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PREFACE

rriHE position of any real point in space may be determined by
-1- means of three real coordinates, and any three real quantities

may be regarded as determining the position of such a point. In

Geometry as in other branches of Pure Mathematics the question

naturally arises, whether the quantities concerned need necessarily be

real. What, it may be asked, is the nature of the Geometry in which

the coordinates of any point may be complex quantities of the form

as + ix, y + iy , z + iz' ? Such a Geometry contains as a particular case

the Geometry of real points. From it the Geometry of real points may

be deduced (a) by regarding x', y\ z as zero, (b) by regarding x, y, z
t

as

zero, or (c) by considering only those points, the coordinates of which

are real multiples of the same complex quantity a + ib. The relationship

of the more generalised conception of Geometry and of space to the

particular case of real Geometry is of importance, as points, whose

determining elements are complex quantities, arise both in coordinate

and in projective Geometry.

In this book an attempt has been made to work out and determine

this relationship. Either of two methods might have been adopted.

It would have been possible to lay down certain axioms and premises

and to have developed a general theory therefrom. This has been

done by other authors. The alternative method, which has been

employed here, is to add to the axioms of real Geometry certain

additional assumptions. From these, by means of the methods and

principles of real Geometry, an extension of the existing ideas and

conception of Geometry can be obtained. In this way the reader is

able to approach the simpler and more concrete theorems in the first

instance, and step by step the well-known theorems are extended and

generalised. A conception of the imaginary is thus gradually built up

and the relationship between the imaginary and the real is exemplified

and developed. The theory as here set forth may be regarded from
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the analytical point of view as an exposition of the oft quoted but

seldom explained " Principle of Continuity."

The fundamental definition of Imaginary points < is that given by

Dr Karl v. Staudt in his Beitrage zur Geometrie der Lage; Nuremberg,

1856 and I860.' The idea of («, /3) figures, independently evolved by

the author, is due to J. V. Poncelet, who published it in his Traiti des

Proprietes Projectives des Figures in 1822. The matter contained in

four or five pages of Chapter II is taken from the lectures delivered by

the late Professor Esson, F.R.S., Savilian Professor of Geometry in the

University of Oxford, and may be partly .traced to the writings of

v. Staudt. For the remainder of the book the author must take the <

responsibility. Inaccuracies and inconsistencies may have crept in, but

long experience has taught him that these will be found to be due

to his own deficiencies and not to fundamental defects in the theory.

Those who approach the subject with an open mind will, it is believed,

find in these pages a consistent and natural theory of the imaginary.

Many problems however still require to be worked out and the subject

offers a wide field for further investigations.
i

To Professor Whitehead, F.R.S., the author has to tender his

sincerest thanks for much valuable help and assistance. To Professor

G. S. Le Beau and Mr S. G. Soal of the, East London College he is

indebted for very valuable advice and criticism. To Mr J. B. Peace of

the Cambridge University Press he desires to tender his warmest

thanks for the great assistance which he has rendered in connection

with this book.

J. L. S. H.

Chideock,

September, 1919.
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NOTE

The reference numbers of articles in square brackets, such as

Art. [22], refer to articles in the author's Principles of Projective

Geometry. In this book, as in the Principles of Projective Geometry,

the term " line " is used as an abbreviation for straight line.



CHAPTER I

IMAGINARY POJNTS AND LENGTHS ON REAL STRAIGHT LINES.

IMAGINARY STRAIGHT LINES. PROPERTIES OF SEMI-REAL FIGURES

1. Imaginary points on a real straight line.

Axiom I. Every overlapping involution range determines a pair of

points as its double points, each of which has a definite position on the base.

This axiom does not imply that the position of these points can be

graphically determined with reference to real points on the base.

Def. I. Each of these double points is termed an imaginary point

and, Considered as a pair of points, they are termed a pair of conjugate

imaginary points.

On reference to Art. [51] it will be seen that, if is the centre of an

overlapping involution of which A and A' are a pair of conjugate points

—situated on opposite sides of —then the double points of the involu-

tion are given as the positions of a point P which satisfies the relation

OP*=OA.OA' = -K*

Hence, if Pr and P.2 be these points,

OP^ +J^K and OP, =;- V^l K.
%

If 0' be any other real point on the base such that 0'0 = L, then the

positions of P1 and P2 relative to 0' are given by the relations

aP1 =L + 4~^\K and O'P, = L r- V^TZ.

.

The axiom therefore states that a definite position may be assigned

to the points P, and P2 on the base, and consequently a definite magni-

tude to the lengths V^lK and - V -

1

K measured along the base.

Such lengths cannot be equal to any real lengths and therefore the

points Pi and P2 cannot coincide with any real points situated on the base.

Similarly every other overlapping' involution on the same base, which

has its centre a.t 0, has a pair of imaginary double points situated on

the base at distances V -IK' and -V-lA" from 0, where A" is

different for each involution and may have any real value from to ao .

h. i. e. 1



2 The Imaginary in Geometry

Hence it follows that, given any real straight line I and any real

point on it, there are on the straight line an infinite .number of

pairs of imaginary points. Such a system of points may be termed an

imaginary system, base I, centre or mean point 0.

A quantity of the form V - 1K is termed a purely imaginary

quantity and a quantity of the form, L + V — \K, an imaginary or a

complex quantity, where L and K are real.

Imaginary lengths. The position of an imaginary point P may be

determined by its distance O'O + OP from a real point 0', where O'O is

a real length and OP an imaginary length. A point P' is termed the

graph of P if it is at a distance O'O + OP' from 0', where

V^T OP' = OP.

Hence, if P' be the graph of P, the distance of P from 0' is

O'O + V^l . OP'.

A real length V + \K and an imaginary length V — 1 K are incom-

mensurable, and do not in themselves involve any relative magnitudes.

Like two real incommensurable quantities V2 and 3, whose squares are

commensurable, the squares of a real and an imaginary quantity may
be commensurable.

The position of a real point on a given base can only be determined

graphically when the unit is known in which its distance from a given

point on the base is expressed. Similarly, the position of an imaginary

point is only known when the unit in which its imaginary distance is

expressed is also known. The units in the two cases may be regarded

as V + 1 and V — 1. As there is no inherent relation as to magnitude

between these units, the relative position of real and imaginary points

on the base is indeterminate.

Lengths of the form V — 1 K and V — 1 E' which determine the

positions of imaginary points may be combined like real lengths. (See

Art. 3.) So long as the lengths considered are all real or all purely

imaginary each system may be graphed in the same way, the quantities

V + 1 and V — 1 being regarded as units in which the lengths are

expressed, the only difference between these units lying in the fact that

in one case the square on a line is regarded as positive and in the other

negative. Thus in accordance with the conventions of Algebra the

imaginary point at a distance 2K V — 1 from is at double the distance



Imaginary Points 3

from of the point at a distanceJK V — 1, and in accordance with the

conventions of coordinate geometry the points at distances + V — IK
and — v—lK from are at equal distances from on opposite sides

of 0.

If a second' system of overlapping involutions, which have any other

real point 0' on the base for centre, is considered, a second system of

imaginary points is obtained, which are determined by imaginary lengths

measured from 0'. This is the system, base I, centre 0', and a similar

system exists for every real point on the base. No 'two imaginary points

can coincide, when they are thus determined from different real base

points. Otherwise a real and an imaginary length would be equal.

If a definite position has been assigned to an imaginary point,

distances may be measured from such an imaginary point as origin.

If is a real point on a straight line and P a point on the straight

line at a distance V — IK from 0, the point P may be taken as the

centre of an involution. As in the previous case there are on the

base an infinite number of imaginary points, centre P, and an infinite

number of points real with reference to the centre P. None of the real

points, centre P, can coincide with the real points centre 0, but the

imaginary points centre P will be a repetition of the imaginary points

centre 0.

Hence the following conception of a straight line is arrived at.

On any real straight line some point may be taken which may be

termed a base point. An infinite number of real and an infinite number

of imaginary points njay be obtained by measuring real or purely

imaginary distances from this base point. Any one of these real points

may be taken as a new base point and an infinite number of real and an

infinite number of imaginary points may be obtained by measuring real

and purely imaginary distancesfrom it. The real points so obtained are

a repetition of the real points first obtained. The imaginary points form

a new system of points. An imaginary point of the first system may be

taken as a base point and an infinite number of points real with respect

to this base point may be obtained and also an infinite number of points

imaginary with respect to this base point. The real points with respect to

this centre are imaginary points with respect to the base point first taken

and are distinct from those obtained from the original base point. The

imaginary system obtained from this second centre is a repetition of the

imaginary points obtained from the first base point.

1—2



4 The Imaginary in Geometry

2. Conjugate imaginary points.

It follows from definition (1) that every imaginary point has one and

only one conjugate imaginary point. Given an imaginary point, its con-

jugate imaginary point is the other double point of the involution of

which it is a double point. The conjugate of a given imaginary point

may be obtained by changing the sign of V — 1 in the length or lengths

,by which the position of the point is determined. Hence imaginary

points occur in pairs, viz. in pairs of conjugate imaginary points, and

the connector of any .pair is the base of the involution of which they are

the double points. When an imaginary point is given, the involution of

which it is a double point is completely determined, for the centre and

constant of the involution are known.

This is true so long as the same points are regarded as real points, that is as

long as the origin is not moved through an imaginary distance. Thus OK+i.KP
and OK-i.KP give two positions of P which ' correspond to conjugate imaginary

points. If however the origin be moved through a distance i. KP, these become

OK and OK - 2 . i . KP, which distances give a pair of points which are not conj ugate

imaginary points according to the definition. In fact by moving the origin any two

points whose distances from the origin are a+ifi and a + i[}' may be made into a

pair of conjugate imaginary points. Hence conjugate imaginary points are such

with respect to a given origin or with respect to certain given real points. This

ought always to be stated, but, when there is no risk of misunderstanding, the-

limitation in question will be omitted.

3. Measurement of distances.

The positions of two imaginary points P' and Q' which have the

same centre and whose, graphs are P and Q are given by the relations

OP' = V^l OP and OQ' = V-I OQ.

The distance Q'P' may be defined as OP' -0Q'= V^l QP.

Hence,since QP + PQ = 0, Q'P' + P'Q'=0 (1)

If R' be a third imaginary point with the same centre, it also-

follows that

P'Q'+Q'R' + R'P'=0 (2)

The relations' (1) and (2) are those on which all the theorems of Art. [7],

which refer to points on a straight line, depend. Hence these theorems

hold for imaginary points with a common centre.

Two imaginary pointsP',centre
lt

and Q', centre 2 , whose graphs are re-

spectivelyP and. Q may be determined ° "s °i Q' p '

with reference to any origin by

OP' = 00, + V^T 0,P and OQ' = 002 + V ^1 2Q.
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The distance, Q'P' may be defined as OP' - 00/, hence

Q'P' = 00, + V^T o,P - 00, - V^I 2Q

=
2 1 + V^1{01P-02 Q}

= 0,0, {VT- V~^l} + V~=T QP.

From this it follows that if P', Q', PJ be any three points on a straight

line, real or imaginary,
,

P'Q'+Q'P' =

and P'Q' + Q'P' + R'F = 0.

Hence in the most general case all the theorems of Art. [7] which refer

to distances of pointy on a straight line are true for imaginary points.

If 0, P, and Q are three collinear real points, the point M given by

the relation OM = \ [OP + OQ} is defined as the middle point of PQ.

Similarly, if be any real point and P' and Q' a pair of imaginary

points, centres 0, and 2 , whose graphs are P and Q, M' the middle

point of P'Q' is defined as being the point given by

QM, :
001 + 002 m/

— ^P + Q.Q

This point will be shown, Art. 6> to be the harmonic conjugate of the

point at infinity on the base with respect to P' and Q'.

The product of the distances of a pair of conjugate imaginary points

P' and Qf, mean point M, from any real point on the line P'Q' is a

positive real quantity. For this product is

(OM+i . MP) (OM- i . MP) = OM* + MP2
.

'

4. Determination of the position of imaginary points by means of ratios.

I. Let A' be any point on a given real P'

ine and B a point at a purely imaginary ^~
i q,

distance A'E from A', and P' a point at a

purely imaginary distance A'P' from A'. Then B'P'= A'P' -A''£'.

A'P' A'P'
The ratio of P' with reference to A' and B' is -g^ or

The ratio in' this case is a real quantity.

,B'P' A'P'-A'B''

II. Let A' be any point on a given real p ,

line, B and points at real distances A'B — g r—

and A'O from A', and P' an imaginary point

at a distance A'O + OP' from A', where OP' is imaginary.
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Then A'P'=A'O+OP'

and BP'=BA' + A'O+OP'

= BO+OP',

A'P' A'O+OP' A'O+OP'
" BP' BO+OP' A'O+ OP'-A'B'

The ratio of P' with respect to A' and B in this case is a complex quantity.

In either case when the ratio of a point and the positions of the reference points

are given, the position of the point is uniquely determined. The ratio of the con-

jugate imaginary point of P' is obtained by changing the sign of the imaginary part

of the ratio.

If lengths are expressed in imaginary units a pair of conjugate imaginary

points, whose positions would ordinarily be determined by lengths a+ J — la' and

a — J -la', are determined by lengths J -la -a' and J — la+ a', i.e. the distances

which determine the points differ only in the sign of the real part.

5. Anharmonic ratios of real and imaginary points on a real

straight line.

In Art.[ll] the anharmonic ratio of four real collinear points A,B,C,D

was defined as being, with origin 0,

,Avnns OC-OA OP - OA .

(AECD) =
qC _qb 0D _ B

=
(
suPPose )-

The range (ABGD) was defined as being harmonic if X had the value — 1.

Def. 2. IfA', B', C, P' be the graphs offour collinear points real or

imaginary whose positions are determined by OA, + iA,A' ; 0B1 + iB,B';

etc., their anharmonic ratio is defined as being

OC, + iC,C'-OA,-iA,A' OP, + iP,P' - OA, - iA,A'_ ^ \

00, + iO,C - OB, - iB,B'
:

OP, + iP,P' - OB, - iB,F~
^suppose).

Under certain circumstances this anharmonic ratio may have the value

— 1, in which case the range is said to be harmonic.

Let 0' and D' be real points, i.e. let 0,0' = B^D' = 0. Let A and B
be a pair of conjugate imaginary points and let be their centre. Then
OA, = OB, = 0, A,A' = OA', B,B' = OB' and OA' = - OB'. Hence

OO'-iOA' OP1 - iOA' _
OC' + iOA'

:

OP' + iOA'

OO'-iOA' OP'-iOA'
\- l,

0C' + i0A'
+

OP' + iOA'~
V -

.-. -00' .0P' = 0A'* = 0B'>-
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Therefore if C and D' are on different sides of so that - OC . OB' is

positive, then OA' and OB' are real and i.OA' and i. OB' give a pair of

conjugate imaginary points, which are the double points of an over-

lapping involution of which is the centre and of which C and B' are

a pair of conjugate points.

Conversely the imaginary double points of an overlapping involution

are harmonic conjugates of every real pair of conjugate points of the

involution. Hence it is seen that every pair of conjugate imaginary

points may be determined as the common harmonic conjugates of two

pairs of real points.

A given pair of real points are conjugate points of an infinite number

of involutions with imaginary double points. The double points of these

involutions are harmonic conjugates of the given pair of points. Hence

a given pair of real points has an infinite number of pairs of harmonic

conjugates which are pairs of conjugate imaginary points.

From the definition of the anharmonic ratio of a range of real and

imaginary points it follows that if three points of a range are given and

likewise the value of the anharmonic ratio of these points with a fourth

point—which anharmonic ratio may have a real, an imaginary or a com-

plex value-r-the position of the fourth is uniquely determined.

It likewise follows that the theorems, Art. [12], in regard to the

change of the value of an. anharmonic ratio, when the order of the points

is changed, are true when the range is wholly or in part imaginary.

Also if (A'B'C'D')=(ABCD), and (A'B'C'E')=(ABOE) it follows that

(A'B'E'B') = (ABEB).

6. Projective ranges.

Def. 3. Two ranges of real or imaginary points are said to be

projective when the anharmonic ratio of four points of one range is

equal to the anharmonic ratio of the four corresponding points of the

other range.

If A, B, C, three points of one range are given, and three corre-

sponding points A', B', C of the other, it is always possible, given a

fourth point P of the first range, to determine uniquely a fourth point P'

of the second, such that (ABGP) = (A'B'C'P'). Hence two sets of three

points determine two projective ranges and to each point of one range

corresponds one and only one point of the other.

As a particular case there is in each of two projective ranges, one

point termed the vanishing point, which corresponds to the point at
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infinity in the other range. The vanishing points may be real or

imaginary.

To find the harmonic conjugate of the point at infinity on a straight line with

respect to two imaginary points on the line.

Let F and Q' be the imaginary points, centres 0, and {?2 -, and let P and Q be

their graphs. Take any real origin and let X' be the required point. Then

OP -OX' OP-<x> =
oq-ox' ' oq->x>~ '

.-. 0P'+0Q'= 2.0X',

.
go

1+ 002 ,j—
i

1P+02Q..ox=—^

—

+v ~ 1 -%—
This point was defined (Art. 3) as the middle point of PQ'.

If a real point 0, the point at infinity and a pair of conjugate imaginary points

A and A' form a harmonic range, OA = — OA', and therefore must be the mean

point of A and A'.

Any two conjugate imaginary points are harmonic conjugates of their graphs.

Let P', Pj, centre 0, be the two points and P and Pi their graphs.

Then (PP.'PPO
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(1) Let OP.OP' = K*.

(a) For real lengths, OP and OP, jthere are pairs of conjugate

points which do not overlap, and a pair of real double points E and F
given by OE = -OF = K.

This is the real branch.

(6) If OP = i.OP1 and OP' = i.OP;,

then OP1 .OP:=~K\
The "points then belong to an imaginary branch of the involution,

which has no double points and in which corresponding segments overlap.

(2) Let OP.OP' = -IC-- I

(a) For real lengths, OP and OP', there are pairs of conjugate

.points which overlap, and this branch of the involution has no double

points.,

(6) If OP = i.OP1 and OP = i.OP1
',

then OP1 .OPl
' = + K\

The points then belong to an imaginary branch of the involution,

in which there are a pair of double points whose graphs, E1 and Flt are

given by 0Et
— — OF! = K. The corresponding segments of this branch

do not overlap. Hence in an involution, the constant and centre of

which are real, to a real point P corresponds a real point P' and to a

purely imaginary point corresponds a purely imaginary point.

The double points real or imaginary of a real involution are harmonic

conjugates of every pair of conjugate points, real or purely imaginary,

of the involution.

(1) If the double points and the pair of conjugates are all real this

has been proved in Art. [51].

(2) If the double points are imaginary and the pair of conjugates

are real the result is that of Art. 5.

(3) If the double points are imaginary and the pair of conjugates

are also purely imaginary the case resolves itself into case (1) where each

length is expressed in imaginary units of length.

If the second definition of an involution, Art. [51], be taken the pre-

ceding may be deduced as follows

:

If two superposed projective ranges A, B, G ... and A', B', C ... are

such that (ABCA') = (A'B'G'A), then every pair of corresponding points

mutually correspond and the ranges form an involution.
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The point P of the first corresponding to the point B of the second

is given by

(AA'BP) = (A'AB'B),

but (A'AB'B) = (AA'BB'),

.-. (AA'BP) = (AA'BB'),

P coincides with B'-

Let be the poiiit which corresponds to the point at infinity, then

(AB' oo 0) = (A'BO oo ),

.•
. OA . OA' =OB.OB'=a, constant.

This constant may be any quantity real, imaginary, or complex in the

most general case. If it is real and- the point is also real, the involution

is real and the preceding results are obtained.

The condition that a system of points may form an involution may

also be expressed in ratios. Let b, V, c, c', d, d' be the ratios of B,

B', C, C, D, D' referred to A and A' as origin. Then since

(AA'BG) = (A'AB'C),

bb' = cc = a constant.

If the points A, A' ; B, B' ; . . . are real but' the involution is overlapping,

the position of the double points is given by

X°- = -K* = bb' = cc'=...,

.-. X^^J^IK and X2
= ->J^lK.

Conversely if (AA'BC) = (A'AB'C'), then AA', BB', CC form an

involution.

Every point on a line has a conjugate in every involution on the

line. If the conjugate of a point a + id with respect to an involution,

constant K, is sought, this point is found to be —
;„ (a — id).

An imaginary involution, i.e. an -involution in which the constant is

a complex quantity and ivhose centre may be an. imaginary point, has a

pair of imaginary doable points, which are equally distant from the

centre.
'

If K + iK' be the constant of the involution, the distances of the

double points from the centre are

±
^| {J*JK* + K* +K + iJTiW+E'^-K} ,

where the positive sign has to be given to the square roots.
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8. Analytical expressions.

Every imaginary point in a real plane whose coordinates are imaginary is u.

double point of an involution on a real base.

Let the coordinates of the point be a + ib and c+id. The equation of the

straight line joining this point to the point whose coordinates are a-ib a.nd e- id is

x y
a + ib c+ id

a — ib c — id
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Then the coordinates of P may be written

Xi+ix2) Xy tan a + ix2 tan /3,

or Xj + iy2 tan y, X\ tan a + iy2

OQ and §P may be termed the principal coordinates of the point P.

Analytically the representation of all the points on a straight line (real), is ,as

follows

:

,

If %$! and x^y% are any two real points which determine a straight line, the

coordinates of any real point on the line may be obtained by giving all real values

to X in *\+ f* , ^+ ?
2

. If X has the value a+ib, where a and' b may have any
1 -{-

A

1 + A * <

real values, the coordinates of all points real or imaginary on the line are of the form

l + {a+ib) \ + {a+ ib) '

If A, A' and B, B' be pairs of conjugate imaginary points and and D a pair of

real points, then the involution determined by

(1) A, A' and B, B', as pairs of conjugate points, is real and has real double 'points.

(2) A, A' and C, D, as pairs of conjugate points, is real and has real double points.

(3) A, B and A', B, as pairs of conjugate points, is real.

Let A, A', B, B', C, D, be determined by a+ ia', a— id, b+.ib
1

, b — ib', c, d.

Let the centre of the involution be determined by x.

(1) In this case OA . OA' = OB . OB'.

Therefore x= =-. jt .

2 (a— 6)

Hence the centre of the involution is real and, as the product of the distances of a

pair of conjugate imaginary points from any real point on the line, is real and

positive, the constant of the involution is positive and the, double points are real.

(2) In this case OA . 0A'= 0O. OB.
*v2 _1_ ft a do

Therefore x= — j .

' 2a — a —

c

Hence the centre of the involution is real and as in case (1) the double points are real.

(3) In this case OA . OB = OA' . OB'.

Therefore oo= --.- ~rr-

.

a +b'

Hence the centre of the involution- is real. The constant of the involution is

(a — x)(b-x)- a'b'. This is real. Hence the involution is real.

From (1) it follows that two pairs of conjugate imaginary points have a\ways a

pair of real harmonic conjugates. (See also Art. 31 (3).)

From (2) it follows that a pair of conjugate imaginary points and a pair of real

points have always a pair of real harmonic conjugates. (See Art. 31 (3).)

From (3) it follows that two imaginary points have always one pair of harmonic

conjugates, which are either a pair ofrealpoints or apair of conjugate imaginarypoints.
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9. Imaginary straight lines.

Def. 4. The locus of the double points (imaginary) of the over-

lapping involutions in which an overlapping involution pencil, (real) is

cut by real transversals is a pair of imaginary straight lines. Each

part of this locus, which is continuous, constitutes an imaginary straight

line.

The two straight lines considered as a pair of straight lines are

termed a pair of conjugate imaginary straight lines.

Hence it follows that an imaginary straight line is determined by

an imaginary point, which is a double point of an involution, and a

real point; the vertex of the involution pencil. The conjugate imaginary

line is determined by the conjugate imaginary point, the other double

point of the involution, and by the same real point, the -vertex of the

involution pencil. Hence two conjugate imaginary straight lines differ

as to their determining elements only in the sign of the imaginary part.

An imaginary line considered in reference to the involution pencil is

spoken of as a double ray of the pencil.

From the definition it also follows that only one imaginary straight

line passes through a given real and a given imaginary point.

The straight line joining the centre of an involution range to the

vertex of the pencil is called the mean line of the two conjugate

imaginary lines, which join its double points tcr the vertex of the pencil,

This mean line is real. As there are an infinite number of involutions

on the same base which have the same centre, there are an infinite

number of pairs of imaginary straight lines through a given real point

which have the same mean line.

Hence given any real poinfi and any real straight line o through it,

there are an infinite number of pairs of imaginary straight lines which

pass through L and which have o as their mean line. Such a system of

straight lines may be termed an imaginary systjem centre L, mean

line o.

It also follows from the definition that every imaginary straight line

passes through a real point, viz. the vertex of the involution pencil of

which it is a double ray,, and that a pair of conjugate imaginary straight

lines intersect in a real point, viz. the vertex of the pencil of which

they are the double rays.

