into a system
with a self, an outer world, memory, law, cause, and order.

The difficulty that meets us in discussing Kant's

hypothesis is that everything we think of is in space
and time how then shall we represent in space an exis-

tence not in space, and in time an existence not in time ?

This difficulty is still more evident when we come to

construct a poiograph, for a poiograph is essentially a

space structure. But because more evident the difficulty

is nearer a solution. If we always think in space, i.e.

using space concepts, the first condition requisite for

adapting them to the representation of non-spatial exis-

tence, is to be aware of the limitation of our thought,
and so be able to take the proper steps to overcome it.

The problem before us, then, is to represent in space an

existence not in space.

The solution is an easy one. It is provided by the

conception of alternativity.
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To get our ideas clear let us go right back behind the

distinctions of an inner and an outer world. Both of

these, Kant says, are products. Let us take merely states

of consciousness, and not ask the question whether they are

produced or superinduced to ask such a question is to

have got too far on, to have assumed something of which

we have not traced the origin. Of these states let us

simply say that they occur. Let us now use the word

a "posit" for a phase of consciousness reduced to its

last possible stage of evanescence
;

let a posit be that

phase of consciousness of which all that can be said is

that it occurs.

Let a, b, c, be three such posits. We cannot represent
them in space without placing them in a certain order,

as a, b, c. But Kant distinguishes between the forms

of sensibility and the concepts of reason. A dream in

which everything happens at haphazard would be an

experience subject to the form of sensibility and only

partially subject to the concepts of reason. It is par-

tially subject to the concepts of reason because, although
there is no order of sequence, still at any given time

there is order. Perception of a thing as in space is a

form of sensibility, the perception of an order is a concept
of reason.

We must, therefore, in order to get at that process
which Kant supposes to be constitutive of an ordered

experience imagine the posits as in space without

order.

As we know them they must be in some order, abc,

bca, cab, acb, cba, bac, one or another.

To represent them as having no order conceive all

these different orders as equally existing. Introduce the

conception of alternativity let us suppose that the order

abc, and bac, for example, exist equally, so that we
cannot say about a that it comes before or after b. This
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would correspond to a sudden and arbitrary change of rt

into 6 and b into a, so that, to use Kant's words, it would

be possible to call one thing by one name at one time

and at another time by another name.

In an experience of this kind we have a kind of chaos,

in which no order exists; it is a manifold not subject to

the concepts of reason.

Now is there any process by which order can be intro-

duced into such a manifold is there any function of

consciousness in virtue of which an ordered experience
could arise ?

In the precise condition in which the posits are, as

described above, it does not seem to be possible. But

if we imagine a duality to exist in the manifold, a

function of consciousness can be easily discovered which

will produce order out of no order.

Let us imagine each posit, then, as having, a dual aspect.

Let a be la in which the dual aspect is represented by the

combination of symbols. And similarly let b be 26,

c be 3c, in which 2 and b represent the dual aspects

of 6, 3 and c those of c.

Since a can arbitrarily change into 6, or into c, and

so on, the particular combinations written above cannot

be kept. We have to assume the equally possible occur-

rence of form such as 2a, 2b, and so on
;
and in order

to get a representation of all those combinations out of

which any set is alternatively possible, we must take

every aspect with every aspect. We must, that is, have

every letter with every number.

Let us now apply the method of space represention.

Note. At the beginning of the next chapter the same

structures as those which follow are exhibited in

more detail and a reference to them will remove

any obscurity which may be found in the imme-

diately following passages. They are there carried
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on to a greater multiplicity of dimensions, and the

significance of the process here briefly explained
becomes more apparent.

Take three mutually rectangular axes in space 1, 2, 3

(fig. 59), and on each mark three points,

the common meeting point being the

first on each axis. Then by means of

these three points on each axis we

define 27 positions, 27 points in a

cubical cluster, shown in
fig. 60, the

same method of co-ordination being
used as has been described before.

Each of these positions can be named by means of the

axes and the points combined.

Thus, for instance, the one marked by an asterisk can

<*k be called Ic, 26, 3c, because it is

opposite to c on 1, to 6 on 2, to

c on 3.

Let us now treat of the states of

consciousness corresponding to these

positions. Each point represents a

composite of posits, and the mani-

fold of consciousness corresponding
Fig. <;o. ,, r , . ,*_..

to them is of a certain complexity.

Suppose now the constituents, the points on the axes,

to interchange arbitrarily, any one to become any other,

and also the axes 1, 2, and 3, to interchange amongst
themselves, any one to become any other, and to be sub-

ject to no system or law, that is to say, that order does

not exist, and that the points which run abc on each axis

may run bac, and so on.

Then any one of the states of consciousness represented

by the points in the cluster can become any other. We
have a representation of a random consciousness of a

certain degree of complexity
8
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c2a3c

Now let us examine carefully one particular case of

arbitrary interchange of the points, a, b, c ;
as one such

case, carefully considered, makes the whole clear.

Consider the points named in the figure Ic, 2a, 3c
;

Ic, 2c, 3a
; la, 2c, 3c, and

examine the effect on them
>32c3c when a change of order takes

( place. Let us suppose, for

instance, that a changes into 6,

and let us call the two sets of

points we get, the one before

and the one after, their change

conjugates.

1c2c3a

Fig. 01.

Before the change Ic 2a Be Ic 2c 3a la 2c 3c

After the change Ic 2b 3f Ic 2e 3b Ib 2c 3o
\ Conjugates.

The points surrounded by rings represent the conjugate

points.

It is evident that as consciousness, represented first by
the first set of points and afterwards by the second set of

points, would have nothing in common in its two phases.

It would not be capable of giving an account of itself.

There would be no identity.

If, however, we can find any set of points in the

cubical cluster, which, when any arbitrary change takes

place in the points on the axes, or in the axes themselves,

repeats itself, is reproduced, then a consciousness repre-

sented by those points would have a permanence. It

would have a principle of identity. Despite the no law,

the no order, of the ultimate constituents, it would have

an order, it would form a system, the condition of a

personal identity would be fulfilled.

The question comes to this, then. Can we find a

system of points which is self-conjugate which is such

that when any posit on the axes becomes any other, or
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when any axis becomes any other, such a set is trans-

formed into itself, its identity
is not submerged, but rises

superior to the chaos of its

constituents?

Such a set can be found.

Consider the set represented
in fig. 62, and written down in

the first of the two lines
Fig. 62.

Self- flaZbSc \b la 3c Ic 2a 3b Ic 2b 3a Ib 2c 3a Ia2o3b

conjugate.\lc2b3a Ib 2c 3a la 2c 3b la 2b 3c Ib 2d 3c Ic 2a 3b

If now a change into c and c into a, we get the set in

the second line, which has the same members as are in the

upper line. Looking at the diagram we see that it would

correspond simply to the turning of the figures as a

whole.* Any arbitrary change of the points on the axes,

or of the axes themselves, reproduces the same set.

Thus, a function, by which a random, an unordered, con-

sciousness could give an ordered and systematic one, can

be represented. It is noteworthy that it is a system of

selection. If out of all the alternative forms that only is

attended to which is self-conjugate, an ordered conscious-

ness is formed. A selection gives a feature of permanence.
Can we say that the permanent consciousness is this

selection ?

An analogy between Kant and Darwin comes into light.

That which is swings clear of the fleeting, in virtue of its

presenting a feature of permanence. There is no need

to suppose any function of "
attending to." A con-

sciousness capable of giving au account of itself is one

which is characterised by this combination. All com-

binations exist of this kind is the consciousness which

can give an account of itself. And the very duality which
* These figures are described more fully, and extended, in the next

chapter.
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we have presupposed may be regarded as originated by
a process of selection.

Darwin set himself to explain the origin of the fauna

and flora of the world. He denied specific tendencies.

He assumed an indefinite variability that is, chance

but a chance confined within narrow limits as regards the

magnitude of any consecutive variations. He showed that

organisms possessing features of permanence, if they
occurred would be preserved. So his account of any
structure or organised being was that it possessed features

of permanence.

Kant, undertaking not the explanation of any particular

phenomena but of that which we call nature as a whole,

had an origin of species of his own, an account of the

flora and fauna of consciousness. He denied any specific

tendency of the elements of consciousness, but taking our

own consciousness, pointed out that in which it resembled

any consciousness which could survive, which could give
an account of itself.

He assumes a chance or random world, and as great
and small were not to him any given notions of which he

could make use, he did not limit the chance, the random-

ness, in any way. But any consciousness which is per-

manent must possess certain features those attributes

namely which give it permanence. Any consciousness

like our own is simply a consciousness which possesses

those attributes. The main thing is that which he calls

the unity of apperception, which we have seen above is

simply the statement that a particular set of phases of

consciousness on the basis of complete randomness will be

self-conjugate, and so permanent.
As with Darwin so with Kant, the reason for existence

of any feature comes to this show that it tends to the

permanence of that which possesses it.

We can thus regard Kant as the creator of the first of
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the modern evolution theories. And, as is so often the

case, the first effort was the most stupendous in its scope.

Kant does not investigate the origin of any special part

of the world, such as its organisms, its chemical elements,

its social communities of men. He simply investigates
the origin of the whole of all that is included in con-

sciousness, the origin of that "thought thing" whose

progressive realisation is the knowable universe.

This point of view is very different from the ordinary

one, in which a man is supposed to be placed in a world

like that which he has come to think of it, and then to

learn what he has found out from this model which he

himself has placed on the scene.

We all know that there are a number of questions in

attempting an answer to which such an assumption is not

allowable.

Mill, for instance, explains our notion of " law
"
by an

invariable sequence in nature. But what we call nature

is something given in thought. So he explains a thought
"-f law and order by a thought of an invariable sequence.
lie leaves the problem where he found it.

Kant's theory is not unique and alone. It is one of

a number of evolution theories. A notion of its import
and significance can be obtained by a comparison of it

with other theories.

Thus in Darwin's theoretical world of natural selection

a certain assumption is made, the assumption of indefinite

variability slight variability it is true, over any appre-
ciable lapse of time, but indefinite in the postulated

epochs of transformation and a whole chain of results

is shown to follow.

This element of chance variation is not, however, an

ultimate resting place. It is a preliminary stage. This

supposing the all is a preliminary step towards finding

out what is. If every kind of organism can come into
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being, those that do survive will present such and such

characteristics. This is the necessary beginning for ascer-

taining what kinds of organisms do come into existence.

And so Kant's hypothesis of a random consciousness is

the necessary beginning for the rational investigation

of consciousness as it is. His assumption supplies, as

it were, the space in which we can observe the pheno-
mena. It gives the general laws constitutive of any

experience. If, on the assumption of absolute random-

ness in the constituents, such and such would be

characteristic of the experience, then, whatever the con-

stituents, these characteristics must be universally valid.

We will now proceed to examine more carefully the

poiograph, constructed for the purpose of exhibiting an

illustration of Kant's unity of apperception.
In order to show the derivation order out of non-order

it has been necessary to assume a principle of duality

we have had the axes and the posits on the axes there

are two sets of elements, each non-ordered, and it is in

the reciprocal relation of them that the order, the definite

system, originates.

Is there anything in our experience of the nature of a

duality ?

There certainly are objects in our experience which

have order and those which are incapable of order. The
two roots of a quadratic equation have no order. No one

can tell which comes first. If a body rises vertically and

then goes at right angles to its former course, no one can

assign any priority to the direction of the north or to the

east. There is no priority in directions of turning. We
associate turnings with no order progressions in a line

with order. But in the axes and points we have assumed

above there is no such distinction. It is the same, whether

we assume an order among the turnings, and no order

among the points on the axes, or, vice versa, an order in
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the points and no order in the turnings. A being with

an infinite number of axes mutually at right angles,

with a definite sequence between them and no sequence
between the points on the axes, would be in a condition

formally indistinguishable from that of a creature who,

according to an assumption more natural to us, had on

each axis an infinite number of ordered points and no

order of priority amongst the axes, A being in such

a constituted world would not be able to tell which

was turning and which was length along an axis, in

order to distinguish between them. Thus to take a per-

tinent illustration, we may be in a world of an infinite

number of dimensions, with three arbitrary points on

each three points whose order is indifferent, or in a

world of three axes of arbitary sequence with an infinite

number of ordered points on each. We can't tell which

is which, to distinguish it from the other.

Thus it appears the mode of illustration which we
have used is not an artificial one. There really exists

in nature a duality of the kind which is necessary to

explain the origin of order out of no order the duality,

namely, of dimension and position. Let us use the term

group for that system of points which remains unchanged,
whatever arbitrary change of its constituents takes place.

We notice that a group involves a duality, is inconceivable

without a duality.

Thus, according to Kant, the primary element of ex-

perience is the group, and the theory of groups would be

the most fundamental branch of science. Owing to an

expression in the critique the authority of Kant is some-

times adduced against the assumption of more than three

dimensions to space. It seems to me, however, that the

whole tendency of his theory lies in the opposite direction,

and points to a perfect duality between dimension and

position in a dimension.
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If the order and the law we see is due to the conditions

of conscious experience, we must conceive nature as

spontaneous, free, subject to no predication that we can

devise, but, however apprehended, subject to our logic.

And our logic is simply spatiality in the general sense

that resultant of a selection of the permanent from the

unpermanent, the ordered from the unordered, by the

means of the group and its underlying duality.

We can predicate nothing about nature, only about the

way in which we can apprehend nature. All that we can

say is that all that which experience gives us will be con-

ditioned as spatial, subject to our logic. Thus, in exploring
the facts of geometry from the simplest logical relations

to the properties of space of any number of dimensions,
we are merely observing ourselves, becoming aware of

the conditions under which we must perceive. Do any

phenomena present themselves incapable of explanation
under the assumption of the space we are dealing with,

then we must habituate ourselves to the conception of a

higher space, in order that our logic may be equal to the

task before us.

We gain a repetition of the thought that came before,

experimentally suggested. If the laws of the intellectual

comprehension of nature are those derived from con-

sidering her as absolute chance, subject to no law save

that derived from a process of selection, then, perhaps, the

order of nature requires different faculties from the in-

tellectual to apprehend it. The source and origin of

ideas may have to be sought elsewhere than in reasoning.
The total outcome of the critique is to leave the

ordinary man just where he is, justified in his practical

attitude towards nature, liberated from the fetters of his

own mental representations.

The truth of a picture lies in its total effect. It is vain

to seek information about the landscape from an examina-
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tion of the pigments. And in any method of thought it

is the complexity of the whole that brings us to a know-

ledge of nature. Dimensions are artificial enough, but in

the multiplicity of them we catch some breath of nature.

We must therefore, and this seems to me the practical

conclusion of the whole matter, proceed to form means of

intellectual apprehension of a greater and greater degree
of complexity, both dimensionally and in extent in any
dimension. Such means of representation must always
be artificial, but in the multiplicity of the elements with

which we deal, however incipiently arbitrary, lies our

chance of apprehending nature.

And as a concluding chapter to this part of the book,

I will extend the figures, which have been used to repre-

sents Kant's theory, two steps, so that the reader may
have the opportunity of looking at a four-dimensional

figure which can be delineated without any of the special

apparatus, to the consideration of which I shall subse-

quently pass on.



CHAPTER X

A FOUR-DIMENSIONAL FIGURE

THE method used in the preceding chapter to illustrate

the problem of Kant's critique, gives a singularly easy
and direct mode of constructing a series of important

figures in any number of dimensions.

We have seen that to represent our space a plane being
must give up one of his axes, and similarly to represent
the higher shapes we must give up one amongst our

three axes.

But there is another kind of giving up which reduces

the construction of higher shapes to a matter of the

utmost simplicity.

Ordinarily we have on a straight line any number of

positions. The wealth of space in position is illimitable,

while there are only three dimensions.

I propose to give up this wealth of positions, and to

consider the figures obtained by taking just as many
positions as dimensions.

In this way I consider dimensions and positions as two
"
kinds," and applying the simple rule of selecting every

one of one kind with every other of every other kind,

get a series of figures which are noteworthy because

they exactly fill space of any number of dimensions

(as the hexagon fills a plane) by equal repetitions of

themselves.
122
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The rule will be made more evident by a simple

application.

Let us consider one dimension and one position. I will

call the axis i, and the position o.

Here the figure is the position o on the line i. Take
now two dimensions and two positions on each.

We have the two positions o ; 1 on i, and the two

positions o, 1 on j, fig. 63. These give
J rise to a certain complexity. I will

let the two lines i and j meet in the

position I call o on each, and I will

consider i as a direction starting equally
big. 63.

from every position on j, and j as

B it.oj

starting equally from every position on i. We thus

obtain the following figure : A is both oi and oj, B is 1 i

A_C ai]d o}, and so on as shown in
fig. 636.

The positions on AC are all oi positions.

They are, if we like to consider it in

that way, points at no distance in the i

direction from the line AC. We can

call the line AC the oi line. Similarly
the points on AB are those no distance

Fig. 63ft. from AB in thej direction, and we can

call them oj points and the line AB the oj line. Again,
the line CD can be called the Ij line because the points

on it are at a distance, 1 in the j direction.

We have then four positions or points named as shown,

and, considering directions and positions as "
kinds," we

have the combination of two kinds with two kinds. Now,

selecting every one of one kind with every other of every
other kind will mean that we take 1 of the kind i and
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with it o of the kind j ;
and then, that we take o of the

kind i and with it 1 of the kind j.

Thus we get a pair of positions lying in the straight

C line BC, fig. 64. We can call this pair 10

and 01 if we adopt the plan of mentally,

adding an i to the first and a j to the

second of the symbols written thus 01

is a short expression for Oi, Ij.

Coining now to our space, we have three

dimensions, so we take three positions on each. These

positions I will suppose to be at equal distances along each

. 64.

Fig. 65.

axis. The three axes and the three positions on each are

shown in the accompanying diagrams, fig. 65, of which

the first represents a cube with the front faces visible, the

second the rear faces of the same cube
;
the positions I

will call 0, 1, 2
;
the axes, i,j, k. I take the base ABC as

the starting place, from which to determine distances in

the k direction, and hence every point in the base ABC

will be an ok position, and the base ABC can be called an

ok plane.

In the same way, measuring the distances from the face

\DC, we see that every position in the face ADC is a oi

position, and the whole plane of the face may be called an

oi plane. Thus we see that with the introduction of a
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hew dimension the signification of a compound symbol,
such as "

oi," alters. In the plane it meant the line AC.

In space it means the whole plane ACD.

Now, it is evident that we have twenty-seven positions,

each of them named. If the reader will follow this

nomenclature in respect of the positions marked in the

figures he will have no difficulty in assigning names to

each one of the twenty-seven positions. A is oi, oj, uk.

It is at the distance along i, along j, along k, and

io can be written in short 000, where the ijk symbols
are omitted.

The point immediately above is 001, for it is no dis-

tance in the i direction, and a distance of 1 in the k

direction. Again, looking at B, it is at a distance of 2

from A, or from the plane ADC, in the i direction, in the

j direction from the plane ABD, and in the k direction,

measured from the plane ABC. Hence it is 200 written

for 2i, Oj, Ok.

Now, out of these twenty-seVen "things
"
or compounds

of position and dimension, select those which are given by
the rule, every one of one kind with every other of every

other kind.

Take 2 of the i kind. With this

we must have a 1 of the j kind,

and then by the rule we can only

have a of the k kind, for if we

had any other of the k kind we

should repeat one of the kinds we

already had. In 2i, Ij, Ik, for

instance, 1 is repeated. The point

we obtain is that marked 210, fig. 66.

Proceeding in this way, we pick out the following

cluster of points, fig.
67. They are joined by lines,

dotted where they are hidden by the body of the cube,

and we see that they form a figure a hexagon which
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could be taken out of the cube and placed on a plane.
It is a figure which will fill a

plane by equal repetitions of itself.

The plane being representing this

construction in his plane would
take three squares to represent the

cube. Let us suppose that he
takes the ij axes in his space and
k represents the axis running out

of his space, fig. 68. In each of

the three squares shown here as drawn separately he
could select the points given by the rule, and he would

Fig. Gi

then have to try to discover the figure determined by
the three lines drawn. The line from 210 to 120 is

given in the figure, but the line from 201 to 102 or GK

is not given. He can determine GK by making another

set of drawing^ and discovering in them what the relation

between these two extremities is.

I02.X'
"x-fc

201

C2I

^B
Fig. 69.

Let him draw the i and k axes in his plane, fig. 69.

The j axis then runs out and he has the accompanying

figure. In the first of these three squares, fig. 69, he can



127

pick out by the rule the two points 201, 102 u, and K.

Here they occur in one plane and he can measure the

distance between them. In his first representation they
occur at G and K in separate figures.

Thus the plane being would find that the ends of each

of the lines was distant by the diagonal of a unit square

from the corresponding end of the last and he could then

place the three lines in their right relative position.

Joining them he would have the figure of a hexagon.
We may also notice that the plane being could make

a representation of the whole cube

simultaneously. The three squares,

shown in perspective in fig. 70, all

lie in one plane, and on these the

plane being could pick out any
selection of points just as well as on

three separate squares. He would

obtain a hexagon by joining the

points marked. This hexagon, as

drawn, is of the right shape, but it would not be so if

actual squares were used instead of perspective, because

the relation between the separate squares as they lie in

the plane figure is not their real relation. The figure,

however, as thus constructed, would give him an idea of

the correct figure, and he could determine it accurately

by remembering that distances in each square were

correct, but in passing from one square to another their

distance in the third dimension had to be taken into

account.

Coming now to the figure made by selecting according
to our rule from the whole mass of points given by four

axes and four positions in each, we must first draw a

catalogue figure in which the whole assemllage is shown.
We can represent this assemblage of points by four

solid figures. The first
giving all those positions which

Fig. 70.
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are at a distance o from our space in the fourth dimen*

sion, the second showing all those that are at a distance 1,

and so on.

These figures will each be cubes. The first two are

drawn showing the front faces, the second two the rear

faces. We will mark the points 0, 1,2, 3, putting points
at those distances along each of these axes, and suppose

Fig. 71.

all the points thus determined to be contained in solid

models of which our drawings in
fig. 71 are represen-

tatives. Here we notice that as on the plane Oi meant
the whole line from which the distances in the i direction

was measured, and as in space Oi means the whole plane
from which distances in the i direction are measured, so

now Oh means the whole space in which the first cube

stands measuring away from that space by a distance

of one we come to the second cuhe represented.
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Now selecting according to the rule every one of one

kind with every other of every other kind, we must take,

for instance, 3i, 2j, Ik, Oh. This point is marked

3210 at the lower star in the figure. It is 3 in the

i direction, 2 in the j direction, 1 in the k direction,

in the h direction.

With 3i we must also take 1^ 2k, Oh. This point
is shown by the second star in the cube Ohi,

In the first cube, since all the points are Oh points,

we can only have varieties in which i, j, k, are accom-

panied by 3, 2, 1.

The points determined are marked off in the diagram

fig. 72, and lines are drawn joining the adjacent pairs
in each figure, the lines being dotted when they pass
within the substance of the cube in the first two diagrams.