10. To determine the straight line which joins an imaginary point to

a real point.
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Construct the involution of which the imaginary point is a double

point. (1) If the real point lies on this straight line the required line

is the real base of the involution. (2) If the real point does not lie on

the base construct an involution pencil by joining pairs of real conjugate

points of the involution to the real point. The required line is one of

the imaginary double rays of this involution pencil.

To determine the point of intersection of a given imaginary straight

line with a given real straight line.

Let the given imaginary straight line be determined as the connector

of one of the imaginary double points E of an involution, centre V, con-

stant — K", situated on a straight line s, with a real point S. Let S, be

the given real straight line. Let V and IF/ be the points at infinity

on s and «! respectively and let ssj be 0.

Construct F, and F,' the projections of V and V from $ on s,.

Draw SW parallel to sx to meet s in IF'. Take IF the conjugate of IF'

in the involution on s. Join IF to 8 to meet s1 in IFX . Then IF, is the

centre of the involution into which the involution on s is projected from

S on Si . Also IF! F/. W1V1 = — M*, the constant of this involution on sx .

Hence, if E be the double point of the involution on s remote from 0,

the point Ex in which 8E meets s
x is at a distance V-fE^ from V( such

that VJE1
= TV IF, - VWlV1 . W\ V/, the negative sign being given to

the square root since F/ IF, is drawn in the opposite direction to VW.
The following relations hold between the lengths in the figure

:

(a) VW.VWm- K\ IF, F, . Ttyi =- M\
(b) Since(F'F'FlF) = (F1'IF1T1 IF1)and F'and F/ are at infinity,

vw _ VW _ WW
W^rTWF'F'
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VW _WW _VW WW -K- s -m*_^.
and rw ~ ww -=k*~^W ~ vw> ~ WW ~ (suPPose>

(c) Since (V'W'OV) = (V1'W1'OVi),

OW . OVS = VW . VW = WW . WW = AW. AW,
where A and A l are any pair of real points on s and sa collinear with S.

If a range composed wholly or partly of imaginary points be pro-

jected from a real point by imaginary and real straight lines upon any

other real straight line so that a second range is formed on this straight

line, the anharmonic ratios of any four corresponding points of tliese

ranges are equal. '

It will be proved that if, as in the preceding, V be the centre of the

involution which determines an imaginary point E, and Wx the centre

of the involution which determines the corresponding point Elt then

WE . ViEt = a constant, where W and F/ are the points on the two

bases which in a projection from S correspond to the points at infinity.

It will also be shown that this constant is equal to the product of the

distances of any pair of real corresponding points from W and F/ re-

spectively. Hence since W and F/ are fixed points the theorem is

true.

In the figure

W'E= WV+*/VW. VW V^E,= V.'W.-^/WW- WW
"('-^ =™('Vi)
= WV (1 - Vx), = F,'W1 (1 + A).

Therefore WE . V^E, = WV . V{W1 (1 - X).

ww vw
But i_x = i__ /̂

= _^_.

Therefore WE. V.'E, = WV. F/F = WO. F/0 = WA . V.'Ai-

This theorem may be stated as follows

:

If through any real point a system of real and of imaginary straight

lines be drawn, these straight lines determine equianharmonic ranges on

all real transversals.

It also follows that projective ranges as defined in Art. 6 are also pro

jective according to the usual conception.
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Analytical verification of Art. 10.

Let S be the vertex of the pencil and V the centre of the involution on OV.

Take OF for axis of x and the given real line 0V
r
for axis of y.

Let V and'W7
! be the points at infinity on the axes. Project these from /J into

FY and W. Let S V meet Oy in V
x

.

Then Fand V are conjugate points of the involution on ftc/and therefore Vx and

V{ are conjugate points of the involution on Oy.

Let W{ be the centre of the involution on Oy.

Then TPx'and Wx are conjugate points of the involution on Oy, and IF and W ' are

conjugate points of the involution on Ox.

Since S is a given point, OW{l) and V{ (m) are given.

Also the constant of involution on 0x( — ft
2
) is given and the point V{a).

Hence OW'*=a +—
I
,.:OW

1
'=-

l
.

ia-V 1
bi+{a-lf

+ ai— al) , „_ ma
and OV,=— ,.

a-l

Therefore V
X
W{ = -

-ndV
and Vi W{

-(a-l){b*+(a-m

Hence —M2 the constant of the involution on Oy is

ml (a - I)

1

62+(a-J)2-

mHW
{6

2+ (a-«)2
}
2

'

Hence the distances, of the double points of the two involutions from are re-

spectively a+ ib, a— ib, and

mlb m(b2+ a2 — al) mlb

b*+ (a-l)» "tf + ia-lf

But the line joining S (I, m) to (a+ ib, 0) meets Oy in a point distant

m (a2 4- b2— al) — imbl

(a-l)*+b*

from 0. This shows that the geometrical construction of Art. 10 agrees with the

analytical conception of an imaginary straight line.
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If E and E\ be collinear double points

Y{

E

1 = ml ^~ l)

~t> and F£=a-! + ib.
V* + (a— iy

.-. ViEl . WE=ml, which is a constant for all involutions. This confirms the

result of Art. 10. '

11. To determine the straight line connecting any two imaginary

points.

Construct the two involutions of which the two given imaginary

points are each respectively a double point.

(1) If, the two involutions have the same base this real line is the

connector of the two imaginary points.

(2) If the two involutions have different bases, these involutions are

in real perspective in two ways (Art. [60]) and in one of these perspectives

the two given imaginary points are corresponding points. The required

imaginary straight line is the connector of the centre of this perspec-

tive, which is real, with either of the two given imaginary points.

From this it follows that only one straight line can be drawn to join

two imaginary points and that it passes through a real point, viz., one of

the centres ofperspective of the involutions, and therefore no two imaginary

straight lines can include a space.

To determine the point of intersection of any two imaginary straight

lines.

Construct the two involution pencils of which the two given imagin-

ary straight lines are each respectively a double ray.

(1) If the two involution pencils have a common vertex, this vertex,

which is real, is the point of intersection of the lines.

(2) If the two involution pencils have different vertices, these invo-

lutions are in real perspective in two ways (correlative of Art. [60]) and

in one of these perspectives the two given imaginary lines are corre-

sponding rays. The point of intersection of these lines is therefore a

double point of the overlapping involution determined by the two invo-

lution pencils on one of their real axes of perspective.

Hence two imaginary straight lines intersect in only one point and

this point lies on a real straight line, viz., one of the axes of perspective

of the determining involutions.
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12. Summary of properties

lines.

( 1 ) Every imaginary point con -

tains one and only one real straight

line.

This line is the base of the in-

volution of which the imaginary

point is a double point and it is

the connector of the point and its

conjugate imaginary point. There

can be no other real, straight line

through the point for, if there were,

the point would be a real point.

(2) The connector of a pair of

conjugate imaginary points is real.

(3) Every real straight line,

that contains an imaginary point,

contains its conjugate.

(4) An imaginary straight line

meets all real straight lines in ima-

ginarypoints except those whichpass

through its one real point.

(5) The connector of a pair of

imaginary points is real or imagin-

ary; ifreal it contains the conjugates

of both the points.

(6) A system of real and ima-

ginary points on a real straight line

is projected from a real point, not

on the line, upon another real

straight line, into a system in which

real points correspond to real points

and imaginary points to imaginary

points.

(7) The connector of a pair of

imaginary points and the connector

of their conjugate imaginary points

of imaginary points and straight

Every imaginary straight line

contains one and only one real

point.

This point is the vertex of the

involution pencil of which the ima-

ginary line is a double ray and it is

the point of intersection of the line

and its conjugate imaginary line.

There can be no other real point on

the straight line for, if there were,

the linewould be a real straight line.

Thepoint ofintersection ofapair

ofconjugate imaginarystraight lines

is real.

Every real point, that contains

an imaginary'straight line, contains

its conjugate.

The only real points, the con-

nectors of which to an imaginary

point are real, are those which lie

on the one real line through the point.

The intersection of a pair of
imaginary lines is real or imagin-

ary; ifreal it contains the conjugates

of both the lines.

A system of real and imaginary

straight lines through a real point is

cut by a real transversal in points

which, when connected to another

real point, give real straight lines

corresponding to real straight lines
'

and imaginary straight lines to

imaginary straight lines.

Thepoint ofintersection ofapair

of imaginary straight lines and the

point of intersection of their con-
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are conjugate imaginary straight jugate imaginary lines are conjugate

lines. imaginary points.

(8) The imaginary doublepoints The imaginary double rays ofan

of an involution are harmonic con- involution pencil are harmonic con-

jugates of every pair of conjugate jugates of every pair of conjugate

points of the involution. rays of the involution pencil.

(9) Ifa pair of conjugate ima- Ifapair ofconjugate imaginary

ginary points coincide, they coincide lines coincide, they coincide in a real

in a real point. line.

13. In two projective pencils with real vertices, which have two pairs

of real corresponding rays, all pairs of corresponding rays, real or

imaginary, intersect on a straight line {real) if the ray joining the vertices

of the pencils is a self-corresponding ray.

Let »S and S' be the vertices of the pencils. Then by Art. [34], the

real pairs of self-corresponding rays intersect on a straight line s. Let

an imaginary ray e of the first pencil meet s at E and the corresponding

imaginary ray of the second pencil e' meet s at E'. Let the two pairs

of real corresponding rays meet s in A, B and let SS' meet s in C.

Then (ABGE) = (ABCE 1

).

Therefore by Art. 5, E and E' coincide and e and e' meet on s.

Correlatively it may be proved that if the point of intersection of the

real bases oftwo projective ranges, which have two pairs ofreal correspond-

ing elements, is a self-corresponding point, the connectors of all pairs of

corresponding points of the ranges (real or imaginary) pass through a

real point.

If two imaginary lines are, corresponding rays of two projective

pencils with three pairs of corresponding real rays, the two imaginary

straight lines of which they are conjugate imaginary lines are also cor-

responding rays of the pencils.

Let e and e' be the first pair of corresponding imaginary lines of the

pencils. By Art. [37], displace the pencils so that they are in per-

spective. Then e and e' will intersect on s, the axis of perspective. The

point ee' is then an imaginary point since the vertices of the pencils are

the real points on e and e . But s is a real straight line. Hence it

passes through the conjugate imaginary point of ee'. Hence the con-

nectors of this point to the vertices of the pencils, i.e., the conjugate

imaginary lines of e and e ', are corresponding rays of the pencils.

2—2
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Correlatively it may be proved that if two imaginary points are

corresponding points of two projective ranges with three pairs of corre-

sponding real points, their conjugate imaginary points are also corre-

sponding points of the projective ranges.

14. The triangle.

The different types of triangles which may occur are as follows, viz.

:

(1) Real Triangle. A triangle Real Triangle. A triangle con-

consisting of three real vertices de- sisting- of three real lines deter-

termining three real sides.

(2) Semi-real Triangle. A tri-

angle consisting of one real vertex

and two conjugate imaginary ver-

tices (on a real line) determining a

pair of conjugate imaginary lines

(for two sides) and a real line for

the third side (on which the pair

of conjugate imaginary vertices are

situated).

(3) An imaginary Triangle,

type (a). A triangle consisting of

one real vertex and two imaginary

points situated on a real line de-

termining one real .side (on which

the imaginary vertices are situ-

ated) and a pair of imaginary sides

passing through the real vertex.

(4) An imaginary Triangle,

type (6). A triangle consisting of

a pair of conjugate imaginary ver-

tices and a third imaginary vertex,

determining one real side (joining

the pair of conjugate imaginary

vertices) and a pair of imaginary

sides.

(5) An imaginary Triangle,

type (c). A triangle consisting of

three imaginary vertices, deter-

mining three imaginary sides.

mining three real vertices.

Semi-real Triangle. A triangle

consisting of one real side and two

conjugate imaginary sides(meeting

in a real point) determining a pair

of conjugate imaginary vertices

(lying on the real side) and one

real vertex (being the point of in-

tersection of the pair of conjugate

imaginary lines which form a pair

of sides). .

An imaginary Triangle, type (a).

A triangle consisting of one real

side and a pair of imaginary sides

passing through a real point, de-

termining one real vertex (through

which the pair of imaginary sides

pass) and a pair of imaginary ver-

tices on the real side.

Animaginary Triangle, type (6).

A triangle consisting of a pair of

,

conjugate imaginary sides and a

third imaginary side, determining

one real vertex (being the point of

intersection of the conjugate ima-

ginary sides) and a pair of imagin-

ary vertices. '
*

A n imaginary Triangle, type (c).

A triangle consisting of three im-

aginary sides, determining three

imaginary vertices.
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In all the above cases, except case (4), the triangle and that given

by the correlative construction are of the same nature.

15. Extension of Menelaus' theorem.

I. If an imaginary straight line meets one side of a real triangle in

a real point and the other two, sides in imaginary points, the product of

the ratios of these points, with respect to the triangle, is unity.

This may at once be deduced from Art. 10. For if a real straight

line be drawn through 8 to meet s and Sj in A and Au the triangle OAA 1

will be a real triangle and, the imaginary straight line SEE^ is a straight

line which meets two of the sides in imaginary points E and Elt and

the third side in a real point S.

It follows from Art. 10 that

(OAEW') = (OA
1
E1 oo).

Therefore
OE

.
OW = Wxnereiore AE ' AW A&

But . w , = -p~ , by similar triangles.

„, . OE AS A,E,
Therefore __._.__ = L

The theorem may also be proved independently as follows

:

Take a real triangle ABC. Let A b

and A c be the conjugate points of B
and Cin an involution (with imaginary

double points) on BC.

Take any real point SonA B. From

.S project A c and Ab into Bc and Ba . /
~T^~~4§>-

Then the involution B,A b , C,A c is

projected from S into A, Ba , C, Bc .

Let the ratios of A c , At be d' and a

and of Bc , Ba be V and b. Then the

ratios, x and y, of the double points of the involutions are given by

x2— 2xa'+ aa'=

aod f-%/b +66' =0. (See Art. [61] Ex. (7).)

If a be the ratio of S then

cab=\ and oa'b'=l (1)

The double points are given by

(% — a') 2=a< (a' — a)

(3-6)2 = 6(6-5'),

.-. x= a' ±*]a' (a! -a), y= b±Jb(b-b').
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But from (1)

Let

Similarly if

then

a V 1 .- = T = -Tj- = X suppose,
a b cab

x=a'±Ja'2 (l-\), y= b±Jb*(l-\)-

^1= a'(l + .v/l
::^). yi=&(l-Vl-X);

.-. ^1y1
= a'6(l-l+X)=a'6X=^,

*2=o'(l- Vl-X), y2=6(l + «yi- r
X))

a;
2y2

c=l.

II. //" aw imaginary straight line meets the sides of a real triangle

in three imaginary points, then the product of the ratios of these points

with respect to the triangle is unity.

Take any real triangle ABC. Draw through B any real transversal

to meet AG in A and the imaginary line ^.B^! in Gl , where S is real.

Let the ratios of A lt Bls Gr referred to the triangle A BG be x, y, z.

AS
Let BS

= c.

Then from the triangle ABC

GB, . CBj A B, A.B, ...

c - x-A^r
l0rc - x

-A- l̂ --ABJ

=l0TC - x - y -'ABr
1 '-' {1)

and from ABA e

BZ A& _ .
nr

1 A tB, _
C,

'A tOl

' AB,
"

°- z' AB, ~ • .(ii)
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Dividing the expressions (i) and (ii)

23

xy

.'. xyz=l.

Hence the imaginary line A^G-i meets the sides of the triangle of

reference A BG in three points (imaginary) for which Menelaus'

theorem holds.

16. Extension of Ceva's theorem.

I. If the connector of any imaginary point to one of the vertices of
a real triangle is real, the product of the ratios of the three points in

which its connectors to the vertices meet the opposite sides of the triangle

is — 1.

B A'

Let P be the imaginary point and let AP, BP, CP, meet the opposite

sides of the triangle in A', B', G'. Let BPB' be real. Draw AQ parallel

to BC to meet BB' in Q. Join CQ to meet AB in Q'.

Then (A.BB'PQ) = (BOA' oo ).

But « (G.BB'PQ) = (BAG'Q').

Therefore (BCA' oo ) = (BA G'Q').

BA^ = BCT B$
'• GA'~ AC'

:

AQ"
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Therefore
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and from the triangle AA G by Menelaus' theorem

25

AR A B GB'

Therefore b.

A R- GB AB
BA' AC A B

-, = + 1.

= -1.
'A A'-BC : GB

Hence multiplying together (I) and (II)

, BA' GB AC A B
. C •

.(II)

= + 1.
' CA' AB, BG A G

Hence a . b . c = — 1.

Therefore Ceva's theorem holds for a real triangle.

It may be shown as follows from the first case of Menelaus' theorem, which has

been proved independently of this result (Art.' 15), that the anharmonic ratios of

two partly imaginary ranges obtained by pro- ,g
jection from a real point are equal.

Let two imaginary lines be drawn through

a real point C on the side AB ofa real triangle

ABO to meet the two other sides in B', A' and

B", A".

Let the ratios of C", B', B" be

c, b' + ibi, b"+ ibi",

respectively.

Then the ratios of A' and A" (by the exten-

sion of Menelaus' theorem) are

1

Therefore

c(&'+iV)
and

c{b"+ ib{Y

BA"
CA"

1 1

c(b'+ibi') ' c(6"+iV)

= (6" + iV) : (b'+iW)

CB" CB^=
AB" ' AB'

,
={ACB'B').

' It does not follow, and it is not true, that the real portions of the determining-

elements of points on one range are projected into the real portions of the determining

elements of points on the other range. This is only true when the cutting lines are

parallel.

17. The quadrangle and quadrilateral.

There are various kinds* of quadrangles and quadrilaterals which

differ with the nature of the four points and the four straight lines

which determine them.
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The most important of these are the real quadrangle and quadri-

lateral and the semi-real quadrangle and quadrilateral. The latter are

constructed as follows

:

Semi-real Quadrangle.

1st Kind.

Two pairs of conjugate imagin-

ary points (A, A' and B, B') deter-

mine

(1) a pair of real lines and two

pairs of conjugate imaginary lines;

(2) three real points, being the

points of intersection of the three

pairs of lines.

In the figure the lines

AA', BB' are real,

AB', BA' are conjugate

imaginary lines,

AB, A'B' are conjugate

imaginary lines. -

E, F, G are real, since the inter-

sections of conjugate imagin-

ary lines are real, and are the

diagonal points of the quad-

rangle.

Semi-real Quadrilateral.

Two pairs of conjugate imagin-

ary lines (a, a' and b, V) determine

( 1

)

a pair of real points and two

pairs of conjugate imaginarypoints;

(2) three real lines, being the

connectors of the three pairs of

points.

In the figure the points

ad, bb' are real,

ab', ba' are conjugate

imaginary points,

ab, a'b' are conjugate

imaginary points.

e,f,g are real, since the connectors

of conjugate imaginary points

are real, and are the diagonals

of the quadrilateral.
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2nd Kind.

A pair of imaginary conjugate
points (A, A') and a pair of real

points (B, G) determine

(1) a pair of real lines and two
pairs of imaginary lines

;

(2) three points, one of which
is real, the other two conjugate

imaginary points.

(A)

A pair of conjugate imaginary

lines (a, a') and a pair of real lines

(b, c) determine

(1) a pair of real points and

two pairs of imaginary points ;,

(2) three lines, one of which is

real, and the other two a pair of

conjugate imaginary lines.

In the figure

AA' and GB are real,

AB and A'G are imaginary,

A'B and AC are imaginary.

The point E is real.

The lines BA, BA' and CA, GA'
are pairs of conjugate imaginary

lines and therefore their points of

intersection G and F are conjugate

imaginary points. Hence the line

GF is real and EG, EF are con-

jugate imaginary lines.

If in the previous case the pair

of conjugate imaginary points B
and B' and the pair of real points

G and F are looked jipon as the

determining points, the diagonal

points triangle is AA'O.

In the figure

aa! and be are real,

ab and a'c are imaginary,

a'b and ac are imaginary.

The line e is real.

The points ba, ba' and ca, ca'

are pairs of conjugate imaginary

points and therefore their con-

nectors g and /are conjugate ima-

ginary lines. Hence the point gf
is real and eg, ef are conjugate

imaginary points.

If in the previous case the pair

of conjugate imaginary lines b and

b' and the pair of real lines g and

/ are looked upon as the determin-

ing lines, the diagonal triangle con-

sists of a, a and the connector of

gf to bb'.
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For the construction, of the diagonal points triangle of a semi-real

quadrangle and of the diagonal triangle of a semi-real quadrilateral, see

Art. [60].

18. Harmonic property of a semi-real quadrangle.

In a semi-real quadrangle the ranges determined on a real side or on

a real side of the diagonal points triangle are harmonic.

Case I. Let A, A' and B, B' be two pairs of conjugate imaginary

points and let

AA'.BB'beG,

AB' .BA'beE,

AB.A'B'beF.
' Let EF meet AA' and BB' in L and M.

The ranges G, L\ A, A' and G, M, B', B are in perspective with the

real point E as centre of perspective.

Therefore (GLAA') = (GMB'B).

Similarly the ranges G, M, B', B and G, L, A', A are in perspective

with the real point F as centre of perspective.

Therefore (GMB'B) = (GLA'A).

Hence (GLAA') = (GLA'A) and therefore the range GLAA' is

harmonic.

Since E and F are the centres of perspective of the involutions on

GL and GM the range LMEF is harmonic. (Art, [60].)

Case II. The real points E, F and the pair of conjugate imaginary

points B, B' determine a semi-real quadrangle of the second kind in

which the ranges on the real lines are as above harmonic.

The harmonic property of a semi-real quadrilateral may be proved

in a similar manner.
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19. Involution property of a semi-real quadrangle.

The three pairs of opposite sides of a semi-real quadrangle are cut by

any real transversal in three pairs of conjugate points of an involution.

Case I. Let the quadrangle be determined by a pair of real points

A and B and a pair of conjugate imaginary points A' and B'. Then in

the figure the points G and F are a pair of conjugate imaginary points.

Let the transversal meet the pairs of opposite sides of the quadrangle

as in the figure in XX', YY', ZZ'. The point E is a real point. Pro-

jecting the range A'B'EY' from the real points A and B it follows that

(XZ' YY') = (ZX'YT) = (X'ZY' Y).

Hence (Art. 7), XX', YY', ZZ' form an involution.

By Art. 8 the involution is real.

Case II. The quadrangle determined by A'B'GF is a quadrangle

determined by two pairs of conjugate imaginary points. Let GF meet

the transversal in W.

By Case I the quadrangle A, B, G, F, determines an involution XZ,

X'Z', YW on the transversal, therefore (XZX' Y) = (ZXZ' W).

By Case I the quadrangle A, B, A', B' determines an involution XX',

YY', ZZ' on the transversal, therefore (XZX'Y) = (X'Z'XY').
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Hence (X'Z'X Y') = (ZXZ' W).

Therefore ZX', XZ', Y'W form an involution. But these are the

three pairs of points in which the opposite sides of the quadrangle A'B'GF

are met by the transversal. Hence the theorem is proved.

By Art. 8 this involution is real and has real double points.

The involution property of a semi-real quadrilateral may be proved

in a similar manner.

Conjugate points with respect to a semi-real quadrangle and conjugate

lines with respect to a semi-real quadrilateral.

From the preceding the construction for" the conjugate points of

real points with respect to a semi-real quadrangle may be, deduced as

in Art. [57]. The conjugates of real lines with respect to a semi-real,

quadrilateral may be constructed by the correlative method.

20. Any two real involutions of different kinds in the same plane

are in imaginary plane perspective, the real branch of each corresponding

to the imaginary branch of the other.

Let Bt and B2 be the real double points of one involution and C
and C" the conjugate imaginary points which are the double points of

the other involution.
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Then, from the properties of the semi-real quadrangle B^Bfi'C", the

points S and S' are a pair of conjugate imaginary points and the line

SS' is real.-

Take the real triangle ABC as triangle of reference.

Let P', P" be two real points on AC, whose ratios p' and p" are such

that p'p"=K'i
, K- being the constant of the involution of AC. Let — K"1

be the constant of the involution on AB. Then the ratios of S and S' are

+ and — 1

>J-K*K'*'
(Art. [60].)

Let the imaginary lines SP' and SP" meet AB at Q' and Q".

Then the ratios of Q' and Q" are

;— - and 77 ( by Menelaus theorem).
p p

x J '

Therefore the product of the ratios of Q' and Q" is

-K*K
P'P"

= - K'\

Therefore Q', Q" are a pair of imaginary conjugate points of the involu-

tion on AB.

21. Projective ranges and pencils.

(a) If a range of points, real If a pencil of rays, real and

and imaginary, situated on a real imaginary, passing through a real

straight line be projected from an vertex, be cut by an imaginary trans-

imaginarypoint upon a real straight versal and the range sofound be pro-

line the two ranges so obtained are jected from a real point, the two

equianharmonic. pencils so formed are equianhar-

monic.
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Let the range of points situated

on a real line s be G, A', A", A'"—
Let S be the imaginary point which

is the centre of projection. Draw

BA the real line through S to meet

s in B. Let the projections of A',

A",A'",B...on s',beB',B", B'",

A,... and let the ratios of the points

A', A", A'". . . with respect to BG be

a!, a", a". . ., those of B', B", B'". .
.