Opposite each point, on one side or the other of each

9
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cube, is written its name. It will be noticed that the

figures are symmetrical right and left; and right and

left the first two numbers are simply interchanged.
Now this being our selection of points, what figure do

they make when all are put together in their proper
relative positions ?

To determine this we must find the distance between

corresponding corners of the separate hexagons.

2103 0215

5102

2K
Fig. 73.

3K

To do this let us keep the axes i, j, in our space, and

draw h instead of k, letting k run out in the fourth

dimension, fig. 73.

Here we have four cubes again, in the first of which all

the points are Ok points ;
that is, points at a distance zero

in the k direction from the space of the three dimensions

ijh. We have all the points selected before, and some

of the distances, which in the last diagram led from figure

to figure are shown here in the same figure, and so capable
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of measurement. Take for instance the points 3120 to

3021, which in the first diagram (fig. 72) lie in the first

and second figures. Their actual relation is shown in

fig. 73 in the cube marked 2K, where the points in ques-
tion are marked with a * in fig. 73. We see that the

distance in question is the diagonal of a unit square. In

like manner we find that the distance between corres-

ponding points of any two hexagonal figures is the

diagonal of a unit square. The total figure is now easily

constructed. An idea .

of it may be gained by T
BX^XJ

drawing all the four

cubes in the catalogue

figure in one (fig. 74).

These cubes are exact

repetitions of one

another, so one draw-

ing will serve as a

representation of the

whole series, if we
take care to remember
where we are, whether

in a Oh, a Ih, a 2h,

or a 3h figure, when
we pick out the points required. Fig. 74 is a represen-
tation of all the catalogue cubes put in one. For the

sake of clearness the front faces and the back faces of

this cube are represented separately.
The figure determined by the selected points is shown

below.

In putting the sections together some of the outlines

in them disappear. The line TW for instance is not

wanted.

We notice that PQTW and TWRS are each the half

of a hexagon. Now QV and VR lie in .one straight line.

Fig. 74.
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Hence these two hexagons fit together, forming one

hexagon, and the line TVV is only wanted when we con-

sider a section of the whole figure, we thus obtain the

solid represented in the lower part of fig. 74. Equal

repetitions of this figure, called a tetrakaidecagon, will

fill up three-dimensional space.

To make the corresponding four-dimensional figure we
have to take five axes mutually at right angles with five

points on each. A catalogue of the positions determined

in five-dimensional space can be found thus.

Take a cube with five points on each of its axes, the

fifth point is at a distance of four units of length from the

first on any one of the axes. And since the fourth dimen-

also stretches to a distance of four we shall need to

represent the succes-BO
-ion

4L
sive sets of points at

distances 0, 1, 2, 3,4,

in the fourth dimen-

sions, five cubes. Now
all of these extend to

no distance at all in

the fifth dimension.

To represent what

lies in the fifth dimen
sion we shall have to

draw, starting from

each of our cubes, five

similar cubes to re-

present the four steps
on in the fifth dimension. By this assemblage we get a

catalogue of all the points shown in fig. 75, in which

L represents the fifth dimension.

Now, as we saw before, there is nothing to prevent us

from putting all the cubes representing the different

stages in the fourth dimension in one figure, if we take

OH
Fig. 7r,.
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note when we look at it, whether we consider it as a OA, a

\h, a 2h, etc., cube. Putting then the Oh, Ih, 2h, 3h, 4/4

cubes of each row in one, we have five cubes with the sides

of each containing five positions, the first of these five

cubes represents the 01 points, and has in it the i points
from to 4, the j points from to 4, the k points from

to 4, while we have to specify with regard to any
selection we make from it, whether we regard it as a Oh,

a Ih, a 2h, a 3&, or a 4h figure. In fig. 76 each cube

is represented by two drawings, one of the front part, the

other of the rear part.

Let then our five cubes be arranged before us and our

selection be made according to the rule. Take the first

figure in which all points are Ql points. We cannot

have with any other letter. Then, keeping in the first

figure, which is that of the Ql positions, take first of all

that selection which always contains Ih. We suppose,

therefore, that the cube is a Ih cube, and in it we take

i,j, k in combination with 4, 3, 2 according to the rule.

The figure we obtain is a hexagon, as shown, the one

in front. The points on the right hand have the same

figures as those on the left, with the first two numerals

interchanged. Next keeping still to the Ql figure let

us suppose that the cube before us represents a section

at a distance of 2 in the h direction. Let all the points
in it be considered as 2h points. We then have a 01, 2h

region, and have the sets ijk and 431 left over. We
must then pick out in accordance with our rule all such

points as 4i, 3jf,
Ik.

These are shown in the figure and we find that we can

draw them without confusion, forming the second hexagon
from the front. Going on in this way it will be seen

that in each of the five figures a set of hexagons is picked

out, which put together form a three-space figure some-

thing like the
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These separate figures are the successive stages in

which the whole four-dimensional figure in which they
cohere can be apprehended.
The first figure and the last are tetrakaidecagons.

These are two of the solid boundaries of the figure. The

other solid boundaries can be traced easily. Some of

them are complete from one face in the figure to the

corresponding face in the next, as for instance the solid

which extends from the hexagonal base of the first figure

to the equal hexagonal base of the second figure. This

kind of boundary is a hexagonal prism. The hexagonal

prism also occurs in another sectional series, as for

instance, in the square at the bottom of the first figure,

the oblong at the base of the second and the square at

the basii of the third figure.

Other solid boundaries can be traced through four of

the five sectional figures. Thus taking the hexagon at

the top of the first figure we find in the next a hexagon

also, of which some alternate sides are elongated. The

top of the third figure is also a hexagon with the other

set of alternate rules elongated, and finally we come in

the fourth figure to a regular hexagon.
These four sections are the sections of a tetrakaidecagon

as can be recognised from the sections of this figure

which we have had previously. Hence the boundaries

are of two kinds, hexagonal prisms and tetrakaidecagons.
These four-dimensional figures exactly fill four-dimen-

sional space by equal repetitions of themselves.



CHAPTER XI

NOMENCLATURE AND ANALOGIES PRELIM-
INARY TO THE STUDY OF FOUR DIMEN-

SIONAL FIGURES

IN the following pages a method of designating different

regions of space by a systematic colour scheme has been

adopted. The explanations have been given in such a

manner as to involve no reference to models, the diagrams
will be found sufficient. But to facilitate the study a

description of a set of models is given in an appendix
which the reader can either make for himself or obtain.

If models are used the diagrams in Chapters XI. and XII.

will form a guide sufficient to indicate their use. Cubes

of the colours designated by the diagrams should be picked
out and used to reinforce the diagrams. The reader,

in the following description, should

suppose that a board or wall

stretches away from him, against
which the figures are placed.

Take a square, one of those

shown in Fig. 77 and give it a

neutral colour, let this colour be

called "null," and be such that it

makes no appreciable difference

c

130
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to any colour with which it mixed. If there is no

such real colour let us imagine such a colour, and

assign to it the properties of the number zero, which

makes no difference in any number to which it is

added.

Above this square place a red square. Thus we symbolise

the going up by adding red to null.

Away from this null square place a yellow square, and

represent going away by adding yellow to null.

To complete the figure we need a fourth square.

Colour this orange, which is a mixture of red and

yellow, and so appropriately represents a going in a

direction compounded of up and away. We have thus

a colour scheme which will serve to name the set of

squares drawn. We have two axes of colours red and

yellow and they may oc-

cupy as in the figure the

direction up and away, or

they may be turned about ;

in any case they enable us

to name the four squares

drawn in their relation to

one another.

Now take, in Fig. 78,

nine squares, and suppose

that at the end of the

going in any direction theFig. 78.

colour started with repeats itself.

We obtain a square named as shown.

Let us now, in fig. 79, suppose the number of squares to

be increased, keeping still to the principle of colouring

already used.

Here the nulls remain four in number. There

are three reds between the first null and the null

fvboye it, three yellows between the first null apd the
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null beyond it, while the oranges increase in a doublo

way.

Red

Null

Orange

""Yellow

Fig. 80.

Red

Null

Fig. 79.

Suppose this process of enlarging the number of the

Null Yellow Null squares to be indefinitely pursued and

the total figure obtained to be reduced

in size, we should obtain a square of

which the interior was all orange,
while the lines round it were red and

yellow, and merely the points null

colour, as in fig. 80. Thus all the points, lines, and the

area would have a colour.

We can consider this scheme to originate thus : Let

a null point move in a yellow direction and trace out a

yellow line and end in a null point. Then let the whole

line thus traced move in a red direction. The null points

at the ends of the line will produce red lines, and end in
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null points. The yellow line will trace out a yellow and

red, or orange square.

Now, turning back to fig. 78, we see that these two

ways of naming, the one we started with and the one we

arrived at, can be combined.

By its position in the group of four squares, in fig. 77,

the null square has a relation to the yellow and to the red

directions. We can speak therefore of the red line of the

null square without confusion, meaning thereby the line

AB, fig. 81, which runs up from the

initial null point A in the figure as

drawn. The yellow line of the null

square is its lower horizontal line AC

as it is situated in the figure.

If we wish to denote the upper

yellow line BD, fig. 81, we can speak
of it as the yellow r line, meaning

Flg* 8L the yellow line which is separated

from the primary yellow line by the red movement.

In a similar way each of the other squares has null

points, red and yellow lines. Although the yellow square
is all yellow, its line CD, for instance, can be referred to as

its red line.

This nomenclature can be extended.

If the eight cubes drawn, in fig. 82, are put close

together, as on the right hand of the diagram, they form

a cube, and in them, as thus arranged, a going up is

represented by adding red to the zero, or null colour, a

going away by adding yellow, a going to the right by

adding white. White is used as a colour, as a pigment,
which produces a colour change in the pigments with which
it is mixed. From whatever cube of the lower set we

start, a motion up brings us to a cube showing a change
to red, thus light yellow becomes light yellow red, or

light orange, which is called ochre, And going tq the
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right from the null on the left we have a change involving
the introduction of white, while the yellow change runs

from front to back. There are three colour axes the red,

yellow

Fig. 82.

the white, the yellow and these run in the position the

cubes occupy in the drawing up, to the right, away but

they could be turned about to occupy any positions in space.

/ Null /White/ Null /
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layers on the right. Here, as in the case of the plane,

the initial colours repeat themselves at the end of the

series.

Proceeding now to increase the number of the cubes

.-
7
-

7
-

7
-

7
-

7 we obtain fig. 84,
/n /wh/wh/wh/ n /5y '

-

v
Otters of the colours

/ y- /'.y-/'-y
:
/.y

:
/ y- / ,

/ y. /'y./'-y.A-y./y. / are glven mstead of

/ n./ wh./ wh,./ wh./ n. / their full names.

/
-

-7
-T-

-7
-

-7
-

-7 Here we see that

/-7^
-/ f- /-

-/ there are four null
4, / or. / oc. / oc. / oc. / or. /
/or./oc./oc./oc./or./

cubes as betore
'
but

/ or. / oc. / oc./ oc . /or/ the senes whlch SP"ng

/ r. / p. / p. / p. / r. / from tbe initial corner

i
-

7
-

7
-

7
-

7
-

7 will tend to become
/ T- / P- / P- / P- / ' / ,. , ,

3 /on /oc. /oc /oc. /or. / lines of CubeS
'
as al ^

/ or./oc./oc./oc /or./
the Sets f Cubes

/ or./ oc. / oc. /oc. / or. / parallel to them, start-

/ */ p- / P- / P- / r - / inS from otner corners.

ri p, p, p rv
ThuS

'
from the initial

a line of
g/or./oc./ oc.oc./ or.

/ or. / oc . / oc. / oc. / or"/
red cubes a line of

/ or. / oc. / oc. / oc. / or> / white cubes, and a line

/ r. / p. / p. / p./ n / of yellow cubes.

/ n /wh./ wh./whi./n. 7 If the number of the

1 / y. /I. y / I. y./l.'y./ y. / cubes is ^rgely in-

/ y> / ] - y-/l- y*>/ 1. y./ y- / creased, and the size

/ y. /l-'y./i- y./l. y./ y. / of the whole cube is

/ TI. / wh./ wh ./ wh../ n. / diminished, we get

p. 84
a cube with null

points, and the edges
coloured with these three colours.

The light yellow cubes increase in two ways, forming

ultimately a sheet of cubes, and the same is true of

the orange and pink sets. Hence, ultimately the cube
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Null

Null

Null

thus formed would have red, white, and yellow lines

surrounding pink, orange, and light yellow faces. The
ochre cubes increase in three ways, and hence ulti-

mately the whole interior of the cube would be coloured

ochre.

We have thus a nomenclature for the points, lines,

faces, and solid content of a cube, and it can be named
as exhibited in fig. 85.

We can consider the cube to be produced in the

following way. A null point
moves in a direction to which

we attach the colour indication

yellow ;
it generates a yellow line

and ends in a null point. The

yellow line thus generated moves

in a direction to which we give

the colour indication red. This

lies up in the figure. The yellow

line traces out a yellow, red, or

orange square, and each of its null points trace out a

red line, and ends in a null point.

This orange square moves in a direction to which

we attribute the colour indication white, in this case

the direction is the right. The square traces out a

cube coloured orange, red, or ochre, the red lines trace

out red to white or pink squares, and the yellow

lines trace out light yellow squares, each line ending
in a line of its own colour. While the points each

trace out a null + white, or white line to end in. a null

point.

Now returning to the first block of eight cubes we can

name each point, line, and square in them by reference to

the colour scheme, which they determine by their relation

to each other.

Thus, in fig. 86, the null cube touches the red cube by

Fig. 85.
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a light yellow square; it touches the yellow cube by a

pink square, and touches

the white cube by an

orange square.

There are three axes

to which the colours red,

yellow, and white, are

assigned, the faces of

each cube are designated

Taking all the colours

Fig. 86

by taking these colours in pairs,

together we get a colour name for the solidity of a cube.

Let us now ask ourselves how the cube could be pre-

sented to the plane being. Without going into the question

of how he could have a real experience of it, let us see

how, if we could turn it about and show it to him, he,

under his limitations, could get information about it.

If the cube were placed with its red and yellow axes

against a plane, that is resting against it by its orange

White

Null White Null wH.
kce previously perceived

Fig. 87.

face, the plane being would observe a square surrounded

by red and yellow lines, and having null points. See the

dotted square, fig. 87.

We could turn the cube about the red line so that

a different face comes into juxtaposition with the plane.

Suppose the cube turned about the red line. As it
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is turning from its first position all of it except the red

line leaves the plane goes absolutely out of the range
of the plane being's apprehension. But when the yellow
line points straight out from the plane then the pink
face comes into contact with it. Thus the same red line

remaining as he saw it at first, now towards him comes

a face surrounded by white and red lines.

If we call the direction to the right the unknown

direction, then the line he saw before, the yellow line,

goes out into this unknown direction, and the line which

before went into the unknown direction, comes in. It

comes in in the opposite direction to that in which the

yellow line ran before
;

the interior of the face now

against the plane is pink. It is

a property of two lines at right

angles that, if one turns out of

a given direction and stands at

right angles to it, then the other

'B of the two lines comes in, but

runs the opposite way in that

given direction, as in fig. 88.

Now these two presentations of the cube would seem,

to the plane creature like perfectly different material

bodies, with only that line in common in which they

both meet.

Again our cube can be turned about the yellow line.

In this case the yellow square would disappear as before,

but a new square would come into the plane after the

cube had rotated by an angle of 90 about this line.

The bottom square of the cube would come in thus

in figure 89. The cube supposed in contact with the

plane is rotated about the lower yellow line and then

the bottom face is in contact with the plane.

Here, as before, the red line going out into the un-

known dimension, the white line which before ran in the

Fig. 83.
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unknown dimension would come in downwards in the

opposite sense to that in which the red line ran before.

Now if we use i, j, k, for the three space directions,

i left to right, j from near away, k from below up ; then,

using the colour names for the axes, we have that first

of all white runs i, yellow runs j, red runs k
;
then after

Null-y
* Null Wfcite NuIJ

^Yellow

Fig. 89.

the first turning round the k axis, white runs negative j,

yellow runs i, red runs k
;
thus we have the table :
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dimension (the white axis) must come in in the negative
sense of that axis which goes out of the plane into the

unknown dimension.

It is obvious that the unknown direction, the direction

in which the white line runs at first, is quite distinct from

any direction which the plane creature knows. The white

line may come in towards him, or running down. If he

is looking at a square, which is the face of a cube

(looking at it by a line), then any one of the bounding lines

remaining unmoved, another face of the cube may come

in. any one of the faces, namely, which have the white line

in them. And the white line comes sometimes in one

of the space directions he knows, sometimes in another.

Now this turning which leaves a line unchanged is

something quite unlike any turning he knows in the

plane. In the plane a figure turns round a point. The

square can turn round the null point in his plane, and

the red and yellow lines change places, only of course, as

with every rotation of lines at right angles, if red goes
where yellow went, yellow comes in negative of red's old

direction.

This turning, as the plane creature conceives it, we

should call turning about an axis perpendicular to the

plane. What he calls turning about the null point we

call turning about the white line as it stands out from

his plane. There is no such thing as turning about a

point, there is always an axis, and really much more turns

than the plane being is aware of.

Taking now a different point of view, let us suppose the

cubes to be presented to the plane being by being passed

transverse to his plane. Let us suppose the sheet of

matter over which the plane being and all objects in his,

world slide, to be of such a nature that objects can pass

through it without breaking it. Let us suppose it to be

of the same nature as the film of a soap bubble, so that
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Null

it closes around objects pushed through it, and, however

the object alters its shape as it passes through it, let us

suppose this film to run up to the contour of the object
in every part, maintaining its plane surface unbroken.

Then we can push a cube or any object through the

film and the plane being who slips about in the film

will know the contour of the cube just and exactly where

the film meets it.

Fig. 90 represents a cube passing through a plane film.

The plane being now comes into

contact with a very thin slice

of the cube somewhere between

the left and right hand faces.

This very thin slice he thinks

of as having no thickness, and

consequently his idea of it is

what we call a section. It is

bounded by him by pink lines

front and back, coming from

the part of the pink face he is

in contact with, and above and below, by light yellow

lines. Its corners are not null-coloured points, but white

points, and its interior is ochre, the colour of the interior

of the cube, tf

If now we suppose the cube to be an inch in each

dimension, and to pass across, from right to left, through
the plane, then we should explain the appearances pre-

sented to the plane being by saying : First of all you
have the face of a cube, this lasts only a moment

;
then

you have a figure of the same shape but differently

coloured. This, which appears not to move to you in any
direction which you know of, is really moving transverse

to your plane world. Its appearance is unaltered, but

each moment it is something different a section further

on, in the white, the unknown dimension. Finally, at the

Fig. 90.
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end of the minute, a face comes in exactly like the face

you first saw. This finishes up the cube it is the further

face in the unknown dimension.

The white line, which extends in length just like the

red or the yellow, you do not see as extensive
; you appre-

hend it simply as an enduring white point. The null

point, under the condition of movement of the cube,

vanishes in a moment, the lasting white point is really

your apprehension of a white line, running in the unknown
dimension. In the same way the red line of the face by
which the cube is first in contact with the plane lasts only
a moment, it is succeeded by the pink line, and this pink
line lasts for the inside of a minute. This lasting pink
line in your apprehension of a surface, which extends in

two dimensions just like the orange surface extends, as you
know it, when the cube is at rest.

But the plane creature might answer,
" This orange

object is substance, solid substance, bounded completely
and on every side."

Here, of course, the difficulty comes in. His solid is our

surface his notion of a solid is our notion of an abstract

surface with no thickness at all.

We should have to explain to him that, from every point
of what he called a solid, a new dimension runs away.
From every point a line can be drawn in a direction

unknown to him, and there is a solidity of a kind greater
than that which he knows. This solidity can only be

realised by him by his supposing an unknown direction,

by motion in which what he conceives to be solid matter

instantly disappears. The higher solid, however, which

extends in this dimension as well as in those which he

knows, lasts when a motion of that kind takes place,

different sections of it come consecutively in the plane of

his apprehension, and take the place of the solid which he

at first conceives to be all. Thus, the higher solid our
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solid in contradistinction to his area solid, his two-

dimensional solid, must be conceived by him as something
which has duration in it, under circumstances in which his

matter disappears out of his world.

We may put the matter thus, using the conception of

motion.

A null point moving in a direction away generates a

yellow line, and the yellow line ends in a null point. We
suppose, that is, a point to move and mark out the

products of this motion in such a manner. Now

suppose this whole line as thus produced to move in

an upward direction; it traces out the two-dimensional

solid, and the plane being gets an orange square. The
null point moves in a red line and ends in a null point,

the yellow line moves and generates an orange square and

ends in a yellow line, the farther null point generates
a red line and ends in a null point. Thus, by move-

ment in two successive directions known to him, he

can imagine his two-dimensional solid produced with all

its boundaries.

Now we tell him :
" This whole two-dimensional solid

can move in a third or unknown dimension to you. The
null point moving in this dimension out of your world

generates a white line and ends in a null point. The

yellow line moving generates a light yellow two-

dimensional solid and ends in a yellow line, and thus

two-dimensional solid, lying end on to your plane world, is

bounded on the far side by the other yellow line. In

the same way each of the lines surrounding your square
traces out an area, just like the orange area you know.

But there is something new produced, something which

you had no idea of before
;
it is that which is produced by

the movement of the orange square. That, than which

you can imagine nothing more solid, itself moves in a

direction open to it and produces a three-dimensional
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solid. Using the addition of white to symbolise the

products of this motion this new kind of solid will be light

orange or ochre, and it will be bounded on the far side by
the final position of the orange square which traced it

out, and this final position we suppose to be coloured like

the square in its first position, orange with yellow and

red boundaries and null corners."

This product of movement, which it is so easy for us to

describe, would be difficult for him to conceive. But this

difficulty is connected rather with its totality than with

any particular part of it.

Any line, or plane of this, to him higher, solid we could

show to him, and put in his sensible world.

We have already seen how the pink square could be put
in his world by a turning of the cube about the red line.

And any section which we can conceive made of the cube

could be exhibited to him. You have simply to turn the

cube and push it through, so that the plane of his existence

is the plane which cuts out the given section of the cube,

then the section would appear to him as a solid. In his

world he would see the contour, get to any part of it by

digging down into it.

THE PROCESS BY WHICH A PLANE BEING WOULD GAIN

A NOTION OF A SOLID.

If we suppose the plane being to have a general idea of

the existence of a higher solid our solid we must next

trace out in detail the method, the discipline, by which

he would acquire a working familiarity with our space

existence. The process begins with an adequate realisa-

tion of a simple solid figure. For this purpose we will

suppose eight cubes forming a larger cube, and first we

will suppose each cube to be coloured throughout uniformly.
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Let the cubes in fig. 91 be the eight making a larger

cube.

Now, although each cube is supposed to be coloured

entirely through with the colour, the name of which is

written on it, still we can speak of the faces, edges, and

corners of each cube as if the colour scheme we have

investigated held for it. Thus, on the null cube we can

speak of a null point, a red line, a white line, a pink face, and

so on. These colour designations are shown on No. 1 of

the views of the tesseract in the plate. Here these colour

Fig. 91.

names are used simply in their geometrical significance.