,

with respect to CA, V , b", b'"...,

and that of S with respect to

AB, c.

Then by Art. 15

a'-6'c = l = a"6"c,

•'• a"~b"
.-. {BGA'A") = (GAB"B')

= (AGB'B"),

so (BGA'A'") = (ACB'B'"),

. •. (GA'A"A'") = {OB'B"B'"),

.-. (A'A"A'"A"") = (B'B"B"'B"").

Let the pencil of rays through

the real point $ be o, a', a", a" ...,

Let s be the imaginary line which

cutsthemin 0, C, G", C" . ..,0 being

the real point on this line. Let the

connectors of 0, C, C", C". . . to S'

be t, b', b", V". . . . Take OS'S as tri-

angle of reference. Let the ratios of

the intersections of a, a", a'". . . with

OS' be Oj', a/', a-i" . . . and the ratios

of the intersections of 6', b", V" '.

.

.

with OS be W, 6,", W" ... and the

ratio of the point of intersection of

OC with SS' be Sl .

Then a.'Ws, = - 1 = a/'i/'s, by

Art. 16,

" ' <~W
therefore as on the left-hand side

therangesdeterminedbythepencils
,

on the real transversals OS' and OS
are equianharmonic and therefore

the pencils are equianharmonic.

If a system of real and imaginary points on a real straight line be

joined to a real point (Art. 10) or to an imaginary point (Art. 21) the

pencil so formed is cut by real transversals in projective ranges. Two
pencils so cut by real transversals in projective ranges are said to be

projective.

As in Art. [34] it can be shown that if two projective ranges on real

bases have the point of intersection of their bases for a self-corresponding

point, the ranges are in plane perspective. Correlatively, if two projective

pencils with real vertices have the connector of their vertices for a self-

corresponding ray the. pencils are in plane perspective, i.e. the pairs of

corresponding rays intersect on a straight line. These are extensions of

Art. 13.

(b) Two superposed projective ranges on the same real base, and also

two superposed projective pencils with the same real vertex, have two self-

corresponding elements.
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Consider two superposed ranges determined by points A, B, G and
A', B', C, real or imaginary. Let Vbe the point of the first, which

corresponds to the point at infinity of the second, and W the point of

the second which corresponds to the point at infinity of the first.

Then (ABV ao ) = (A'B' oo W),

AV_ B'W
' " BV~ A'W"

.-. AV. A' W' = BV.B'W' = constant = K+ iK' (suppose).

If P be a self-corresponding point of the ranges, then

PV.PW' =K+ iK'.

Let the distances of V, W and P from a given point of the base be

a + ia', b + ib' and x respectively. Then

(x - a - ia') (x-b- ib') = K + iK'.

As this is a quadratic equation in x, there are two values of x and

therefore two self-corresponding points. Since two superposed projective

pencils are cut by a real transversal in two superposed projective ranges,

two superposed pencils have two self-corresponding rays.

22. Real involution pencil.

If the pairs of conjugate points, real and imaginary, of a real involu-

tion range on a base s be joined to a real or an imaginary point S, the

pencil so formed is cut by real transversals in ranges, which are pro-

jective with the ranges formed by the corresponding points of the given

involution (Art. 21). Hence the pencil is cut by all real transversals in

involutions and is therefore said to form an involution pencil.

If a pair of conjugate points A, A' of the involution on s coincide,

their projections on any Teal transversal coincide, and therefore the

double rays of the involution pencil are obtained by joining to the vertex

of the pencil the double points of the involution range and are therefore

real or imaginary.

If the vertex S of the pencil is real, the involution pencil always has

a real branch and is said to form a real involution pencil.

If two pairs of the real conjugate rays of an involution pencil with

a' real vertex S are at right angles every pair of real conjugate rays of

the pencil are at right angles (Art. [58]). If through another real point S'

two other pairs of rays, parallel to the rays which meet at S, be drawn

they will be at right angles. The rays of the pencil vertex S' being

H. i. g. 3
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parallel to the rays of the pencil vertex $ meet the line at infinity in

the same two pairs of points and will therefore determine the same

involution on the line at infinity. The double rays of both pencils are

obtained by joining the double points of this involution^termed the

circular points at infinity—to S and S'. The lines joining /S and S' to

the circular points at infinity are termed the critical lines of S and S'.

Real lines, which are at right angles, are therefore harmonic conjugates

of the critical lines through their point of intersection. There are also

through S and S' pairs of imaginary conjugate rays of the same involu-

tion pencils. These pairs of rays are also harmonic conjugates of the

critical lines and are defined as imaginary lines which are at right angles.

Hence, if an imaginary line passes through S, there is through S one

imaginary line perpendicular to it, viz. its harmonic conjugate with

regard to the critical lines through S.

Similarly, if S be an imaginary point, there are a pair of critical lines

through it, which are the connectors of$ to the circular points at infinity.

Pairs of lines through S which are at right angles are defined as being

harmonic conjugates of these critical lines.

If y= (m + im') x be an imaginary line through the origin and y=Mx be the line

perpendicular to it, then since these lines are harmonic conjugates of the critical

lines, whose equation is #2+y2=0 (see Art. 78),

l+M(m+im')= 0,

1
.-. M=

m+im'

23. Anharmonic ratio of pencils subtended by points in the same plane
at a real or purely imaginary point.

(1) If four real points A, B, C, D are joined to a real point S the anharmonic
ratio of the pencil so formed is real. This is obvious.

(2) If two pairs of conjugate imaginary points A, A', B, B' are joined to a real

point S, the anharmonic ratio of the pencil so formed is real.

Let the lines A A', BR meet at 0. Then OA and OA' are of the form a + ia'

and a — ia'.

From 8, B and B project into a pair of conjugate imaginary points Bx and B{
on OAA'. Hence the form of 0BX and 0B{ is b+ib', b-ib'.

Hence the anharmonic ratio of the pencil (S. AA'BB') is

a+ia' -b-ib' a+ia'-b+ ib'

a-ia'— b-ib' ' a— ia' — b+ib'

_ {a-bf+ {a' -b'f
(a-Vf+{a'+ b'f
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(3) If a 'pair of conjugate imaginary points A, A' and a pair of real points B, C
be joined to a real point S, the anharmonie ratio K+ iK' of the pencil (S . AA'BG) is

such that K2 + K' 2= 1.

If in the preceding B and B' are a pair of real points they projeGt from S into a

pair of real points Bt and Cj on OA. i

Let {AA'BlC1)=K+iK.

Then, since A and A' are conjugate imaginary points,

(A'AB^^K-iK'.

Therefore (^'B,C1)=
(̂ m = ^,^K+iK'

;

.-. l = (K-iK')(K+iK')=K*+K'2

(4) Iffour purely imaginary points A, B, C, D are joined to a purely imaginary
point S, the anharmonic ratio of the pencil so formed is real.

This is obvious since the ratio of two purely imaginary quantities is real.

(5) If two pairs of conjugate imaginary points A, A' and B, B' are joined to a
purely imaginary point S, the anharmonic ratio of the pencil so formed is real. '

This result follows from (2) by substituting ia, ia', ib, iV etc. for a, a', b, V etc.

When looked at from the purely imaginary point of view the determining quan-

tities for a pair of conjugate imaginary points are ia — b and ia + b, i.e. the imaginary

parts are the same and they differ in the sign of the real part.

(6) If a pair of conjugate imaginary points A, A' and a pair ofpurely imaginary

points B, C be joined to a purely imaginary point S, the anharmonic ratio K+iK' of
the pencil (S. AA'BG) is such that K 2+K'2=l.

The values of (AA'B^) and (A'ABjCi) will in this case be the same as in case
'

(3) except that all the quantities determining the position of the points are multiplied

by i. This quantity will divide out in the expressions for the anharmonic ratios and
therefore K a,nd K' are as in (3), i.e. K2+K' 2=\.

A quantity K+iK', where K 2+K' 2= \, can be expressed as the quotient of two

conjugate imaginary quantities.

A+iB (A2-B2)+2iAB
Let K+UC-- A-iB l

A 2+B*

A 2 — S2 2/1 R
Then if K=A>+-m mdK'=A*+&' &+K' 2=l.

But K(A 2+B2)=(A2-&), §, =—
Since 2T<1, becauseK2 + A" 2=l, this expression is positive whether A' is positive

or negative. Therefore -5 = ,<V _ „ is real.

*Jl +K+i«Jl-K
Hence K+iK'=

*Jl+K-i\/l-K'

3—2
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24. Condition that the anharmonic ratio offour collinear points'may be real.

Let the four points A, B, C, D be determined by distances a+ ia', b+ ib', c+ ic',

d+id' measured from an origin on the straight line.

T ,
a-c D b-c a-d _ b-d

Let A=-,—„B= Tl— ,, Cm-—-j„ D=ti—37.a-c b-c a-d' b—d

Then (ABOB>-{£< : £$ . "g±J = gf=M< (suppose).

If K'=0 and J/' represents the expression in the first bracket

It' {A +i){D+ i)=K{B+ i) (C+i).

Hence M'{AD-\)=K(BC-1) and M' {A+D)= K(B+C).

Therefore A.B.C.B.\l+l-^-^B+C-A-D. (1)

Hence it may be shown that the required condition is1111abed
a' V c' d'

a?+ a' 2 &2+ 6' 2 c*+c'* d* + d'*

A= =0.

25. Relations connecting, the anharmonic ratios of collinear imaginary points.

In the general case with the notation of Art. 24

M'(A+i)(B+i)=(K+iK')(B + i)(C'+i).

Therefore IT (AD - 1) =K{BC- 1)-K'(B+ C)

and M'{A + D)=E(B+C)+K'(BC-1).

Hence it may be proved that

A AK'=
{{b-cf+{b' -c,Y}{(a-dy+^ -d'f}

=
f{b,c).f{a,d)

(suPP0Se)-(2)

and ^+^= /(M)-/(a,c) '

f(b,c).f(a,d)
,

—*/

Hence K- +^_L_
f)

<Jf(b, c) f{a, d) /(ft, d) f(a, c) - A* (4)

If K'= Q the anharmonic ratio of the four points and their conjugate imaginary

points are equal and

f(b,c).f(a,d)-

This is the result obtained by making A zero in (4).

Lei f(a,b).f(c,d) = S, f{a,c).f(b,d)=Su f{a,d).f(b,c)=S2 .

,_, _ St +'Sa-S „,„ 2S1Si +2SSi + 2SSa-S1*-Sf-S»Then K=
2S2 '

K = :

48? '

and since K'

=

-§ , 4A3=2^S2 + 2SSt + 2SS2
- S? - *S2

2 - £2
.

"2
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Hence it is seen that

and so on, where 4A2= 25-S'I + 2OT2+2^1 /S2
-52 -<S'1

2 -»S22-

If a'= b'= c'= d'= Q the corresponding formulae for real points are obtained.

26. Projection from a real point on a real plane.

(a) Any pair of real points and any pair of conjugate imaginary

points can by a real projection be projected into any pair of real points

and any pair of conjugate imaginary points, if the two systems are each

coplanar.

Let A, B, C1 and C2 be a pair of real points and a pair of conjugate

imaginary points in a plane a- and A', B', C/ and C2
' any pair of real

points and any pair of conjugate imaginary points in a plane cr.

Take any real plane cr" through A' and any centre of projection

(real) S on A A'. Project the figure in the plane cr from S on cr". Thus

a figure in plane a" is obtained, viz. A', B", G", C2
" in which C" and G2

"

are a pair of conjugate imaginary points.

Let A'B' and Gt'C3
' meet at E' and let A'B" and 0"G2

" meet at E".

Then E' and E" are real points.

Since A'B'E' and A'F'E" are coplanar B'B" and E'E" meet at a real

point S'. Project the figure in a-" from S' upon a plane a'" through the

line s A'B'E'. Then a figure A', B', E', G"' , 2
"' is obtained in the

plane a".

Since 0/, C2
' and (7/", C2

'" are two pairs of conjugate points in a plane

(CiCi and Q("Gi" are concurrent at E') therefore C/C/" and G%'G2
'" meet

at a real point S".

Projecting the figure in cr'" from S" ,on a the figure A'B'E'G{G* is

obtained. Hence the first system of points has been projected into the

second.

It should be noticed that C^ may be projected into G-[ or G2
', and the

point (?2 into the other point.
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The preceding is equivalent to proving that any two points and an in-

volution in one plane may be projected into any two given points and a

given involution in another plane.

(b) To project two pairs of conjugate imaginary points in one plane -

into any two pairs of conjugate imaginary points in another plane.

Let A lt A 2 and Bu B» be any two pairs of conjugate imaginary points

in the plane a and AJ , A 2 and 2?/, B2 anytwo pairs of conjugateimaginary

points in the plane cr'.

Let A^A 2 and BXB2 meet at E and A-[A 2
' and BJB2 meet at E'.

Then E and E' are real. Take a centre of projection S on EW and

project the figure in the plane <r upon a plane cr" which passes through E'.

Then A 1} A 2 become a pair of conjugate imaginary points A", A 2
" in

a" and B1 ,

B

2 become a pair of conjugate imaginary points B", B2
" in cr"

and E becomes E'.

Since B", B2
" and BJ, B2

' meet at E' they are in a plane and the lines

Bj'B" and B2'B2
" being conjugate imaginary lines in this plane meet at

a real point S'. Take a plane v'" through the line B^B^E' and project

the figure in the plane cr" from 8' upon this plane.

Then A", A 2
", collinear with E', become a pair ofconjugate imaginary

points A"' , A 2
" in a" collinear with E'\ B", B2

" become the pair of con-

jugate imaginary points B{, B2
' and E' remains the point E'.

Since A"', A 2
" and Af, A 2 are collinear with E' they lie in a plane

and therefore the conjugate imaginary lines A"'A( and A 2 "A 2 meet in

a real point S".

If the figure in the plane cr'" be projected from 8" upon the plane

,

cr', the pair of conjugate imaginary points A-l", A 2
" are projected into

the points Ai, A 2 .

Hence the required real projection has been performed.

27. Semi-real square.

A semi-real square of the first kind is determined by two pairs of conjugate

imaginary points situated on two real straight lines, which

are at right angles, the distances, imaginary, of the four points JP*

from the point of intersection of these lines being equal.

In the figure A and A' and B and B are the pairs of con- /
jugate imaginary points, and EA = A'E=EB=B'E. The (/ft\~

lengths of the sides are all equal and are purely imaginary,

since EA2+EB2=AR2
. It follows that the triangle BEA

is equal in all respects to the triangle AEB' and that the

angles BAB', ABA' are right angles. Opposite sides of the figure are conjugate

imaginary lines.

^A)

B')



..<''
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tion, then A^X^O is the condition that (A A'BE) should be harmonic; and

generally if p= {AA'BB')

/1+My fri +*&
\l-p) 4XXX2

From the condition for equal values of x

. . ab' + ba! - %hh' , . ab-h?

• -Mr =
(o6-A»)(«'y-A'»r^ (w) by Art - [14]> Examp (3)



CHAPTER II

THE CONIC WITH A REAL BRANCH

28. In the Principles of Projective Geometry (Art. [92]) a conic

was defined as the locus of the points of intersection of a pair of corre-

sponding rays (real) of two projective pencils (with real vertices). In

Art. 95 (k) it was proved that such a conic determines on every straight

line (real) an involution by means of pairs of collinear conjugate points,

and that, when the double points of this involution are real, they are the

points of intersection of the line and conic.

The consequences of Axiom I, which are set forth in the preceding-

chapter, render it possible to enlarge and extend what was proved in

the Principles of Projectine Geometry. The assumption of Axiom I is

that when there are no real double points of a real involution- there

are a pair of imaginary double points, which are called a pair of conju-

gate imaginary points, and, as a consequence, a pair of conjugate

imaginary lines are defined as the double rays of a real overlapping

involution pencil. It follows (Art. 6) that two real projective ranges

and two real projective .pencils have, in addition to pairs of real

corresponding elements, pairs of corresponding imaginary elements, and

it is proved that the anharmonic properties of real and of imaginary

elements are similar. A pair of self-corresponding elements always

exist, when the pencils or ranges are superposed, and (Art. 21 (&)) they

are either a pair of real, coincident, or conjugate imaginary elements.

The same is true of a real involution, which is only a particular case of

two superposed projective ranges or pencils.

Hence taking into account the imaginary corresponding elements of

two real projective ranges or pencils it is seen that

(1) There are on a conic an infinite number of imaginary points,

viz. the points ofintersection of pairs ofimaginary corresponding elements

of the real generating pencils.

(2) On, every real straight line in its plane the conic determines

a real involution of which the double points are a pair of real, co-

incident, or conjugate imaginary points, and these are the points of inter-

section of the real line and the conic. Consequently every real line

in the plane of a real conic meets the conic in a pair of points
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real, coincident or conjugate imaginary, and, if a conic passes through

an imaginary point it also passes through the conjugate imaginary

point.

(3) Every line through a given real point meets its polar in a

point, such that this point, the given point and the points of intersection

of the line with the conic form a harmonic range.

Similarly the theorems correlative to the above may be shown to be

true.

In the extension obtained in this manner it must be borne in mind

that the vertices of the pencils and likewise the base's on which the

ranges are situated must be real as well as the anharmonic ratios of both

ranges and pencils. In Chapter IV the fundamental theorems for the.

conic are proved for the conic in general, including of course the case

of a conic with a real branch, which in this chapter is termed a real

conic. The restriction that the vertices of the pencils and the bases of

the ranges considered must be real does not apply to the proofs in

Chapter IV.

A circle is only a particular case of a conic, so that the preceding

applies to a circle with a real branch.

29. Circle with a real branch.

Construction of the involution determined by a real circle on a straight

line.

(a) If a line p meets a circle in real points E and F, these points

are the double points of the involution determined

by the circle on the line. P and P', any pair of

conjugate points of the involution, are harmonic

conjugates of E and F. If be the foot of the

perpendicular from C, the centre of the circle, on

p, is the conjugate of the point at infinity on p
and consequently

OP.OP' = OE*=OF*.

A circle described on PP' as diameter cuts the given circle ortho-

gonally (Art. [82]).

If CO meets the circle in R and K, then

OR.OK=OE.OF=-OP. OP'.
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(b) If a line p meets a circle in imaginary points, and the perpen-

dicular from 0, the centre of the circle,

meets p in 0, then is the conjugate

in
,
the involution of the point at in-

finity on p, and therefore

OP. OP' = constant,

where P and P' are a pair of conjugate

points of the involution on p.

Let the polar of P meet OC in M
and OP in N; then the triangles

OP'M and OOP are similar,

OM OP
' ' 0P'~ OC

and OP. OP' = - OM. 00= -OR. OK,

since (OMRK) is harmonic.

But OR.OK=OV\ where OF is the tangent from to the circle.

Hence if a circle be described with centre and radius F to meet 00
in $, this circle will cut the given circle at right angles and PP', QQ, ...

pairs of conjugate points of the involution will subtend right angles

at S (Art. [53]).

This circle also determines on p the graphs of the double points of

the involution, which are the points of intersection of the line and circle.

S is either of the pair of common harmonic conjugates of MO
and RK.

30. Conjugate loci or Poncelet figures for a circle.

By taking the points of intersection of a series of parallel chords

with a circle it is possible to obtain a graph of the imaginary portion

of a circle. Such a figure may be termed a conjugate locus or a

Poncelet figure. Figures of this nature were first given by Poncelet in

his Traite des Propriety Projectives des Figures. (See Art. 39.)

Let be the centre of the circle, and consider the points in which

lines parallel to any diameter US meet the circle.

As long as the distance of these lines from is less than the radius,

they meet the curve in the part of the locus which is drawn in a con-

tinuous line.

If however a line of the system such as A'MB' meets NON' in M on

the sides of N and N' remote from 0, the involution determined on
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this line is overlapping and the double points, in which the circle

intersects the line, are a pair of conjugate imaginary points A' and B

.

M is the real mean point of A' and B! and the distances MA', MB'

expressed in imaginary units are equal to the tangent from M to the

real branch of the circle. Hence, lengths measured parallel to OM
being regarded as real and lengths parallel to OS as imaginary, the

locus of A' and B' is a rectangular hyperbola, which touches the real

branch at N, has for centre and ON for semi-transverse axis.

For the system of lines parallel to any other diameter there is an

exactly equal rectangular hyperbola touching the real part of the curve

at the ends of the diameter.

31. Theorems concerning pairs of conjugate imaginary points determined

as the points of intersection of a circle and straight line.

(1) Any pair of conjugate imaginary points may be determined as the points of

intersection of a real circle and a real straight line.

Let M be the centre and P, P' any pair of conjugate points of the involution of

which the given pair of conjugate imaginary points are the double points. On
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PP' as diameter describe a circle PKP'. Draw MO perpendicular to PP' and take

any point G on this line external to the
circle. Join PC to meet the circle described
on PP' as diameter in K. Join KP'. With
centre G and radius, the square of which is

equal to CK. OP, describe a circle. This circle

determines the given pair of conjugate imag-
inary points Q and Q' on PP'. This follows

from the fact that it determines on PP' the

involution of whichM is the centre and P, P'
are a pair of conjugate points. The two circles

obviously cut orthogonally since CU2= CK. CP.

If Q, <2' a%e the graphs of a given pair of conjugate imaginary points, and a circle

be described on QQ' as diameter, any circle, with centre on MO the perpendicular

through the mean point of Q and Q', which cuts this circle orthogonally, determines

the given pair of conjugate imaginary points on PP'. This follows also from

Art. 29.

The circle, centre G, since its centre is on the radical axis of circles described on

the lines joining pairs of conjugate points of the involution as diameters and cuts

one of these circles orthogonally, cuts all circles of this coaxal system orthogonally.

Hence all circles with centres on MC, which cut one circle of the first system ortho-

gonally, form a coaxal system. If the distance of the limiting points of the first

system from M is V— 1A', the distance of the limiting points of the second system

from M is K.

This result may be put into a slightly different form in which it is an extension

of that given in Art. 82.

In this form it is as follows

:

(2) (a) If two circles cut each other orthogonally, each determines inverse points

upon every diameter of the other.

(b) If one circle passes through inverse points with respect to another, they cut

orthogonally.

For if the circle, centre C, Which is orthogonal to the circle PKP', does not

meet PP' in real points,, it meets this line in a pair of conjugate imaginary points

which are harmonic conjugates of P and P' and, since PP' is a diameter of the

circle PKP', these points are a pair of imaginary inverse points with respect to

this circle.

The converse follows from the fact, that when the circle, centre O, passes through

the imaginary double points of the involution, it is orthogonal to all circles described

on the lines, joining pairs of conjugate points of the involution, as diameters.

The theorem may also be easily proved from a graphical figure.

(3) To construct the common harmonic conjugates of two pairs of collinear points,

either conjugate imaginary or real, determined as the intersections of a straight line

and a pair of circles.

Let the radical axis of the pair of circles meet the base in 0. The circle with

centre cutting the given circles orthogonally meets the base in the required points.
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This construction fails if is within the circles. In this case the two pairs of

points, say A, A' and B, B, are real and the segments overlap. In this case describe

on AA' and BE as diameters circles intersecting in P. On the perpendicular

from P on the given line take any point E outside the circles. The circle with

centre E cutting the two circles orthogonally will determine the pair of common
harmonic conjugates, which are in this case a pair of conjugate imaginary points.

From the nature of this construction it follows that there can be only one pair

of common harmonic conjugates of the two pairs of points.

Also the only case when the common harmonic conjugates of two pairs of collinear

points, real or conjugate imaginary, are imaginary, is when both pairs are real and

the segments overlap.

(4) Given a pair of points (P, P'), real or conjugate imaginary, as the points of
intersection of a straight line and a circle, to determine those harmonic&onjugates of

the pair, which have a given mean point M.

Describe a circle with centre M to cut the given circle orthogonally. This circle

determines the required points.

This construction fails if M is inside the given circle, in which case P and P'

are real and M is between them. Describe a circle on PP' as diameter (Figure of

Art. 31 (1)). Draw MC perpendicular to PP' and with centre C, any point on MC
external to the circle, describe an orthogonal circle. This meets PP' in the required

points Q and Q' which are imaginary.

32. (1) If through a real point P a real line be drawn to meet a circle in a pair

of imaginary points Q and Q' then PQ. PQ1

is equal to the square of the tangent from
P to the circle.

If be the centre of the circle and M the foot

of the perpendicular from on the real line through

P, then the points Q and Q' are at imaginary

distances from M equal to V — \MT, where MT is

the tangent from M to the circle.

Hence

PQ .pq=(PM-i. MT) (PM+ i.MT)
=PM1+MT2

=PM*+OM2~(OM*-MT*)
= OP2 -OT2=PZ2

where PL is the tangent from P to the circle.

Certain important results follow from this

theorem.

(as) If a straight line meet a circle of a coaxal

system in a pair of imaginary points, these points are a pair of conjugate points of
the involution determined on the line by the system of coaxal circles.

This follows from the fact that, if the straight line meet the radical axis at P,
the squares of the tangents from P to all the circles are equal, and therefore the
products of the distances from P of the pairs of points in which the line meets the
circles of the system are equal.
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(b) The ratio of the tangents from a variable point on a circle to two other circles

with which it is coaxal is constant.

Take P and P' any two points on the circle from which the tangents are drawn.

Join PP' to meet the other circles in Q, Q' and

R, R. Then P, P', Q, $', R, R' are pairs of con-

jugate points of an involution. Therefore

(PP'QR) = (P'PQR').

Therefore
PQ-PQ' _ P'Q- P'Q'

inerelore pR pRI - piR plR,-

Hence the squares of the tangents from P to

the two circles are in the same ratio as the

squares of the tangents from P'.

By taking P and P' on the line of centres it

follows at once that the ratio of the squares of

CC
these tangents is ~^ where C, C\ and C2 are the

OO2

centres of the circles.

(c) Carnofs theorem holds for the circle even when one or more of the sides of the

triangle meets the circle in pairs of imaginary points.

This can be proved at once as in Art. [89].

(2) If a chord QPQ' be drawn through a real internal point P to meet a circle

in Q and- Q', the square of the tangent (imaginary) from P to the circle is equal to

PQ.PQ.

Join the centre of the circle to P. Through P erect a perpendicular to OP to

meet the circle in L and L'. Then PQ.Pq=PL.PL'= -PL\ Draw RME the
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polar of P, which will meet the circle in a pair of conjugate imaginary points R and

R'. Then the square of the tangent PR is PR2 and

PR?=PM2-RM2

=PM2 - MI?, since LPL is the polar of M
= -PL2=PQ.PQ'.

Hence generally if through a real point P any real chord be drawn to meet a

circle in Q and Q', PQ . PQ' equals the square of the tangent from P to the circle.

To draw a real circle through a real point A and an imaginary point P.

Let P' be the conjugate imaginary point of P. Then the line PP' is real. Let M
be the mean point of P and P' Draw MON perpendicular to PP'. Draw AN, the

perpendicular from A on MON.

Construct Pj and iY the graphs of P and P' On P
1 Pi as diameter describe

a real circle. Let CO, the radical axis of this circle and A, meet MN in 0. Then

is the centre of the required circle and, if OS7 be the tangent from to the circle

on P-i.P-1, then OA = OT is the radius.

33. The points of intersection of two circles.

Two circles determine the same involution (a) on their radical axis,

and (b) on the line at infinity.

(a) Let P be any point on the radical axis of the circles. Then
the tangents from P to the circles are equal and, therefore, a circle

P

with centre P and radius equal to the length of these tangents cuts the
two circles orthogonally.

The chords TT' and NN' are the polars of P with respect to the

two circles. These lines are also radical axes of the circles taken in

pairs. Hence, since the three radical axes of three circles taken in

pairs are concurrent, TT and NN' meet in a point P' on the radical

axis of the first two circles.
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Hence the conjugate of P on the radical axis with respect to both

the circles is P'. Hence the two circles determine the same involution

on their radical axis.

(6) Let G and C be the centres of the circles. Consider a point A
at oo . Its polar with respect to the

first circle passes through G, the pole of

the line at infinity, and is perpendicular

to GA.

Similarly, the polar of J. with respect

to the second circle is the line through

G' perpendicular to C'A. Therefore

these polars of A are parallel lines

through G and C". They therefore meet,

the line at infinity in the same point A'.

Hence the two circles determine the same involution on the line at

infinity.

i

34. (1) Every circle meets the line at infinity in the same pair of

conjugate imaginary points.

Connected with every pair of circles there are two chords on which

the circles determine the same involution. These are their radical axis

and the line at infinity. The radical axis is a different line for different

pairs of circles, but the line at infinity is the same line. On the line at

infinity every circle determines the same involution, namely, the invo-

lution obtained by drawing pairs of conjugate (i.e. orthogonal) diameters

through the centre. Hence every circle passes through the double

points of this involution, which since the involution is an overlapping

involution are a pair of conjugate imaginary points. These points are

termed the circular points at infinity, or the critical points.

The lines joining -the circular points at infinity to the centre of a

circle, which is the pole of the line at infinity with regard to the circle,

are imaginary tangents to the circle. These tangents are the double

rays of the involution pencil made up of pairs of conjugate (or orthogonal)

diameters of the circle. They are the critical lines through the centre.

(Art. 22.) .

(2) All conies through the circular points at infinity are circles.

Draw a circle through the circular points at infinity and a conic

through them which is supposed not to be a circle. Since these curves

h. i. a. 4
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intersect the line at infinity in the same pair of points they determine

the same involution on it.

Draw parallel diameters of the circle and the conic and their conju-

gate diameters. These pass through the same pairs of conjugate points

of the involution on the line at infinity. In the case of the circle, these

pairs of conjugate diameters are at right angles. Therefore the conjugate

diameters of the conic are at right angles. Therefore all the pairs of

conjugate diameters of the conic are at right angles and consequently

it is a circle.

35. If the self-corresponding rays of two superposed projective pencils are the

lines joining tlie vertex to the circular points at infinity the angle between pairs of

corresponding rays is constant.

Describe a circle through the vertex S to meet the rays of one pencil in A, B
C, ... and the corresponding rays of the

x

other in A', E, C, . . . . Join AB and A'B

to meet at K and AC and A'C to meet

at L.

Then the self-corresponding rays of

the pencils are the lines joining the

points of intersection of KL with the

circle to S. (Art. £109].)

If these points are the circular points

at infinity, KL must be the line at

infinity, and therefore AB and A'B are

parallel, as are also AC and A'C.

Since AB and A'B are parallel the

arcs AA' and BB are equal. Hence the

angles A SA' and BSB are equal. Simi-

larly the angles between other pairs of

corresponding rays are equal to the angle

ASA'.

Conversely if the angles ASA', BSB, CSC are equal, the lines AB, A'B
;

AC, A'C; ... will be parallel in pairs and KL will be the line at infinity. This line

will meet the circle in the circular points at infinity, and therefore the self-corre-

sponding rays of the pencils are the connectors of the circular points at infinity to S.-

36. Every pair of circles intersect in the circular points at infinity

and in a pair of points on their radical axis which may be either a pair

of real points or a pair of conjugate imaginary points.

Hence their four points of intersection are either

:

(1) Two pairs of conjugate imaginary points,

or (2) A pair of conjugate imaginary points and a pair of real points.

These form a semi-real quadrangle of the 1st or 2nd kind (Art. 17).
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If in the 1st figure of Art. 17

A, A' are taken as the circular

points at infinity, il and O', and

B and B' as the other pair of

imaginary points of intersection of

the circles, then the line BB' is

real, viz. the radical axis.

*E

If in the 2nd figure of Art. 17

A, A' are taken as the circular

points at infinity, O and O', and

B and G as the real pair of points

of intersection of the circles, then

the line BC is real, viz. the radical

axis.

F and G are the real common

harmonic conjugates of the two

pairs of points in which the line

of centres meets the circles. (Art.

[84].) They are also harmonic con-

jugates of the points where -the

radical axis and the line at infinity

meet the line of centres.

E is the real point of inter-

section (at infinity) of the radical

axis and tne line at infinity.

EFG is a real triangle.

BB'FQ is a semi-real square of

the 2nd kind.

F and G are a pair of conjugate

imaginary points, namely, the com-

mon harmonic conjugates of the

points where the line of centres

meets the circles. (Art. [84].)

E is the real point of inter-

section (at infinity) of the radical

axis and the line at infinity.

The triangle EFG has a real

vertex • E and a real side FG.

F and G are a pair of conjugate

imaginary points and the lines

EF, EG are a pair of conjugate

imaginary lines.

BCFG is a semi-real square of

the 2nd kind. ;
;

4—2
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Hence every pair of circles have a common self-conjugate triangle

which may be real or semi-real. The vertices are the common inverse

points of the two circles and the point at infinity perpendicular to their

common diameter. The circles have also three pairs of common chords,

viz. (i) the radical axis and the line at infinity, (ii) the critical lines

through one common inverse point, (iii) the critical lines through the

other common inverse point.

37. Poneelet figure of two circles.

The fact that two circles always intersect in four points may be

illustrated by a Poneelet figure.

rH fli An
\ X
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EXAMPLES

(1) "If two circles cut each other orthogonally each determines inverse points

\ipon every diameter of the other.'' Prove this in the case where the orthogonal

circle meets the diameter in real points.

Give any justification of the extension of this theorem to the case in which the

diameter meets the orthogonal circle in imaginary points. (L. U. 1904.)

(2) " We have in the plane a special line, the line at infinity ; and on this line

twp special (imaginary) points, the circular points at infinity. A geometrical

theorem has either no relation to the special line and points and it is then descrip-

tive ; or it has a relation to them and it is then metrical."

Explain and comment on this statement. (L. U. 1904.)

(3) If the points P and Q are a pair of conjugate imaginary points, which are

also a pair of conjugate points with respect to a circle, prove that the line PQ meets

the circle in real points.

(4) Prove that any two straight lines at right angles are harmonic conjugates of

the lines joining their point of intersection to the circular points at infinity.

(5) Show that the three poles of a straight line with respect to the three pairs

of points of intersection of four given straight lines lie upon another straight line

conjugate to the first straight line with respect to each of the three pairs of points.

When the four given lines are the connectors of two given real points with the

circular points at infinity, construct the conjugate of a given straight line. .

(6) Show that every circle in a given plane may be regarded as passing through

the same two imaginary points at infinity.

(7) Prove that no two pairs of conjugate imaginary points can be pairs of

harmonic conjugates.

(8) Show that a circle which passes through a real point and a pair of conjugate

imaginary points is real.

- 38. Conic with a real branch.

Construction of the pair of conjugate imaginary points in which a

real line meets a conic.

The imaginary points in which a line meets a conic are the double

points of the involution which the conic determines on the line.

Let the conic determine on the line I an involution of which KK',

LI! are pairs of conjugate points. Let CD be the diameter parallel to

I and let its conjugate diameter meet the curve in A and B and I in 0'.

Then the pole of I is on ABs
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Hence (Art. [136])

0'K.O'K' = 0'L.O'L'

= +m .O'A.O'B.

Therefore if M' and N' are the graphs of the double points of this

involution

O'C* _ O'M'2

+ = 1,GA^ CD"

where N' may be written for M' and the — or + sign must be taken

according as the conic is an ellipse or hyperbola. Hence the locus of

the graphs of the imaginary double points on systems of parallel chords

is a conic touching the given conic at A and B.

The figure so obtained may be termed a Poncelet figure.

39. Conjugate loci or Poncelet figures for a conic.

This result may be illustrated as follows

:

(a) The ellipse. If I meet the conic in imaginary points M( and N{,
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and AB, the diameter conjugate to the diameter parallel to I, in 0',

then

ilf/O'2 _ CO'*

GJ>'" ~ CB*

= a positive quantity, since CO' > CB.

•(i)

Therefore J//0' must be a purely imaginary quantity. Let M' and

N' in the figure* be the graphs of the points M{ and i^'. Then

_ wo'* cjy* _
CD2

+
~CB>~

Hence for a system of chords parallel to I the locus of the graphs is

a hyperbola touching the original ellipse at A and B.

(b) The hyperbola. If in the figure of (a) the hyperbola is given it

will be found in exactly the same way that the ellipse is the graph of

the points of intersection of chords parallel to CD with the hyperbola.

The parabola. If PB is any chord of the parabola, S the focus, and

AQ the diameter corresponding to PR, then

PQa = 4 . A3 . AQ.

Draw a line I as in the figure parallel to PR.

* This figure is a reproduction of Figure (6) in Poncelet's Traits des Proprietes Projec-

t/ties des Figures. Paris, 1822.
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Then if i¥/ be on the curve,

M1
'0'1 =4,.AO'.AS,

where AO' is negative.

.-. MiO'^-i.O'A.AS.
Hence M^O' is imaginary. Let M' be its graph. Then

M'0'i = ^.0'A.AS.

Hence, if a point 8' be taken on SA such that S'A = AS, the locus

of M' for a system of chords parallel to I is a parabola equal to the

given one having its focus at 8' and touching the given parabola at A.

This parabola is the graph of the imaginary points of the parabola for

chords parallel to PR.

From the preceding it is seen that a Poncelet figure gives the

graphs of the intersections of a conic and a system of real parallel lines,

distances measured parallel to one direction being real and those parallel

to another direction being purely imaginary. In fig., page 55, the tangent

at M' to the graph represents a tangent to the imaginary branch.
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It meets AB in a real point 0. This is the one real point on the

tangent at M'. It is the pole of the line M^N^.
The figure given in this Art. may be obtained from that of Art. 30

by projection from a real point on a parallel plane, since in such a

projection real lengths are projected into real lengths and imaginary

lengths into imaginary lengths. A more complete figure is given in

Art. 127.

40. The, following, which is a particular case of the anharmonic property of a

conic, may be deduced from Art. [150].

If two fixed real points on a conic and a pair of conjugate imaginary points on
the same conic are joined to a variable real point on the conic, the pencil so formed is

cut by any real transversal in two real and two imaginary points whose anharmonic

ratio is constant.

Let A and B be any two fixed real points on the conic and X^X^, YXY2 any two

pairs of conjugate points of the involution determined by the conic on any real line

in its plane. If the points A and B are projected from any point S on the conic

into the points A u Bx on the real line, then, by Art. [150], for all positions of S

(MfhM™)}'«onstat.

Take Xu A"2 as the double point J£, and 1\, F2 as the double point F, of the

involution Xx , X%, Yit Y2 . These may be the imaginary points in which the line

meets the conic.

Then {{AiEFB^-^FEB^Y is constant.

Let (A 1EFB1 )
= \. Then {2X - 1}

2 is constant.

Therefore X the anharmonic ratio of the pencil formed by joining the double

jioints of the involution—which may be any pair of conjugate imaginary points on

the curve—and the pair of real' points

—

A and B—to any real point on the curve is

constant.

In the case of a real conic it is seen that

:

(1) No imaginary line can touch the conic at a real point and no real line can

touch the conic at an imaginary point on the conic.

A.tangent at a real point passes through two real points on the curve, and since

it passes thtough two real points it must be a real line.

No real line can touch a conic at an imaginary point, for as it meets the conic in

an imaginary point it must meet the conic in the conjugate imaginary point, and an

imaginary point and its conjugate can only coincide in a real point..

(2) There is one real point on an imaginary tangent at an imaginary point. If

the imaginary point of contact is joined to the conjugate imaginary point on the

curve, a real line is obtained. The tangents at this pair of conjugate imaginary

points are conjugate imaginary lines and pass through the pole of their connector

which being a real point is the one real point on the two imaginary tangents;
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(3) If A, A' and B, B' be pairs of conjugate imaginary points in which real

chords from G meet a conic, it is seen from the property of the semi-real quadrangle

(Art. 17) that AB' . A'B and AB . A'B are real points on the line joining L and M
the harmonic conjugates of G with respect to AA' and BB', i.e. on the polar of G. If

the points A and B coincide and likewise A' and B', then the lines AB and A'B'

become the imaginary tangents at a pair of conjugate imaginary points and F the

pole of OAA' is on the polar of G. This is otherwise obvious.

Consider the inscribed quadrangle A, A', B, B' of which A, A' and B, B' are pairs

of conjugate imaginary points and EGF the real diagonal points triangle. The

tangents at A and A' intersect in a real point on EF as also do the tangents at B
and B'. These real points are the real points on these tangents. The tangents at

A and B intersect in an imaginary point, which is the pole of the imaginary

line FBA.

Join EG meeting FBA and FA'B' in R and S. Then since

(FRAB)=(FSA'B')=-1,

RS is the polar of F (Art. 18) and the imaginary tangents at A and B intersect in

an imaginary point on the real line EG.

Hence if through a real point an imaginary line is drawn to meet a conic in a

pair of imaginary points, the imaginary tangents at th%se points intersect- in an

imaginary point on the real polar of the real point.

41. Diameters of a conic.

Every real line through the centre of an ellipse or a parabola—the centre of the

latter curve being at infinity—meets the curve in real points. This is not however
the case with the hyperbola, A diameter may meet the curve in a pair of real

points A and A'. It may however meet the curve in a pair of conjugate imaginary

points B and B'. These are of course the double points of an overlapping involution

the centre of which is the centre of the curve. The lengths CB and OB' are imaginary

and (7S2=CJB'2= the product of the distances from C of the pair of equidistant

conjugate points of the involution, or the product of the distances of any pair of

conjugate points of the involution. In Art. [136], where the case of the hyperbola

was considered, B and B' were taken as the pair of equidistant conjugate points' of

the involution on BOB'. If however the imaginary semi-diameter CB be used to

determine B, it follows that in that Art. both for the ellipse and the hyperbola

XY. XY' = - XA .XA'.~
CA 2

,
XP2

,
CX2

,and _ +_ = 1 .

42. (i) IfPhe afixedpoint through which a variable real line PO is drawn and CB
be the parallel semi-diameter ofan ellipse or hyperbola, and its conjugate semi-diameter

PO 2 OC2

C'A meets the line OP in 0, then -=5^ + —^ is constant.
, BC2 AC2

Describe through P a similar and similarly situated conic and let CA and CB
CA CB

meet this conic in A
t
and Bv Then -sj-j- =-=r5-= \ (a constant).

» C4j CxJx
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Hence
PO2 PC2

BC2 + CA 2
~~

1 (PO2 0G2
\ 1 , . , r/111

(ii) If P be a fixed point through which a variable real line PO is drawn to meet
an ellipse or hyperbola in imaginary points Q, q, and if CB be the semi-diameter
parallel to the line and its conjugate diameter
meet the line in and the polar ofP meet the

line in P', then

PQ.pq po.pp'
pjx— =—TV™— = a constant.

The points P, P' are a pair of conjugate

points of the involution of which Q and Q' are

the double points (imaginary) and is the

centre. Hence PQ . Pq equals PO . PP'.

Also

PO.PP' P02 -OP.OP'
CB 2 CB 2

P02+OA.OA,0b
2

CA*

PO2

CB 2

C02-OA 2

(Art. 38)

PO2 CO2

CB2 + CA 2
-1

CB 2 ' CA2

= a constant (by (i)).

From this result it follows that

:

(a) Carnots theorem holds, when the conic meets one or more sides of the triangle

in imaginary points.

(b) Newton's theorem (Art. [104 a]) holds when the points of intersection of the

chords with the conic are imaginary, also the deduction (i) holds in this case. Hence

the imaginary tangents from any real point to a conic are in the ratio of the parallel

semi-diameters.

These results follow from the extension of Carnot's theorem contained in (a) in

the same way that the corresponding results follow from Carnot's theorem.

(e) If a system of conies be described through four points, a conic of the system

which meets a straight line in imaginary points determines on the line a pair of con-

jugate points of the involution determined on the line by the conies of the system which

meet it in real points.

This follows from (6) by the method of Art. [101 (6)].

(d) If three conies intersect in the same four points, the ratio of two tangents from

a variable point on one conic to the two other conies is ,in a constant ratio to the ratio

of the diameters of the two latter conies, which are parallel to the tangents.

Consider any two points P and P' on the conic from which the tangents are

drawn. Let PP' meet the other conies in Q, q and It, R'. Then PP', Qq, RR' are

pairs of conjugate points of an involution.

, PQ.pq _P'Q.P'q
Therefore

PR. PR' P'R.P'W
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Let d and I be the semi-diameters of the conies through Q, Q' and if, B' which

are parallel to PP'

PQ.PQ P'Q.P'Q'

d2 d2

Then _ _ _, = p,„ plR ,
=& constant for different positions of P.

P P
Let tx and t2 be tangents from P to the two conies and d\ and d2 the semi-

diameters of these conies parallel to these tangents.

PQ.pq tj_

Then PR PR'
=
Ti =a' cons*an^ f°r different positions of P.

d?I
2

h t?
2—

. ~f=a constant for different positions of P on the conic.

43. The corresponding theorems for the parabola are as follows :

(i) IfP be a fixed point through which a variable real line PO is drawn, and the

diameter of a parabola at the point A,

at which the tangent is parallel to OP,
meet PO at 0, and S be the focus of the

, , ., P02+4SA.0A .

parabola, then =-, is con-
&A

Draw an equal parabola through

the point P, having its axis in the

same straight line as the given para-

bola. Let S' be the focus of this

parabola and A' the point where OA
meets this parabola.

Then

P0*+4SA . OA
SA

^ P02 +4S'A'.(A'A-A'Q)

SA

_ P02 -4S'A'. A'0+4:S'A'. A'

A

SA

But by Art. [137] (1), PO^-iS'A . A'O is zero.

_, „ P02+4SA.OA .,,,,.,.
Therefore =-j = 4A'A, which is constant.

(ii) If P be a fixed point through which a variable line PO is drawn to meet a
parabola in imaginary points Q, Of, and ifA be the point of contact of the parallel

tangent, S the focus, and the diameter through A meets the line PO in and the polar

of P meets it in P', then

PQ.Pq PO.PP'
SA SA

= a constant.



The Conic 61

The points P and P' are a pair of conjugate points of the involution of which
Q and q are the double points (imaginary) and is the centre. Hence PQ.PQ!
equals PO . PP'.

But
PO.PP' PQZ-QP.QP' PQz+ lSA.AO
SA iSA SA

= a constant by (i).

(Art. [137])

Hence it follows :

_

(o) That Carnot's theorem holds for a parabola when one or more sides of the
triangle meet the parabola in imaginary points.

_
(6) Newton's theorem (Art. [104(a)]) holds for the parabola when the points of

intersection of the chords with the parabola are imaginary. Hence also the tangents,
real or imaginary, from any real point to a parabola are in the ratio of the square
roots of the distances of their points of contact from the focus.

44. If by means of common tangents the self-conjugate triangle of two conies
can be constructed, Art. 42 (ii) renders

the construction of chords of intersection

of the conies possible.

Let A be a vertex of the common
self-conjugate triangle and ABB' a com-
mon chord of the conies which passes

through A. Let C and C be the centres

of the conies and let AC, AC and CC
meet the conies in D, If, K and K'. Let

d and d' be the semi-diameters of the

conies parallel to ABB'.

Then

AB.AB' AC2- CD* AC2
,

and

AB.AB'
d'2

CD" CD2

AC'2-CD'2 AC'2

cm
AC2

d'2 CD2
'

cm -1,

Similarly

d2 AC'2

cm -1

OB. OB' OC2-CK2

d 2 CK 2

PC 2

CK2
'

and
OB. OB' OC'2-CK'2

d'2

AC2

d'2 CD2

CK'2

-1

OC2

-1 d2 AC2

cm -1
CK'2

This relation, combined with the fact that C0+ 0C'=CC, enables the values of

CO and CO to be found.
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45. Given two straight lines

a and b as the double rays real

or imaginary of a real involution,

to determine the two other pairs of

lines «!, bi and a2 , &2 connecting their

points of intersection with a conic.

Given two points A and B as the

double points real or imaginary

of a real involution, to determine

the two other pairs of points A l,B1

and J. 2 , B2 in which the fangents

from these points to a conic intersect.

Let a and b meet the conic in

K, L, M, N. Let EFG be the

diagonal points triangle of this

quadrangle and let e, f g be its

sides.

Draw HH' a tangent at any

point H on the conic ; every point

on HH' is a conjugate of H with

respect to the conic.

Let the tangents be k, I, m, n.

Let efg be the diagonal triangle

of this quadrilateral and let E, F, G
be its vertices.

Draw h any tangent to the

conic. Every line through its point

of contact is a conjugate of h with

respect to the conic.
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Let the conjugate of EH with

respect to a and b meet HH' in

H'. Then H' is the conjugate of

H with respect to another conic

through K, L, M, M, viz. the lines

a, b. Therefore H and H ' are con-

jugates with respect to every conic

through K, L, M, N, and therefore

with respect to the lines alt bx and

a2 , b2 .

Hence the following is the

construction

:

The line GF (e) is determined

as the polar of E. EG and EF are

determined as the common conju-

gates of the given involution and

of that determined by the conic

at.E.

The lines a2 and b2 are deter-

mined as lines through G harmonic

conjugates of f and e and also of

the lines joining H and H' to G.

Similarly c^ and b± are deter-

mined.

Let the conjugate of he with

respect to A and B be joined to the

point of contact of h by ti. Then

h' is the conjugate of h with respect

to another conic touching k, I, m, n,

viz. the points A, B. Therefore h

and h' are conjugates with respect

to any conic touching k, I, m, n,

and therefore with respect to i^
jBj and A 2 , J52 .

Hence the following is the

construction

:

The point gf(E) is determined

as the pole of e. eg and fe are

determined as the common conju-

gates of the given involution and

of that determined by the conic

on e.

The points A^ and B2 are deter-

mined as points on g harmonic

conjugates ofF and E and of the

points where h and h' meet g.

Similarly A 1 and Bx are deter-

mined.