They denote what the particular line, etc., referred to would

have as its colour, if in reference to the particular cube

the colour scheme described previously were carried out.

If such a block of cubes were put against the plane and

then passed through it from right to left, at the rate of an

inch a minute, each cube being an inch each way, the

plane being would have the following appearances :

First of all, four squares null, yellow, red, orange, lasting

each a minute; and secondly, taking the exact places

of these four squares, four others, coloured white, light

yellow, pink, ochre. Thus, to make a catalogue of the

solid body, he would have to put side by side in his world

two sets of four squares eacli, as in
fig. 92. The first
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are supposed to last a minute, and then the others to

eome in in place of them,
and also last a minute.

In speaking of them
he would have to denote

what part of the respective
cube each square repre-
sents. Thus, at the begin-

ning he would have null

cube orange face, and after

the motion had begun he

would have null cube ochre

section. As he could get
the same coloured section whichever way the cube passed

through, it would be best for him to call this section white

section, meaning that it is transverse to the white axis.

These colour-names, of course, are merely used as names,
and do not imply in this case that the object is really

coloured. Finally, after a minute, as the first cube was

passing beyond his plane he would have null cube orange
face again.

The same names will hold for each of the other cubes,

describing what face or section of them the plane being
has before him

;
and the second wall of cubes will come

on, continue, and go out in the same manner. In the

area he thus has he can represent any movement which

we carry out in the cubes, as long as it does not involve

a motion in the direction of the white axis. The relation

of parts that succeed one another in the direction of the

white axis is realised by him as a consecution of states.

Now, his means of developing his space apprehension
lies in this, that that which is represented as a time

sequence in one position of the cubes, can become a real

co-existence, if something that has a real co-existence

becomes a time sequence.
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We must suppose the cubes turned round each of the

Axes, the red line, and the yellow line, then something,
which was given as time before, will now be given as the

plane creature's space ; something, which was given as space

before, will now be given as a time series as the cube is

passed through the plane.

The three positions in which the cubes must be studied

are the one given above and the two following ones. In

each case the original null point which was nearest to us

at first is marked by an asterisk. In figs. 93 and 94 the

och,

I. y.

Fig. 93.

The cu>e swung round the red line, so that the white line points
towards us.

point marked with a star is the same in the cubes and in

the plane view.

In fig. 93 the cube is swung round the red line so as to

point towards us, and consequently the pink face comes

next to the plane. As it passes through there are two

varieties of appearance designated by the figures 1 and 2

in the plane. These appearances are named in the figure,

and are determined by the order in which the cubes
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come in the motion of the whole block through the

plane.

With regard to these squares severally, however,

different names must be used, determined by their

relations in the block.

Thus, in fig. 93, when the cube first rests against the

plane the null cube is in contact by its pink face
;
as the

block passes through we get an ochre section of the null

cube, but this is better called a yellow section, as it is

made by a p'ane perpendicular to the yellow line. When

A

\
\

Fig. 94.

The cube swung round yellow line, with red line running from left

to right, and white line running down.

the null cube has passed through the plane, as it is

leaving it, we get again a pink face.

The same series of changes take place with the cube

appearances which follow on those of the null cube. In

this motion the yellow cube follows on the null cube, and

the square marked yellow in 2 in the plane will be first

"
yellow pink face," then "

yellow yellow section," then

"
yellow pink face."

In fig. 94, in which the cube is turned about the yellow

line, we have a certain difficulty, for the plane being will
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find that the position his squares are to be placed in will

lie below that which they first occupied. They will come
where the support was on which he stood his first set of

squares. He will get over this difficulty by moving his

support.

Then, since the cubes come upon his plane by the light

yellow face, he will have, taking the null cube as before for

an example, null, light yellow face; null, red section,

because the section is perpendicular to the red line
;
and

finally, as the null cube leaves the plane, null, light yellow

face. Then, in this case red following on null, he will

Mill

Null
r. y. wh s X XI

Null
r. y, wh

X
ite

Null
3 4

have the same series of views of the red as he had of the

null cube.

There is another set of considerations which we will

briefly allude to.

Suppose there is a hollow cube, and a string is stretched

across it from null to null, r, y, w/i, as we may call the

far diagonal point, how will this string appear to the

plane being as the cube moves transverse to his plane ?

Let us represent the cube as a number of sections, say

5, corresponding to 4 equal divisions made along the white

line perpendicular to it.

We number these sections 0, 1, 2, 3, 4, corresponding
to the distances along the white line at which they are
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taken, and imagine each section to come in successively,

taking the place of the preceding one.

These sections appear to the plane being, counting from

the first, to exactly coincide each with the preceding one.

But the section of the string occupies a different place in

each to that which it does in the preceding section. The
section of the string appears in the position marked by
the dots. Hence the slant of the string appears as a

motion in the frame work marked out by the cube sides.

If we suppose the motion of the cube not to be recognised,

then the string appears to the plane being as a moving
point. Hence extension on the unknown dimension

appears as duration. Extension sloping in the unknown
direction appears as continuous movement.



CHAFFER XII

THE SIMPLEST FOUR-DIMENSIONAL SOLID

A PLANE being, in learning to apprehend solid existence,

must first of all realise that there is a sense of direction

altogether wanting to him. That which we call right
and left does not exist in his perception. He must

assume a movement in a direction, and a distinction of

positive and negative in that direction, which has no

reality corresponding to it in the movements he can.

make. This direction, this new dimension, he can only
make sensible to himself by bringing in time, and sup-

posing that changes, which take place in time, are due to

objects of a definite configuration in three dimensions

passing transverse to his plane, and the different sections

of it being apprehended as changes of one and the same

plane figure.

He must also acquire a distinct notion about his plane

world, he must no longer believe that it is the all of

space, but that space extends on both sides of it. In

order, then, to prevent his moving off in this unknown

direction, he must assume a sheet, an extended solid sheet,

in two dimensions, against which, in contact with which,

all his movements take place.

When we come to think of a four-dimensional solid,

what are the corresponding assumptions which we must

make ?

We must suppose a sense which we have not, a sense
157
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of direction wanting in us, something which a being in

a four-dimensional world has, and which we have not. It

is a sense corresponding to a new space direction, a

direction which extends positively and negatively from

every point of our space, and which goes right away from

any space direction we know of. The perpendicular to a

plane is perpendicular, not only to two lines in it, but to

every line, and so we must conceive this fourth dimension

as running perpendicularly to each and every line we can

draw in our space.

And as the plane being had to suppose something
which prevented his moving off in the third, the

unknown dimension to him, so we have to suppose

something which prevents us moving off in the direction

unknown to us. This something, since we must be in

contact with it in every one of our movements, must not

be a plane surface, but a solid
;

it must be a solid, which

in every one of our movements we are against, not in. It

must be supposed as stretching out in every space dimension

that we know
;
but we are not in it, we are against it, we

are next to it, in the fourth dimension.

That is, as the plane being conceives himself as having
a very small thickness in the third dimension, of which

he is not aware in his sense experience, so we must

suppose ourselves as having a very small thickness in

the fourth dimension, and, being thus four-dimensional

beings, to be prevented from realising that we are

such beings by a constraint which keeps us always in

contact with a vast solid sheet, which stretches on in

every direction. We are against that sheet, so that, if we

had the power of four-dimensional movement, we should

either go away from it or through it
;

all our space

movements as we know them being such that, performing

them, we keep in contact with this solid sheet.

Now consider the exposition a plane being would make
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for himself as to the question of the enclosure of a square,

and of a cube.

He would say the square A, in Fig. 96, is completely
enclosed by the four squares, A far,

A near, A above, A below, or as they
are written ATI, A/, Aa, Ab.

If now he conceives the square A

to move in the, to him, unknown
dimension it will trace out a cube,

and the bounding squares will form

cubes. Will these completely sur-

round the cube generated by A ? No
;

there will be two faces of the cube

made by A left uncovered
;
the first,

that face which coincides with theFig. 96.

square A in its first position ;
the next, that which coincides

with the square A in its final position. Against these

two faces cubes must be placed in order to completely
enclose the cube A. These may be called the cubes left

and right or Al and AT. Thus each of the enclosing

squares of the square A becomes a cube and two more

cubes are wanted to enclose the cube formed by the

movement of A in the third dimension.

The plane being could not see the square A with the

squares An, A/, etc., placed about it,

because they completely hide it from

view
;
and so we, in the analogous

case in our three-dimensional world,

cannot see a cube A surrounded by
six other cubes. These cubes we
will call A near ATI, A far A/, A above

Aa, A below Ab, A left Al, A right Ar,

shown in
fig. 97. If now the cube A
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Each of the six surrounding cubes carried on in the satne

motion will make a tesseract also, and these will be

grouped around the tesseract formed by A. But will they
enclose it completely ?

All the cubes An, A/, etc., lie in our space. But there is

nothing between the cube A and that solid sheet in contact

with which every particle of matter is. When the cube A

moves in the fourth direction it starts from its position,

say Ak, and ends in a final position An (using the words
" ana

" and " kata
"
for up and down in the fourth dimen-

sion). Now the movement in this fourth dimension is

not bounded by any of the cubes An, A/, nor by what

they form when thus moved. The tesseract which A

becomes is bounded in the positive and negative ways in

this new direction by the first position of A and the last

position of A. Or, if we ask how many tesseracts lie

around the tesseract which A forms, there are eight, of

which one meets it by the cube A, and another meets it

by a cube like A at the end of its motion.

We come here to a very curious thing. The whole

solid cube A is to be looked on merely as a boundary of

the tesseract.

Yet this is exactly analogous to what the plane being
would come to in his study of the solid world. The

square A (fig. 96), which the plane being looks on as a

solid existence in his plane world, is merely the boundary
of the cube which he supposes generated by its motion.

The fact is that we have to recognise that, if there is

another dimension of space, our present idea of a solid

body, as one which has three dimensions only, does not

correspond to anything real, but is the abstract idea of a

three-dimensional boundary limiting a four-dimensional

solid, which a four-dimensional being would form. The

plane being's thought of a square is not the thought
of what we should call a possibly existing real square,
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but the thought of an abstract boundary ,
the face of

a cube.

Let us now take our eight coloured cubes, which form

ft cube in space, and ask what additions we must make
to them to represent the simplest collection of four-dimen-

sional bodies namely, a group of them of the same extent

in every direction. In plane space we have four squares.

In solid space we have eight cubes. So we should expect
in four-dimensional space to have sixteen four-dimen-

sional bodies bodies which in four-dimensional space

correspond to cubes in three-dimensional space, and these

bodies we call tesseracts.

Given then the null, white, red, yellow cubes, and

those which make up the block, we
notice that we represent perfectly

well the extension in three directions

(fig. 98). From the null point of

the null cube, travelling one inch, we

come to the white cube
; travelling

one inch away we come to the yellow
cube

; travelling one inch up we come
to the red cube. Now, if there is

a fourth dimension, then travelling
from the same null point for one

Red
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colours white, yellow, red, blue, to denote transferences in

each of the four directions right, away, up, unknown or

fourth dimension.

Hence, as the plane being must represent the solid re-

gions, he would come to by going right, as four squares lying
in some position in

his plane, arbitrarily

chosen, side by side

with his original four

squares, so we must

represent those eight
four-dimensional re-

gions, which we

Fig. 99. should come to by
A plane being's representation of a block going in the fourth

of eight cubes by two sets of four squares. dimension from each

of our eight cubes, by eight cubes placed in some arbitrary

position relative to our first eight cubes.

Red
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us as a representation of one of the sixteen tesseracts

which form one single block in four-dimensional space.

Each cube, as we have it, is a tray, as it were, against
which the real four-dimensional figure rests just as each

of the squares which the plane being has is a tray, so to

speak, against which the cube it represents could rest.

If we suppose the cubes to be one inch each way, then

the original eight cubes will give eight tesseracts of the

same colours, or the cubes, extending each one inch in the

fourth dimension.

But after these there come, going on in the fourth di-

mension, eight other bodies, eight other tesseracts. These

must- be there, if we suppose the four-dimensional body
we make up to have two divisions, one inch each in each

of four directions.

The colour we choose to designate the transference to

this second region in the fourth' dimension is blue. Thus,

starting from the null cube and going in the fourth

dimension, we first go through one inch of the null

tesseract, then we come to a blue cube, which is the

beginning of a blue tesseract. This blue tesseract stretches

one inch farther on in the fourth dimension.

Thus, beyond each of the eight tesseracts, which are of

the same colour as the cubes which are their bases, lie

eight tesseracts whose colours are derived from the colours

of the first eight by adding blue. Thus

Null gives blue

Yellow green
Red purple

Orange brown

White light blue

Pink light purple

Light yellow ,, light green
Ochre light brown

The addition of blue to yellow gives green this is a
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natural supposition to make. It is also natural to siippOse
that blue added to red makes purple. Orange and blue

can be made to give a brown, by using certain shades and

proportions. And ochre and blue can be made to give a

light brown.

But the scheme of colours is merely used for getting
a definite and realisable set of names and distinctions

visible to the eye. Their naturalness is apparent to any
one in the habit of using colours, and may be assumed to

be justifiable, as the sole purpose is to devise a set of

names which are easy to remember, and which will give
us a set of colours by which diagrams may be made easy
of comprehension. No scientific classification of colours

has been attempted.

Starting, then, with these sixteen colour names, we hav^e

a catalogue of the sixteen tesseracts, which form a four-

dimensional block analogous to the cubic block. But

the cube which we can put in space and look at is not one

of the constituent tesseracts
;
it is merely the beginning,

the solid face, the side, the aspect, of a tesseract.

We will now proceed to derive a name for each region,

point, edge, plane face, solid and a face of the tesseract.

The system will be clear, if we look at a representation

in the plane of a tesseract with three, and one with four

divisions in its side.

The tesseract made up of three tesseracts each way

corresponds to the cube made up of three cubes each way,

and will give us a complete nomenclature.

In this diagram, fig. 101, 1 represents a cube of 27

cubes, each of which is the beginning of a tesseract.

These cubes are represented simply by their lowest squares,

the solid content must be understood. 2 represents the

27 cubes which are the beginnings of the 27 tesseracts

one inch on in the fourth dimension. These tesseracts

are represented as a block of cubes put side by side with.
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the first block, but in their proper positions they could

not be in space with the first set. 3 represents 27 cubes

Fig. 101.

Null
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In fig. 102, we have the representation of a block of

4x4x4x4 or 256 tesseracts. They are given in

Fig. 102,*

A cube of 64 cubes,
each 1 in. x 1 in.

x 1 in., the begin-
ning of a tesseract.

A cube of 04 tubes,
each 1 in. x 1 in.

x 1 in. the begin-
ning of tesseracts

1 in from our space
on the 4th dimen-

sion.

A cube or 04 cubes,
each 1 in. x 1 in.

x 1 in., the begin-
ning of tesseracts

2 in. from our space
in the 4th dimen-

sion.

A cube of 64 cubes,
each 1 in. x 1 in.

x 1 in., the begin-
ning of tesseracts

starting 3 in. from
our space in the 4th

dimension.

four consecutive sections, each supposed to be taken one

inch apart in the fourth dimension, and so giving four

* The coloured plate, figs. 1, 2, 3, shovys these relations more.
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blocks of cubes, 64 in each block. Here we see, com-

paring it with the figure of 81 tesseracts, that the number
of the different regions show a different tendency of

increase. By taking five blocks of five divisions each way
this would become even more clear.

We see, fig. 102, that starting from the point at any

corner, the white coloured regions only extend out in

a line. The same is true for the yellow, red, and blue.

With regard to the latter it should be noticed that the

line of blues does not consist in regions next to each

other in the drawing, but in portions which come in in

different cubes. The portions which lie next to one

another in the fourth dimension must always be repre-

sented so, whenwe have a three-dimensional representation.

Again, those regions such as the pink one, go on increasing

in two dimensions. About the pink region this is seen

without going out of the cube itself, the pink regions
increase in length and height, but in no other dimension.

In examining these regions it is sufficient to take one as

a sample.
The purple increases in the same manner, for it comes

in in a succession from below to above in block 2, and in

a succession from block to block in 2 and 3. Now, a

succession from below to above represents a continuous

extension upwards, and a succession from block to block

represents a continuous extension in the fourth dimension.

Thus the purple regions increase in two dimensions, the

upward and the fourth, so when we take a very great

many divisions, and let each become very small, the

purple region forms a two-dimensional extension.

In the same way, looking at the regions marked 1. b. or

light blue, which starts nearest a corner, we see that the

tesseracts occupying it increase in length from left to

right, forming a line, and that there are as many lines of

light blue tesseracts as there are sections between the
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first and last section. Hence the light blue tesseracts

increase in number in two ways in the right and left,

and in the fourth dimension. They ultimately form

what we may call a plane surface.

Now all those regions which contain a mixture of two

simple colours, white, yellow, red, blue, increase in two

ways. On the other hand, those which contain a mixture

of three colours increase in three ways. Take, for instance,

the ochre region; this has three colours, white, yellow,

red
;
and in the cube itself it increases in three ways.

Now regard the orange region ;
if we add blue to this

we get a brown. The region of the brown tesseracts

extends in two ways on the left of the second block,

No. 2 in the figure. It extends also from left to right in

succession from one section to another, from section 2

to section 3 in our figure.

Hence the brown tesseracts increase in number in three

dimensions upwards, to and fro, fourth dimension. Hence

they form a cubic, a three-dimensional region; this region
extends up and down, near and far, and in the fourth

direction, but is thin in the direction from left to right.

It is a cube which, when the complete tesseract is repre-

sented in our space, appears as a series of faces on the

successive cubic sections of the tesseract. Compare fig.

103 in which the middle block, 2, stands as representing a

great number of sections intermediate between 1 and 3.

In a similar way from the pink region by addition of

blue we have the light purple region, which can be seen

to increase in three ways as the number of divisions

becomes greater. The three ways in which this region of

tesseracts extends is up and down, right and left, fourth

dimension. Finally, therefore, it forms a cubic mass of

very small tesseracts, and when the tesseract is given in

space sections it appears on the faces containing the

upward an4 the right and left dimensions,
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We get then altogether, as three-dimensional regions,

ochre, brown, light purple, light green.

Finally, there i;> the region which corresponds to a

mixture of all the colours
;
there is only one region such

as this. It is the one that springs from ochre by the

addition of blue this colour we call light brown.

Looking at the light brown region we see that it

increases in four ways. Hence, the tesseracts of which it

is composed increase in number in each of four dimen-

sions, and the shape they form does not remain thin in

any of the four dimensions. Consequently this region
becomes the solid content of the block of tesseracts, itself;

it is the real four-dimensional solid. All the other regions
are then boundaries of this light brown region. If we

suppose the process of increasing the number of tesseracts

and diminishing their size carried on indefinitely, then

the light brown coloured tesseracts become the whole

interior mass, the three-coloured tesseracts become three-

dimensional boundaries, thin in one dimension, and form

the ochre, the brown, the light purple, the light green.
The two-coloured tesseracts become two-dimensional

boundaries, thin in two dimensions, e.g., the pink, the

green, the purple, the orange, the light blue, the light

yellow. The one-coloured tesseracts become bounding

lines, thin in three dimensions, and the null points become

bounding corners, thin in four dimensions. From these

thin real boundaries we can pass in thought to the

abstractions points, lines, faces, solids bounding the

four-dimensional solid, which is this case is light brown

coloured, and under this supposition the light brown

coloured region is the only real one, is the only one which

is not an abstraction.

It should be observed that, in taking a square as the

representation of a cube on a plane, we only represent

one face, or the section between two faces. The squares,
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as drawn by a plane being, are not the cubes themselves,
but represent the faces or the sections of a cube. Thus
in the plane being's diagram a cube of twenty-seven cubes
" null

"
represents a cube, but is really, in the normal

position, the orange square of a null cube, and may be

called null, orange square.
A plane being would save himself confusion if he named

his representative squares, not by using the names of the

cubes simply, but by adding to the names of the cubes a

word to show what part of a cube his representative square
was.

Thus a cube null standing against his plane touches it

by null orange face, passing through his plane it has in

the plane a square as trace, which is null white section, if

we use the phrase white section to mean a section drawn

perpendicular to the white line. In the same way the

cubes which we take as representative of the tesseract are

not the tesseract itself, but definite faces or sections of it.

In the preceding figures we should say then, not null, but
" null tesseract ochre cube," because the cube we actually

have is the one determined by the three axes, white, red,

yellow.

There is another way in which we can regard the colour

nomenclature of the boundaries of a tesseract.

Consider a null point to move tracing out a white line

one inch in length, and terminating in a null point,

see fig. 103 or in the coloured plate.

Then consider this white line with its terminal points

itself to move in a second dimension, each of the points

traces out a line, the line itself traces out an area, and

gives two lines as well, its initial and its final position.

Thus, if we call
" a region

"
any element of the figure,

such as a point, or a line, etc., every "region" in moving
traces out a new kind of region,

" a higher region," and

gives two regions pf its, own kind, an initial a.nd a final
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position. The "
higher region

" means a region with

another dimension in it.

Now the square can move and generate a cube. The

square light yellow moves and traces out the mass of the

cube. Letting the addition of red denote the region
made by the motion in the upward direction we get an

ochre solid. The light yellow face in its initial and

terminal positions give the two square boundaries of the

cube above and below. Then each of the four lines of the

light yellow square white, yellow, and the white, yellow

opposite them trace out a bounding square. So there

are in all six bounding squares, four of these squares being

designated in colour by adding red to the colour of the

generating lines. Finally, each point moving in the up
direction gives rise to a line coloured null + red, or red,

and then there are the initial and terminal positions of the

points giving eight points. The number of the lines is

evidently twelve, for the four lines of this light yellow

square give four lines in their initial, four lines in their

final position, while the four points trace out four lines,

that is altogether twelve lines.

Now the squares are each of them separate boundaries

of the cube, while the lines belong, each of them, to two

squares, thus the red line is that which is common to the

orange and pink squares.

Now suppose that there is a direction, the fourth

dimension, which is perpendicular alike to every one

of the space dimensions already used a dimension

perpendicular, for instance, to up and to right hand,
so that the pink square moving in this direction traces

out a cube.

A dimension, moreover, perpendicular to the up and

away directions, so that the orange square moving in this

direction also traces out a cube, and the light yellow

square, too, moving jn this direction traces out a cub.
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Under this supposition, the whole cube moving in the

unknown dimension, traces out something new a new
kind of volume, a higher volume. This higher volume

is a four-dimensional volume, and we designate it in colour

by adding blue to the colour of that which by moving

generates it.

It is generated by the motion of the ochre solid, and

hence it is of the colour we call light brown (white, yellow,

red, blue, mixed together). It is represented by a number
of sections like 2 in fig. 103.

Now this light brown higher solid has for boundaries :

first, the ochre cube in its initial position, second, the

same cube in its final position, 1 and 3, fig. 103. Each

of the squares which bound the cube, moreover, by move-

ment in this new direction traces out a cube, so we have

from the front pink faces of the cube, third, a pink blue or

light purple cube, shown as a light purple face on cube 2

in fig. 103, this cube standing for any number of inter-

mediate sections
; fourth, a similar cube from the opposite

pink face
; fifth, a cube traced out by the orange face

this is coloured brown and is represented by the brown

face of the section cube in fig. 103
; sixth, a correspond-

ing brown cube on the right hand
; seventh, a cube

starting from the light yellow square below
;
the unknown

dimension is at right angles to this also. This cube is

coloured light yellow and blue or light green ; and,

finally, eighth, a corresponding cube from the upper

light yellow face, shown as the light green square at the

top of the section cube.

The tesseract has thus eight cubic boundaries. These

completely enclose it, so that it would be invisible to a

four-dimensional being. Now, as to the other boundaries,

just as the cube has squares, lines, points, as boundaries,

so the tesseract has ciibes, squares, lines, points, a,$

boundaries,
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The number of squares is found thus round the cube

are six squares, these will give six squares in their initial

and six in their final positions. Then each of the twelve

lines of the cube trace out a square in the motion in

the fourth dimension. Hence there will be altogether

12 + 12 = 24 squares.

If we look at any one of these squares we see that it

is the meeting surface of two of the cubic sides. Thus,

the red line by its movement in the fourth dimension,
traces out a purple square this is common to two

cubes, one of which is traced out by the pink square

moving in the fourth dimension, and the other is

traced out by the orange square moving in the same

way. To take another square, the light yellow one, this

is common to the ochre cube and the light green cube.

The ochre cube comes from the light yellow square

by moving it in the up direction, the light green cube

is made from the light yellow square by moving it in

the fourth dimension. The number of lines is thirty-

two, for the twelve lines of the cube give twelve lines

of the tesseract in their initial position, and twelve in

their final position, making twenty-four, while each of

the eight points traces out a line, thus forming thirty-

two lines altogether.

The lines are each of them common to three cubes, or

to three square faces; take, for instance, the red line.

This is common to the orange face, the pink face, and

that face which is formed by moving the red line in the

sixth dimension, namely, the purple face. It is also

common to the ochre cube, the pale purple cube, and the

brown cube.

The points are common to six square faces and to four

cubes
; thus, the null point from which we start is common

to the three square faces pink, light yellow, orange, and

to the three square faces made by moving the three lines
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white, yellow, red, in the fourth dimension, namely, the

light blue, the light green, the purple faces that is, to

six faces in all. The four cubes which meet in it are the

\i*
-S-g?Jf
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f

presentations is given in the following figures or catalogue

cubes, figp. 103-106. The first cube in each figure
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represents the view of a tesseract coloured as described as

it begins to pass transverse to our space. The intermediate

figure represents a sectional view when it is partly through,

/
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CHAPTER XIII

REMARKS ON THE FIGURES

AN inspection of above figures will give an answer to

many questions about the tesseract. If we have a

tesseract one inch each way, then it can be represented
as a cube a cube having white, yellow, red axes, and

from this cube as a beginning, a volume extending into

the fourth dimension. Now suppose the tesseract to pass

transverse to our space, the cube of the red, yellow, white

axes disappears at once, it is indefinitely thin in the

fourth dimension. Its place is occupied by those parts

of the tesseract which lie further away from our space

in the fourth dimension. Each one of these sections

will last only for one moment, but the whole of them

will take up some appreciable time in passing. If we

take the rate of one inch a minute the sections will take

the whole of the minute in their passage across our

space, they will take the whole of the minute except the

moment which the beginning cube and the end cube

occupy in their crossing our space. In each one of the

cubes, the section cubes, we can draw lines in all directions

except in the direction occupied by the blue line, the

fourth dimension
;
lines in that direction are represented

by the transition from one section cube to another. Thus

to give ourselves an adequate representation of the

tesseract we ought to have a limitless number of section

cubes intermediate between the first bounding cube, the
178
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ochre cube, and the last bounding cube, the other ochre

cube. Practically three intermediate sectional cubes will

be found sufficient for most purposes. We will take then

a series of five figures two terminal cubes, and three

intermediate sections and show how the different regions

appear in our space when we take each set of three out

of the four axes of the tesseract as lying in our space.

In fig. 107 initial letters are used for the colours.

A reference to fig. 103 will show the complete nomen-

clature, which is merely indicated here.

'iw I \i
I

^ A-NJ I ^J/^NJ I -*\\L
" wh. n. bl. 1. bl.bl. bl. I. bl. bl. bl 1. bl.bl. n. wh. n.
interior interior interior interior interior
Ochre L.Brown L.Brown L.Brown

Fig. 107.

Ochre

In this figure the tesseract is shown in five stages

distant from our space: first, zero ; second, in.
5 third,

f in.
; fourth, in.

; fifth, 1 in.; which are called 60, 61,

62, 63, 64, because they are sections taken at distances

0, 1, 2, 3, 4 quarter inches along the blue line. All the

regions can be named from the first cube, the 60 cube,

as before, simply by remembering that transference along
the 6 axis gives the addition of blue to the colour of

(he region in the ochre, the 60 cube. In the final cube

64, the colouring of the original 60 cube is repeated.

Thus the red line moved along the blue axis gives a red

and blue or purple square. This purple square appears
as the three purple lines in the sections 61, 62, 63, taken

at
, , | of an inch in the fourth dimension. If the

tesseract moves transverse to our space we have then in

this particular region, first of all a red line which lasts

for a moment, secondly a purple line which takes its
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place. This purple line lasts for a minute that is, all

of a minute, except the moment taken by the crossing
our space of the initial and final red line. The purple
line having lasted for this period is succeeded by a red

line, which lasts for a moment
;
then this goes and the

tesseract has passed across our space. The final red line

we call red bl., because it is separated from the initial

red line by a distance along the axis for which we use

the colour blue. Thus a line that lasts represents an

area duration
;

is in this mode of presentation equivalent
to a dimension of space. In the same way the white

line, during the crossing our space by the tesseract, is

succeeded by a light blue line which lasts for the inside

of a minute, and as the tesseract leaves our space, having
crossed it, the white bl. line appears as the final

termination.

Take now the pink face. Moved in the blue direction

it traces out a light purple cube. This light purple
cube is shown in sections in &,, 62,

63 ,
and the farther

face of this cube in the blue direction is shown in 64

a pink face, called pink b because it is distant from the

pink face we began with in the blue direction. Thus

the cube which we colour light purple appears as a lasting

square. The square face itself, the pink face, vanishes

instantly the tesseract begins to move, but the light

purple cube appears as a lasting square. Here also

duration is the equivalent of a dimension of space a

lasting square is a cube. It is useful to connect these

diagrams with the views given in the coloured plate.

Take again the orange face, that determined by the

red and yellow axes
;
from it goes a brown cube in the

blue direction, for red and yellow and blue are supposed
to make brown. This brown cube is shown in three

sections in the faces 6
t ,

62 ,
63. In 64 is the opposite

orange face of the brown cube, the face called orangp b,
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for it is distant in the blue direction from the orange
face. As the tesseract passes transverse to our space,

we have then in this region an instantly vanishing orange

square, followed by a lasting brown square, and finally

an orange face which vanishes instantly.

Now, as any three axes will be in our space, let us send

the white axis out into the unknown, the fourth dimen-

sion, and take the blue axis into our known space

dimension. Since the white and blue axes are perpen-
dicular to each other, if the white axis goes out into

the fourth dimension in the positive sense, the blue axis

will come into the direction the white axis occupied,
in the negative sense.

wh/j \vh wh,

- bl. n - I. bl.wh. 1. bl.wh. 1. bl.wh. n. bl. n.

Fig. 108.

Hence, not to complicate matters by having to think

of two senses in the unknown direction, let us send the

white line into the positive sense of the fourth dimen-

sion, and take the blue one as running in the negative
sense of that direction which the white line has left;

let the blue line, that is, run to the left. We have

now the row of figures in fig. 108. The dotted cube

shows where we had a cube when the white line ran

in our space now it has turned out of our space, and

another solid boundary, another cubic face of the tesseract

comes into our space. This cube has red and yellow
axes as before

;
but now, instead of a white axis running

to the right, there is a blue axis running to the left.

Here we can distinguish the regions by colours in a per-

fectly systematic way. The red line traces out a purple
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square in the transference along the blue axis by which

this cube is generated from the orange face. This

purple square made by the motion of the red line is

the same purple face that we saw before as a series of

lines in the sections b lt 62 . ^3- Here, since both red and

blue axes are in our space, we have no need of duration

to represent the area they determine. In the motion

of the tesseract across space this purple face would

instantly disappear.

From the orange face, which is common to the initial

cubes in fig. 107 and fig. 108, there goes in the blue

direction a cube coloured brown. This brown cube is

now all in our space, because each of its three axes run

in space directions, up, away, to the left. It is the same

brown cube which appeared as the successive faces on the

sections 6lf 62 ,
63 . Having all its three axes in our

space, it is given in extension
;
no part of it needs to

be represented as a succession. The tesseract is now
in a new position with regard to our space, and when

it moves across our space the brown cube instantly

disappears.

In order to exhibit the other regions of the tesseract

we must remember that now the white line runs in the

unknown dimension. Where shall we put the sections

at distances along the line ? Any arbitrary position in

our space will do : there is no way by which we can

represent their real position.

However, as the brown cube comes off from the orange
face to the left, let us put these successive sections to

the left. We can call them wh
,

ivhlt wh.2 , wh3, ivh,

because they are sections along the white axis, which

now runs in the unknown dimension.

Eunning from the purple square in the white direction

we find the light purplejmbe. This is represented in the

sections whlt wh2 , tdi*(t0A^fig.
108. It is the same cube
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that is represented in the sections 6 1} 62 ,
b3 in fig. 107

the red and white axes are in our space, the blue out of

it
;
in the other case, the red and blue are in our space,

the white out of it. It is evident that the face pink y,

opposite the pink face in fig. 107, makes a cube shown

in squares in 61? 62,
63 ,

64,
on the opposite side to the I

purple squares. Also the light yellow face at the base

of the cube 6
,
makes a light green cube, shown as a series

of base squares.

The same light green cube can be found in
fig. 107.

The base square in wh is a green square, for it is enclosed

by blue and yellow axes. From it goes a cube in the

white direction, this is then a light green cube and the

same as the one just mentioned as existing in the sections

6
, 61, &2 > &3> bt .

The case is, however, a little different with the brown

cube. This cube we have altogether in space in the

section ivh6, fig. 108, while it exists as a series of squares,

the left-hand ones, in the sections
&<>, bu b& 63, 64 . The

brown cube exists as a solid in our space, as shown in

fig. 108. In the mode of representation of the tesseract

exhibited in fig. 107, the same brown cube appears as a

succession of squares. That is, as the tesseract moves

across space, the brown cube would actually be to us a

square it would be merely the lasting boundary of another

solid. It would have no thickness at all, only extension

in two dimensions, and its duration would show its solidity

in three dimensions.

It is obvious that, if there is a four-dimensional space,

matter in three dimensions only is a mere abstraction
;
all

material objects must then have a slight four-dimensional

thickness. In this case the above statement will undergo
modification. The material cube which is used as the

model of the boundary of a tesseract will have a slight

thickness in the fourth dimension, and when the cube is
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presented to us in another aspect, it would not be a mere

surface. But it is most convenient to regard the cubes

we use as having no extension at all in the fourth

dimension. This consideration serves to bring out a point
alluded to before, that, if there is a fourth dimension, our

conception of a solid is the conception of a mere abstraction,

and our talking about real three-dimensional objects would

seem to a four-dimensional being as incorrect as a two-

dimensional being's telling about real squares, real

triangles, etc., would seem to us.

The consideration of the two views of the brown cube

shows that any section of a cube can be looked at by a

presentation of the cube in a different position in four-

dimensional space. The brown faces in 619 62>
b3,

are the

very same brown sections that would be obtained by

cutting the brown cube, wh ,
across at the right distances

along the blue line, as shown in fig. 108. But as these

sections are placed in the brown cube, wh
, they come

behind one another in the blue direction. Now, in the

sections ivhlt wh2 ,
wh3 ,

we are looking at these sections

from the white direction the blue direction does not

exist in these figures. So we see them in a direction at

right angles to that in which they occur behind one

another in wh . There are intermediate vi^ews, which

would come in the rotation of a tesseract. These brown

squares can be looked at from directions intermediate

between the white and blue axes. It must be remembered

that the fourth dimension is perpendicular equally to all

three space axes. Hence we must take the combinations

of the blue axis, with each two of our three axes, white,

red, yellow, in turn.

In fig. 109 we take red, white, and blue axes in space,

sending yellow into the fourth dimension. If it goes into

the positive sense of the fourth dimension the blue line

will come in the opposite direction to that in which the



REMARKS ON THE FIGURES 185

yellow line ran before. Hence, the cube determined by
the white, red, blue axes, will start from the pink plane
and run towards us. The dotted cube shows where the

ochre cube was. When it is turned out of space, the cube

coming towards from its front face is the one which comes

into our space in this turning. Since the yellow line now

runs in the unknown dimension we call the sections

2/o, 2/1, 2/2> 2/3? 2/4>
as they are made at distances 0, 1, 2, 3, 4,

quarter inches along the yellow line. We suppose these

cubes arranged in a line coming towards us not that

that is any more natural than any other arbitrary series

of positions, but it agrees with the plan previously adopted.

Fig. 109.

The interior of the first cube, 2/0,
is that derived from

pink by adding blue, or, as we call it, light purple. The

faces of the cube are light blue, purple, pink. As drawn,

we can only see the face nearest to us, which is not the

one from which the cube starts but the face on the

opposite side has the same colour name as the face

towards us.

The successive sections of the series, yoj y^ y2 , etc., can

be considered as derived from sections of the 6 cube

made at distances along the yellow axis. What is distant

a quarter inch from the pink face in the yellow direction ?

This question is answered by taking a section from a point

a quarter inch along the yellow axis in the cube &< fig. 107.

It is an ochre section with lines orange and light yellow.

This section will therefore take the place of the pink face
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in ^ when we go on in the yellow direction. Thus, the

first section, ylt will begin from an ochre face with light

yellow and orange lines. The colour of the axis which

lies in space towards us is blue, hence the regions of this

section-cube are determined in nomenclature, they will be

found in full in fig. 105.

There remains only one figure to be drawn, and that is

the one in which the red axis is replaced by the blue.

Here, as before, if the red axis goes out into the positive
sense of the fourth dimension, the blue line must come

into our space in the negative sense of the direction which

the red line has left. Accordingly, the first cube will

Fig. 110.

come in beneath the position of our ochre cube, the one

we have been in the habit of starting with.

To show these figures we must suppose the ochre cube

to be on a movable stand. When the red line swings out

into the unknown dimension, and the blue line comes in

downwards, a cube appears below the place occupied by
the ochre cube. The dotted cube shows where the ochre

cube was. That cube has gone and a different cube runs

downwards from its base. This cube has white, yellow,

and blue axes. Its top is a light yellow square, and hence

its interior is light yellow + blue or light green. Its front

face is formed by the white line moving along the blue

axis, and is therefore light blue, the left-hand side is

formed by the yellow line moving along the blue axis, and

therefore green.
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As the red line now runs in the fourth dimension, the

imccessive sections can be called TO, r\, r2 ,
r3 ,

r4 ,
these

letters indicating that at distances 0, J, , f ,
1 inch along

the red axis we take all of the tesseract that can be found

in a three-dimensional space, this three-dimensional space

extending not at all in the fourth dimension, but up and

down, right and left, far and near.

We can see what should replace the light yellow face of

ro, when the section r\ comes in, by looking at the cube

60, fig. 107. What is distant in it one-quarter of an inch

from the light yellow face in the red direction ? It is an

ochre section with orange and pink lines and red points ;

see also fig. 103.

This square then forms the top square of r\. Now we
can determine the nomenclature of all the regions of r\ by

considering what would be formed by the motion of this

square along a blue axis.

But we can adopt another plan. Let us take a hori-

zontal section of ro, and finding that section in the figures,

of fig. 107 or fig. 103, from them determine what will

replace it, going on in the red direction.

A section of the ro cube has green, light blue, green,

light blue sides and blue points.

Now this square occurs on the base of each of the

section figures, 61, b2 ,
etc. In them we see that inch in

the red direction from it lies a section with brown and

light purple lines and purple corners, the interior being
of light brown. Hence this is the nomenclature of the

section which in n replaces the section of r made from a

point along the blue axis.

Hence the colouring as given can be derived.

We have thus obtained a perfectly named group of

tesseract s. We can take a group of eighty-one of them

3x3x3x3, in four dimensions, and each tesseract will

have its name null, red, white, yellow, blue, etc., and
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whatever cubic view we take

what sides of the tesseracts

they touch each other.*

Thus, for instance, if we
shown below, we can ask how

In the arrangement given

white, red, yellow, in space,

dimension. Hence we have

Imagine now the tesseractic

our space we have first of

of them we can say exactly
we are handling, and how

have the sixteen tesseracts

does null touch blue,

in fig. Ill we have the axes

blue running in the fourth

the ochre cubes as bases,

group to pass transverse to

all null ochre cube, white

O'J
<l> (J

os

cj
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Cubes, we see that null ochre touches white ochre by an

orange face. Now let us generate the null and white

tesseracts by a motion in the blue direction of each of

these cubes. Each of them generates the corresponding

tesseract, and the plane of contact of the cubes generates
the cube by which the tesseracts are in contact. Now an

orange plane carried along a blue axis generates a brown

cube. Hence null touches white by a brown cube.

If we ask again how red touches light blue tesseract,

let us rearrange our group, fig. 112, or rather turn it
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Hence we have null, white, red, pink tesseracts in contact

with our space by their cubes which have the red, white,

blue axis in them, that is by the light purple cubes.

Following on these four tesseracts we have that which

comes next to them in the blue direction, that is the

four blue, light blue, purple, light purple. These are

likewise in contact with our space by their light purple

cubes, so we see a block as named in the figure, of which

each cube is the one determined by the red, white, blue,

axes.

The yellow line now runs out of space ; accordingly one

inch on in the fourth dimension we come to the tesseracts

which follow on the eight named in C, fig. 112, in the

yellow direction.

These are shown in C.yu fig. 112. Between figure C
and C.yi is that four-dimensional mass which is formed

by moving each of the cubes in C one inch in the fourth

dimension that is, along a yellow axis
;

for the yellow
axis now runs in the fourth dimension.

In the block C we observe that red (light purple

cube) touches light blue (light purple cube) by a point.

Now these two cubes moving together remain in contact

during the period in which they trace out the tesseracts

red and light blue. This motion is along the yellow

axis, consequently red and light blue touch by a yellow

line.

We have seen that the pink face moved in a yellow

direction traces out a cube
;
moved in the blue direction it

also traces out a cube. Let us ask what the pink face

will trace out if it is moved in a direction within the

tesseract lying equally between the yellow and blue

directions. What section of the tesseract will it make ?

We will first consider the red line alone. Let us take

a cube with the red line in it and the yellow and blue

axes.
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Red

Yellow

Blue Null

The cube with the yellow, red, blue axes is shown in

fig. 113. If the red line is

moved equally in the yellow and

in the blue direction by four

equal motions of inch each, it

takes the positions 11, 22, 33,

and ends as a red line.

Now, the whole of this red,

yellow, blue, or brown cube ap-

j'ig liy pears as a series of faces on the

successive sections of the tes-

seract starting from the ochre cube and letting the blue

axis run in the fourth dimension. Hence the plane
traced out by the red line appears as a series of lines in

the successive sections, in our ordinary way of representing
the tesseract; these lines are in different places in each

successive section.

Yello

Nufo White
'

bo

Fig. 114.

Thus drawing our initial cube and the successive

sections, calling them b
, 61, 63? 63, &4, fig- 115, we have

the red line subject to this movement appearing in the

positions indicated.

We will now investigate what positions in the tesseract

another line in the pink face assumes when it is moved in

a similar manner.

Take a section of tha original cube containing a vertical

line, 4, in the pink plane, fig. 115. We have, in the

section, the yellow direction, but not the blue.



192 FOtfRTft

From this section a cube goes off in the fourth dimen-

sion, which is formed by moving each point of the section

in the blue direction.

Yellow

Null White

FiR. 115.

Light blue White

Fig. 11H.

Drawing this cube we have fig. 116.

Now this cube occurs as a series of sections in our

original representation of the tesseract. Taking four steps

as before this cube appears as the sections drawn in 6
, b\,

b-2, b3 , 64, fig. 117, and if the line 4 is subjected to a

movement equal in the blue and yellow directions, it will

occupy the positions designated by 4, 4^ 42 ,
43 ,

44 .

Fig. 117.

Hence, reasoning in a similar manner about every line,

it is evident that, moved equally in the blue and yellow

directions, the pink plane will trace out a space which is

shown by the series of section planes represented in the

diagram.
Thus the space traced out by the pink face, if it is

moved equally in the yellow and blue directions, is repre-

sented by the set of planes delineated in Fig. 118, pink
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fade or 0, then 1, 2, 3, and finally pink face or 4. This

solid is a diagonal solid of the tesseract, running from a

pink face to a pink face. Its length is the length of the

diagonal of a square, its side is a square.

Let us now consider the unlimited space which springs

from the pink face extended.

This space, if it goes off in the yellow direction, gives

us in it the ochre cube of the tesseract. Thus, if we have

the pink face given and a point in the ochre cube, we

have determined this particular space.

Similarly going off from the pink face in the blue

direction is another space, which gives us the light purple
cube of the tesseract in it. And any point being taken in

Null b

the light purple cube, this space going off from the pink
face is fixed.

The space we are speaking of can be conceived as

swinging round the pink face, and in each of its positions
it cuts out a solid figure from the tesseract, one of which

we have seen represented in
fig. 118.

Each of these solid figures is given by one position of

the swinging space, and by one only. Hence in each of

them, if one point is taken, the particular one of the

slanting spaces is fixed. Thus we see that given a plane
and a point out of it a space is determined.

Now, two points determine a line.

Again, think of a line and a point outside it. Imagine
a plane rotating round the line. At some time in its

rotation it passes through the point. Thus a line and a

13
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point, or three points, determine a plane* And finally

four points determine a space. We have seen that a

plane and a point determine a space, and that three

points determine a plane ;
so four points will determine

a space.

These four points may be any points, and we can take,

for instance, the four points at the extremities of the red,

white, yellow, blue axes, in the tesseract. These will

determine a space slanting with regard to the section

spaces we have been previously considering. This space
will cut the tesseract in a certain figure.

One of the simplest sections of a cube by a plane is

that in which the plane passes through the extremities

of the three edges which meet in a point. We see at

once that this plane would cut the cube in a triangle, but

we will go through the process by which a plane being
would most conveniently treat the problem of the deter-

mination of this shape, in order that we may apply the

method to the determination of the figure in which a

space cuts a tesseract when it passes through the 4

points at unit distance from a corner.

We know that two points determine a line, three points

determine a plane, and given any two points in a plane
the line between them lies wholly in the plane.