Particular case

:

If A and B (on the right-hand side) are the circular points at

infinity, the construction for A lt Bx and A 2 , B^ is as follows :

E, the pole of the line e (AB) now the line at infinity, becomes the

centre of the conic.

f and g, by the harmonic property of the quadrilateral, are harmonic

conjugates of the lines joining A and B to E and are, therefore, at

right angles. / and g (since efg is self-conjugate) are conjugate

lines with respect to the conic. They are therefore a pair of con-

jugate diameters of the conic which are at right angles, i.e. the axes

of the conic.
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A 1 and Bx are harmonic conjugates of E and the point where /
meets the line at infinity. They are therefore at equal distances on an

axis of the conic from the centre.

h and -h! are conjugate lines of an involution whose double elements

are obtained by joining their point of intersection to A apd B, the

circular points at infinity. Therefore h and h' are at right angles and

h' is the normal at the point where h touches the conic. Hence A 1 and

Bi are harmonic conjugates of the points where any tangent and normal

meet the axis of the conic. They are, therefore, according to the usual

definition, a pair of foci of the conic.

Hence the following definition of the foci of a conic is arrived at.

The foci of a conic are the four points real or imaginary in which

the tangentsfrom the circular points at infinity intersect.

A directrix is the polar of the corresponding focus. Hence a directrix

is the chord of contact of a pair of tangents from the circular points at

infinity to the conic.

Conjugate lines through a focus are at right angles. The lines joining

a focus to the circular points at infinity are tangents to the curve and

they are therefore the double elements of the involution on the line at

infinity, determined by pairs of conjugate lines through the focus. But

this must be an involution made up of pairs of lines at right angles,

because its double elements pass through the circular points at infinity.

Therefore the conjugate lines through a focus must be at right angles.

46. The foci may also be constructed by means of a Poncelet

figure.

(a) Let the curve be an ellipse. Form the Poncelet figure for the

major and minor axes looking upon lines parallel to the minor axis as

measured in imaginary units. The imaginary branch of the curve is a

hyperbola touching the ellipse at A and B, the ends of the major axis.

The tangents to these branches from the circular points at infinity are

lines inclined at angles of 45° to the axis AB, such lines replacing in

the graph those which are inclined at an angle tan-1 1 to the axis of x.

From symmetry, they must form a square with two vertices, F and F',

on the axis AB and two, Fx and F^, on the axis BE. Looking
upon the hyperbola as real, F, F', F-^ and F^ lie on the director circle

so that the distances GF, GF', CFX and CFJ are each equal to the

square root of the difference of the squares of the semi-axes of the

hyperbola. As GF and GF' are real the points F and F' are real. As
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CFy and CF-[ are expressed in imaginary units, F^ and F-! are imaginary
points. FFiF'Fi is a semi-real square of the second kind (Art. 27).

\\\\\\s ^sX

S XN.\\\\\\
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Let GFbe the line at infinity. Then 2? is the centre of the conic and A lE=EB1

and B2E=EA2 . EG and EF being conjugate lines through E are a pair of conjugate

diameters.

Let A and B be the circular points at infinity. Then EG and EF, which are

harmonic conjugates of EA and EB, are at right angles. Hence, since a
1
and a2

are

parallel, as are \ and b2 , A xAJixBz is a semi-real square of the second kind (Art. 27),

and it is seen that the foci are two real points A Y and Bx and a pair of conjugate

imaginary points A 2 and B2 , such that EA t
= iEA 2 .

48. Intersections of two conies.

(1) Two conies cannot intersect in more thanfour points.

If possible let them intersect in A, B, C, D, P. Then the pencil (P . ABCD)
must have the same anharmonic ratio for both conies. Therefore every point on

both conies subtends a pencil of the same anharmonic ratio at A, B, C, D. There-

fore the conies coincide.

(2) Every two conies with real branches have two real chords of intersection which

may be coincident. *

In Art. [125] it was shown that in the case of every pair of conies there are two

real lines (which may be coincident) on which the conies determine the same invo-

lution. The double points of these involutions are the four points of intersection of

the conies. Therefore, excluding the special case when the chords are coincident,

there are three 9ases for consideration :

(i) When the conies intersect in four real points,

(ii) When the conies intersect in two real and a pair of conjugate imaginary

points,

(iii) When the conies intersect in two pairs of conjugate imaginary points.

(i) In this case, the common inscribed quadrangle is real and its diagonal points

triangle is a real common self-conjugate triangle of the two conies.

(ii) In this case, two of the points of intersection are real and two a"re conjugate

imaginary points. They form a semi-real quadrangle of the second kind. One
vertex and the opposite side of the common self-conjugate triangle are real. The
other vertices are a pair of conjugate imaginary points and the other sides a pair of

conjugate imaginary lines.

(iii) In this case, the vertices of the quadrangle are two pairs of conjugate

imaginary points. They form a semi-real quadrangle of the first kind. The diagonal

points triangle of this quadrangle is real and is a common self-conjugate triangle of

the two conies.

49. (1) To construct graphically the imaginary points of intersection of two

conies with real branches.

(a) Let the conies intersect in a pair of real points. Then by Art. [125] the

real chord joining their pair of imaginary points of intersection can be constructed.

Let this chord be a. Let a' and a" be the diameters of the conies parallel to a.

Construct the diameters b and c of the conies which are conjugate respectively to

a' and a" (see figure, Art. 99).

For the conjugate diameters a' and b construct the graph of the first conic in

which imaginary distances are measured parallel to a'.



The Conic 67

Similarly for the conjugate diameters a" and c construct the graph of the second
conic in which imaginary distances are measured parallel to a".

These two graphs intersect in the required points.

Let be the mean point of the two conjugate imaginary points of intersection
L and M. Then the imaginary coordinates of these points are measured from
along a. Since this is the case the diameters b and c must intersect on a at
the point 0.

(b) Let the conies intersect in two pairs of conjugate imaginary points. Then
by Art. [125] a pair of common real chords of the conies can be constructed. The
diameters of the two conies conjugate to the diameters parallel to these chords will

intersect in pairs on the chords in question and the two pairs of graphs correspond-
ing to these two pairs of conjugate diameters will intersect in the required points.

In the two graphs imaginary lengths must be measured parallel to the two common
chords.

(2) To construct the points of intersection of a conic, having a real branch, with
an imaginary straight line.

Denote the conic by S and the imaginary straight line by I. Let V be its

conjugate imaginary line. Then I and V are the double rays of a real overlapping

involution pencil. They will intersect the conic in two pairs of conjugate imaginary
points which form a semi-real quadrangle. The connectors of the pairs of conjugate

imaginary points are two real straight lines. These may be constructed by means
of Art. 45.

Construct the diameter of the conic parallel to either of these lines and its

conjugate diameter. The Poncelet figure for the conic may be constructed for these

diameters.

Construct the line parallel to this same line through the point of intersection of

the conjugate imaginary lines, and its conjugate in the involution which determines

the pair of conjugate imaginary lines. The Poncelet figure of the pair of imaginary

lines, for these lines, may be constructed (Arts. 76 and 133). The intersections of

the two figures in question give two of the four points of intersection of the conic

and the pair of imaginary straight lines. The other two points may be similarly

constructed.

50. Prom the preceding pages it will be seen that the effect of giving an inter-

pretation to the imaginary is to do away with restrictions, which are imposed in

ordinary geometry. One of these is that any two sides of a triangle must be greater

than the third. A triangle may, taking the imaginary into account, have one side

greater than the sum of the other two. Such a triangle may be constructed as

follows.

Let a and b be the two sides the sum of which is less than the third side c.

Let A and B be the ends of c. With centre A and radius 6 describe a circle, and

with centre B and radius a describe another circle. Let I be the radical axis of these

circles. The circles intersect in two points on I which are given as the points of

intersection of their hyperbolic branches described with axes parallel to AB and I.

Either of these points is a vertex of the required triangle. The distances of these

points from the point of intersection of AB and I are purely imaginary quantities.

5—2
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EXAMPLES

(1) If two conies have four imaginary points of intersection, show that they

have a real common self-conjugate triangle and one real pair of common chords.

(2) If A, A' be two paired elements of an elliptic involution, there is one and

only one other pair which divide 'AA' harmonically. Apply this to determine the

imaginary line joining two given coplanar imaginary points.

(3) Two hyperbolae have the same asymptotes : prove that they cannot intersect

(4) Show that the four directrices of a conic are chords of intersection of the

conic and its director circle.

(5) One side of a triangle is a real line, the other two meet in a real point, and

each passes through one of the circular points at infinity ; required the orthocentre.

(6) Three given conies touch the same pair of straight lines : construct the

conic which touches these lines and is such that the points of contact of any

common tangent to this conic and one of the given conies are conjugate points

with respect to the straight lines.

Examine the case when the straight lines pass through the critical points.

(7) Prove that the construction of Art. 37 holds for the imaginary points o

intersection of two similar and similarly situated ellipses.

Project on a parallel plane from a real point.

(8) If a pair of conjugate imaginary lines are tangents to a real conic, their

points of contact are conjugate imaginary points.

(9) Prove the following construction for the graphs of the imaginary points of

intersection of a straight line I (real) with a conic

:

Let M be the pole of,/. Take M' the inverse point of M with respect to the

director circle, and let I meet MM' at 0. Then the circle through M, M', whose

centre is on the perpendicular to I through 0, determines the required points. (See

Gastrin's theorem, Art. [138].) Every circle through M, M' determines a pair of

conjugate points on I.

(10) In example (9) show that the circle whose centre is on the perpendicular

to I at and which cuts orthogonally the circle described on PP' as diameter, deter-

mines the points of intersection of the conic with I.

In a real plane Perspective.

[In the following the pair of conjugate imaginary points which correspond to

the circular points at infinity are termed the vanishing circules.']

(11) Prove that if the centre of perspective S be the centre of a circle, S is the

focus of the corresponding conic and the vanishing line its directrix.

(12) Prove that a system of rectangular hyperbolae have for their plane perspec-

tives a system of conies which determine on the vanishing line an involution of

which the vanishing circules are the double points.
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(13) Prove that the plane perspectives of a system of concentric circles form a

system of conies which have double contact at the vanishing circules.

(14) Deduce by (13) for a system,of conies having double contact at conjugate

imaginary points the properties which are proved in Arts. [130pand [131] for

conies having dbuble contact at real points.

(15) Prove that a system of coaxal circles and a system of confocal conies may
be looked upon as the correlatives of each other.

(16) From (15) deduce the properties of confocal conies set forth in Art. [140]

from those of coaxal circles.

(17) Prove that the plane perspectives of a system of similar conies is a system

of eonics, which cut the vanishing line in constant anharmonic conjugates of the

vanishing circules.



CHAPTEK III

ANGLES BETWEEN IMAGINARY STRAIGHT LINES. MEASUREMENT
OF IMAGINARY ANGLES AND OF LENGTHS ON IMAGINARY

STRAIGHT LINES

51. Imaginary lines and imaginary angles.

On reference to Art. 1 it will be seen that a real line contains

:

(1) An infinite number of real points determined by their real

distances from some given base point.

(2) An infinite number of purely imaginary points determined by

their purely imaginary distances from the base point.

(3) An infinite number of infinite systems of imaginary points,

whose determining distances with reference to the base point are

complex quantities. Each infinite system may be obtained by measuring

purely imaginary lengths from some real point of (1) or by measuring

real lengths from some purely imaginary point of (2).

The base point may be either real or imaginary. Any point, real or

imaginary, on the line may be taken as this point. Points, real, purely

imaginary or complex, are such with reference to the base point. If a

different point, real or imaginary, be taken as base point the nature of

certain of the points considered will be different. In itself however the

base point is neither real nor imaginary.

The point at infinity on the line is of the same nature as the base

point. It can be regarded as either real or imaginary and it belongs to

the real and to the imaginary system of points. The determining

distance of the base point is and that of the point at infinity on the

line jr. These quantities are of the same nature. If it is conceivable

to divide an infinite length into finite portions, then the length from

the base point to infinity may be regarded as divided into an infinite

number of real units of length and also into an infinite number of purely

imaginary units of length.

Consider any pair of real lines s and s', which intersect in a real

point 8. Rotate the line s' round S till s and s' coincide, i.e., through

an angle s's. In this way the two straight lines are made to coincide,

as do also the systems of points, real and imaginary, on them.



Imaginary Angles 7

J

Consider two imaginary points which do not lie on the same real

straight line. By Axiom I. they have definite positions. Hence the line

joining them has a definite position (see Art. 11) and the points, since

they have definite positions, are at some definite distance apart. This

distance generally must be a function of the real and imaginary quan-

tities, by which the positions of the points are determined, but at present

no attempt is made to define or measure this distance. It follows how-

ever that there is a measure of this distance. Hence, as along a real

line, distances real and imaginary can be measured along an imaginary

line. A base point can be taken, which may be the real point on the

line, and from it real and purely imaginary lengths can be measured, and

from the points so determined purely imaginary and real lengths may in

their turn be measured. Therefore the nature of the systems of points on

an imaginary line is the same as on a real line. The difference between a

real and an imaginary line does not lie in the nature of the points on-the

lines in regard to themselves nor in the lines themselves, but in respect to

the relation of the lines to other lines and to points which are not situated

on the lines. In fact all lines real or imaginaryhavethesame characteristics.

Consider two imaginary straight lines s and s' in the same plane.

They intersect in a point A, which is generally imaginary but may be

the real point on both lines. Consider A as the base point of systems

of points on the lines s and s. These lines s and s'have by Art. 11

definite positions.

It is now assumed that by a rotation of s round the point A some

point of s' (real with respect to A) can be brought into coincidence with

some point on s (real with respect to A). If this be done, the straight

lines s and s in the new position of s' must coincide, for (Art. 11) no

two different straight lines real or imaginary can join the same pair of

points. The measure of the amount of rotation necessary to bring the

lines s and s' into coincidence is termed the angle between s and s' in their

original position. The measure of this, whatever system ofmeasurement is

used, must as a general rule depend on imaginary lengths and being a

function of such lengths is termed an imaginary angle. The assumption

made in the preceding may be embodied in a second axiom as follows :.

Axiom II. Hither of two given straight lines, real or imaginary,

may be superposed on the other by a motion of rotation through a definite

angle about their point of intersection*.

* Hereafter it will be seen that there is an apparent exception to the principle laid

down in this axiom, see Art. 78.
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The rotation may be in a positive or a negative direction. After

the line s' has been brought into coincidence with the line s, it may be

further rotated round A so as to come into coincidence with a third

line s", which passes through A. Hence if ss' denote the angle between

the lines s and s', it follows that

7s" = s's + ss".

Hence angles, real or imaginary, at a
1

point may be measured from a

base line through the point, in the same way that distances, real or

imaginary, can be measured along a straight line from a base point on

the line.

Note. (1) It does not follow that, if A is a real point and * and s' are imaginary

lines, the same rotation round A which brings s' into coincidence with s will bring the

conjugate imaginary line of s* into coincidence with the conjugate imaginary line of s.

The angle s's will usually be an imaginary angle and its measure will involve "%.''

To bring the conjugate imaginary line of *' into coincidence with the conjugate

imaginary line of s the angle of rotation must be measured by a quality, which is the

imaginary conjugate of the measure of s's, i.e., the rotation must be through the

conjugate imaginary angle of s's, if such a term may be used. After an imaginary

displacement along a straight line points which had been conjugate imaginary points

cease to be so. This is also the case after a rotation through an imaginary angle.

(2) The coefficients in an analytical equation in x and y perform a double duty

:

(i) They determine the dimensions of the curve and incidentally its nature,

(ii) They determine its position.

All curves, which are of the same nature and have the same dimensions, may be

looked upon as the same curve. Thus all ellipses with semi-major and semi-minor

axes a and b are the same curve, only displaced by a motion of translation, of say

the centre, and a motion of rotation, of say the major axis. Invariants (geometrical)

are of course functions of the quantities which give the dimensions of the curve.

In the equation of a real straight line the coefficients are entirely employed to

determine position. All straight lines are therefore the same straight line displaced

by a motion of translation of some point on the line and a motion of rotation round

some point.

That this is the case with imaginary as well as with real straight lines is the

assumption of Axiom II.

, 52. Without at present attempting to define the measure of an

imaginary angle there are certain consequences of the preceding which

may be noticed.

(1) The angle between two imaginary lines depends on lengths

some of which as a general rule are real and some imaginary. There-

fore in whatever way the measure of this angle is expressed it must be



Imaginary Angles 73
¥

of the form ufcti, where a is the part of the angle which can be con-

structed as a real angle and a* the part which depends on the imaginary.

It is clear that no imaginary angle can equal a real angle. The angle a,-

must not however be confused with the angle i . a.

(2) If the angle which an imaginary line makes with a real line

be a + o; then the angle which its conjugate imaginary line makes with

the same real straight line is a — a{ .

(3) The internal and external bisectors of the angle between a pair

of conjugate imaginary lines are real. (See also Art. 66.)

For if the lines make angles a + cti and a — a, with any real line

through their point of intersection, their bisectors make angles

a + «f + a— «j , a + a, + a — Oi + ir___ and
i

with the same straight line.

But these angles are a and a + „ which are real.

Hence it follows that if the angle between a real line and an imaginary

line, which meets it in a real point, be expressed in the form a + a;, then

a is a measure of the real angle between the real line and one of the

bisectors of the angle between the imaginary line and its conjugate ima-

ginary line. (See Art. 66.)

(4) The sum of the angles of an imaginary triangle is ir.

(5) The following among other elementary theorems given in Hall

and Stevens' Geometry hold when the lines mentioned in the enuncia-

tions are imaginary, viz., 1, 2, 3, 4, 6, 17 and 18.

Among these are the following

:

(a) The vertical and opposite angles between lines, real or ima-

ginary, are equal.
,

(6) The sum of the angles at any point on the same side of a line,

real or imaginary, is two right angles.

(c) The external angle of any triangle equals the sum of the internal

and opposite angles.

EXAMPLES

(1) Prove that the liney (5+ ib')-sc (a+ib') =0 must be turned about the origin

through an angle 6, where cot #= "?,_, ,
- i ", , , to change it into the real line

yb-aos=&.
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(2) Prove that the bisectors of the angle between the pair of conjugate imaginary

lines y
2+mV= are the pair of real lines xy=0.

This follows from the fact that the bisectors of the angles between the lines

ax2+2Lvy+ by2=0 are given by the equation h (#
2 - y

2
)= (a -b) xy.

53. Parallel straight lines.

Consider a system of points, real and imaginary, on a real line v' in a

plane a (cf. Art. [20], etc.). This line may be projected from a real

centre S into the line at infinity in a plane a. Through each of the

real points on v' pass an infinite number of real and an infinite number

of imaginary straight lines. To the real straight lines correspond in o-

a system of real parallel straight lines passing through the same point

at infinity. The imaginary straight lines will also pass through this

point at infinity and, in view of the fact that they do not intersect the

system of real lines in any points at a finite distance, they may be

regarded as forming a system of lines parallel to themselves and to the

real system.

Through each imaginary point on v' an infinite number of imaginary

straight lines pass. These correspond to a system of imaginary straight

lines in cr, which all pass through the same imaginary point at infinity.

Since these straight lines do not intersect in points at a finite distance

they too may be termed a system of parallel imaginary straight lines.

Such a system of parallel imaginary lines intersect at an imaginary point

at infinity and the one real line of the system is the line at infinity.

The angle between a pair of straight lines, real or imaginary, which

meet at infinity must be infinitely small. Hence, since the sum of the

angles of all triangles is equal to 77-, parallel straight lines, whether real or

imaginary, make equal angles with every straight line, real or imaginary,

in their plane.

The following among other elementary theorems in Hall and Stevens'

Geometry hold, when the lines mentioned in the enunciations are

imaginary, viz., 13, 14, 15, 20 and 21. .

Consider a system of parallel lines, real and imaginary, which pass

through a real point at infinity. (Figure, Art. 55.)

Let a real line RR' of the system meet two real lines OL and OM
in R and R', OL being perpendicular to the system, and let an imaginary

line of the system meet the same lines in imaginary points Q and Q'.

00' OR'
Then, by Art. 10, regarding 8 as being at infinity -^L = -~td = cos @>
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where 8 is the real angle between OL and OM. Hence the ratio

is real.

oq

54. Perpendicular lines.

(1) Through every imaginary point a straight line can be drawn

perpendicular to a real line.

Take any imaginary line through the imaginary point and take the

real point on this line. Through it draw a perpendicular to the real

line. This line is real. Join the point at infinity on it to the given

imaginary point. This is the required line.

(2) Through every real point a straight line can be drawn perpen-

dicular to a given imaginary line.

Join the given point to the point at infinity on the imaginary line.

Let this line be I. Find the line a the harmonic conjugate of I with

respect to the lines joining the given point to the circular points at

infinity. Then a is the required line. (See Art. 22.)

(3) Through every imaginary point a straight line can be drawn

perpendicular to a given imaginary line.

Draw any imaginary line through the given point. Take the real

point on this line. Draw by (2) a perpendicular through it to the

imaginary line. Take the point at infinity on this line—which will

usually be imaginary—and join this point to the given imaginary point.

This is the required line.

55. Projection of an imaginary length measured along a real

line upon another real line.

Let P and Q be any two

imaginary points upon a real

straight line OPQ and let any

other real line OL make an angle

6 with OPQ.

Through P and Q draw any

two imaginary lines perpendi-

cular to OL to meet it in P'

and Q'. Then P'Q' is termed

the projection of PQ on OL.

Take R any real point on OPQ and draw RR' perpendicular to OL
to meet OL in the real point R'.
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Then, by Art. 10, %:^ =
^f-

OR = cos 0.
OP OQ PQ OR

Therefore FQ' = PQ. co.s 0.

If A, B be any two real points on a real straight line and P any

imaginary point on the same straight line, the sum of the projections of

AP, PB, BA, on any real line is zero.

If a real line I make an angle with the given line, the sum of the

projections in question is

AP cos + PB cos + BA cos 0.

But since, Art. 3, BA = BP + PA, this expression is zero.

Similarly if A, B, G be any three points on a real line, the sum of

the projections of AB, BO, CA on any other real line is zero.

56. Definition of

(1) the measure upon a real straight line of an imaginary length

along an imaginary line;

(2) the measure of a length along an imaginary straight line

;

(3) the sine, cosine and tangent of the angle between a real and an

imaginary straight line.

y o/

W
Let P and Q be any pair of imaginary pointsj the real lines through

which, viz., OP and OQ, contain an angle m.

Let any real straight line SBA meet PQ, OP, and OQ in S, A, and

B respectively. Draw straight lines through P, Q, and perpendicular

to 8BA to meet it in P', Q', 0'. Of these P' and Q' are imaginary.

Let 0! and <£2 be the angles that PO and QO make with SBA and let

be the angle PSP'. The angle is imaginary.

Then OQ cos
<f>s
- OP cos &= O'Q' -O'P' = P'Q' and is defined as

the measure of PQ on SBA.
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Let P"Q" be the measure of PQ on a line, perpendicular to SBA,
then

OQ sin ft- OP sin& = P"Q".
Therefore

P'Q'2 + P"Q"* = (OQ cos ft - OP cos ft)
2 + (OQ sin ft

- OP sin ft)
2

= OP2 + OQ1 - 2 . OP . OQ (cos ft cos ft + sin
ft.

sin ft)

= 0P*+0Q*-2. OP.OQ cos w.

This expression, which is independent of the position of SBA, is

denned as the square of the measure of PQ

:

cos 8 is defined as the ratio of the measure of PQ on SBA to the

measure of PQ.

sin 6 is defined as the ratio of the measure of PQ on a line perpen-

dicular to SBA to the measure of PQ.

tan 8 is defined as the ratio of sin 6 to cos 8 provided always that the

measure of PQ is not zero.

Hence* cosfl= ,

OQ cos ft - OP cos ft

VOP2 + OQ2 - 2 .OP.OQ cos <o

OQ sin ft — OP sin ft
sin# =

tan# =

V0P2 + OQ2 - 2 .OP.OQ cos to

'

OQ sin $2
— OP sin ft

OQ cos ft
— OP cos ft

'

It follows at once from the definition that

sin2 6 + cos2 = 1.

57. To prove that the tangent of an angle between a real line and

an imaginary line has the same value whatever imaginary points Pyind

Q (Art. 56) are chosen to determine its value.

Let the imaginary line be SPQ and the real line SL, and let the

angle between them be 0. Let T be the real point on SPQ. Draw

through T a parallel TBA to SI^. Then the angle PTA equals the

angle 8 and it is obvious from the definition that tan 8 as obtained

from the angle QTA is the same as that obtained from the angle QSL.

Let the real lines through P and Q meet TA and a line perpendicular

to TA through T in A and A' and in B and B'. Let these lines inter-

sect at 0. Draw the imaginary lines PP', PP", QQ', QQ" through P and

Q perpendicular to TA and TA'. Let the angles PAT and QBT be ft

* There is an ambiguity in the sign of the denominator of these expressions, which is

considered hereafter. v
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PP'
and tf)2 . If ft when determined by P and T, be ft then tan ft is „„p .