Let now the plane being study the section made by
a plane parsing through the

null r, null wh, and null y

points, fig. 119. Looking at

the orange square, which, as

usual, we suppose to be ini-

tially in his plane, he seen

that the line from null r to

null y, which is a line in the

Nully.

Null-wh.Null A
Fig. 119.

section plane, the plane, namely, through the three

extremities of the edges meeting in null, cuts the orange
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face in an orange line with null points. This then is one

of the boundaries of the section figure.

Let now the cube be so turned that the pink face

comes in his plane. The points null r and null ivh

are now visible. The line between them is pink
with null points, and since this line is common to

the surface of the cube and the cutting plane, it is

a boundary of the figure in which the plane cuts the

cube.

Again, suppose the cube turned so that the light

yellow face is in contact with the plane being's plane.

He sees two points, the null ivh and the null y. The

line between these lies in the cutting plane. Hence,
since the three cutting lines meet and enclose a portion

of the cube between them, he has determined the

figure he sought. It is a triangle with orange, pink,

and light yellow sides, all equal, and enclosing an

ochre area.

Let us now determine in what figure the space,

determined by the four points, null r, null y, null

wh, null b, cuts the tesseract. We can see three

of these points in the primary position of the tesseract

resting against our solid sheet by the ochre cube.

These three points determine a plane which lies in

the space we are considering, and this plane cuts

the ochre cube in a triangle, the interior of which

is ochre (fig. 119 will serve for this view), with pink,

light yellow and orange sides, and null points. Going
in the fourth direction, in one sense, from this plane
we pass into the tesseract, in the other sense we pass

away from it. The whole area inside the triangle is

common to the cutting plane we see, and a boundary
of the tesseract. Hence we conclude that the triangle
drawn is common to the tesseract and the cutting

space.
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Red

Now let the ochre cube turn out and the brown cube

come in. The dotted lines

show the position the ochre

cube has left (fig. 120).

Here we see three out

j

of the four points through
1*J which the cutting plane

passes, null r, null y, and

null b. The plane they

cutting space, and this plane

*\
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Null

Null-wb.

pur-n.r.pur.

space, and the triangle they determine is common to

the tesseract and the cut-

ting space. Hence this

boundary is a triangle hav-

ing a light yellow line,

which is the same as the

light yellow line of the first

figure, a light blue line and

a green line.

We have now traced the

cutting space between every
NHll ' b

: set of three that can be

made out of the four points

in which it cuts the tesseract, and have got four faces

which all join on to each other by fines.

The triangles are shown in fig. 123 as they join on to

the triangle in the ochre cube. But

they join on each to the other in an

exactly similar manner; their edges
are all identical two and two. They
form a closed figure, a tetrahedron,

enclosing a light brown portion which

is the portion of the cutting space
which lies inside the tesseract.

We cannot expect to see this light brown portion, any
more than a plane being could expect to see the inside

of a cube if an angle of it were pushed through his

plane. All he can do is to come upon the boundaries

of it in a different way to that in which he would if it

passed straight through his plane.
Thus in this solid section

;
the whole interior lies per-

fectly open in the fourth dimension. G-O round it as

we may we are simply looking at the boundaries of the

tesseract which penetrates through our solid sheet. If

the tess^rapt were not to pass across so far, tl^e triangle
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Null-y.

P.:

Null

Fig. 124.

Null-wh.

would be smaller
;

if it were to pass farther, we should

have a different figure, the outlines of which can be

determined in a similar manner.

The preceding method is open to the objection that

it depends rather on our inferring what must be, than

our seeing what is. Let us therefore consider our

sectional space as consisting of a number of planes, each

very close to the last, and observe what is to be found

in-each plane.
The corresponding method in the case of two dimen-

sions is as follows : The plane

being can see that line of the

sectional plane through null y,

null iv, null r, which lies in

the orange plane. Let him
now suppose the cube and the

section plane to pass half way

through his plane. Replacing
the red and yellow axes are lines parallel to them, sections

of the pink and light .yellow faces.

Where will the section plane cut these parallels to

the red and yellow axes?

Let him suppose the cube, in the position of the

drawing, fig. 124, turned so that the pink face lies

against his plane. He can see the line from the null r

point to the null ivh point, and can see (compare fig. 119)
that it cuts A& a parallel to his red axis, drawn at a point
half way along the white line, in a point B, half way up.
I shall speak of the axis as having the length of an edge
of the cube. Similarly, by letting the cube turn so that

the light yellow square swings against his plane, he can

see (compare fig. 119) that a parallel to his yellow axis

drawn from a point half-way along the white axis, is cut

at half its length by the trace pf the section plane in the

light yellow face r
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Hence when the cube had passed half-way through he

would have instead of the orange line with null points,

which he had at first an ochre line of half its length,

with pink and light yellow points. Thus, as the cube

passed slowly through his plane, he would have a suc-

cession of lines gradually diminishing in length and

forming an equilateral triangle. The whole interior would

be ochre, the line from which it started would be orange.

The succession of points at the ends of the succeeding
lines would form pink and light yellow lines and the

final point would be null. Thus looking at the successive

lines in the section plane as it and the cube passed across

his plane he would determine the figure cut out bit

by bit.

Coming now to the section of the tesseract, let us

imagine that the "tesseract and its cutting space pass

slowly across our space ;
we can examine portions of it,

and their relation to portions of tlie cutting space. Take

the section space which passes through the four points,

null r, wh, y,b; we can see in the ochre cube (fig. 119)
the plane belonging to this section space, which passes

through the three extremities of the red, white, yellow
axes.

Now let the tesseract pass half way through our space.

Instead of our original axes we have parallels to them,

purple, light blue, and green, each of the same length as

the first axes, for the section of the tesseract is of exactly
the same shape as its ochre cube.

But the sectional space seen at this stage of the trans-

ference would not cut the section of the tesseract in a

plane disposed as at first.

To see where the sectional space would cut these

parallels to the original axes let the tesseract swing so

that, the orange face remaining stationary, the blue line

cpmes in to the left.
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Null-b. Blue

Fi

. _

Here (fig. 125) we have the null r, y, b points, and of

the sectional space all we
see is the plane through these

three points in it.

In this figure we can draw

the parallels to the red and

yellow axes and see that, if

they started at a point half

way along the blue axis, they
would each be cut at a point so as to be half of their

previous length.

Swinging the tesseract into our space about the pink
face of the ochre cube we likewise find that the parallel

to the white axis is cut at half its length by the sectional

space.

Hence in a section made when the tesseract had passed
half across our space the parallels to the red, white, yellow

axes, which are now in our

space, are cut by the section

space, each of them half way

along, and for this stage of

the traversing motion we

should have fig. 126. The
Blue L.blue bl.

Section bg interior Light brown

Fig. 126.

section made of this cube by
the plane in which the sec-

tional space cuts it, is an

equilateral triangle with purple, 1. blue, green points, and

1. purple, brown, 1. green lines.

Thus the original ochre triangle, with null points and

pink, orange, light yellow lines, would be succeeded by a

triangle coloured in manner just described.

This triangle would initially be only a very little smaller

than the original triangle, it would gradually diminish,

until it ended in a point, a null point. Each of its

edges would be of the same length. Thus the successive
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sections of the successive planes into which we analyse the

cutting space would be a tetrahedron of the description

shown (fig. 123), and the whole interior of the tetrahedron

would be light brown.

Front view. The rear faces.

Fig. 127.

In fig. 127 the tetrahedron is represented by means of

its faces as two triangles which meet in the p. line, and

two rear triangles which join on to them, the diagonal
of the pink face being supposed to run vertically

upward.
We have now reached a natural termination. The

reader may pursue the subject in further detail, but will

find no essential novelty. I conclude with an indication

as to the manner in which figures previously given may
be used in determining sections by the method developed
above.

Applying this method to the tesseract, as represented
in Chapter IX., sections made by a space cutting the axes

equidistantly at any distance can be drawn, and also the

sections of tesseracts arranged in a block.

If we draw a plane, cutting all four axes at a point
six units distance from null, we have a slanting space.

Jhjs space cuts the red, white, yellow axes in the
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visibly moves. Every material body must slip or slide

along this sheet, not deviating from contact with it in

any motion which we can observe.

The necessity for this assumption is clearly apparent, if

we consider the analogous case of a suppositionary plane

world. If there were any creatures whose experiences
were confined to a plane, we must account for their

limitation. If they were free to move in every space

direction, they would have a three-dimensional motion
;

hence they must be physically limited, and the only way
in which we can conceive such a limitation to exist is by
means of a material surface against which they slide.

The existence of this surface could only be known to

them indirectly. It does not lie in any direction from

them in which the kinds of motion they know of leads

them. If it were perfectly smooth and always in contact

with every material object, there would be no difference in

their relations to it which would direct their attention to it.

But if this surface were curved if it were, say, in the

form of a vast sphere the triangles they drew would

really be triangles of a sphere, and when these triangles

are large enough the angles diverge from the magnitudes

they would have for the same lengths of sides if the

surface were plane. Hence by the measurement of

triangles of very great magnitude a plane being might
detect a difference from the laws of a plane world in his

physical world, and so be led to the conclusion that there

was in reality another dimension to space a third

dimension as well as the two which his ordinary experi-

ence made him familiar with.

Now, astronomers have thought it worth while to

examine the measurements of vast triangles drawn from

one celestial body to another with a view to determine if

there is anything like a curvature in our space that is to

say, they have tried astronomical measurements to find
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out if the vast solid sheet against which, on the sup-

position of a fourth dimension, everything slides is

curved or not. These results have been negative. The

solid sheet, if it exists, is not curved or, being curved, has

not a sufficient curvature to cause any observable deviation

from the theoretical value of the angles calculated.

Hence the examination of the infinitely great leads to

no decisive criterion. If it did we should have to decide

between the present theory and that of metageometry.

Coming now to the prosecution of the inquiry in the

direction of the infinitely small, we have to state the

question thus : Our laws of movement are derived from

the examination of bodies which move in three-dimensional

space. All our conceptions are founded on the sup-

position of a space which is represented analytically by
three independent axes and variations along them that

is, it is a space in which there are three independent
movements. Any motion possible in it can be compounded
out of these three movements, which we may call : up,

right, away.
To examine the actions of the very small portions of

matter with the view of ascertaining if there is any
evidence in the phenomena for the supposition of a fourth

dimension of space, we must commence by clearly defining
what the laws of mechanics would be on the supposition
of a fourth dimension. It is of no use asking if the

phenomena of the smallest particles of matter are like

we do not know what. We must have a definite con-

ception of what the laws of motion would be on the

supposition of the fourth dimension, and then inquire if

the phenomena of the activity of the smaller particles of

matter resemble the conceptions which we have elaborated.

Now, the task of forming these conceptions is by no

means one to be lightly dismissed. Movement in space
has many features which differ entirely from movement
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on a plane; and when we set about to form the Con-

ception of motion in four dimensions, we find that there

is at least as great a step as from the plane to three-

dimensional space.

I do not say that the step is difficult, but I Want to

point out that it must be taken. When we have formed

the conception of four-dimensional motion, we can ask a

rational question of Nature. Before we have elaborated

our conceptions we are asking if an unknown is like an

unknown a futile inquiry.

As a matter of fact, four-dimensional movements are in

every way simple and more easy to calculate than three-

dimensional movements, for four-dimensional movements

are simply two sets of plane movements put together.
Without the formation of an experience of four-

dimensional bodies, their shapes and motions, the subject

can be but formal logically conclusive, not intuitively

evident. It is to this logical apprehension that I must

appeal.
It is perfectly simple to form an experiential familiarity

with the facts of four-dimensional movement. The
method is analogous to that which a plane being would

have to adopt to form an experiential familiarity with

three-dimensional movements, and may be briefly

summed up as the formation of a compound sense by
means of which duration is regarded as equivalent to

extension.

Consider a being confined to a plane. A square enclosed

by four lines will be to him a solid, the interior of which

can only by examined by breaking through the lines.

If such a square were to pass transverse to his plane, it

would immediately disappear. It would vanish, going in

no direction to which he could point.

If, now, a cube be placed in contact with his plane, its

surface of contact would appear like the square which we
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have just mentioned. But if it were to pass transverse to

his plane, breaking through it, it would appear as a lasting

square. The three-dimensional matter will give a lasting

appearance in circumstances under which two-dimensional

matter will at once disappear.

Similarly, a four-dimensional cube, or, as we may call

it, a tesseract, which is generated from a cube by a

movement of every part of the cube in a fourth direction

at right angles to each of the three visible directions in

the cube, if it moved transverse to our space, would

appear as a lasting cube.

A cube of three-dimensional matter, since it extends to

no distance at all in the fourth dimension, would instantly

disappear, if subjected to a motion transverse to our space.

It would disappear and be gone, without it being possible

to point to any direction in which it had moved.

All attempts to visualise a fourth dimension are futile. It

must be connected with a time experience in three space.

The most difficult notion for a plane being to acquire
would be that of rotation about a line. Consider a plane

being facing a square. If he were told that rotation

about a line were possible, he would move his square this

way and that. A square in a plane can rotate about a

point, but to rotate about a line would seem to the plane

being perfectly impossible. How could those parts of his

square which were on one side of an edge come to the

other side without the edge moving ? He could under-

stand their reflection in the edge. He could form an

idea of the looking-glass image of his square lying on the

opposite side of the line of an edge, but by no motion

that he knows of can he make the actual square assume
that position. The result of the rotation would be like

reflection in the edge, but it would be a physical im-

possibility to produce it in the plane.

The demonstration of rotation about a line must be to
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him purely formal. If he conceived the notion of a cube

stretching out in an unknown direction away from his

plane, then he can see the base of it, his square in the

plane, rotating round a point. He can likewise apprehend
that every parallel section taken at successive intervals in

the unknown direction rotates in like manner round a

point. Thus he would come to conclude that the whole

body rotates round a line the line consisting of the

succession of points round which the plane sections rotate.

Thus, given three axes, x, y, z, if x rotates to take the

the place of y, and y turns so as to point to negative x,

then the third axis remaining unaffected by this turning
is the axis about which the rotation takes place. This,

then, would have to be his criterion of the axis of a

rotation that which remains unchanged when a rotation

of every plane section of a body takes place.

There is another way in which a plane being can think

about three-dimensional movements
; and, as it affords

the type by which we can most conveniently think about

four-dimensional movements, it will be no loss of time to

consider it in detail.

We can represent the plane being and his object by

figures cut out of paper, which slip on a smooth surface.

The thickness of these bodies must be taken as so minute

y that their extension in the third di-

mension escapes the observation of the

plane being, and he thinks about them

as if they were mathematical plane

5' figures in a plane instead of being
material bodies capable of moving on

A B x a plane surface. Let Ax, Ay be two

Fig. 1 (129;. axes and ABCD a square. As far as

movements in the plane are concerned, the square can

rotate about a point A, for example. It cannot rotate

about a side, such as AC.
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But if the plane being is aware of the existence of a

third dimension he can study the movements possible in

the ample space, taking his figure portion by portion.

His plane can only hold two axes. But, since it can

hold two, he is able to represent a turning into the third

dimension if he neglect one of his axes and represent the

third axis as lying in his plane. He can make a drawing
in his plane of what stands up perpendicularly from his

plane. Let AZ be the axis, which

stands perpendicular to his plane at

A. He can draw in his plane two

lines to represent the two axes, Ax

and AZ. Let Fig. 2 be this draw-

ing. Here the z axis has taken

^ 8 the place of the y axis, and the

Fig. 2 (130). plane of AX AZ is represented in his

plane. In this figure all that exists of the square ABCD

will be the line AB.

The square extends from this line in the y direction,

but more of that direction is represented in Fig. 2. The

plane being can study the turning of the line AB in this

diagram. It is simply a case of plane turning around the

point A. The line AB occupies intermediate portions like AB:

and after half a revolution will lie on AX produced through A.

Now, in the same way, the plane being can take

another point, A', and another line, A'B', in his square.
He can make the drawing of the two directions at A', one

along A'B', the other perpendicular to his plane. He
will obtain a figure precisely similar to Fig. 2, and will

see that, as AB can turn around A, so A'(f around A.

In this turning AB and A'B' would not interfere with

each other, as they would if they moved in the plane
around the separate points A and A'.

Hence the plane being would conclude that a rotation

round a line was possible. He could see his square as it

14
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began to make this turning. He could see it half way
round when it came to lie on the opposite side of the line

AC. But in intermediate portions he could not see it,

for it runs out of the plane.

Coming now to the question of a four-dimensional body,
let us conceive of it as a series of cubic sections, the first

in our space, the rest at intervals, stretching away from

our space in the unknown direction.

We must not think of a four-dimensional body as

formed by moving a three-dimensional body in any
direction which we can see.

Refer for a moment to Fig. 3. The point A, moving to

the right, traces out the line AC. The line AC, moving
away in a new direction, traces out the square ACEG at

the base of the cube. The square AEGC, moving in a

new direction, will trace out the cube ACEGHDIIF. The

vertical direction of this last motion is not identical with

any motion possible in the plane of the base of the cube.

It is an entirely new direction, at right angles to every
line that can be drawn in the base. To trace out a

tesseract the cube must move in a new direction a

direction at right angles to any and every line that can

be drawn in the space of the cube.

The cubic sections of the tesseract are related to the

cube we see, as the square sections of the cube are related

to the square of its base which a plane being sees.

Let us imagine the cube in our space, which is the base

of a tesseract, to turn about one of its edges. The rotation

will carry the whole body with it, and each of the cubic

sections will rotate. The axis we see in our space will

remain unchanged, and likewise the series of axes parallel

to it about which each of the parallel cubic sections

rotates. The assemblage of all of these is a plane.

Hence in four dimensions a body rotates about a plane.

There is no such thing as rotation round an axis.
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We may regard the rotation from a different point of

view. Consider four independent axes each at right

angles to all the others, drawn in a four-dimensional body.

Of these, four axes we can see any three. The fourth

extends normal to our space.

Rotation is the turning of one axis into a second, and

the second turning to take the place of the negative of

the first. It involves two axes. Thus, in this rotation of

a four-dimensional body, two axes change and two remain

at rest. Four-dimensional rotation is therefore a turning
about a plane.

As in the case of a plane being, the result of rotation

about a line would appear as the production of a looking-

glass image of the original object on the other side of the

line, so to us the result of a four-dimensional rotation

would appear like the production of a looking-glass image
of a body on the other side of a plane. The plane -would

be the axis of the rotation, and the path of the body
between its two appearances would be unimaginable in

three-dimensional space.

Let us now apply the method by which a plane being

could examine the nature of rota-

tion about a line in our examination

of rotation about a plane. Fig. 3

represents a cube in our space, the

three axes x, y, z denoting its

three dimensions. Let w represent

the fourth dimension. Now, since

in our space we can represent any
three dimensions, we can, if we

H

B

A C

Fig. 3 (131).

choose, make a representation of what is in the space
determined by the three axes x, z, w. This is a three-

dimensional space determined by two of the axes we have

drawn, x and z, and in place of y the fourth axis, w. We
cannot, keeping x and z, have both y and w in our space ;
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so we will let y go and draw w in its place. What will be

our view of the cube ?

Evidently we shall have simply the square that is in

the plane of xz, the square ACDB.

The rest of the cube stretches in

the y direction, and, as we have

none of the space so determined,
we have only the face of the cube.

This is represented in fig. 4.

Now, suppose the whole cube to

, Fig. 4 (132). be turned from the x to the w
direction. Conformably with our method, we will not

take the whole of the cube into consideration at once, but

will begin with the face ABCD.

Let this face begin to turn. Fig. 5

represents one of the positions it will

occupy ;
the line AB remains on the

z axis. The rest of the face extends

between the x and the w direction.

Now, since we can take any three

axes, let us look at what lies in

Fig. 5 (133). the space of zyiv, and examine the

turning there. We must now let the z axis disappear
and let the iv axis run in the direction in which the z ran.

Making this representation, what

do we see of the cube ? Obviously\we bee only the lower face. The rest

^ of the cube lies in the space of xyz.

\ In the space of xyz we have merely
A C the base of the cube lying in the

Fig. 6 (134). plane of xy, as shown in fig. 6.

Now let the x to w turning take place. The square

ACEG will turn about the line AE. This edge will

remain along the y axis and will be stationary, however

far the square turns.
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Thus, if the cube be turned by an x to w turning, both

the edge AB and the edge AC remain

stationary ;
hence the whole face

ABEF in the yz plane remains fixed.

The turning has taken place about

the face ABEF.

Suppose this turning to continue
*

till AC runs to the left from A.

Fig. 7 (135). r

occupy the position

H

shown in fig. 8. This is the looking-glass image of the

cube in
fig.

3. By no rotation in three-dimensional .space
can the cube be brought from

the position in fig. 3 to that

shown in fig. 8.

We can think of this turning
as a turning of the face ABCD

about AB, and a turning of each

section parallel to ABCD round

the vertical line in which it

intersects the face ABEF, the

2"?pQSiftcn . Imposition

Fig. 8 (13G>

space in which the turning takes place being a different

one from that in which the cube lies.

One of the conditions, then, of our inquiry in the

direction of the infinitely small is that we form the con-

ception of a rotation about a plane. The production of a

body in a state in which it presents the appearance of a

looking-glass image of its former state is the criterion

for a four-dimensional rotation.

There is some evidence for the occurrence of such trans-

formations of bodies in the change of bodies from those

which produce a right>handed polarisation of light to

those which produce a left-handed polarisation; but this

is not a point to which any very great importance can

be attached.

Still, in this connection, let me quote a remark from
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Prof. John G. McKendrick's address on Physiology before

the British Association at Glasgow. Discussing the

possibility of the hereditary production of characteristics

through the material structure of the ovum, he estimates

that in it there exist 12,000,000,000 biophors, or ultimate

particles of living matter, a sufficient number to account

for hereditary transmission, and observes :
" Thus it is

conceivable that vital activities may also be determined

by the kind of motion that takes place in the molecules

of that which we speak of as living matter. It may be

different in kind from some of the motions known to

physicists, and it is conceivable that life may be the

transmission to dead matter, the molecules of which have

already a special kind of motion, of a form of motion

sui generis."

Now, in the realm of organic beings symmetrical struc-

tures those with a right and left symmetry are every-

where in evidence. Granted that four dimensions exist,

the simplest turning produces the image form, and by a

folding-over structures could be produced, duplicated

right and left, just as is the case of symmetry in a

plane.

Thus one very general characteristic of the forms of

organisms could be accounted for by the supposition that

a four-dimensional motion was involved in the process of

life.

But whether four-dimensional motions correspond in

other respects to the physiologist's demand for a special

kind of motion, or not, I do not know. Our business is

with the evidence for their existence in physics. For

this purpose it is necessary to examine into the signifi-

cance of rotation round a plane in the case of extensible

and of fluid matter.

Let us dwell a moment longer on the rotation of a rigid

body. Looking at the cube in
fig. 3, which turns about
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the face of ABFE, we see that any line in the face can

take the place of the vertical and horizontal lines we have

examined. Take the diagonal line AF and the section

through it to GH. The portions of matter which were on

one side of AF in this section in fig. 3 are on the

opposite side of it in fig. 8. They have gone round the

line AF. Thus the rotation round a face can be considered

as a number of rotations of sections round parallel lines

in it.

The turning about two different lines is impossible in

three-dimensional space. To take another illustration,

suppose A and B are two parallel lines in the xy plane,

and let CD and EF be two rods crossing them. Now, in

the space of xyz if the rods turn round the lines A and B

in the same direction they
will make two independent
circles.

When the end F is goin^
down the end c will be coming
up. They will meet and con-

flict.

But if we rotate the rods

about the plane of AB by the

z to w rotation these move-

ments will not conflict. Sup-

pose all the figure removed

B

Fig. 9 (137).

with the exception of the plane xz, and from this plane
draw the axis of w, so that we are looking at the space
of xzw.

Here, fig. 10, we cannot see the lines A and B. We
see the points G and H, in which A and B intercept
the x axis, but we cannot see the lines themselves, for

they run in the y direction, and that is not in our

drawing.

Now, if the rods move with the z to w rotation they will
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turn in parallel planes, keeping their relative positions.

The point D, for instance, will

describe a circle. At one time

it will be above the line A, at

another time below it. Hence

it rotates round A.

Not only two rods but any
number of rods crossing the

plane will move round it har-

moniously. We can think of
w*

this rotation by supposing the

rods standing up from one line

to move round that line and remembering that it is

not inconsistent with this rotation for the rods standing

up along another line also to move round it, the relative

positions of all the rods being preserved. Now, if the

rods are thick together, they may represent a disk of

matter, and we see that a disk of matter can rotate

round a central plane.

Rotation round a plane is exactly analogous to rotation

round an axis in three dimensions. If we want a rod to

turn round, the ends must be free
;
so if we want a disk

of matter to turn round its central plane by a four-dimen-

sional turning, all the contour must be free. The whole

contour corresponds to the ends of the rod. Each point

of the contour can be looked on as the extremity of an

axis in the body, round each point of which there is a

rotation of the matter in the disk.

If the one end of a rod be clamped, we can twist the

rod, but not turn it round
;
so if any part of the contour

of a disk is clamped we can impart a twist to the disk,

but not turn it round its central plane. In the case of

extensible materials a long, thin rod will twist round its

axis, even when the axis is curved, as, for instance, in the

case of a ring of India rubber.
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In an analogous manner, in four dimensions we can have

rotation round a curved plane, if I may use the expression.

A sphere can be turned inside out in four dimensions.

Let fig. 11 represent a

spherical surface, on each

side of which a layer of

matter exists. The thick-

ness of the matter is rep-
resented by the rods CD and

EF, extending equally with-

' out and within.

Now, take the section of

the sphere by the yz plane
we have a circle fig. 12.

Now, let the w axis be drawn

in place of the x axis so that
Fig. ll (139).

we have the space of yzw
represented. In this space all that there will be seen of

the sphere is the circle drawn.

Here we see that there is no obstacle to prevent the

rods turning round. If

the matter is so elastic

that it will give enough
for the particles at E and

c to be separated as they
are at F and D, they
can rotate round to the

position D and F, and a

similar motion is possible

for all other particles.

There is no matter or

obstacle to prevent them
Fig. 12 (140). from moving out in the

w direction, and then on round the circumference as an

axis. Now, what will hold for one section will hold for
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all, as the fourth dimension is at right angles to all the

sections which can be made of the sphere.
We have supposed the matter of which the sphere is

composed to be three-dimensional. If the matter had a

small thickness in the fourth dimension, there would be

a slight thickness in fig. 12 above the plane of the paper
a thickness equal to the thickness of the matter in the

fourth dimension. The rods would have to be replaced

by thin slabs. But this would make no difference as to

the possibility of the rotation. This motion is discussed

by Newcomb in the first volume of the American Journal

of Mathematics.

Let us now consider, not a merely extensible body, but

a liquid one. A mass of rotating liquid, a whirl, eddy,
or vortex, has many remarkable properties. On first

consideration we should expect the rotating mass of

liquid immediately to spread off and lose itself in the

surrounding liquid. The water flies off a wheel whirled

round, and we should expect the rotating liquid to be

dispersed. But see the eddies in a river strangely per-

sistent. The rings that occur in puffs of smoke and last

so long are whirls or vortices curved round so that their

opposite ends join together. A cyclone will travel over

great distances.

Helmholtz was the first to investigate the properties of

vortices. He studied them as they would occur in a perfect

fluid that is, one without friction of one moving portion

or another. In such a medium vortices would be inde-

structible. They would go on for ever, altering their

shape, but consisting always of the same portion of the

fluid. But a straight vortex could not exist surrounded

entirely by the fluid. The ends of a vortex must reach to

some boundary inside or outside the fluid.

A vortex which is bent round so that its opposite ends

join is capable of existing, but no vortex has a free end in
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the fluid. The fluid round the vortex is always in motion,

and one produces a definite movement in another.

Lord Kelvin has proposed the hypothesis that portions
of a fluid segregated in vortices account for the origin of

matter. The properties of the ether in respect of its

capacity of propagating disturbances can be explained

by the assumption of vortices in it instead of by a pro-

perty of rigidity. It is difficult to conceive, however,

of any arrangement of the vortex rings and endless vortex

filaments in the ether.

Now, the further consideration of four-dimensional

rotations shows the existence of a kind of vortex which

would make an ether filled with a homogeneous vortex

motion easily thinkable.

To understand the nature of this vortex, we must go
on and take a step by which we accept the full signifi-

cance of the four-dimensional hypothesis. Granted four-

dimensional axes, we have seen that a rotation of one into

another leaves two unaltered, and these two form the

axial plane about which the rotation takes place. But

what about these two ? Do they necessarily remain

motionless ? There is nothing to prevent a rotation of

these two, one into the other, taking place concurrently
with the first rotation. This possibility of a double

rotation deserves the most careful attention, for it is the

kind of movement which is distinctly typical of four

dimensions.

Rotation round a plane is analogous to rotation round

an axis. But in three-dimensional space there is no

motion analogous to the double rotation, in which, while

axis 1 changes into axis 2, axis 3 changes into axis 4.

Consider a four-dimensional body, with four independent

axes, x, y, z, w. A point in it can move in only one

direction at a given moment. If the body has a velocity

of rotation by which the x axis changes into the y axis
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and all parallel sections move in a similar manner, then

the point will describe a circle. If, now, in addition to

the rotation by which the x axis changes into the y axis the

body has a rotation by which the z axis turns into the

w axis, the point in question will have a double motion

in consequence of the two turnings. The motions will

compound, and the point will describe a circle, but not

the same circle which it would describe in virtue of either

rotation separately.

We know that if a body in three-dimensional space is

given two movements of rotation they will combine into a

single movement of rotation round a definite axis. It is

in no different condition from that in which it is sub-

jected to one movement of rotation. The direction of

the axis changes ;
that is all. The same is not true about

a four-dimensional body. The two rotations, x to y and

z to w, are independent. A body subject to the two is in

a totally different condition to that which it is in wheiv

subject to one only. When subject to a rotation such a*

that of x to y, a whole plane in the body, as we have

seen, is stationary. When subject to the double rotatioh

no part of the body is stationary except the point common
to the two planes of rotation.

If the two rotations are equal in velocity, every point

in the body describes a circle. All points equally distant

from the stationary point describe circles of equal size.

We can represent a four-dimensional sphere by means

of two diagrams, in one of which we take the three axes,

x, y, z; in the other the axes x, w, and z. In fig. 13 we

have the view of a four-dimensional sphere in the space of

xyz. Fig. 13 shows all that we can see of the four

sphere in the space of xyz, for it represents all the

points in that space, which are at an equal distance from

the centre.

Let us now take the xz section, and let the axis of w



RECAPITULATION AND EXTENSION 221

take the place of the y axis. Here, in fig. 14, we have

the space of xzw. In this space we have to take all the

points which are at the same distance from the centre,

consequently we have another sphere. If we had a three-

dimensional sphere, as has been shown before, we should

have merely a circle in the xzw space, the xz circle seen

in the space of xzw. But now, taking the view in the

space of xzw. we have a sphere in that space also. In a

similar manner, whichever set of three axes we take, we

obtain a sphere.

p' Showing axes

xyz
y

Fig. 13 (141). Fig. 14 (142).

In fig. 13, let us imagine the rotation in the direction

xy to be taking place. The point x will turn to
y-,

and p
to p'. The axis zz remains stationary, and this axis is all

of the plane zw which we can see in the space section

exhibited in the figure.

In fig. 14, imagine the rotation from z to w to be taking

place. The lu axis now occupies the position previously

occupied by the y axis. This does not mean that the

w axis can coincide with the y axis. It indicates that we

are looking at the four-dimensional sphere from a different

point of view. Any three-space view will show us three

axes, and in fig. 14 we are looking at xzw.

The only part that is identical in the two diagrams is

the circle of the x and z axes, which axes are contained

in both diagrams. Thus the plane zxz' is the same in

both, and the point p represents the same point in both
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diagrams. Now, in fig. 14 let the zw rotation take place,

the z axis will turn toward the point iv of the w axis, and

the point p will move in a circle about the point x.

Thus in fig. 13 the point p moves in a circle parallel to

the xy plane ;
in

fig. 14 it moves in a circle parallel to the

zw plane, indicated by the arrow.

Now, suppose both of these independent rotations com-

pounded, the point p will move in a circle, but this circle

will coincide with neither of the circles in which either

one of the rotations will take it. The circle the point p
will move in will depend on its position on the surface of

the four sphere.

In this double rotation, possible in four-dimensional

space, there is a kind of movement totally unlike any
with which we are familiar in three-dimensional space.

It is a requisite preliminary to the discussion of the

behaviour of the small particles of matter, with a view to

determining whether they show the characteristics of four-

dimensional movements, to become familiar with the main

characteristics of this double rotation. And here I must

rely on a formal and logical assent rather than on the

intuitive apprehension, which can only be obtained by a

more detailed study.

In the first place this double rotation consists in two

varieties or kinds, which we will call the A and B kinds.

Consider four axes, x, y, z, iv. The rotation of x to y can

be accompanied with the rotation of z to iv. Call this

the A kind.

But also the rotation of x to y can be accompanied by
the rotation, of not z to w, but w to z. Call this the

B kind.

They differ in only one of the component rotations. One
is not the negative of the other. It is the semi-negative.

The opposite of an x to y, z to w rotation would be y to x,

w to z. The semi-negative is x to y and w to z.
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If four dimensions exist and we cannot perceive them,

because the extension of matter is so small in the fourth

dimension that all movements are withheld from direct

observation except those which are three-dimensional, we

should not observe these double rotations, but only the

effects of them in three-dimensional movements of the

type with which we are familiar.

If matter in its small particles is four-dimensional,

we should expect this double rotation to be a universal

characteristic of the atoms and molecules, for no portion

of matter is at rest. The consequences of this corpus-

cular motion can be perceived, but only under the form

of ordinary rotation or displacement. Thus, if the theory
of four dimensions is true, we have in the corpuscles of

matter a whole world of movement, which we can never

study directly, but only by means of inference.

The rotation A, as I have defined it, consists of two

equal rotations one about the plane of zw, the other

about the plane of xy. It is evident that these rotations

are not necessarily equal. A body may be moving with a

double rotation, in which these two independent com-

ponents are not equal ;
but in such a case we can consider

the body to be moving with a composite rotation a

rotation of the A or B kind and, in addition, a rotation

about a plane.

If we combine an A and a B movement, we obtain a

rotation about a plane; for, the first being x to y and

to iv, and the second being x to y and iv to z, when (hey
are put together the z to w and w to z rotations neutralise

each other, and we obtain an x to y rotation only, which

is a rotation about the plane of zw. Similarly, if we
take a B rotation, y to x and z to w, we get, on combining
this with the A rotation, a rotation of z to w about the

xy plane. In this case the plane of rotation is in the

three-dimensional space of xyz, and we have what has
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been described before a twisting about a plane in our

space.

Consider now a portion of a perfect liquid having an A
motion. It can be proved that it possesses the properties

of a vortex. It forms a permanent individuality a

separated-out portion of the liquid accompanied by a

motion of the surrounding liquid. It has properties

analogous to those of a vortex filament. But it is not

necessary for its existence that its ends should reach the

boundary of the liquid. It is self-contained and, unless

disturbed, is circular in every section.

If we suppose the ether to have its properties of trans-

mitting vibration given it by such vortices, we must

inquire how they lie together in four-dimensional space.

Placing a circular disk on a plane and surrounding it by
six others, we find that if the central one is given a motion

of rotation, it imparts to the others a rotation which is

antagonistic in every two ad-

jacent ones. If A goes round,
as shown by the arrow, B and

C will be moving in opposite

ways, and each tends to de-

stroy the motion of the other.

Now, if we suppose spheres
to be arranged in a corre-

sponding manner in three-

dimensional space, they will
Fig. 15(143). , .

1 ' J
. .

be grouped m figures which

are for three-dimensional space what hexagons are for

plane space. If a number of spheres of soft clay be

pressed together, so as to fill up the interstices, each will

assume the form of a fourteen-sided figure called a

tetrakaidecagon.

Now, assuming space to be filled with such tetrakai-

decagons, and placing a sphere in each, it will be found.
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that one sphere is touched by eight others. The re-

maining six spheres of the fourteen which surround the

central one will not touch it, but will touch three of

those in contact with it. Hence, if the central sphere

rotates, it will not necessarily drive those around it so

that their motions will be antagonistic to each other,

but the velocities will not arrange themselves in a

systematic manner.

In four-dimensional space the figure which forms the

next term of the series hexagon, tetrakaidecagon, is a

thirty-sided figure. It has for its faces ten solid tetra-

kaidecagons and twenty hexagonal prisms. Such figures

will exactly fill four-dimensional space, five of them meet-

ing at every point. If, now, in each of these figures we

suppose a solid four-dimensional sphere to be placed, any
one sphere is surrounded by thirty others. Of these it

touches ten, and, if it rotates, it drives the rest by means

of these. Now, if we imagine the central sphere to be

given an A or a B rotation, it will turn the whole mass of

sphere round in a systematic manner. Suppose four-

dimensional space to be filled with such spheres, each

rotating with a double rotation, the whole mass would

form one consistent system of motion, in which each one

drove every other one, with no friction or lagging behind.

Every sphere would have the same kind of rotation. In

three-dimensional space, if one body drives another round

the second body rotates with the opposite kind of rotation
;

but in four-dimensional space these four-dimensional

spheres would each have the double negative of the rotation

of the one next it, and we have seen that the double

negative of an A or B rotation is still an A or B rotation.

Thus fpur-dimensional space could be filled with a system
of self-preservative living energy. If we imagine the

four-dimensional spheres to be of liquid and not of solid

matter, then, even if the liquid were not quite perfect and

15
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there were a slight retarding effect of one vortex on

another, the system would still maintain itself.

In this hypothesis we must look on the ether as

possessing energy, and its transmission of vibrations, not

as the conveying of a motion imparted from without, but

as a modification of its own motion.

We are now in possession of pome of the conceptions of

four-dimensional mechanics, and will turn aside from the

line of their development to inquire if there is any
evidence of their applicability to the processes of nature.

Is there any mode of motion in the region of the

minute which, giving three-dimensional movements for

its effect, still in itself escapes the grasp of our mechanical

theories? I would point to electricity. Through the

labours of Faraday and Maxwell we are convinced that the

phenomena of electricity are of the nature of the stress

and strain of a medium
;
but there is still a gap to be

bridged over in their explanation the laws of elasticity,

which Maxwell assumes, are not those of ordinary matter.

And, to take another instance : a magnetic pole in the

neighbourhood of a current tends to move. Maxwell has

shown that the pressures on it are analogous to the

velocities in a liquid which would exist if a vortex took

the place of the electric current ; but we cannot point out

the definite mechanical explanation of these pressures.

There must be some mode of motion of a body or of the

medium in virtue of which a body is said to be

electrified.

Take the ions which convey charges of electricity 500

times greater in proportion to their mass than are carried

by the molecules of hydrogen in electrolysis. In respect
of what motion can these ions be said to be electrified ?

It can be shown that the energy they possess is not

energy of rotation. Think of a short rod rotating. If it

is turned over it is found to be rotating in the opposite
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direction. Now, if rotation in one direction corresponds to

positive electricity, rotation in the opposite direction cor-

responds to negative electricity, and the smallest electrified

particles would have their charges reversed by being
turned over an absurd supposition.

If we fix on a mode of motion as a definition of

electricity, we must have two varieties of it, one for

positive and one for negative ;
and a body possessing the

one kind must not become possessed of the other by any

change in its position.

Ah1

three-dimensional motions are compounded of rota-

tions and translations, and none of them satisfy this first

condition for serving as a definition of electricity.

But consider the double rotation of the A and B kinds.

A body rotating with the A motion cannot have its

motion transformed into the B kind by being turned over

in any way. Suppose a body has the rotation x to y and

to w. Turning it about the xy plane, we reverse the

direction of the motion x to y. But we also reverse the

z to w motion, for the point at the extremity of the

positive axis is now at the extremity of the negative z

axis, and since we have not interfered with its motion it

goes in the direction of position w. Hence we have y to

x and w to 0, which is the same as x to y and z to w.

Thus both components are reversed, and there is the A
motion over again. The B kind is the semi-negative,
with only one component reversed.

Hence a system of molecules with the A motion would

not destroy it in one another, and would impart it to a

body in contact with them. Thus A and B motions

possess the first requisite which must be demanded in

any mode of motion representative of electricity.

Let us trace out the consequences of defining positive

electricity as an A motion and negative electricity as a B
motion. The combination of positive and negative
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electricity produces a current. Imagine a vortex in the

ether of the A kind and unite with this one of the B kind.

An A motion and B motion produce rotation round a plane,

which is in the ether a vortex round an axial surface.

It is a vortex of the kind we represent as a part of a

sphere turning inside out. Now such a vortex must have

its rim on a boundary of the ether on a body in the

ether.

Let us suppose that a conductor is a body which has

the property of serving as the terminal abutment of such

a vortex. Then the conception we must form of a closed

current is of a vortex sheet having its edge along the

circuit of the conducting wire. The whole wire will then

be like the centres on which a spindle turns in three-

dimensional space, and any interruption of the continuity
of the wire will produce a tension in place of a continuous

revolution.

As the direction of the rotation of the vortex is from a

three-space direction into the fourth dimension and back

again, there will be no direction of flow to the current
;

but it will have two sides, according to whether z goes
to w or z goes to negative w.

We can draw any line from one part of the circuit to

another
;
then the ether along that line is rotating round

its points.

This geometric image corresponds to the definition of

an electric circuit. It is known that the action does not

lie in the wire, but in the medium, and it is known that

there is no direction of flow in the wire.

No explanation has been offered in three-dimensional

mechanics of how an action can be impressed throughout
a region and yet necessarily run itself out along a closed

boundary, as is the case in an electric current. But this

phenomenon corresponds exactly to the definition of a

four-dimensional vortex.
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If we take a very long magnet, so long that one of its

poles is practically isolated, and pat this pole in the

vicinity of an electric circuit, we find that it moves.

Now, assuming for the sake of simplicity that the wire

which determines the current is in the form of a circle,

if we take a number of small magnets and place them all

pointing in the same direction normal to the plane of the

circle, so that they fill it and the wire binds them round,

we find that this sheet of magnets has the same effect on

the magnetic pole that the current has. The sheet of

magnets may be curved, but the edge of it must coincide

with the wire. The collection of magnets is then

equivalent to the vortex sheet, and an elementary magnet
to a part of it. Thus, we must think of a .magnet as

conditioning a rotation in the ether round the plane
which bisects at right angles the line joining its poles.

If a current is started in a circuit, we must imagine
vortices like bowls turning themselves inside out, starting

from the contour. In reaching a parallel circuit, if the

vortex sheet were interrupted and joined momentarily to

the second circuit by a free rim, the axis plane would lie

between the two circuits, and a point on the second circuit

opposite a point on the first would correspond to a point

opposite to it on the first; hence we should expect a

current in the opposite direction in the second circuit.

Thus the phenomena of induction are not inconsistent

with the hypothesis of a vortex about an axial plane.
In four-dimensional space, in which all four dimensions

were commensurable, the intensity of the action transmitted

by the medium would vary inversely as the cube of the

distance. Now, the action of a current on a magnetic

pole varies inversely as the square of the distance
; hence,

over measurable distances the extension of the ether in

the fourth dimension cannot be assumed as other than

small in comparison with those distances.
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If we suppose the ether to be filled with vortices in the

shape of four-dimensional spheres rotating with the A
motion, the B motion would correspond to electricity in

the one-fluid theory. There would thus be a possibility

of electricity existing in two forms, statically, by itself,

and, combined with the universal motion, in the form of

a current.

To arrive at a definite conclusion it will be necessary to

investigate the resultant pressures which accompany the

collocation of solid vortices with surface ones.

To recapitulate :

The movements and mechanics of four-dimensional

space are definite and intelligible. A vortex with a

surface as its axis affords a geometric image of a closed

circuit, and there are rotations which by their polarity

afford a possible definition of statical electricity.
*

* These double rotations of the A and B kinds I should like to call

Hamiltons and co-Hamiltons, for it is a singular fact that in his

"Quaternions" Sir Wm. Eowan Hamilton has given the theory of

either the A or the B kind. They follow the laws of his symbols,

I, J, K.

Hamiltons and co-Hamiltons seem to be natural units of geometrical

expression. In the paper in the "
Proceedings of the Royal Irish

Academy," Nov. 1903, already alluded to, I have shown something of

the remarkable facility which is gained in dealing with the composition
of three- and four-dimensional rotations by an alteration in Hamilton's

notation, which enables his system to be applied to both the A and B
kinds of rotations.

The objection which has been often made to Hamilton's system
)

namely, that it is only under special conditions of application that his

processes give geometrically interpretable results, can be removed, if

we assume that he was really dealing with a four-dimensional motion,
and alter his notation to bring this circumstance into explicit

recognition,
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THE MODELS

IN Chapter XI. a description has been given which will

enable any one to make a set of models illustrative of the

tesseract and its properties. The set here supposed to be

employed consists of :

1. Three sets of twenty-seven cubes each.

2. Twenty-seven slabs.

3. Twelve cubes with points, lines, faces, distinguished

by colours, which will be called the catalogue cubes.

The preparation of the twelve catalogue cubes involves

the expenditure of a considerable amount of time. It is

advantageous to use them, but they can be replaced by
the drawing of the views of the tesseract or by a reference

to figs. 103, 104, 105, 106 of the text.

The slabs are coloured like the twenty-seven cubes of

the first cubic block in fig. 101, the one with red,

white, yellow axes.

The colours of the three sets of twenty-seven cubes are

those of the cubes shown in fig. 101.

The slabs are used to form the representation of a cube

in a plane, and can well be dispensed with by any one

who is accustomed to deal with solid figures. But the

whole theory depends on a careful observation of how the

cube would be represented by these slabs.

Jn the first step, that of forming a clear idea how a.

28}
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plane being would represent three-dimensional space, only

one of the catalogue cubes and one of the three blocks is

needed.