If ft when determined by Q and T, be ft then tan ft is

Therefore tan ft = if,*
1 * and tan ft =^^ .PA cos <^ Qif cos $2

Q"G"

P' Q'

Therefore
tan ft = sin & cos & PA QF
tan ft sin #2 cos ^ ' PA' ' QB

OB OA' PA OB
OA'OB'-PA'- QB

_ {BO BQ\ (AV A'P\

~\B'0
:

B'q)\AO
: APJ

= (BB'OQ) (A'AOP)

PP' 00' 00' — PP
Therefore tan ft = tan ft = -p-p =-^ =

Q
l,Q_ p,>p = the tangent

of the angle determined by P and Q. Since, if P is fixed, Q may be

any point on the line, the result follows.

Hence also sin 6 and cos 9 are independent of the positions of P and

Q on the given line.

It follows from the definition (Art. 56) that

(1) If either of the lines SPQ or TBA is moved parallel to itself

the values of sin 9 and cos 9 are not altered. (See Art. 53.)
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(2) If the usual convention as to the sigh of a real angle is applied

to imaginary angles

sin (tt — 6) = sin 8, cos (ir — 8) = — cos 0.

(3) If 8 and 0' are the angles which an imaginary line OG makes

with a real line AOB then sin 8 = sin 8'. (See Art. 53.)

(4) If0 = O, sin0 = Oandcos0 = l.

If = ^,sin0 = l andcos0 = O.

Also sin (8 + 2tt) = sin 8 and cos (8 + 2tt) = cos 8.

(5) sin f 8 + ^ j
= cos 8 and cos f 8 + ^ J

= — sin 8.

58. TAe sum of the measures of the sides of any plane figure on a

real line is zero.

Consider any triangle ABG. Let the real lines through A, B, G
form a real triangle A'B'C. Let A", B", C" be the projections of A, B,

G on any real line s. It is necessary to prove that

A"G"+G"B"+B"A" = 0.

Let fa, fa, fa be the angles, real, which the sides of A'B'G' make with s.

<A)
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Therefore A"C" + G"B" + B'A"
= cos& (G'A + AB') + cos tj>2 (A'B + BC) + cos cf>3 (FC + 04')

= cos £, (C.B') + cos
<f>,

(A'C) + cos <£3 (B'A')

= the sum of the projections of the sides of a real closed figure

= zero.

It should be noticed that

G'B' sin & + A'C sin </>2 + B'A' sin 0,

is the sum of the projections of the sides of A'B'C on a perpendicular

line and is therefore zero.

59. Triangle with real lines for two of its sides.

(1) Let A and B be two imaginary points on real straight lines

CA and CB, which intersect at G at

an angle co. Let the angles GAB and

GBA be a. and /3. Suppose also that
A!

the measure of AB is not zero and y

that this measure is -denoted by AB.

Taking the measures of the sides

of the triangle on GA,

AB cos a = CA — CB cos w.

Taking the measures of the sides /&> /?/

of the triangle on a line perpen-
'®

dicular to C4,
.42? sin a = CB sin to.

Therefore AB* = CA* + CB' - 2 . C4 . CB cos eo, (1)

also CB2 = CA>+AB*- 2. C4 MB cob o : (2)
•

Similarly CA*= BA* + BC*-2.BA .BCcos (3)

(2) If a, b, c are the measures of the sides opposite respectively to

the angles at A, B, C, then, taking measures on lines perpendicular

to the sides,

a sin co = c sin a and 6 sin a> = c sin y8.

Therefore -— = = -;—- .

sm a sin co sm p
Hence in this case the measures of the sides of a triangle are

proportional to the sines of the opposite angles provided none of the

measures are zero.
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60. Formulas for expressing the sine and cosine of the difference—
when real—of two imaginary angles in terms of their sines and cosines.

Let an imaginary line ABT meet two real lines OA and OB, which

intersect at at an angle co, in A »

and B, and let the angles OAT and

OBT be fa and fa respectively. Then Z^'
fa — fa = » (Art. 52).

Take the measures of AB and

BO on AO.

A0 = AB cos fa + BO cos a>.

Bi , D OA .

But AB = ——r sin co,

sin fa /

j nz> OA . ,and OB = —.—- sin fa

.

,'

sin fa <f

Therefore sin </>2 = sin &> cos <£x + sin fa cos « (1)

Take an imaginary line A'B' at right angles to AB meeting OA
IT

and OB in A' and £'. Then for <£j and <£2 may be substituted X + ^

7T ...
and $2 + -o- Hence in a similar manner

sin ( c/>2 +
g
J = sin co cos f c/h +

^J
+ sin

( fa + -r
j
cos co.

Therefore cos c/>2 = — sin co sin fa + cos c/>x cos co (2)

Multiply (1) by sin fa and (2) by cos fa and add.

Then cos co = cos (fa
— fa) = cos fa cos fa + sin fa sin fa.

Similarly

sin co = sin (fa
— fa) — sin fa cos c^j — sin fa cos c/>2 .

For these results to be true it is necessary that the measures of AB
and A'B' should not be zero.

61. ' Definition of

(1) The measure on an imaginary line of an imaginary length along

an imaginary line and

(2) Of the sine, cosine and tangent of the angle between two imagi-*

nary straight lines.

Construct a similar figure to that in Art. 56 but let the line SBA
be an imaginary line.
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In this case the points B, A, and 0' are imaginary as are the angles

0! and 2 , while is the imaginary angle between two imaginary'

straight lines.

Then as before OQ cos 2
- OP cos t

= O'Q' - O'P = P'Q' is de-

fined as the measure of PQ on SBA.

Let P"Q" be the measure ofPQ on a line perpendicular to SBA. Then

OQ sin 2
- OP sin X

= P"Q".

Therefore

P'Q' 2 + P"Q" 2 = (OQ cos 2
- OP cos 0J 2 + (OQ sin 2 - OP sin 0O 2

= OP2 + OQ2 - 2 . OP . OQ (cos 2 cos fa + sin 2 sin X)

= OP2 + OQ2 - 2 . OP . OQ cos <b (Art. 60).

This expression which is independent of the position of SBA is the

same as that found in Art. 56 which has been defined as the square of

the measure of PQ.

cos is defined as the ratio of the measure of PQ on SBA to the

measure of PQ.

sin is defined as the ratio of the measure of PQ on a line perpen-

dicular to SBA to the measure of PQ.

tan is defined as the ratio of sin to cos provided always that

the measure of PQ is not zero.

n OQ COS 2 — OP COS 0j
Hence cos = Z - •

slOP* + OQ' - 20P . OQ cos io

„ _ OQ sin 2
— OP sin X

~~
\/OP* + OQ 2 - 20P . OQ

=
coT«

'

a_ 0Q sin
<fra
- OP sin 0i—

OQ cos 02 — OP cos 0!

"

It follows at once from the definitions that

sin2 + cos2 0=1.

To prove that tan0, where .0 is the angle between two imaginary

straight lines, is the same whatever pair ofpoints on one of the imaginary

lines is taken to determine tan 0.

This may be proved in the same way as the corresponding theorem

is proved in Art. 57, the angles 0j and 2 being in this case angles

between a real and an imaginary line.

Similarly sin and cos are independent of the positions of P and Q.
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It follows from the definition that

(1) If either of the lines SPQ or TBA is moved parallel to itsel

• the values of sin and cos are not altered. (See Art. 53.)

(2) If the usual conventions as to sign are applied to imaginary

angles

sin {it — 8) = sin 0, cos (ir — 0) = — cos 0.

(3) If and 8' are the angles which an imaginary line OG makes

with an imaginary line AB, then sin 8 = sin &. (See Art. 53.)

(4) If = 0, sin0 = O, cos = 1.

If = ^, sin 0=1, cos = 0,

also sin (0 + 2tt) = sin 0, cos (0 + 2ir) — cos 0.

(5) sin (0 + |"
J
= cos 0, cos (0 + ^)=- sin 0.

The sum of the squares of the measures of PQ on two imaginary

lines at right angles gives the square of the measure of PQ.

Particular case. If'the imaginary points P, Q are on the same real

line, or are real, it is seen that the point lies on this line and that

the measure on an imaginary line of a real or imaginary length PQ,

which lies along a real line, is the length PQ multiplied by the cosine of

the angle between PQ and the imaginary line.

This is the same as saying that

SQcos8-SPcos8
PQ = cos *

But SP and SQ are already defined and so is the angle. Hence, as

is necessary, an identity is arrived at.

62. The sum of the measures of the sides of any closed plane figure,

real or imaginary, on any line is zero.

Consider the figure of Art. 58 but regard the line s as imaginary. In

this case, <plt <£2 , $3 are imaginary angles between real and imaginary

lines.

As in Art. 58 it may be shown that the sum of the projections of

the sides of ABC on s is

cos 0,. CF + cos fa.A'C + cos(j>s ,B'A' (1)

6—2



84 The Imaginary in Geometry

Let S be the real point on s. Through S draw any real straight

line a making an angle (j> with s. Let i/r
1(

i/r
2 > yjrs be the angles, real,

which B'C, G'A', A'B' make with a.

Then
<j>i = ^}fi —

<f>, <£2 =^-
</>> <^3 = Vrs

— <
t>-

Therefore (1) becomes

CB' cos (^ - <£) + A'C cos (ifr2 - </>) + 5'^ cos (i/rs - <£).

But since <£ is the angle between a real and an imaginary line this

equals by Art. 60

cos (j) \C'B' cos i/rj + A'C cos^ + B'A' cos i/rs}

+ sin {CB' sin ^ + ^.'(7 sin i/r2 + 5'^.' sin yjrs }.

But by Art. 58 both the expressions in the brackets are zero and

therefore the whole expression is zero.

63. Relations connecting the measures of the sides of an imaginary

triangle and its angles. ^
' **

Let the measures of the sides of an / X
imaginary triangle whose angles are A,B,C (<y/ X (b)

be a, b, c, none of the latter being zero. / X_
Taking measures of the sides of the triangle /
on lines perpendicular to AB and AC,

L
(a >

-c

and

Therefore

a sin 5 = 6 sin .4,

a sin G= c sin A.

a b c

(1)

sinA sin B sin C

'

Taking the measures of the sides on a, b and c,

a = ccosB + bcos C
b = a cos C+ c cos A
c = a cos B + b cos A

From (1) and (2) it follows that

c2 = a* + ¥-2abcosC)
a? = b*+c*-2bccosA

b*= a? + c*-2ac cos B)

(2)

•(3)
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64. To find the formulae connecting the sines and cosines of the

difference of two imaginary angles with the

sines and cosines of these angles. A
y"

Let two imaginary straight lines OA and y'f
OB make angles fa and fa, as in the figure, ,"' !
with the imaginary line AB. Then the y' /
angle AOB is fa

-
fa = &>.

^,''' /

Take the measures of BO and OA on O'--— Wb- -

AA. Then «/ B

But

-45 = OA cos <£j - 05 cos fa

AB OA OB
sin a> sin $2 sin fa

'

Therefore sin (02 — fa) = sin a> = sin fa cos $! — sin fa cos <£2 .

IT
Increase fa by 5- . Then

cos (</>2 — ^j) = cos fa cos 0! + sin fa sin <^

.

If fa is taken as the internal angle at B, then

co = Tr — (fa + fa) and -45= 0-4 cos fa + OB cos fa.

Therefore

sin <a = sin' (fa + fa) = sin fa cos <£j + sin fa cos <£2

and also cos (fa + fa) = cos fa cos fa — sin <£2 sin fa.

For these formulae to hold it is necessary that the measures of the

lengths from which the angles are derived should not be zero.

As these addition and subtraction formulae hold for imaginary

angles, all the formulae deduced therefrom for real angles also hold

for imaginary angles.

65. To prove the general cases of Menelaus' theorem and of Geva's

theorem.
,

Let the sides of an imaginary triangle ABC meet an imaginary

straight line in P, Q, B as in the figure. Let the angles at P, Q, B be

denoted as in the figure.

Then (Art. 63)

sin /3 _ sin a sin 7 sin ft sin a _ sin 7
~CP~~CQ , ~AQ~lLB' B~B~'BP~'
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Therefore

... GQ AR BP . . .

sin a sin B sin 7 = -r^k . ^„ . 77^5 sin a sin a sin 7,H
' AQ BR GP M

'

Hence, if none of the sines of the angles a, 8, 7 are zero,

GQ AR
AQBR
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Analytical verification of the fact that the sum and difference formulae hold for a
real and an imaginary angle.

Let c, a+ ib, be the coordinates of any
point P. Let OQ= c, NQ= a and NP= ib.

Drop PM perpendicular to ON, and MK
perpendicular to OX. Let QOJY=a and
MOP=p

( , so that NPM=a. If

sin (a + ft)= sin a cos ft + cos a sin ft,

then

y (p;
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66. To find a real straight line such that the angle between it and

a given imaginary straight line has a tangent, which is a purely imaginary

quantity.

P

(A) E (M " "\ F

Let AP be the given imaginary straight line and P the real point

on it. Take any imaginary point A on the line. Let A' be its con-

jugate imaginary point. Then PA' is the conjugate imaginary line of

PA and the line AA' is real.

Join P to the circular points at infinity, CI and D,', to meet AA' in

B and B'. Then B and B' are a pair of conjugate imaginary points.

Since AA', BB', are two pairs of conjugate imaginary paints they

have a common pair of real harmonic conjugates E and F (Art. 8). Join

E and F to P. Then PE, PF are real lines.

Since PE, PF are harmonic conjugates of P£l and PD,' they are at

right angles (Art. 22). Draw any real line 000' parallel to PF, and

therefore perpendicular to PE, to meet PA, PE and PA' in 0, 0, C
respectively. Then 0, C are a pair of conjugate imaginary points.

Also, since (AA'EF) is harmonic, (CO'Ooo ) is also harmonic.

Therefore is the mean point of the pair of conjugate imaginary

points and C, and 00, 00' are purely imaginary lengths (Art. 6).

00
t
Hence the tangent of the angle 0P0, which is -p^r , is the ratio of a

purely imaginary quantity to a real quantity.

It follows from the preceding that two conjugate imaginary lines

PA, PA' have always a pair of real bisectors PE, PF, which are at right

angles (see Art. 52 (3)).

Analytical verification.

Take Pas the origin and let A be a+ib, o+ id, and A', a-ib, c-id.

The equation of PA is x= r-. y.

The coordinates of the point C where a line y^mx+ k meets this line are

(n+ ib)k (c+id)k
(c+id) -m(a + ib) ' (c+id) - tn (a+ib)

'
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Therefore
{(c + id)-m(a+ib)} i

'

This expression does not involve i if

mz 4
... . t., m-l=0.

Now the combined equation of PA, PA' is

{ay- cxf + {yb - xdf

=

0,

and the equation of the bisectors of the included angles is

x2 —yi xy

c* + d*-a!>-b*
=

-lac+ bd) '

'

Therefore the m's of these lines satisfy the relation

as
2+&2 — c2 — c

•«

.(ii)

m2+ - m-l=0. .(iii)
ac+bd

This is the same equation as (i). Hence PC and PC, when CC is* parallel to a

bisector of the angle AOA', have as their measures real or purely imaginary quan-

tities. GOC is obviously perpendicular to the other bisector from the form of (ii).

67. Measurement of imaginary angles and evaluation of their

sines, cosines and tangents.

Let OP be any imaginary straight line and the real point on it.

(p'V

(p")

(P
r

)

x
(pj-

Ch)

N
(a) d~\?0

(Qj-'

Let 0Q be its conjugate imaginary line and OX and 0T the bisectors

(real) of the angles between these lines (Art. 66).

Take N any real point on OX at a real distance a from 0. Through

N draw a real line NP perpendicular to ON to meet OP in some

imaginary point P.
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Then as defined in Art. 56 the ratios

ON NP NP
OP ' OP ' ON '

are respectively the cosine, sine and tangent of the angle XOP. Denote

the angle XOP by 0*.

TV, a 0N a NP
i * a NP

Inen cos 6i = jjp , sin "i = jyp and tan0j = ^-^.

Now P and Q are a pair of conjugate imaginary points and N is

their mean point. Therefore NP is a purely imaginary quantity, i . h.

NP
Let YrTf > which is the ratio of a purely imaginary quantity to a real

quantity, be denoted by i . m.

Then a 1 . i.m a .

cos t>i = . , an Vi = —===. , tan 0i = t. m.
vl - m1 vl - m?

Regard the lines OX, OY as fixed and the lines OP and OQ as being

any pair of conjugate imaginary lines through 0, whose bisectors are

OX and OY.

As the line OP moves up to OX and eventually coincides with it,

the line OQ will do the same. In the position OX the pair of conjugate

imaginary lines coalesce and become the real line OX. Similarly when

the line OP coincides with the line OY it also coincides with its con-

jugate imaginary line and becomes a real line*.

Now there is nothing inherent in a real length a and an imaginary

.

length ih, by which it is possible to tell the relative magnitude of a

compared with ih, but it is possible to tell the relative magnitudes of a

series of purely imaginary quantities ih, 2ih, 5ih and nih.

On the line NP take a series pf lengths (all purely imaginary) with

values from to i . oo , and let these lengths determine a series of points,

P, P', P" , ... on NP. The connectors of these points to are lines of

the system of conjugate imaginary lines of which OX and OY are the

bisectors. As the imaginary line OP takes up the series of positions

OP, OP', OP", OP'", ... the angle U which it makes with OX, will pass

from a real value 0, when it coincides with OX, to a real value „ when

it coincides with OY. The right angle XOY may therefore be divided

into a series of imaginary angles in the same way in which a right angle

* If the line OP is given by the equation y = imx, the positions OX and OY correspond

to the values m= and m=oo for which values of m. the line is real.
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is divided into a series of equal real angles. The values of cos t , sin i}

tan
{ may be evaluated for the imaginary angles into which the right

angle XOY is divided.

If a real line OP is rotated round through real angles from OX to

OY, cos#, where is the angle XOP, passes through all real values

from 1 to 0.

If an imaginary line OP is rotated through imaginary angles—as

previously set out—cos 6>» at OX is 1. It increases as m increases,

remaining real till m = 1, when it reaches the value oo . This value

corresponds to the critical lines through (see Art. 22). It then
becomes i . oo (ignoring sign for the present) and as m increases it

remains imaginary, decreasing till, when m= oo at the position OY, it is

zero.

Hence, as a real line rotates from OX to OY, the cosine of the angle,

which it makes with OX, takes the real values from 1 to and as an
imaginary line rotates from OX to OY the cosine of the angle, which it

makes with OX, takes the real values from 1 to oo and thenthe imaginary

values from i oo to (ignoring sign for the present). Hence with the

extended definition the cosine of an angle can have all values real and

purely imaginary.

Similarly the sine of the real angle made by a real line with OX
passes through the real values from to 1. The value of sin#.

; where

Qi is the angle made by an imaginary line—as previously described

—

with OX, increases through imaginary values from to i oo as m in-

creases from to 1. As m increases from 1 to oo the value of sin t

passes through real values from oo to 1. The cycle of possible real and

purely imaginary values is thus complete.

Similarly for a real line tan passes through the values to oo as

it rotates from OX to OY, and for an imaginary line tan t passes through

the imaginary values from to i . oo .

Hence with the extended definition the sine, cosine and tangent of

an angle can have all real or purely imaginary values.

68. When an angle is written 0; it is so written to bring to mind

the fact that it is obtained by rotating an imaginary line round and

not by rotating a real line round 0. The expression { must not be

confused with the expression i . which is the circular measure of a real

angle multiplied by the unit of imaginary length. To this expression

i . no meaning has—as yet—been attached, and as yet no measure of

an imaginary angle 0i has been defined.
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T -.When the angle 8t takes values from to ~ it is necessary to find

some means of measuring or constructing the different angles. The

angle 4 can be constructed from the fact that its tangent is i-, or

i tan 6, where tan 6 is - . Thus the angle 30°; may be represented by

constructing a real angle of 30° and regarding the side opposite to the

angle as measured in imaginary units. This notation will sometimes be

adopted in the following pages. 6 may in this case be termed the sub-

sidiary angle of it and 9t may be written s0, viz., the angle whose

subsidiary angle is 6.

It should be noticed that while the sines and cosines of imaginary

angles may be real, the tangent of an imaginary angle—as here defined

—is always imaginary, and the tangent of a real angle is real. Hence
in dealing with the tangent it is possible to equate real and imaginary

parts regarding the tangent of an imaginary angle as imaginary.

1 1 k/3
Thus tan 30°j=i -r= , sin 30% =i -75, cos 30%=^,

tan(45°+30%)=—^ =i+^?,

Sin(45° + 30%)=^ +4 = ^±-\

coS (45°+30%) =^-iI =^-\

To find Un-ifl +i^Y

Let taa(o+ft)=J+i^.

Then
tana+tanft = 1 J3
1- tan a tan ft 2 2

'

T , .. tan ftLet #= tana, y=—~,
Equating real and imaginary parts

1
, s/3

V3 1

Solving these, the values #=1, y=> —^ , and x= -
1, y=\/3 are obtained.
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Taking the first solutions

Therefore

Similarly

tana= l therefore a =45°,

tanft=-^ „ 0=30%.

tan(45°+30"i)
=i+i^.

tan (135°+ 60\-)=| + ;>£*.

To find tan" 1 (a +?'&).

In a similar manner it is found that

at+ tf-l V(a2+ 62 -l)2+ 4a2

tan a= 5 ± — ^
—

,2a 2a

and
tanff _ a'+62 - 1 V{q2+ (6+ l)2} {a2+(6- 1)

8
}

i 26 26

It should be noticed, as will be explained hereafter, that s.a+s.fj does not

equal s(a + |3).

69. Relations connecting sines, cosines and tangents of imaginary

angles.

From Art. 67, if tan 6 = -

,

a

sin 0{ =

cos #i =

ih i tan #

Va2 -A2 Vl-tan2 0'

,a 1

Va2 -A2 Vl-tan2 0'

.A
tan di = i- = i tan 0,

a

where # has all values from to

Let tan =

7T

2"

i-e-y

ev + e~y

Then
, T 1 + tan 6^ L

°ST-tanlr

Substituting in the above equation in terms of y

. .ev-e-y ...
sin 6i = i

:—s = i sinh y

cos 0* = g—= cosh y

e/y — g-y
tan0i=i-——i = i tanh y

ey + e y
I

•(1)
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Hence
. . . (, T 1 + tanfl 1/ 1T 1+ tan fly

and

1 + tan fl

1 - tan

cos
. , 1 /. T 1 + tan fly . /. _ 1+ tan fl\

4
,^=l +

,2
(i L°gi3t^fl)

+ H^ LOg
l^tan^J

+

From equations (1) it follows that flf is a function of y. Let fl; =f(y)-

Then sin/(j/) = i sinh y,

'

cosf(y) = cosh «/,

tan/(y) = i tanh y.

Hence sin/(y + z) = i sinh (y + 2)

= i {sinh y cosh z + cosh y sinh z]

= sin/(y) cos/0?) + cosf(y) sin/0).

Similar results hold for cosf(y) and tan/(j/).

Hence, when y is looked upon as the parameter, imaginary angles

may be added according to the usual formulae.

Subsidiary angles.

Let tan 0; = i tanh y and tan <£; = i tanh z,

, , T 1 + tan , , _ 1 + tan rf>

so that y = h Log .,
—

5 and z = A- Log .—-—£

.

* "
6 1 - tan fl

* s
1 - tan 4>

Then sin (0* 4- 0,) = sin fl* cos 0; + cos flj sin ^
= i (sinh y cosh z + cosh y sinh z)

= i sinh (j/ + z)

= sin i|r,-, where y + z = I Log- J
.° 1 — tan yjr

The relation between fl, $ and ijr is consequently given by

. T 1 + tan -^ 1 + tan fl . T 1 + tan d>

* Logr-^=^ + ^=* Logfr^ +^o
gr-^.

rp,
f

1 + tan ijr _ 1 + tan fl 1 + tan
<f>

1 — tan if- 1 — tan fl ' 1 — tan <£'

m, r i
tan # + tan <f>

1 herelore tan -ur = ^ 2—

.

1 + tan fl tan
<f>

i
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This gives the relation connecting the subsidiary angles'. The relation

connecting the subsidiary angles can be obtained in a similar manner
from the addition formulae for the cosine or tangent.

Hence if the sine, cosine or tangent of an imaginary angle is required

it is possible to proceed in either of two ways.

Suppose that tan (30°,- + 60%) is required.

f„\ +„„ /qi\° , ™° \ tan 30°i + tan 60%
(a) tm (80 < + 60 0°

1 _ toTO .
<tonfl0

-
ir

*^ + tVS
,2

,s tan + tan
<fr _ tan 30° + tan 60°

{ ) an r - x + tan ^ tan ^
-

j + tan 30
c
tan 60

o

1 + 1 V3

'

' Therefore tan (30°, + 60%) = i tan f = i —
if 0i + <j>i = fi,

tan + tan rf>

since tan ilr = -—-
^ —, .

1 + tan a tan <p

., , • . sin(0 + <f>)

therefore simi = r
V sin2 (0 + 0) + cos2 (0 - </>)

.
cos (0 - 0)and cos vr = .

r/ =

.