APPLICATION TO THE STEP FROM PLANE TO SOLID.

Look at fig. 1 of the views of the tesseract, or, what

comes to the same thing, take catalogue cube No. 1 and

place it before you with the red line running up, the

white line running to the right, the yellow line running

away. The three dimensions of space are then marked

out^ by these lines or axes. Now take a piece of card-

board, or a book, and place it so that it forms a wall

extending up and down not opposite to you, but run-

ning away parallel to the wall of the room on your
left hand.

Placing the catalogue cube against this wall we see

that it comes into contact with it by the red and yellow

lines, and by the included orange face.

In the plane being's world the aspect he has of the

cube would be a square surrounded by red and yellow
lines with grey points.

Now, keeping the red line fixed, turn the cube about it

so that the yellow line goes out to the right, and the

white line comes into contact with the plane.

In this case a different aspect is presented to the plane

being, a square, namely, surrounded by red and white

lines and grey points. You should particularly notice

that when the yellow line goes out, at right angles to the

plane, and the white comes in, the latter does not run in

the same sense that the yellow did.

From the fixed grey point at the base of the red line

the yellow line ran away from you. The white line now

runs towards you. This turning at right angles makes

the line which was out of the plane before, come into it
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in an opposite sense to that in which the line ran which

has just left the plane. If the cube does not break

through the plane this is always the rule.

Again turn the cube back to the normal position with

red running up, white to the right, and yellow away, and

try another turning.
You can keep the yellow line fixed, and turn the cube

about it. In this case the red line going out to the

right the white line will come in pointing downwards.

You will be obliged to elevate the cube from the table

in order to carry out this turning. It is always necessary

when a vertical axis goes out of a space to imagine a

movable support which will allow the line which ran out

before to come in below.

Having looked at the three ways of turning the cube

so as to present different faces to the plane, examine what

would be the appearance if a square hole were cut in the

piece of cardboard, and the cube were to pass through it.

A hole can be actually cut, and it will be seen that in the

normal position, with red axis running up, yellow away,
and white to the right, the square first perceived by the

plane being the one contained by red and yellow lines

would be replaced by another square of which the line

towards you is pink the section line of the pink face.

The line above is light yellow, below is light yellow and

on the opposite side away from you is pink.
In the same way the cube can be pushed through a

square opening in the plane from any of the positions
which you have already turned it into. In each case

the plane being will perceive a different set of contour

lines.

Having observed these facts about the catalogue cube,

turn now to the first block of twenty-seven cubes.

You notice that the colour scheme on the catalogue cube

and that of this set of blocks is the same,
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Place them before you, a grey or null cube on the

table, above it a red cube, and on the top a null cube

again. Then away from you place a yellow cube, and

beyond it a null cube. Then to the right place a white

cube and beyond it another null. Then complete the

block, according to the scheme of the catalogue cube,

putting in the centre of all an ochre cube.

You have now a cube like that which is described in

the text. For the sake of simplicity, in some cases, this

cubic block can be reduced to one of eight cubes, by

leaving out the terminations in each direction. Thus,

instead of null, red, null, three cubes, you can take null,

red, two cubes, and so on.

It is useful, however, to practise the representation in

a plane of a block of twenty-seven cubes. For this

purpose take the slabs, and build them up against the

piece of cardboard, or the book in such a way as to

represent the different aspects of the cube.

Proceed as follows :

First, cube in normal position.

Place nine slabs against the cardboard to represent the

nine cubes in the wall of the red and yellow axes, facing

the cardboard
;
these represent the aspect of the cube as it

touches the plane.

Now push these along the cardboard and make a

different set of nine slabs to represent the appearance
which the cube would present to a plane being, if it were

to pass half way through the plane.

There would be a white slab, above it a pink one, above

that another white one, and six others, representing what

would be the nature of a section across the middle of the

block of cubes. The section can be thought of as a thin

slice cut out by two parallel cuts across the cube.

Having arranged these nine slabs, push them along the

plane,
and make another set of nine to represent what
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would be the appearance of the cube when it had almost

completely gone through. This set of nine will be the

same as the first set of nine.

Now we have in the plane three sets of nine slabs

each, which represent three sections of the twenty-seven
block.

They are put alongside one another. We see that it

does not matter in what order the sets of nine are put.

As the cube passes through the plane they represent ap-

pearances which follow the one after the other. If they
were what they represented, they could not exist in the

same plane together.

This is a rather important point, namely, to notice that

they should not co-exist on the plane, and that the order

in which they are placed is indifferent. When we

represent a four-dimensional body our solid cubes are to

us in the same position that the slabs are to the plane

being. You should also notice that each of these slabs

represents only the very thinnest slice of a cube. The

set of nine slabs first set up represents the side surface of

the block. It is, as it were, a kind of tray a beginning
from which the solid cube goes off. The slabs as we use

them have thickness, but this thickness is a necessity of

construction. They are to be thought of as merely of the

thickness of a line.

If now the block of cubes passed through the plane at

the rate of an inch a minute the appearance to a plane

being would be represented by :

1. The first set of nine slabs lasting for one minute.

2. The second set of nine slabs lasting for one minute.

3. The third set of nine slabs lasting for one minute.

Now the appearances which the cube would present

to the plane being in other positions can be shown by
means of these slabs. The use of such slabs would be

the means by which a plane being could acquire a
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familiarity with our cube. Turn the catalogue cube (or

imagine the coloured figure turned) so that the red line

runs up, the yellow line out to the right, and the white

line towards you. Then turn the block of cubes to

occupy a similar position.

The block has now a different wall in contact with

the plane. Its appearance to a plane being will not be

the same as before. He has, however, enough slabs to

represent this new set of appearances. Bat he must

remodel his former arrangement of them.

He must take a null, a red, and a null slab from the first

of his sets of slabs, then a white, a pink, and a white from

the second, and then a null, a red, and a null from the

thiid set of slabs.

He takes the first column from the first set, the first

column from the second set, and the first column from

the third set.

To represent the half-way-through appearance, which

is as if a very thin slice were cut out half way through the

block, he must take the second column of each of his

sets of slabs, and to represent the final appearance, the

third column of each set.

Now turn the catalogue cube back to the normal

position, and also the block of cubes.

There is another turning a turning about the yellow

line, in which the white axis comes below the support,

You cannot break through the surface of the table, so

you must imagine the old support to be raised. Then

the top of the block of cubes in its new position is at the

level at which the base of it was before.

Now representing the appearance on the plane, we must

draw a horizontal line to represent the old base. The

line should be drawn three inches high on the cardboard.

Below this the representative slabs can be arranged.

Jt is easy to see what they are. The old arrangements
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have to be broken up, and the layers taken in order, the

fir^t layer of each for the representation of the aspect ol

the block as it touches the plane.

Then the second layers will represent the appearance
half way through, and the third layers will represent the

final appearance.
It is evident that the slabs individually do not represent

the same portion of the cube in these different presenta-
tions.

In the first case each slab represents a section or a face

perpendicular to the white axis, in the second case a

face or a section which runs perpendicularly to the yellow

axis, and in the third case a section or a face perpendicular
to the red axis.

But by means of these nine slabs the plane being can

represent the whole of the cubic block. He can touch

and handle each portion of the cubic block, there is no

part, of it which he cannot observe. Taking it bit by bit,

two axes at a time, he can examine the whole of it.

OUR REPRESENTATION OF A BLOCK OF TESSERACTS.

Look at the views of the tesseract 1, 2, 3, or take the

catalogue cubes 1, 2, 3, and place them in front of you,
in any order, say rum ing from left to right, placing 1 in

the normal position, the red axis running up, the white

to the right, and yellow away.
Now notice that in catalogue cube 2 the colours of each

region are derived from those of the corresponding region
of cube 1 by the addition of blue. Thus null + blue=
blue, and the corners of number 2 are blue. Again,
red -f-blue= purple, and the vertical lines of 2 are purple.

Blue + yellow= green, and the line which runs away is

coloured green.

By means of these observations you may be sure that
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catalogue cube 2 is rightly placed. Catalogue cube 3 is

just like number 1.

Having these cubes in what we may call their normal

position, proceed to build up the three sets of blocks.

This is easily done in accordance with the colour scheme

on the catalogue cubes.

The first block we already know. Build up the second

block, beginning with a blue corner cube, placing a purple
on it, and so on.

Having these three blocks we have the means of

representing the appearances of a group of eighty-one
tesseracts.

Let us consider a moment what the analogy in the case

of the plane being is.

He has his three sets of nine slabs each. We have our

three sets of twenty-seven cubes each.

Our cubes are like his slabs. As his slabs are not the

things which they represent to him, so our cubes are not

the things they represent to us.

The plane being's slabs are to him the faces of cubes.

Our cubes then are the faces of tesseracts, the cubes by
which they are in contact with our space.

As each set of slabs in the case of the plane being

might be considered as a sort of tray from which the solid

contents of the cubes came out, so our three blocks of

cubes may be considered as three-space trays, each of

which is the beginning of an inch of the solid contents

of the four-dimensional solids starting from them.

We want now to use the names null, red, white, etc.,

for tesseracts. The cubes we use are only tesseract faces.

Let us denote that fact by calling the cube of null colour,

null face
; or, shortly, null f., meaning that it is the face

of a tesseract.

To determine which face it is let us look at the catalogue

cube 1 or the first of the views of the tesseract, which
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can be used instead of the models. It has three axes,

red, white, yellow, in our space. Hence the cube deter-

mined by these axes is the face of the tesseract which we

now have before us. It is the ochre face. It is enough,

however, simply to say null f., red f. for the cubes which

we use.

To impress this in your mind, imagine that tesseracts

do actually run from each cube. Then, when you move the

cubes about, you move the tesseracts about with them.

You move the face but the tesseract follows with it, as the

cube follows when its face is shifted in a plane.

The cube null in the normal position is the cube which

has in it the red, yellow, white axes. It is the face

having these, but wanting the blue. In this way you can

define which face it is you are handling. I will write an
"

f." after the name of each tesseract just as the plane

being might call each of his slabs null slab, yellow slab,

etc., to denote that they were representations.

We have then in the first block of twenty-seven cubes,

the following null f., red f., null f., going up ;
white f., null

f., lying to the right, and so on. Starting from the null

point and travelling up one inch we are in the null region,

the same for the away and the right-hand directions.

And if we were to travel in the fourth dimension for an

inch we should still be in a null region. The tesseract

stretches equally all four ways. Hence the appearance we
have in this first block would do equally well if the

tesseract block were to move across our space for a certain

distance. For anything less than an inch of their trans-

verse motion we should still have the same appearance.
You must notice, however, that we should not have null

face after the motion had begun.
When the tesseract, null for instance, had moved ever

so little we should not have a face of null but a section of

null in our space. Hence, when we think of the motion
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a cross our space we must call our cubes tesseraci sections.

Thus on null pass-ing across we should see first null f., then

null s., and then, finally, null f. again.

Imagine now the whole first block of twenty-seven
tesseracts to have moved tranverse to our space a distance

of one inch. Then the second set of tesseracts, which

originally were an inch distant from our space, would be

ready to come in.

Their colours are shown in the second block of twenty-
seven cubes which you have before you. These represent
the tesseract faces of the set of tesseracts that lay before

an inch away from our space. They are ready now to

come in, and we can observe their colours. In the place

which null f. occupied before we have blue f., in place of

red f. we have purple f., and so on. Each tesseract is

coloured like the one whose place it takes in this motion

with the addition of blue.

Now if the tesseract block goes on moving at the rate

of an inch a minute, this next set of tesseracts will occupy
a minute in passing across. We shall see, to take the null

one for instance, first of all null face, then null section,

then null face again.

At the end of the' second minute the second set of

tesseracts has gone through, and the third set comes in,

This, as you see, is coloured just like the first. Altogether,

these three sets extend three inches in the fourth dimension,

making the tesseract block of equal magnitude in all

dimensions.

We have now before us a complete catalogue of all the

tesseracts in our group. We have seen them all, and we

shall refer to this arrangement of the blocks as the
" normal position." We have seen as much of each

tesseract at a time as could be done in a three-dimen-

sional space. Each part of each tesseract has been in

our space, and we could have touched it.
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The fourth dimension appeared to us as the duration

of the block.

If a bit of our matter were to be subjected to the same

motion it would be instantly removed out of our space.

Being thin in the fourth dimension it is at once taken

out of our space by a motion in the fourth dimension.

But the tesseract block we represent having length in

the fourth dimension remains steadily before our eyes for

three minutes, when it is subjected to this transverse

motion.

We have now to form representations of the other

views of the same tesseract group which are possible in

our space.

Let us then turn the block of tesseracts so that another

face of it comes into contact with our space, and then

by observing what we have, and what changes come when
the block traverses our space, we shall have another view

of it. The dimension which appeared as duration before

will become extension in one of our known dimensions,

and a dimension which coincided with one of our space
dimensions will appear as duration.

Leaving catalogue cube 1 in the normal position,

remove the other two, or suppose them removed. We
have in space the red, the yellow, and the white axes.

Let the white axis go out into the unknown, and occupy
the position the blue axis holds. Then the blue axis,

which runs in that direction now will come into space.

But it will not come in pointing in the same way that

the white axis does now. It will point in the opposite

sense. It will come in running to the left instead of

running to the right as the white axis does now.

When this turning takes place every part of the cube 1

will disappear except the left-hand face the orange face.

And the new cube that appears in our space will run to

the left from this orange face, having axes, red, yellow, blue.

16
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Take models 4, 5, 6. Place 4, or suppose No. 4 of the

tesseract views placed, with its orange face coincident with

the orange face of 1
,
red line to red line, and yellow line

to yellow line, with the blue line pointing to the left.

Then remove cube 1 and we have the tesseract face

which comes in when the white axis runs in the positive

unknown, and the blue axis comes into our space.

Now place catalogue cube 5 in some position, it does

not matter which, say to the left
;
and place it so that

there is a correspondence of colour corresponding to the

colour of the line that runs out of space. The line that

runs out of space is white, hence, every part of this

cube 5 should differ from the corresponding part of 4 by
an alteration in the direction of white.

Thus we have white points in 5 corresponding to the

null points in 4. We have a pink line corresponding to

a red line, a light yellow line corresponding to a yellow

line, an ochre face corresponding to an orange face. This

cube section is completely named in Chapter XI. Finally

cube 6 is a replica of 1.

These catalogue cubes will enable us to set up our

models of the block of tesseracts.

First of all for the set of tesseracts, which beginning
in our space reach out one inch in the unknown, we have

the pattern of catalogue cube 4.

We see that we can build up a block of twenty-seven
tesseract faces after the colour scheme of cube 4, by

taking the left-hand wall of block 1, then the left-hand

wall of block 2, and finally that of block 3. We take,

that is, the three first walls of our previous arrangement
to form the first cubic block of this new one.

This will represent the cubic faces by which the group
of tesseracts in its new position touches our space.

We have running up, null f., red f., null f. In the next

vertical line, on the side remote from us, we have yellow f.,
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orangfr f., yellow f., and then the first colours over again.

Then the three following columns are, blue f., purple f.,

blue f.
; green f., brown f., green f. ;

blue f., purple f., blue f.

The last three columns are like the first.

These tesseracts touch our space, and none of them are

by any part of them distant more than an inch from it.

What lies beyond them in the unknown ?

This can be told by looking at catalogue cube 5.

According to its scheme of colour we see that the second

wall of each of our old arrangements must be taken.

Putting them together we have, as the corner, white f.

above it, pink f. above it, white f. The column next to

this remote from us is as follows : light yellow f., ochre f.,

light yellow f., and, beyond this a column like the first.

Then for the middle of the block, light blue f., above

it light purple, then light blue. The centre column has,

at the bottom, light green f., light brown f. in the centre

and at the top light green f. The last wall is like the

first.

The third block is made by taking the third walls of

our previous arrangement, which we called the normal

one.

You may ask what faces and what sections our cubes

represent. To answer this question look at what axes

you have in our space. You have red, yellow, blue.

Now these determine brown. The colours red,

yellow, blue are supposed by us when mixed to produce
a brown colour. And that cube which is determined

by the red, yellow, blue axes we call the brown cube.

When the tesseract block in its new position begins to

move across our space each tesseract in it gives a section

in our space. This section is transverse to the white

axis, which now runs in the unknown.

As the tesseract in its present position passes across

our space, we should see first of all the first of the blocks
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of cubic faces we have put up these would last for a

minute, then would come the second block and then the

third. At first we should have a cube of tesseract faces,

each of which would be brown. Directly the movement

began, we should have tesseract sections transverse to the

white line.

There are two more analogous positions in which the

block of tesseracts can be placed. To find the third

position, restore the blocks to the normal arrangement.
Let us make the yellow axis go out into the positive

unknown, and let the blue axis, consequently, come in

running towards us. The yellow ran away, so the blue

will come in running towards us.

Put catalogue cube 1 in its normal position. Take

catalogue cube 7 and place it so that its pink face

coincides with the pink face of cube 1, making also its

red axis coincide with the red axis of 1 and its white

with the white. Moreover, make cube 7 come

towards us from cube 1. Looking at it we see in our

space, red, white, and blue axes. The yellow runs out.

Place catalogue cube 8 in the neighbourhood of

7 observe that every region in 8 has a change in

the direction of yellow from the corresponding region
in 7. This is because it represents what you come

to now in going in the unknown, when the yellow axis

runs out of our space. Finally catalogue cube 9,

which is like number 7, shows the colours of the third

set of tesseracts. Now evidently, starting from the

normal position, to make up our three blocks of tesseract

faces we have to take the near wall from the first block,

the near wall from the second, and then the near wall

from the third block. This gives us the cubic block

formed by the faces of the twenty-seven tesseracts which

are now immediately touching our space.

Following the colour scheme of catalogue cube 8,
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we make the next set of twenty-seven tesseract faces,

representing the tesseracts, each of which begins one inch

off from our space, by putting the second walls of our

previous arrangement together, and the representation

of the third set of tessaracts is the cubic block formed of

the remaining three walls.

Since we have red, white, blue axes in our space to

begin with, the cubes we see at first are light purple
tesseract faces, and after the transverse motion begins
we have cubic sections transverse to the yellow line.

Restore the blocks to the normal position, there

remains the case in which the red axis turns out of

space. In this case the blue axis will come in down-

wards, opposite to the sense in which the red axis ran.

In this case take catalogue cubes 10, 11, 12. Lift up

catalogue cube 1 and put 10 underneath it, imagining
that it goes down from the previous position of 1.

We have to keep in space the white and the yellow

axes, and let the red go out, the blue come in.

Now, you will find on cube 10 a light yellow face
;
this

should coincide with the base of 1, and the white and

yellow lines on the two cubes should coincide. Then the

blue axis running down you have the catalogue cube

correctly placed, and it forms a guide for putting up the

first representative block.

Catalogue cube 11 will represent what lies in the fourth

dimension now the red line runs in the fourth dimen-

sion. Thus the change from 10 to 11 should be towards

red, corresponding to a null point is a red point, to a

white line is a pink line, to a yellow line an orange
line, and so on.

Catalogue cube 12 is like 10. Hence we see that to

build up our blocks of tesseract faces we must take the

bottom layer of the first block, hold that up in the air,

underneath it place the bottom layer of the second block)
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and finally underneath this last the bottom layer of the

last of our normal blocks.

Similarly we make the second representative group by

taking the middle courses of our three blocks. The last

is made by taking the three topmost layers. The three

axes in our space before the transverse motion begins are

blue, white, yellow, so we have light green tesseract

faces, and after the motion begins sections transverse to

the red light.

These three blocks represent the appearances as the

tesseract group in its new position passes across our space.

The cubes of contact in this case are those determinal by
the three axes^in our space, namely, the white, the

yellow, the blue. Hence they are light green.
It follows from this that light green is the interior

cube of the first block of representative cubic faces.

Practice in the manipulations described, with a

realization in each case of the face or section which

is in our space, is one of the best means of a thorough

comprehension of the subject.

We have to learn how to get any part of these four-

dimensional figures into space, so that we can look at

them. We must first learn to swing a tesseract, and a

group of tesseracts about in any way.
When these operations have been repeated and the

method of arrangement of the set of blocks has become

familiar, it is a good plan to rotate the axes of the normal

cube 1 about a diagonal, and then repeat the whole series

of turnings.

Thus, in the normal position, red goes up, white to the

right, yellow away. Make white go up, yellow to the right,

and red away. Learn the cube in this position by putting

up the set of blocks of the normal cube, over and over

again till it becomes as familiar to you as in the normal

position. Then when this is learned, and the corre-
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spending changes in the arrangements of the tesseract

groups are made, another change should be made : let,

in the normal cube, yellow go up, red to the right, and

white away.
Learn the normal block of cubes in this new position

by arranging them and re-arranging them till you know
without thought where each, one goes. Then carry out

all the tesseract arrangements and turnings.
If you want to understand the subject, but do not see

your way clearly, if it does not seem natural and easy to

you, practise these turnings. Practise, first of all, the

turning of a block of cubes round, so that you know it

in every position as well as in the normal one. Practise

by gradually putting up the set of cubes in their new

arrangements. Then put up the tesseract blocks in their

arrangements. This will give you a working conception
of higher space, you will gain the feeling of it, whether

you take up the mathematical treatment of it or not.
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A LANGUAGE OP SPACE

THE mere naming the parts of the figures we con Rider

involves a certain amount of time and attention. This

time and attention leads to no result, for with each

new figure the nomenclature applied is completely

changed, every letter or symbol is used in a different

significance.

Surely it must be possible in some way to utilise the

labour thus at present wasted !

Why should we not make a language for space itself, so

that every position we want to refer to would have its own

name ? Then every time we named a figure in order to

demonstrate its properties we should be exercising
ourselves in the vocabulary of place.

If we use a definite system of names, and always refer

to the same space position by the same name, we create

as it were a multitude of little hands, each prepared to

grasp a special point, position, or element, and hold it

for us in its proper relations.

We make, to use another analogy, a kind of mental

paper, which has somewhat of the properties of a sensitive

plate, in that it will register, without effort, complex,

visual, or tactual impressions.

But of far more importance than the applications of a

space language to the plane and to solid space is the
248
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facilitation it brings with it to the study of four-dimen-

sional shapes.

I have delayed introducing a space language because

all the systems I made turned out, after giving them a

fair trial, to be intolerable. I have now come upon one

which seems to present features of permanence, and I will

here give an outline of it, so that it can be applied to

the subject of the text, and in order that it may be

subjected to criticism.

The principle on which the language is constructed is

to sacrifice every other consideration for brevity.

It is indeed curious that we are able to talk and

converse on every subject of thought except the funda-

mental one of space. The only way of speaking about

the spatial configurations that underlie every subject

of discursive thought is a co-ordinate system of numbers.

This is so awkward and incommodious that it is never

used. In thinking also, in realising shapes, we do not

use it
;
we confine ourselves to a direct visualisation.

Now, the use of words corresponds to the storing up
of our experience in a definite brain structure. A child,

in the endless tactual, visual, mental manipulations it

makes for itself, is best left to itself, but in the course

of instruction the introduction of space names would

make the teachers work more cumulative, and the child's

knowledge more social.