V sin2
(.0 + 0) + cos2 (0 - <£)

The advantage of using the subsidiary angle as the parameter lies

in the fact that (ignoring sign for the present) while it passes through

all real values from to ^ , sin and sin 0j pass together through all

real and purely imaginary values, while cos and cos 6{ and- also tan

and tan 0j do the same. There are however advantages, as will be shown

later (Art. 70), in taking y or rather iy as the measure of the imaginary

angle 0j.

According to the definition of Art. 56, if 0'* be the angle' OPN, then

ON 1 PN am
sin0'i

=
Td

=
jT=^, COB*'4 =-p0=;

7
—

,
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., ON 1
and tan ^ i= iW

=
im"

Hence

sin (d{ + 6'i) = sin 6t cos 6'i + cos 6{ sin 6'
{

im im 1 1 . . it

+ ,-_ ,. - =l=sin-
Vl-m2Vl-m2 Vl-m2 Vl-m2 2

and

cos {6i + 6'i) = cos 0{ cos 0'j — sin 0* sin 0'*

1 im im 1 „ w
: = = cos

;

Vl—

m

2 Vl-m2 Vl -

m

2 Vl —m2 2

i

7T
This confirms the fact that #< 4- 0'j = ^ .

The trigonometrical ratios of a purely imaginary angle may be

obtained from any triangle, with two sides at right v
angles, on which

sides the vertices are at distances, the one purely imaginary and the

other real.

Generally, the sines, cosines, and tangents of a complex angle as

defined in Arts. 56 and 61 are complex quantities. A complex angle

can however be expressed as the sum or difference of a real and a

purely imaginary angle, and therefore its trigonometrical functions can

be expressed as functions of the trigonometrical functions of real and of

purely imaginary angles.

70. Measure of an imaginary angle.

In Arts. 56, 60, 61 and G4 the sine, cosine and tangent of an

imaginary angle were defined and it was shown that the addition and

subtraction formulae, which are true for the sines and cosines of real

angles, also hold for the sines and cosines of such imaginary angles.

No measure of such imaginary angles however was introduced.

This leaves the subject in the same position as that, in which the

trigonometry of real angles might be supposed to be, before a radian

or a degree was defined.

In Art. 67 it was shown that the sine, cosine and tangent of a

purely imaginary angle termed 0i might be constructed by means of

a subsidiary angle 0. Still no way of measuring the imaginary angle

&i was laid down.
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In Art. 69 it was proved that if

ev _ e
-y l + tan 6

tan = — —- or a = A Log ^ -„

,

ey + e-v y * 8 1 - tan 6

., . ,, .ey-e-y e-y-e* . . ,

then sin 6i = i—=— = —<p— = i smh y,

cos 8i =—g— =—2— = C0S y '

, a .ey-e-y e-y-ey ... ftan &i = % = —, r = ^ tanh y.1
ey + e-y i{e~y + ey}

y

Hence, since the trigonometrical functions ofan imaginary angle 8i are

functions of y, it was possible to write them as sin f{y), cos f(y), ta.nf(y).

It was then proved that in this form the y follows the addition and

subtraction formulae which hold for the sines and cosines of real angles.

In this case

. e-y-e+y e-y + ev ,, . e-w-e» .

«n/(y) = ^~2i~ >

cos/^) =—2~ •
tan/^) = i{FM^}

' <!)

Now according to the usual theory, if y is real,

ew_ e-w tfy + e-iy ew- e-iy

8111y=—it- '
cos 2/=-^— • ^2/=-^+^}- -(2)

And if iy be an imaginary angle

e~y-ey . e-y + ev . e-y-ey

by the usual series definitions.

Comparing (1) and (3) it is seen that they are in agreement if

f(y) = iy-

Hence the measure of an imaginary angle may now be defined as

being iy, so that

e-y-e+v . e-y + ev
. e

-
" — e"

sini2/ =___, cosly =^_, tenty =____.

The trigonometrical functions of such an imaginary angle may be

constructed by finding the real subsidiary angle which is given by

ey- e
-y

i + tan
tan o = - ,— --

, where y = * Log ^—-—^

.

ey + e-y'
y 2 6 1 - tan 6

Then

itantf . 1 Q
sin iy = -

.
=

, cos %y = . =
, tan ly = % tan 0.y Vl-tan2

6» " VI- tan2
*
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These trigonometrical functions may be graphically constructed by

means of Art. 67 and the values of the sine, cosine and tangent of an

imaginary angle iy may be obtained by means of the real angle 6.

For the trigonometrical functions of an imaginary angle so denned

the addition and subtraction formulae hold and—as a general rule—the

expression iy may be treated as the product of a real and an imaginary

quantity.

It follows that a complex angle a + i/3 has a period 2tt.

Use of meridional tables to ascertain the subsidiary angle of a

given imaginary angle.

Given an imaginary angle iy the relation to find 6 is

. x 1 + tan 6

The tables of meridional parts give v where

10,800 ,, 10,800 T 1 + tan \ 6-^ = ~^ L°Sl-tan^- .

Hence if y is given in minutes, the number 2y must be looked out in

the tableland the angle 6 corresponding to the value of 2y can be found.

One-half of this angle is the required subsidiary angle.

The values of 6 in the tables are from 0° to 90°. Hence the values

of the subsidiary angles are for values from 0° to 45°.

Summary.
,

These results may be summarised as follows

:

The trigonometrical functions of an imaginary angle { as defined in

Art. 67 are

• />
*m a ! asin Oi = , cos Oi = , tan 0* = irn,

V 1 - m3 V 1 - m2

i + a t 4. 4. a ev-e-y . , l+tan<?
where m = tan 6. Let tan 6 =

fly + g
_, or y = J Log 1 _ teng

The values of y for corresponding values of 6 can be found from the

table of meridional parts.

Then

v =

. a
e-v-ev
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Hence 6t = iy, where tan 6 = or w = A Loo: ^.*
ev + e-y

J 2 s
1 - tan

Therefore

1
sin iy =

Vi- m-
cos %y

where m = •

Vl - m :

, tan ^y = im,

' + e-»'

and m = tan 6, 6 being the real subsidiary angle of 6t or iy. Hence the

values of sin iy, cos iy and tan iy can be graphically obtained. If 6{ be

written s . 0, i.e., the angle whose- subsidiary angle is 6, then s0 is iy,

, , T l+tan# „ . 1T l+tan'0
where y - iLog___ , or rf-.*Log^^

The addition and subtraction theorems have been proved (Art. 69)

to hold for y and they therefore hold for iy.

71. Values of the trigonometrical functions of an imaginary

angle.

The values of the sine, cosine and tangent of iy6 an imaginary angle

have been denned as

a
sin iy9 Vos -A 2

'
costyt= , , taniw9 = i-, where tan# = -,

*Ja?-h? a a

7—2
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If h>a these may be written

. . h . —ia . h

There is an ambiguity of sign in regard to the square root, but it will

be convenient to take the above as the definitions. In order likewise

to complete the cycle of values it is convenient to take a second line

perpendicular to the axis of a; at a distance — a from the origin and to

consider intercepts made by the variable line on this line, as well as on

the line x — a = 0.

The following will then be found to be the values of the sine, cosine

and tangent of the imaginary angle in the different semi-quadrants :

e
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Values of an imaginary angle.

Let ye
' be the general value of £ Log —

—

—. and let ye be its principal value.
1 — E< 1 1 i a

Then since

T l + tan0 _, . , l+tan<?
^°g i—i

„= 2jrai+ log =— t ,& 1-tand o l-tan0'

it is seen that iye'= -nir + iye (1)

To derive the values of sin 6t and cos 8i between — and — from those between

- — and —
- , iye must be increased by n.

Expressing for shortness the fact that iy$ and iy give the same values of the

sine, cosine and tangent of 8 and &', as iyg' =iyg, the following results are arrived at.

. .
, T 1 - tan 8 . T 1 + tan 8

(a) y_ e
= i Log j-^^ = -I Log^-^

.

Therefore iy~e=~ tyo (i)

On reference to the values of the sine, cosine and tangent this is seen to be true.

, x l-cot0 , _ tan 0+1 _ . , T 1+tandW y.+i,-i Log r^^= -i Log
t
-^-_-

1
= ±Logt - $ Logj-^

Therefore We^„= + ^ - »>e •

There is an ambiguity as to the sign to be taken in ± — .

Let the first quadrant be that from --to-, the second that from — to — , the

third that from — to —- and so on. Let m denote the quadrant in which the arm
4 4

of the angle 8 lies. Then if the above result be written in the form

^+}7r = (-l)m+1
f

-iy„* (")

it will be found to be true on reference to the table of values.

Hence it follows that

iy,+„= -(-ir
+1
f-^+i„.

Hence *%+*= -(-l)m + 1 *- + iy
s

which is in agreement with (1). If n- be added or subtracted the results differ by

2jr, hence this result may be stated in the form iy9+lr=ir+iy9

* This result may also be written in the form

2m -

1
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, , , T l + cot0 iT . ,. T l+tand
(c)

yjir_,=i Log
i

___= ± Log H.iLog Trsrtf

, . 77 , T 1+tanfl= ±l
2
+ * Los nt^r

If m be defined as in (6) this formula may be taken in the form

Wj,_,=(-l)" +1 |+W, (
ii;

)

On reference to the table of values this is found to be true.

If 8 be increased by — (iii) becomes iy

_

$
= -(-1)™ + 1 — + iye+ i w -

This, remembering that iy_
e
= — iy

e , is (ii).

,«
, T l+tan(0 + »r) 1T 1 + tantf •

(<*) ^+^i Lo
gl^tan-fcr )

=* Log nta^-
Hence it would seem that iyB+ =iy

B
- This on reference to our table of values

of sine, cosine and tangent is not true. In fact our geometrical restrictions require

us to assume that Log , , ,
„ ~ has its general value and this in fact is y. — iir.8 l-tan(0+-rr) 5 "<>

This result is then in agreement with those already obtained for

72 . Construction of the siiie, cosine and tangent of a purely imaginary

angle by means of the imaginary branch of a circle.

Let OX and Y be a pair of orthogonal lines. Take a circle centre

and radius a. Draw its real branch and also the two imaginary

branches* (1, i) and (i, 1) corresponding to the axes OX and OT.

(1) Through draw any real line OP to make a real angle with

OX. Then if this line meets the real branch in P,

. a PN . . PN „ ON
tan = tttp , sm«= , cos o = .

OJ\ a ' a

(2) Through draw an imaginary line OP' to make an imaginary

angle 0; with OX. Let OP' meet the imaginary branch (1, i) in P'.

Then, since the measure of the distance of every imaginary point on the

curve from is a,

, P'N' . a P'N' , ON'
tan 6i = -qw '

Sln "* = ""

'
cos °i = •

where N' is the foot of the perpendicular from P' on OX.

* These are respectively the branches for which the coordinates are x, iy, and ix, y.
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(3) Through draw an imaginary line OP" to meet the (i, 1)

branch in P". Let this line make an angle 6t with OX. Then as in

the previous case

, . P"N" a P"N" a ON"
tan Vi = -n-^77- » sin 4

=
, cos {

= ,

Civ a a

where N" is the foot of the perpendicular from P" on OX. In this case

P"iV ' is real and ON" is imaginary.
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The values of the sine, cosine and tangent of the purely imaginary

angles obtained by rotating the imaginary line through 2ir round for

the different semi-quadrants are the same values as those in Art. 71,

but they occur in different order. The reason of this is as follows.

In the preceding the intersections of the line iy — mx with the circle

a2

x* + y
2 = a? are sought for and it is found that «* = •= „. Ifm<lJ ° 1 — m2

the values of x are real. This is the case along the branch AB. If m > 1

there is no real value of x. In this case the intersections of the line

with the circle are given by writing the equation of the line in the

form — y = mix. This is a line in the quadrants 2 and 4 and it meets

the circle, where y
2 =——^-,i.e., foifreal valuesofy, where??i>l. Hence3 m2 - 1

"

the line after having met the curve along the branch-if to L meets it

along the branch M to N. Similarly it again meets the curve from E
to F and finally from G to H. If the values obtained are interchanged

in such a way as to take this fact into account they are found to be in

agreement with those' previously given.

If, in accordance with the suggestion thrown out in Art. 126, the iy

axis be taken in the direction OY' and not in the direction OY, the line

— = m meets the circle in consecutive points, which lie from A to K,
x r

to H, F to E, M to N, and from L to A.

73. Analytical verification of the fact that the definition of an imaginary angle

is in agreement with the analytical theory.

If asr2+ 2/wcy+by2= Q be the equation of a pair of straight lines referred to

rectangular axes and 8 be the angle between them,

tan0= —— (1)

Consider the pair of conjugate imaginary lines y — imsc=0 and y+ imx= 0. Their

combined equation is y
i+m2xi= 0.

' Substituting in (1) it is seen that

. 2>J-m2 2im
tan 6= -^ 5- = = i (2)1+m2 l + m* K '

If \&i be taken as the angle between one of them and a bisector of the angle

which they contain, then
tan^d{=MK.

Therefore tan 6{=

z

s

,

l+m'
which is in agreement with (2).

Hence the angle given by the definition of Art. 67 is the same as that given by

the ordinary analytical formula.
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74. Eccentric angle of an ellipse. >

(a) Construct the real branch, the (1, i) branch and the (i, 1) branch.

Construct the auxiliary circle and its (1, i) and (i, 1) branches. Let a

and b be the semi-major and semi-minor axes of the ellipse so that its

equation is — + ^ = 1 and that of the auxiliary circle a? + y
2 = a2

. Take

P1; P2,P3 points on the real branch, the (l,i) branch and the (i, 1)

branch respectively of the ellipse and let the ordinates Pi-A^, P2iV2 ,

P3N3 at these points meet the corresponding branches of the auxiliary

circle in P/, P2
', P,' respectively. Then, if the angles P/OX, Pz'0X,

P3'OX be lt 2 and 63 ; t is real, 62 is purely imaginary and < tan-1 V,

and d3 is purely imaginary and >tan-1
r, and the lengths OP/, OPI,

OP3 are real and equal to a.

Then ONi, 0N2 , ON3 are respectively acos6u acos02 , acos#s .

Hence from the equation to the ellipse PXNX , P2N2 , PSN3 are respec-

tively b sin 6} , b sin #2 and b sin 63 , where a cos 93 and b sin 2 are imaginary.
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Hence a cos 6, b sin 6, where 8 can have all values, real or purely

imaginary, are the coordinates of points on the real, the (1, i) and the

(i, 1) branches of the curve.

(6) Construct the real branch, the (a, /3) branch* [see Art. 127] and

the (/3, a) branch. Let a' and b' be the semi-conjugate diameters OA and

OB of the curve corresponding to these branches so that the equation

f/So)/'

z'fojS)

x y%

of the curve referred to these diameters as. axes is —r„ + rr = 1- On OB
a" . o 2

take two points B' and 2?/ at distances equal to- OA from 0. Describe

an ellipse through A, B', A', B^ to touch the given ellipse at A. The
equation of this ellipse is x2 + y

1 = a"2 . Construct the imaginary

branches of this ellipse corresponding to the axes OA and OB.

Take P1; P2 , P, points on the real branch, the («, 0) branch and the

(ft, a) branch respectively of the ellipse, and let the ordinates P1N1 ,

P^N2 , P2N3 at these points meet the corresponding branches of the

ellipse af + y
2 = a'2 in P/, P

?
', P3

' respectively. 0Nt and 0N2 are real

* This is the branch for which the coordinates are x, iy, the axes of coordinates being

the conjugate diameters of the curve, which make angles a and /S with the major axis.
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and ON3 is purely imaginary. Through Nlt N2 , and N3 erect perpen-

diculars NiQx , N«Q2 , and N3Q3 equal respectively to N^', N2P2 , and

N3P3 , the first and third of which are real and the second purely

imaginary. Let Q 10N1 , Q20N2 , and Q3ON3 be U 2 , and 3 respectively.

Then OQf = ON 2 + N, Q,
2 = ON,2 + N.P,'2 = «'2

.

Similarly 0Q2
2 = 0Q3

2 = a'2
.

Therefore 0Nlt 0N2 , 0NS are respectively a'cos^, a'cos#2 , and

a' cos 83 . Hence from the equation to the ellipse Pi-JTi, PaN2 , P3N3 are

respectively b sin 0j, & sin 82 , and 6 sin #3 .

Hence a cos #, 6 sin 8, where 8 can have all values real or 1 purely

imaginary, are the coordinates of points on the real, the (a, /3) and the

(yS, a) branches of the curve, the axes of coordinates being inclined at an

angle /3 — a. If the major axis is taken as the initial line the eccentric

angle of a point on the (a, /3) branch is of the form (a + 8i). Hence, if a

be constant, points on this branch are obtained by varying #,-, and the

different (a, /3) figures are obtained by varying a.

The locus of Q x , Q2 , Q3 , ... is a circle described on A A' as diameter.

(c) Similarly the coordinates of a point on the hyperbolae

n~

--75 = 1 and ---+f =1
a? b2 a1 o2

may be expressed in the form a cos 8, ib sin 8 and ia cos 6, b sin 6, where 6

can have any value, real or purely imaginary. If the axes are inclined

at an angle a> the points lie on (a, /8) and (/S, a) branches, where a and

j3 give the pair of conjugate diameters, which are inclined at an angle o>.

Consider generally what is represented by the point

a cos (0 + sOi), b sin (6 + s^)-

These coordinates may be written

a cos 6 cos s0x
- a sin 9 sin s0x , b sin 8 cos s#, + b cos 8 sin s^

.

Now, if cos sd-L is real, sin s0x is imaginary and vice versa. Considering

the real and imaginary parts of these coordinates and assuming that

cos s0! is real, a point is given by a real length

Va2 cos2 8 + b2 sin3
. cos s8lt

measured in a direction making an angle tan-1 a with the axis of00 a cos a

x, and by an imaginary length

Va2 sin2 8 + b* cos2 8 . sin s0lt
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measured in a direction making an angle tan-1 ;

—

a with the axis° ° asm 8

of x. a2 cos2 8 + b* sin2 8 and a2sin2 8 + ¥ cos2 8 are the squares of semi-

conjugate diameters of an ellipse of semi-axes a and b, the eccentric

angle of the end of a diameter being 8. Their directions are also the

direction of a pair of conjugate diameters, for ifm and m' be the tangents

of the angles which they make with the axis of x, then

¥ sin 8 cos 8 ¥mm = —
a2 cos 6 sin 6 a2

Hence if s8l
= 0, the real branch of an ellipse of semi-axes a and b is

given ; if 8 = 0, the (1, i) and (i, 1) branches are given ; if 8 has a con-

stant value the (8, $) and (<j>, 0) branches of the ellipse are given, where

<f>
is the angle which the diameter conjugate to the diameter given by

8 makes with the axis of x.

75. Evaluation of integrals.

If sin = -j=r , then cos 5 = .

v
\Jax2 +'3,hx4-b,

\/h?-ab *JW— ab

1 ax+h , d8 -iJa
ta,n8=—. . and

*Va *Jax2+ 2hx+ b dx ' *Jax'i+2hx+b''

whatever are the values of a, h, b and x, provided a is not zero. These results may
of course be applied for the evaluation of integrals. Thus if it is required to

evaluate the integral

\f(\/ax2+<Zha:+b)dx,

this integral may at once be written as

f ,(\IW- ah cos 8\ >Jh2 -ab ...
f -!-—

—

—. . cos 8 d8.
}
J

\ t-Ja } a

An integral of the form

I / (ax2 + 2hx+ b, x) dx

becomes at once

f ,f*Jh*-ah „ -Jh2 -abs\a6-b\ >Jh?-
I f I - -T-. cos 8, .

J
J
\ i*/a a ] a

It may be noticed that
d sin id . . , .

,

-00 * sin (*<?+ -),

d cos id

dd ~~ <K)-
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(l)

76. Tracing of imaginary straight lines.

Let the equation of the pair of lines considered be

y
1 + m2«2 = 0,

the axes being rectangular.

(1) Draw a system of straight lines parallel to the axis of y. Any

one of these straight lines PNP' will

meet the axis of a; in a real point N,

and the pair of straight lines in a pair

of conjugate imaginary points P and

P'. The locus of the points P and P'

so obtained is a pair of lines OP and

OP', which make angles tan-1 (+ im)

with the axis of a-.

(2) Change the axes of coordi-

nates so that x sin a — y cos a = and

x sin /S — y cos /3 = are the axes of x

and y respectively, the angles a and /3 being real.

The equation of the pair of lines is then

X2 (sin2
a. + m2 cos2 a) + F2 (sin2£ + m2 cos2

/3)

+ 2XF(sin a sin /3 + m? cos a cos /3)
•

Then the equation is

=

-6>

P'

0.

Let tan a tan /S = — m2
.

sin2 a + m2 cos2 a
F2 + X

or

or

sin2
/8 + m2 cos2

/3

F2 X2S4^=0

F2 -X 2

sin 2/8

M-m*M'
M' - wi2i!f

iftana = il/ and tan £ = .¥'.

Hence if m2 = 1 the equation

becomes F 2 + X 2 = 0.

The locus of the points of

intersection of the given lines

with real lines parallel to the new

axis of y, can as in the previous

case be shown to be a pair of lines OP and OP' which pass through 0,

P and P' being conjugate imaginary points.
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If tan a tan /S = — m° the lines y — x tan a — and y — *' tan /3 = are

harmonic conjugates of the lines y
2 + m2#2 = 0. They are also a pair of

conjugate diameters of the ellipse - 4- ^ = 1 if - = in.

Hence the graphic representation of a pair of conjugate imaginary

lines is as follows. The pair of conjugate imaginary lines are the

double rays of a real overlapping involution pencil. All pairs of real

conjugate rays of the pencil are harmonic conjugates of the pair of given

lines. If any pair of these conjugate rays be taken as axes of coordi-

nates the graph of the pair of imaginary lines with respect to these

axes is a pair of straight lines through their real point. By varying

the pair of conjugate rays which are taken as axes all points on the

given straight lines can be graphically represented.

To construct the point of intersection of a real line with an imaginary

line.

Take as axes of coordinates the

bisectors of the angles between the

imaginary line and its conjugate

imaginary line. Let the combined

equation of these lines be

y* 4- m*a? = 0.

Let the given real line (I) make

an angle /3 with the axis of x.

Draw through a line, making

an angle « with the axis of x, where

tan a. tan y3 = — m2
, to meet I in N.

Let QN~=h.

Then the equation of the lines

3/
2 + m2*2 = referred to ON and a

line parallel to I through as axes is

sin 2oY*-X A Y
. / sin 2a

0, or ?=±n/ - —
JC V sin

Therefore

sin 2/3

NP=-NP' = -ih x/-^V si

sin 2/3"

sin 2a

sin 2/3

'
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Hence P and P' are a pair of conjugate imaginary points and for

lines parallel to I they lie on the lines OP and OP'.

The required points P and P' are the points of intersection of I with

the graph of the lines, for which the imaginary axis is parallel to I and

the real axis is the harmonic conjugate of this line with respect to the

pair of imaginary lines.

If the point A where the Hue I meets the axis of X is fixed and OA = K, it may
be easily deduced that, when 8 varies, the locus of N is the ellipse

A'V
X

'

2, ____

(t) H)
If the values a^ + ii'j, x

1
tan a+ ix

2
tan 8 [see Arts. 129 and 132] are substituted

for x and y in y-+ m-x'i= 0, it follows at once that

tan a tan 8= — m' and —r,= — ; .

xf tan a

_ „ x, m _ tan 8
Therefore —-= ± t = + .

x
2

tan a ot

77. To find the imaginary angle, which the line OP' in the preceding makes

with the axis of x.

Let 8-a= a> and P'OX' be 6.

Then from the equation of the line

/sin 2a P'JV sin 8/sin 2a _ -

V sin 2/3

_
sin 20 ON sin(<o + 0)'

/sin 2/3
Therefore sin w cot + cos <»= » / nV sin za

Now 5 will generally be a complex angle. Let 6= 8
1 + s62 . Then

tan fl
1 + tan«fl2tan0=tan(0

1 + *0
2)^v ' r 1 — tan 0i tan «0

2

1 — tan 6. tan «02 .
/sin 2/3

Therefore sin a> ——-t—\ ^- + cos <b= A/ _

—

si
.

tan^+tans^ /y sm 2a

/sin 2/3 . .

Equating real and imaginary parts, since
^J ^-2a is imaginary,

sin (B+ coswtan 6,= . / -.—~ tan s02 , (1)V sin 2a

and (cosa)-sino>tan51)tansd2=tan^1 */——5- (2)
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. sin 2/3
Therefore (sin a + cos a> tan 61) (cos a> - sin a tan e

x)
= tan 6^

g
.

p gn
,

„ v • „ „ sin 2/3
or sin ((o+ flj cos (a)+5

1
)=sin 9^ cos X

-—^- .

Therefore sin 2a sin {2a> + 2^}= sin 20! sin 20,

whence it follows that 6x
= a.