Their full use can only be appreciated, if they are

introduced early in the course of education
;
but in a

minor degree any one can convince himself of their

utility, especially in our immediate subject of handling

four-dimensional shapes. The sum total of the results

obtained in the preceding pages can be compendiously and

accurately expressed in nine words of the Space Language.
In one of Plato's dialogues Socrates makes an experi-

ment on a slave boy standing by. He makes certain
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perceptions of space awake in the mind of Meno's slave

by directing his close attention on some simple facts of

geometry.

By means of a few words and some simple forms we can

repeat Plato's experiment on new ground.
Do we by directing our close attention on the facts of

four dimensions awaken a latent faculty in ourselves ?

The old experiment of Plato's, it seems to me, has come

down to us as novel as on the day he incepted it, and its

significance not better understood through all the dis-

cussion of which it has been the subject.

Imagine a voiceless people living in a region where

everything had a velvety surface, and who were thus

deprived of all opportunity of experiencing what sound is.

They could observe the slow pulsations of the air caused

by their movements, and arguing from analogy, they
would no doubt infer that more rapid vibrations were

possible. From the theoretical side they could determine

all about these more rapid vibrations. They merely differ,

they would say, from slower ones, by the number that

occur in a given time; there is a merely formal difference.

But suppose they were to take the trouble, go to the

pains of producing these more rapid vibrations, then a

totally new sensation would fall on their rudimentary ears.

Probably at first they would only be dimly conscious of

Sound, but even from the first they would become aware

that a merely formal difference, a mere difference in point

of number in this particular respect, made a great difference

practically, as related to them. And to us the difference

between three and four dimensions is merely formal,

numerical. We can tell formally all about four dimensions,

calculate the relations that would exist. But that the

difference is merely formal does not prove that it is a

futile and empty task, to present to ourselves as closely as

we can the phenomena of four dimensions. In our formal



APPENDIX H 251

knowledge of it, the whole question of its actual relation

to us, as we are, is left in abeyance.

Possibly a new apprehension of nature may come to us

through the practical, as distinguished from the mathe-

matical and formal, study of four dimensions. As a child

handles and examines the objects with which he comes in

contact, so we can mentally handle and examine four-

dimensional objects. The point to be determined is this.

Do we find something cognate and natural to our faculties,

or are we merely building up an artificial presentation of

a scheme only formally possible, conceivable, but which

has no real connection with any existing or possible

experience ?

This, it seems to me, is a question which can only be

settled by actually trying. This practical attempt is the

logical and direct continuation of the experiment Plato

devised in the "Meno."

Why do we think true? Why, by our processes oi

thought, can we predict what will happen, and correctly

conjecture the constitution of the things around us ?

This is a problem which every modern philosopher has

considered, and of which Descartes, Leibnitz, Kant, to

name a few, have given memorable solutions. Plato was

the first to suggest it. And as he had the unique position

of being the first devisor of the problem, so his solution

is the most unique. Later philosophers have talked about

consciousness and its laws, sensations, categories. But

Plato never used such words. Consciousness apart from a

conscious being meant nothing to him. His was always
an objective search. He made man's intuitions the basis

of a new kind of natural history.

In a few simple words Plato puts us in an attitude

with regard to psychic phenomena the mind the ego
"what we are," which is analogous to the attitude scientific

men of the present day have with regard to the phenomena
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of outward nature. Behind this first apprehension of ours

of nature, there is an infinite depth to be learned and

known. Plato said that behind the phenomena of mind

that Meno's slave boy exhibited, there was a vast, an

infinite perspective. And his singularity, his originality,

comes out most strongly marked in this, that the per-

spective, the complex phenomena beyond were, according

to him, phenomena of personal experience. A footprint

in the sand means a man to a being that has the con-

ception of a man. But to a creature that has no such

conception, it means a curious mark, somehow resulting

from the concatenation of ordinary occurrences. Such a

being would attempt merely to explain how causes known

to him could so coincide as to produce such a result
;

he would not recognise its significance.

Plato introduced the conception which made a new

kind of natural history possible. He said that Meno's

slave boy thought true about things he had never

learned, because his " soul
" had experience. I know this

will sound absurd to some people, and it flies straight

in the face of the maxim, that explanation consists in

showing how an effect depends on simple causes. But

what a mistaken maxim that is! Can any single instance

be shown of a simple cause ? Take the behaviour of

spheres for instance
; say those ivory spheres, billiard balls,

for example. We can explain their behaviour by supposing

they are homogeneous elastic solids. We can give formulae

which will account for their movements in every variety.

But are they homogeneous elastic solids ? No, certainly

not. They are complex in physical and molecular structure,

and atoms and ions beyond open an endless vista. Our

simple explanation is false, false as it can be. The balls

act as if they were homogeneous elastic spheres. There is

a statistical simplicity in the resultant of very complex

conditions, which makes that artificial conception useful.
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But its usefulness must not blind us to the fact that it is

artificial. If we really look deep into nature, we find a

much greater complexity than we at first suspect. And
so behind this simple

"
I," this myself, is there not a

parallel complexity ? Plato's " soul
"

would be quite

acceptable to a large class of thinkers, if by
" soul

"
and

the complexity he attributes to it, he meant the product
of a long course of evolutionary changes, whereby simple
forms of living matter endowed with rudimentary sensation

had gradually developed into fully conscious beings.
But Plato does not mean by

" soul
"
a being of such a

kind. His soul is a being whose faculties are plogged by
its bodily environment, or at least hampered by the

difficulty of directing its bodily frame a being which

is essentially higher than the account it gives of itself

through its organs. At the same time Plato's soul is

not incorporeal. It is a real being with a real experience.
The question of whether Plato had the conception of non-

spatial existence has been much discussed. The verdict

is, I believe, that even his " ideas
"
were conceived by him

as beings in space, or, as we should say, real. Plato's

attitude is that of Science, inasmuch as he thinks of a

world in Space. But, granting this, it cannot be denied

that there is a fundamental divergence between Plato's

conception and the evolutionary theory, and also an

absolute divergence between his conception and the

genetic account of the origin of the human faculties.

The functions and capacities of Plato's
"
soul

"
are not

derived by the interaction of the body and its environment.

Plato was engaged on a variety of problems, and his

religious and ethical thoughts were so keen and fertile

that the experimental investigation of his soul appears
involved with many other motives. In one passage Plato

will combine matter of thought of all kinds and from all

sources, overlapping, interrunning. And in no case is he
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more involved and rich than in this question of the soul.

In fact, I wish there were two words, one denoting that

being, corporeal and real, but with higher faculties than

we manifest in our bodily actions, which is to be taken as

the subject of experimental investigation ;
and the other

word denoting
" soul

"
in the sense in which it is made

the recipient and the promise of so much that men desire.

It is the soul in the former sense that I wish to investigate,

and in a limited sphere only. I wish to find out, in con-

tinuation of the experiment in the Meno, what the " soul
"

in us thinks about extension, experimenting on the

grounds laid down by Plato. He made, to state the

matter briefly, the hypothesis with regard to the thinking

power of a being in us, a " soul." This soul is not acces-

sible to observation by sight or touch, but it can be

observed by its functions
;

it is the object of a new kind

of natural history, the materials for constructing which

lie in what it is natural to us to think. With Plato
"
thought

"
was a very wide-reaching term, but still I

would claim in his general plan of procedure a place for

the particular question of extension.

The problem comes to be,
" What is it natural to us to

think about matter qua extended ?
"

Fir. t of all, I find that the ordinary intuition of any

simple object is extremely imperfect. Take a block of

differently marked cubes, for instance, and become ac-

quainted with them in their positions. You may think

you know them quite well, but when you turn them round

rotate the block round a diagonal, for instance you
will find that you have lost track of the individuals in

their new positions. You can mentally construct the

block in its new position, by a rule, by taking the remem-

bered sequences, but you don't know it intuitively. By
observation of a block of cubes in various positions, and

very expeditiously by a use of Space names applied to the
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cubes in their different presentations, it is possible to get

an intuitive knowledge of the block of cubes, which is not

disturbed by any displacement. Now, with regard to this

intuition, we moderns would say that I had formed it by

my tactual visual experiences (aided by hereditary pre-

disposition). Plato would say that the soul had been

stimulated to recognise an instance of shape which it

knew. Plato would consider the operation of learning

merely as a stimulus; we as completely accounting for

the result. The latter is the more common-sense view.

But, on the other hand, it presupposes the generation of

experience from physical changes. The world of sentient

experience, according to the modern view, is closed and

limited
; only the physical world is ample and large and

of ever-to-be-discovered complexity. Plato's world of soul,

on the other hand, is at least as large and ample as the

world of things.

Let us now try a crucial experiment. Can I form an

intuition of a four-dimensional object ? Such an object

is not given in the physical range of my sense contacts.

All I can do is to present to myself the sequences of solids,

which would mean the presentation to me under my con-

ditions of a four-dimensional object. All I can do is to

visualise and tactualise different series of solids which are

alternative sets of sectional views of a four-dimensional

shape.

If now, on presenting these sequences, I find a power
in me of intuitively passing from one of these sets of

sequences to another, of, being given one, intuitively

constructing another, not using a rule, but directly appre-

hending it, then I have found a new fact about my soul,

that it has a four-dimensional experience ;
I have observed

it by a function it has.

I do not like to speak positively, for I might occasion

a loss of time on the part of others, if, as may very well
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be, I am mistaken. But for my own part, I think there

are indications of such an intuition
;
from the results of

my experiments, I adopt the hypothesis that that which

thinks in us has an ample experience, of which the intui-

tions we use in dealing with the world of real objects
are a part; of which experience, the intuition of four-

dimensional forms and motions is also a part. The process
we are engaged in intellectually is the reading the obscure

signals of our nerves into a world of reality, by means of

intuitions derived from the inner experience.

The image I form is as follows. Imagine the captain
of a modern battle-ship directing its course. He has

his charts before him
;
he is in communication with his

associates and subordinates
;
can convey his messages and

commands to every part of the ship, and receive informa-

tion from the conning-tower and the engine-room. Now

suppose the captain immersed in the problem of the

navigation of his ship over the ocean, to have so absorbed

himself in the problem of the direction of his craft over

the plane surface of the sea that he forgets himself. All

that occupies his attention is the kind of movement that

his ship makes. The operations by which that movement
is produced have sunk below the threshold of his con-

sciousness, his own actions, by which he pushes the buttons,

gives the orders, are so familiar as to be automatic, his

mind is on the motion of the ship as a whole. In such

a case we can imagine that he identifies himself with his

ship ;
all that enters his conscious thought is the direction

of its movement over the plane surface of the ocean.

Such is the relation, as I imagine it, of the soul to the

body. A relation which we can imagine as existing

momentarily in the case of the captain is the normal

one in the case of the soul with its craft. As the captain
is capable of a kind of movement, an amplitude of motion,

which does not enter into his thoughts with regard to the
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directing the ship over the plane surface of the ocean, so

the soul is capable of a kind of movement, has an ampli-
tude of motion, which is not used in its task of directing

the body in the three-dimensional region in which the

body's activity lies. If for any reason it became necessary

for the captain to consider three-dimensional motions with

regard to his ship, it would not be difficult for him to

gain the materials for thinking about such motions
;

all

he has to do is to call his own intimate experience into

play. As far as the navigation of the ship, however, is

concerned, he is not obliged to call on such experience.

The ship as a whole simply moves on a surface. The

problem ofthree-dimensional movement does not ordinarily

concern its steering. And thus with regard to ourselves

all those movements and activities which characterise our

bodily organs are three-dimensional
;
we never need to

consider the ampler movements. But we do more than

use the movements of our body to effect our aims by
direct means

;
we have now come to the pass when we act

indirectly on nature, when we call processes into play

which lie beyond the reach of any explanation we can

give by the kind of thought which has been sufficient for

the steering of our craft as a whole. When we come to

the problem of what goes on in the minute, and apply
ourselves to the mechanism of the minute, we find our

habitual conceptions inadequate.
The captain in us must wake up to his own intimate

nature, realise those functions of movement which are his

own, and in virtue of his knowledge of them apprehend
how to deal with the problems he has come to.

Think of the history of man. When has there been a

time, in which his thoughts of form and movement were

not exclusively of such varieties as were adapted for his

bodily performance ? We have never had a demand to

conceive what our own most intimate powers are. But,

17
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just as little as by immersing himself in the steering of

his ship over the plane surface of the ocean, a captain
can loose the faculty of thinking about what he actually

does, so little can the soul loose its own nature. It

can be roused to an intuition that is not derived from

the experience which the senses give. All that is

necessary is to present some few of those appearances

which, while inconsistent with three-dimensional matter,

are yet consistent with our formal knowledge of four-

dimensional matter, in order for the soul to wake up and

not begin to learn, but of its own intimate feeling fill up
the gaps in the presentiment, grasp the full orb of possi-

bilities from the isolated points presented to it. In relation

to this question of our perceptions, let me suggest another

illustration, not taking it too seriously, only propounding
it to exhibit the possibilities in a broad and general way.

In the heavens, amongst the multitude of stars, there

are some which, when the telescope is directed on them,
seem not to be single stars, but to be split up into two.

Regarding these twin stars through a spectroscope, an

astronomer sees in each a spectrum of bands of colour and

black lines. Comparing these spectrums with one another,

he finds that there is a slight relative shifting of the dark

lines, and from that shifting he knows that the stars are

rotating round one another, and can tell their relative

velocity with regard to the earth. By means of his

terrestrial physics he reads this signal of the skies. This

shifting of lines, the mere slight variation of a black line

in a spectrum, is very unlike that which the astronomer

knows it means. But it is probably much more like what

it means than the signals which the nerves deliver are

like the phenomena of the outer world.

No picture of an object is conveyed through the nerves.

No picture of motion, in the sense in which we postulate

its existence, is conveyed through the nerves. The actual
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deliverances of which our consciousness takes account are

probably identical for eye and ear, sight and touch.

If for a moment I take the whole earth together and

regard it as a sentient being, I find that the problem of

its apprehension is a very complex one, and involves a

long series of personal and physical events. Similarly the

problem of our apprehension is a very complex one. I

only use this illustration to exhibit my meaning. It has

this especial merit, that, as the process of conscious

apprehension takes place in our case in the minute, so,

with regard to this earth being, the corresponding process

takes place in what is relatively to it very minute.

Now, Plato's view of a soul leads us to the hypothesis
that that which we designate as an act of apprehension

may be a very complex event, both physically and per-

sonally. He does not seek to explain what an intuition

is; he makes it a basis from whence he sets out on a

voyage of discovery. Knowledge means knowledge ;
he

puts conscious being to account for conscious being. He
makes an hypothesis of the kind that is so fertile in

physical science an hypothesis making no claim to

finality, which marks out a vista of possible determination

behind determination, like the hypothesis of space itself,

the type of serviceable hypotheses.

And, above all, Plato's hypothesis is conducive to ex-

periment. He gives the perspective in which real objects
can be determined

; and, in our present enquiry, we are

making the simplest of all possible experiments we are

enquiring what it is natural to the soul to think of matter

as extended.

Aristotle says we always use a "
phantasm

"
in thinking,

a phantasm of our corporeal senses a visualisation or a

tactualisation. But we can so modify that visualisation

or tactualisation that it represents something not known

by the senses. Do we by that representation wake up an
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intuition of the soul? Can we by the presentation of

these hypothetical forms, that are the subject of our

present discussion, wake ourselves up to higher intuitions ?

And can we explain the world around by a motion that we

only know by our souls ?

Apart from all speculation, however, it seems to me
that the interest of these four-dimensional shapes and

motions is sufficient reason for studying them, and that

they are the way by which we can grow into a fuller

apprehension of the world as a concrete whole.

SPACE NAMES.

If the words written in the squares drawn in fig. 1 are

used as the names of the squares in the positions in

which they are placed, it is evident that

a combination of these names will denote

a figure composed of the designated

squares. It is found to be most con-

venient to take as the initial square that

marked with an asterisk, so that the

Fig. i. directions of progression are towards the

observer and to his right. The directions

of progression, however, are arbitrary, and can be chosen

at will.

Thus et, at, it, an, al will denote a figure in the form

of a cross composed of five squares.

Here, by means of the double sequence, e,a,i and n,t,l, it

is possible to name a limited collection of space elements.

The system can obviously be extended by using letter

sequences of more members.

But, without introducing such a complexity, the

principles of a space language can be exhibited, and a

nomenclature obtained adequate to all the considerations

of the preceding pages.
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I. Extension.

Call the large squares in fig. 2 by the name written

in them. It is evident that each

can be divided as shown in fig. 1.

Then
s
the small square marked 1

will be "en" in "En," or " Enen."

The square marked 2 will be " et
"

in " En "
or Enet," while the

square marked 4 will be " en "
in

" Et "
or " Eten." Thus the square

5 will be called" Ilil."

This principle of extension can

be applied in any number of dimensions.

Fig. 2.

2. Application to Three-Dimensional Space.
To name a three-dimensional collocation of cubes take

the upward direction first, secondly the

direction towards the observer, thirdly the

direction to his right hand.

These form a word in which the first

letter gives the place of the cube upwards,
the second letter its place towards the

observer, the third letter its place to the

right.

We have thus the following scheme,
which represents the set of cubes of

column 1, fig. 101, page 165.

We begin with the remote lowest cube

at the left hand, where the asterisk is

placed (this proves to be by far the most

convenient origin to take for the normal

system).
Thus "nen" is a "null" cube, "ten"

a red cube on it, and "
len

"
a

"
null

"

cube above "
ten."
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By using a more extended sequence of consonants and

vowels a larger set of cubes can be named.

To name a four-dimensional block of tesseracts it is

simply necessary to prefix an "
e," an "

a," or an "
i
"
to

the cube names.

Thus the tesseract blocks schematically represented on

page 165, fig. 101 are named as follows :

2. DERIVATION OF POINT, LINE, FACE, ETC., NAMES.

The principle of derivation can be shown as follows

Taking the square of squares
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the number of squares in it can be enlarged and the

whole kept the same size.

Compare fig. 79, p. 138, for instance, or the bottom layer
of fig. 84.

Now use an initial "
s
"
to denote the result of carrying

this process on to a great extent, and we obtain the limit

names, that is the point, line, area names for a square.
" Sat

"
is the whole interior. The corners are "

sen,"

"sel," "sin,"
"

sil," while the lines

.*.. *. se i are "
san,"

"
sal,"

"
set,"

"
sit."

I find that by the use of the

initial "
s
"

these names come to be

practically entirely disconnected with

the systematic names for the square
from which they are derived. They
are easy to learn, and when learned

can be used readily with the axes running in any
direction.

To derive the limit names for a four-dimensional rect-

angular figure, like the tesseract, is a simple extension of

this process. These point, line, etc., names include those

which apply to a cube, as will be evident on inspection

of the first cube of the diagrams which follow.

All that is necessary is to place an
"

s
"
before each of the

names given for a tesseract block. We then obtain

apellatires which, like the colour names on page 174,

fig. 103, apply to all the points, lines, faces, solids, and to
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the hypersolid of the tesseract. These names have the

advantage over the colour marks that each point, line, etc.,

has its own individual name.

In the diagrams I give the names corresponding to

the positions shown in the coloured plate or described on

p. 174. By comparing cubes 1, 2, 3 with the first row of

cubes in the coloured plate, the systematic names of each

of the points, lines, faces, etc., can be determined. The
asterisk shows the origin from which the names run.

These point, line, face, etc., names should be used in

connection with the corresponding colours. The names

should call up coloured images of the parts named in their

right connection.

It is found that a certain abbreviation adds vividness of

distinction to these names. If the final
" en

"
be dropped

wherever it occurs the system is improved. Thus instead

of "
senen," "seten,"

"
selen," it is preferable to abbreviate

to "sen," "set," "sel," and also use "
san," "sin" for

"
sanen,"

" sinen."

5tt(n S*Uf 5ell 5aW Siltt 5<jll 5ilen. Oilet Stlel
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We can now name any section. Take .(7. the line in

the first cube from senin to senel, we should call the line

running from senin to senel, senin senat senel, a line

light yellow in colour with null points.

Here senat is the name for all of the line except its ends.

Using
" senat

"
in this way does not mean that the line is

the whole of senat, but what there is of it is senat. It is

a part of the senat region. Thus also the triangle, which

has its three vertices in senin, senel, selen, is named thus :

Area : setat.

Sides : setan, senat, setet.

Vertices : senin, senel, sel.

The tetrahedron section of the tesseract can be thought
of as a series of plane sections in the successive sections of

the tesseract shown in fig. 114, p. 191. In b the section

is the one written above. In bj the section is made by a
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plane which cuts the three edges from sanen intermediate

of their lengths and thus will be :

Area : satat.

Sides : satan, sanat, satet.

Vertices : sanan, sanet, sat.

The sections in ba ,
b3 will be like the section in b, but

smaller.

Finally in b4 the section plane simply passes through the

corner named sin.

Hence, putting these sections together in their right

relation, from the face setat, surrounded by the lines and

points mentioned above, there run :

3 faces : satan, sanat, satet

3 lines : sanan, sanet, sat

and these faces and lines run to the point sin. Thus

the tetrahedron is completely named.

The octahedron section of the tesseract, which can be

traced from fig. 72, p. 129 by extending the lines there

drawn, is named :

Front triangle selin, selat, selel, setal, senil, setit, selin

with area setat.

The sections between the front and rear triangle, of

which one is shown in Ib another in 2b, are thus named,

points and lines, salan, salat, salet, satet, satel, satal, sanal,

sanat, sanit, satit, satin, satan, salan.

The rear triangle found in 3b by producing lines is sil,

sitet, sinel, sinat, sinin, sitan, sil.

The assemblage of sections constitute the solid body of

the octahedron satat with triangular faces. The one from

the line selat to the point sil, for instance, is named
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selin, selat, selel, salet, salat, salan, sil. The whole

interior is salat.

Shapes can easily be cut out of cardboard which, when

folded together, form not only the tetrahedron and the

octohedron, but also samples of all the sections of the

tesseract taken as it passes cornerwise through our space.

To name and visualise with appropriate colours a series of

these sections is an admirable exercise for obtaining

familiarity with the subject.

EXTENSION AND CONNECTION WITH NUMBERS.

By extending the letter sequence it is of course possible

to name a larger field. By using the limit names the

corners of each square can be named.

Thus " en sen,"
" an sen," etc., will be the names of the

points nearest the origin in " en "
and in " an."

A field of points of which each one is indefinitely small

is given by the names written below.

ensen
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Let the space names with a final
" e

" added denote the

mathematical points at the corner of each square nearest

the origin. We have then

ene
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I drop "s" altogether from the consonant series and

short " u "
from the vowel series. It is convenient to

have unsignificant letters at disposal.

'

A double consonant

like " st
"

for instance can be referred to without giving it

a local significance by calling it "ust." I increase the

number of vowels by considering a sound like "
ra

"
to

be a vowel, using, that is, the letter "r" as forming a

compound vowel.

The series is as follows :

CONSONANTS.
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