. Let #i = a in (1), then

/sin 2/3 . asmco + cos <b tana= » / -^—— tanw2 .V sin 2a

Therefore
/sin a sin /3

V cos a (

sin 2a

= tani
COS0

Therefore im=tan s#2

Hence the angle P'OA = NOA - NOP'

=a-(a+tan~ 1 iro)

= - tan
- 1 (im)=tan ( — im).

This is the angle which the line y+imx=0 makes with the axis of x.

It will be noticed that in the preceding the positive sign was given to

in the first equation. The reason for this is set forth in Art. 126.

/sin 2/3

V sin 2a

78. Critical lines and the circular points at infinity.

Consider the double points E wAE' of an overlapping involution,

which is orthogonal at S. If, SO be the per-

pendicular from *S on the base, then

0E=-0E'=i.S0.

Hence if P be any point on SE and N
the foot of the perpendicular from P on SO,

SO1 +0E* = and SN°- + PN* = 0.

Hence the measure of the distance of any

point on one of these lines, SE and SE',

from the point S in which they intersect (or

from any other point on the lines) is zero.

These lines are termed the critical lines of the point (see Art. 22).

They are the locus of all points in the plane the measure of whose

distances from S is zero.

Since the measure of the distance between any two points on one of

these lines is zero, the definition of the sine and cosine (and hence also
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of the tangent) of the angle between two lines fails, when one of them

is a critical line.

It maybe noticed that even the formula c2=a2+ 62 -2a&cosO fails for a real

triangle in certain cases. Let A, B be two real

points at a finite distance apart. Through A
and B draw two parallel lines AC, BO, to make
given equal angles with AB. Then AC and BC
meet at infinity.

In the triangle ABC, by the given formula

AB*= AC2+ BC* - ZAC . BC cos C
= (BC- A Cf, since cos C= 1.

But, if BC—AC represents anything, it re-

presents the distance BN,.where AN is the perpendicular from A on BC,

Hence AB*=BNi
.

This obviously is not true unless C lies on AB. Since even the formula quoted

fails in certain cases for a real triangle it is not a matter of surprise that it and

other formulae should fail for imaginary points, lines, and angles in certain cases.

Generally a real or an imaginary straight line meets the critical lines

of different points in the plane in different pairs of points. But this is

not the case with "the line at infinity." On the line at infinity, regarding

the region at infinity as a straight line, all involutions of orthogonal lines

through different vertices determine the same involution and therefore

the critical lines of different points meet the " line at infinity " in the

same pair of imaginary points. Hence the critical lines of a point may

be regarded as the connector^ of the point in question to this pair of

points which have been termed the circular points at infinity, but may
be better called the critical points of the plane. (See Art. 22.)

For the graphic representation of the critical lines of a point see

Arts. 76 and 147.

Hence unless two points are situated on a critical line it follows that,

if the measure of the distance between them is zero, they must coincide.

Analytical. The equation of the pair of bisectors of the angles between the lines

#2 -fy
2= is ——y- =~ . Hence the bisectors of the angles between a pair of critical

lines are indeterminate.

It may be noticed that, -if it be assumed that the addition formula holds for the

tangents of angles involving the angle s — , then whatever angle a may be

tan o+!j =i, unless tan a + i= 0.

H. I. G. .8
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The value of y, which corresponds to the value * — of s6 in the formula,

tan s8 = _ a
, is infinite. Heuce a finite addition to y does not generally make

any difference in the value of y.

The critical lines through a point have an equation of the same form whatever

pair of lines at right angles through the point are taken as axes of coordinates

(see Art. 76). Let the coordinates of any point referred to rectangular axes be

x and y and those referred to another pair of axes x1 and y', the two systems of

axes being inclined at an angle a. The equations of the critical lines of the origin

referred to the first axes are x+iy—O and x — iy=0 and those referred to the second

axes are 3/+iy' = and x? — iy'=0. If the second axes are rotated through an

angle a by means of the usual substitutions, the first equations are obtained from

the second.

The critical points in a plane and the critical lines generally are considered

in Art. 147.

79. Theperpendicularfrom a given point a?y' on an imaginary line ax+ by+ c=0.

In the same way as when the line and point are real it may be proved that the

perpendicular from the point x!y' on the line is

ax' + by' + c

Equation of the bisectors of the angles between a pair of conjugate imaginary lines.

Let the equations of the lines be

ax + by+c+ i(a'x+ b'y+c')=0

and ax+ by+ c — i(a'x+b'y+ c')—0,

or shortly L+ iL'=0 and L — iL'=0.

Equating the perpendiculars from any point on the two lines and squaring, the

equation is found to be
£2 -Z' 2 LL'

a2+ 62 -(a' 2 + &' 2
) aa' + bb"

(ax+ by+ c)2 - {a!

x

+ b'y + c')
2 _ (ax+ by+c)(a'x+ b'y+ c')

or
,

(a2+ 62)-(a' 2+ 6' 2
)

~
aa'+ bb'

(>

If c= e'= 0, the combined equation of the lines is

(ax+ byf+ (a'x+ b'y)2=

and by the usual formula the equation of the bisectors of the angles between these

lines is f
x^—y1 xy

tf+a'*- W-b't ~ ab+ a'b'
'

If c and c' are made equal to zero in (1) the two equations may be shown to be

identical.

80. Systems of lines through a point.
v

From the earlier articles of this chapter it will be seen that a real point contains

:

(1) an infinite number of real lines determined by real angles measured from a

base line drawn through the point

:
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(2) an infinite number of what may be termed purely imaginary lines determined

by angles, which are entirely imaginary, measured from the base line :

(3) an infinite number of infinite systems of imaginary lines—whose determining

angles with reference to the base line are complex angles, i.e., angles which may be

expressed as the sum or difference of real and purely imaginary angles. Each infinite

system may be obtained by measuring imaginary angles from some real line of (1),

or by measuring real angles from some line of (2).

The system of lines through an imaginary point is of the same nature except for

the fact that the point itself is imaginary.

The above should be compared with the statement as to points on a real line

given at the commencement of Art. 51.

Systems of lines through a real and through an imaginary point considered in

reference to the critical lines. Through every real point there passes

:

(1) a pair of lines termed the critical lines of the point. These lines are the

connectors of the point to the circular points at infinity

:

(2) an infinite number of pairs of real lines, which are harmonic conjugates of

the critical lines and are therefore at right angles, also an infinite number of pairs

of imaginary lines, which are harmonic conjugates of the critical lines and therefore

at right angles. Such pairs of imaginary lines are not generally pairs of conjugate

imaginary lines.

Since every line through a point has a conjugate in every involution at the

point it follows that (2) includes all the lines through the point.

(3) an infinite number of pairs of conjugate imaginary lines. Each pair of such

conjugate imaginary lines has a pair of the real orthogonal lines of (2) for the

internal and external bisectors of the angles between them. Those pairs of conjugate

imaginary lines, which have the same pair of real orthogonal lines for bisectors, form

an involution of which the real bisectors are the double rays. The critical lines

being harmonic conjugates of all pairs of real orthogonal lines through the point are

a pair of conjugate rays of all such involution pencils.

Through every imaginary point there passes

:

(1) a pair of critical lines which are the connectors of the point to the circular

points at infinity

:

(2) one real line which is its connector to its conjugate imaginary point

:

(3) a line perpendicular to this line, which is real except in so far as it passes

through the imaginary point, i.e. this line would be real if the imaginary point were

looked upon as the origin

:

(4) an infinite number of pairs of lines which are harmonic conjugates of the

critical lines and are therefore at right angles. These pairs of lines divide themselves

up into two groups (a) those which would be real if the point were taken as origin

and (6) those which would still be imaginary

:

(.5) an infinite number of pairs of lines obtained by joining the point to pairs of

conjugate imaginary points. These pairs of lines have the pairs of lines (a) of (4)

for bisectors of the angles between them, and those pairs which have the same pair

8—2
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of bisectors form an involution. The critical lines are a pair of conjugate lines of

all these involutions.

Hence, as might be expected, the system of lines through an imaginary point is

the same as that through a real point, except for the fact that the point through

which they all pass is an imaginary point. . This also follows from the fact that

the origin may be regarded as either a real or an imaginary point. The same was

shown to be the case for real and imaginary straight lines.

If a+ib, h+ik be an imaginary point the equation of the real line through it is

x— a y-h . ., ,. , ,. x-a— ib y — h— ih „-v— = *—r- and the perpendicular line r h -—£— =0.

81. Theorems connected with projection.

If five points A, B, G, D, E, are situated on an imaginary straight

line, other than a critical line, and (ABCB) = {ABCE), then E and D
coincide, AC, AD, etc., being the measures of the distances between the

points.

The imaginary line can be rotated round its real point into coincidence

with some real line through that point. In this position A, B,G, D, E,

will coincide with points A , i? , C , B , E and the anharmonic ratio of

any four of the points A, B, G, D, E will be equal to, the anharmonic

ratio of the corresponding four of the points A , B , G , D , E .

Hence since {ABGD) = (ABCE),

'

(A B C Do) = (A B G E ).

Therefore B E must be zero.

Hence the measure of BE must be zero.

Therefore unless D, E are on a critical line they must coincide

(Art. 78). This result may also be obtained by equating the an-

harmonic ratios of the measures of the distances between the points.

Two projective ranges on an imaginary straight line have a pair of
self-corresponding points, real, coincident, or imaginary.

This follows in a similar way from Art. 21 (6).

82. (1) A pencil with an imaginary vertex is intersected by all

real transversals in ranges which are equi-anharmonic.

This has been proved in Art. 21.

(2) A pencil with an imaginary vertex is intersected by all imaginary

transversals in ranges which are equi-anharmonic.

This theorem may be proved as in Arts. [10] and [11] of the Principles

of Projective Geometry. The proof there given depends on the fact.
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that the sides of a triangle are proportional to the sines of the opposite

angles, and this theorem has been shown to be true for an imaginary-

triangle, provided that no side is a critical line.

The theorem may also be deduced from the general case of Menelaus'

theorem. (Art. 65) as follows.

Let S be the vertex of the pencil and let two imaginary transversals

meet the rays in A,- B, G, D,

and A', B', C, D' respectively ,*,

and intersect at 0. Through S
draw any line to mee^ the trans-

versals in U and V. Let the ~"A''a

ratios ofA, B, C, D, A', B', C, D' / ~f^LJ
and of 8 with respect to the /' / / ;

~--:
;u

vertices of the triangle OUV
be a, b, c, d, a', b', c', d' and s

respectively. ^

Then by Menelaus' theorem

aa's=l, bb's=l, cc's = l, etc,

B' C D'

Therefore aa' = bb' = cc'= = -.

Therefore (ABCD) = (A'B'0'D').

The point is obviously a self-corresponding point of the ranges.

Correlatively the pencils formed by projecting a range situated on an

imaginary line from two imaginary points are equi-ankarmonic.

This may be proved in a similar way to the above by the general

case of Ceva's theorem (Art. 65).

(3) If two pencils with imaginary vertices have the connector of their

vertices for a self-corresponding ray, all pairs of corresponding rays

intersect on a fixed straight line.

Let s be the line joining the vertices S and S' of the pencils. Let

corresponding rays a, a' and b, b' \s
intersect respectively at A and /f

v'-\

B. Join AB by the line u. Let ,/ y \b ^K^

d and d' a pair of corresponding / I \ \ s'

rays meet u in D and D' and let / ; \.--"„-s

SS' meet u in 0. / X'''''y'*

Then (ABOD) = (ABOU). -—j.-^-l-^-—-

Therefore D and D' coincide (Art. 81).
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Conversely if three pairs of corresponding rays intersect on a straight

line, the connector of the vertices is a self-corresponding ray.

In a similar manner it is possible to prove the correlative theorem,

viz., if the point of intersection of the bases of two projective ranges is a

self-corresponding point, then the ranges are in plane perspective.

Conversely if the connectors of three pairs of corresponding points of

two projective ranges are concurrent, the point of intersection of the bases

is a self-corresponding point.

If two projective pencils are such that for three pairs of corresponding

rays the angles between the rays of one pencil are equal to the corre-

sponding angles between the rays of the other pencil, the pencils are said

to be equal and the angles between all. pairs of corresponding rays are

equal.

This follows from the preceding.

83. Real and imaginary correspondence.

If a pair of corresponding elements of two superposed projective forms are given

by a relation

Axaf +Bx + Gx'+D= 0,

where x, x1

determine pairs of corresponding elements, the correspondence is said

to! be real if A, B, C, D are real.

If pairs of corresponding elements are given by a relation

{A + iA') xx' + {B + iB') x+(G+iG')x'+D+iD'=0,
the correspondence is said to be imaginary.

(1) Any pair of superposed projective pencils with a real vertex, and any pair of

superposed projective ranges on a real base, have either two real elements of one which

correspond to two real elements of the other or a pair of conjugate imaginary elements

of one which correspond to a pair of conjugate imaginary elements of the other.

Consider the correspondence of two superposed projective ranges on a real base.

This is given by

(A+iA')xa/+ (B+iB')x+(G+iC')x'+(D + iD') = 0.

The real elements are given by

Axx'+Bx+Cx' + D=0,

and A'xx' + B'x+C'x'+ D'= 0.

Therefore (A'B -AB')x+(CA' - C'A)x' + (A'D-AD')=0, (1)

and (BA'-B'A)x2 + (BC'-B'C+DA'-iyA)x+(DC'-D'C)=0.

The roots of this quadratic are either (1) a pair of real quantities or (2) a pair

of conjugate imaginary quantities. From (1) these correspond to a pair of real

quantities or to a pair of conjugate imaginary quantities.
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The theorem for a pair of pencils is obtained by joining the points of the range
to two real vertices.

(2) Every pair of superposed projective pencils with a real vertex, and every pair of
superposed projective ranges on a real base, have two elements of one which correspond

to the conjugate imaginary elements of the ot/ier, either each to its own imaginary con-

jugate or each to the imaginary conjugate of the other.

Write y+ iy' for x xaAy — iy' for x'. Then equating real and imaginary parts it

is found that

A (y*+y'*)+ (B+C)y+(C'-B')y'+D=0,
and A'lV*+y'*)+ (B' + C')y+(B-C)y'+BJ=0.

Hence Ky+Li/+M=0, (1)

where

K=A'(B+C)-A{B' + C), . L= A'(0'-B') + A (C-B), M=A'D-AD,
and y

2 ,(Z 2+ £2)+y{2A'Jf+X(C2+ C"2 --B'3-5i!

)} + if 2

+ L{D>{C'-B')+ D{C-B)}= (2)

(a) If the roots of (2) are real, viz., y1
and y2 , the corresponding values of

y' from (1) give a pair of conjugate imaginary points, and two pairs of conjugate

imaginary points are corresponding points.

(6) If the roots of (2) are imaginary, viz., (a + ib) and (a — ib), let the corre-

sponding values of y' from (1) be (c+id) and (c — id).

Then {a+ ib) and (c+id) give as corresponding points

(a+ ib) + i (c+id) and (a+ib) — i(e+id),

i.e., (a-d)+i(b+ c) and (a + d)+i(b-c);

also-(a-i6) and (c — id) give as corresponding points

(a — ib)+ i (c— id) and (a — ib)-i(c — id),

or (a+d)-i(b-c) and (a-d)-i(b+ c).

Hence the theorem is proved.

84. The following are immediate consequences of Arts. 81 and 82 and may be

proved in the same way that the corresponding theorems for real lines and points

are proved in The Principles of Projective Geometry. They hold for all imaginary

points and straight lines, excluding critical lines and pairs of points situated on the

same critical lines.

(i) The properties of two triangles in perspective, Art. [13 (as)].

(ii) The harmonic property of the quadrangle and quadrilateral, Art. \4o].

(iii) Construction of harmonic conjugates depending thereon, Art. [46].

(iv) The involution property of the quadrangle and quadrilateral, Art. [56].

Also the properties of involution ranges and pencils hold generally for pencils

with imaginary vertices and for ranges on imaginary straight lines. Those for real

involutions are set forth in Art. 7.

Formulae connecting the angles of an imaginary pencil.

Let a, b, c, d be any four concurrent lines real or imaginary (excluding critical
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lines) and let ab denote the angle between the lines a and b. Then as in Art. [11] it

may be shown that the anharmonic ratio of the pencil a
;

b, c, d is

sin ac sin ad , , _
~ :

—.—^= (abed).
sin be sin bd

The relations connecting the angles, when the pencil is harmonic, may be proved

as in The Principles of Projective Geometry.

85. Projection of points into the circular points at infinity.

To project by a real projection any pair of conjugate imaginary

points into the circular points at infinity.

Let the given pair of conjugate imaginary points be the double

points of the involution A A', BS, situated on the real line v in the

plane <r. Through v draw any plane <r1; and take any plane a parallel

to o"! as plane of projection. On AA', BB', in the plane <rl , describe

two semi-circles to intersect at $. They will always intersect since the

segments AA' and BB' overlap. Take 8 as centre of projection. Then
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the line v is projected into the line at infinity in the plane cr' and the

involution AA', BB' is projected into the orthogonal involution on this

line and its double points are the circular points at infinity.

To project a pair of real points into the circular points at infinity.

Let E and F, the two real points which are to be projected into the

circular points at infinity, be situated on the real line v in the plane <r.

Through v draw any real plane <rlt and let CI and CI' be the circular

points at infinity in this plane.

Join FC1 and ECU to meet at S, and FCl' and ECl to meet at S'.

a' cv

Then, if a plane a parallel to o-j be taken as plane of projection, and

8 or S' for centre of projection, E and F will be projected into CI and

CI'. These points are the circular points at infinity in the plane a since

the planes o-j and a' are parallel.

In this projection v is projected into a real line, viz., the line at

infinity. 8 and 8' are a pair of conjugate imaginary points. Hence the

line SS' is real and its point of intersection with v is a real point and

is projected into a real point 0' at infinity. The connector to S of any

other real point in the plane a must meet the plane a in an imaginary

point. For such connector, since it does not contain 8', must be an

imaginary line, and an imaginary line can only contain one real point.

The real points on the line <r<r' however remain real.
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If D be any real point on the line aar', the line BO corresponds to a

real line in the plane a-', viz., DO'. Hence a pencil of real lines through

in the plane a corresponds to a pencil of parallel real lines through
1
in

c-'. The real points on lines of one pencil correspond to imaginary points

on the corresponding lines of the other pencil with the exception of

and 0', which are both real, and the points on aa' which are unaltered.

Hence, if a pair of real points are projected into the circular points

at infinity, all real points in the plane are projected into imaginary points

with the exception of one point 0, on the connector of the pair of real

points, and points on the line of intersection of the planes.

Consequently it is imaginary points on a locus in the plane a which

are projected into real points on the corresponding locus in the plane a,

and it is for such imaginary points in the plane a that theorems are

proved, when they are deduced from the properties of real points in the

plane a. It is only if and when projective properties of real and of

imaginary points have been shown to be identical, that the process of

projecting real points into the circular points at infinity is justifiable as

a means of obtaining a theorem for real points.

SES'F is a semi-real square of the second kind.

86. Projection of a semi-real quadrangle into a semi-real square.

(a) Let the quadrangle be of the first kind. Let A, A', B, B be the vertices and

EFG the diagonal points triangle, which is real. Let

AA' and BE meet FG in K and L. Project the pair

of conjugate imaginary points, - which are the double

points of the involution determined by FG and KL, into

the circular points at infinity. Then in the new figure

(1) the lines FAB', FBA' and FE are parallel, as

are the lines OBA, GA'B' and GE
;

(2) the first three of these lines are perpendicular

to the second three lines
;

(3) the lines EK and EL are at right angles
;

(4) the lengths BE and EB! are equal, as are the

lengths AE and EA'.

Hence in the new figure the two pairs of conjugate

imaginary points A, A' and B, B' are situated on two real

lines EK and EL which are at right angles. Also

EB = B'E and AE = EA' . Also since the pencil

(E.KLFG) is harmonic and the lines EF and EG
are at right angles, EF and EG are the bisectors of the

angle AEB. But ABG is parallel to EG and therefore by symmetry (or see Arts. 53

and 66) EA=EB.

>G

*-G
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Therefore the points A, A', B, B! are the vertices of a semi-real square of the

first kind.

(b) Let the quadrangle be of the second kind and let B and B' be the pair of

real vertices. Then FG is the real side of the diagonal points triangle and E is its

real vertex. F and G are a pair of conjugate imaginary points. Project these

points into the circular points at infinity.

Then in the new figure

(1) the lines FAB', FBA' and FE are parallel, as are the lines GBA, GA'B'
and GE;

(2) the lines EK and EL are at right angles
;

(3) the lengths BE and EBI are equal, as are the lengths AE and EA'.

Hence in the new figure the pair of conjugate imaginary points A, A' and the

pair of real points B and B! are situated on two real lines EK and EL which are

at right angles. Also EB=B'E and AE=EA'. Also the line ABG, which is

parallel to a critical line EG, meets the real lines EA and EB through E, which are

at right angles, in A and B. Therefore EA=i. EB [see Art. 78]. Hence A, A', B, B'

is a semi-real square of the second kind.

Conversely it follows that each of the four sides of a semi-real square of the second

kind passes through a critical or circular point.

Signs of trigonometrical functions.

In Art. 56 the sine, cosine and tangent of the angle between a real and an

imaginary straight line were defined. In Art. 61 these definitions were extended to

the case of the angle between a pair of imaginary straight lines. In these definitions,

as far as the sine and cosine are concerned, there is an ambiguity of sign in respect

to the denominator. This arises from the fact that there is a geometrical ambiguity

—

with real as well as with imaginary straight lines—in regard to the angle between

two straight lines. There are four angles, less than 2jt, between two given straight

lines real or imaginary and by changing the sign of the square root in the expressions

in Arts. 56 and 61 there are—both for real and for imaginary straight lines

—

four sets of values of sin 6, cos 9 and tan 6 corresponding to the four angles between

the straight lines.

Certain conventions are laid down in the trigonometry of real lines as to which

angles are those whose sine, cosine and tangent are represented by the expressions

in Art. 56. It is convenient that the conventions introduced, when imaginary lines

are considered, should be such as to make the sum and difference formulae, as used

for real angles, apply when some or all of the angles considered are imaginary. The

expression s/OP*+ OQ2 -20P.0Q cos d> will in general be complex. It would seem

that the correct convention is, in the case of the angle between two imaginary straight

lines which has the smaller real part, to take the same value of

*j0Pi+0Q*-20P.0Q cos a,

in the expressions for sin 6 and for cos 6. This has been done in Arts. 57 to 64, in

which the sum and difference formulae for imaginary angles have been deduced. If

different signs are given to this expression in the values of siu 8 and cos 6, the angle
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n — 6, positive or negative, is obtained. Generally it is believed that it will be

found best to assume—as in the geometry of real lines—that the real part of

\/0P2+ OQ2 -20P.0Q cos <o is positive, when it exists, and to follow the conventions

laid down in Arts. 71 and 72, when it is a purely imaginary quantity.

If the values of sin6{ , cos6t, tan#4 are obtained by the method of Art. 72

—

in which the hypothenuse of the triangle is always real and positive—and if the

positive axis of iy is taken in the negative direction of the real axis of y, it is found

that the values in question are the same as those given on page 100 with the sign

of i changed.

EXAMPLES
(1) Prove that the sum of the measures of the distances of a point on an ellipse

from the imaginary foci is equal to the minor axis.

(2) Prove that the sum of the measures of the distances of a point on a hyper-

bola from the imaginary foci is equal to the transverse axis, the length of which is

imaginary.

(3) If two conjugate imaginary lines form a harmonic pencil with two real lines

which are at right angles, then the real lines are the bisectors of the angles between

the imaginary lines.

(4) Prove that the ratio of the measures of the distances of a point on an

ellipse from an imaginary focus and from the corresponding imaginary directrix is a

constant quantity which is purely imaginary.

(5) Prove that the equation of the chord joining two points on an ellipse

determined by complex eccentric angles 6 and (j> is

_cos^+fsm— =cos-^,

and that the equation of the tangent at the point is

-cos 5 + t sin = 1.
a o

(6) Prove that the real and imaginary parts of the eccentric angle of the points

x2 v2 b
where the line y=mx+ c meets the ellipse -^ + jj

- 1 = are respectively tan
~ l - -

and tan" 1 — if c2>m2a2 + l

a' o' ' ma

(7) Prove analytically that the real part of the angle between two imaginary

straight lines through the origin is equal to one or other of the angles between the

real bisectors of the angles between the lines and their conjugate imaginary lines.

(8) Prove under the same circumstances that the imaginary part of the angle

between the lines is the difference of the angles which the lines make with the

bisectors in question.



CHAPTER IV

THE GENEKAL CONIC

87. Definition of a conic.

Let S and S' be any two points real or imaginary; a, b, c three

lines, real or imaginary, through S, and a', b', c' three lines, real or

imaginary, through S'.

Then a, a, b, b', c, c' may be regarded as three pairs of corresponding

rays of two projective or equi-anharmonic pencils with vertices at S and

S', and the ray of one corresponding to any ray of the other may be

constructed.

Def. 5. The locus of the points of intersection of corresponding rays

of two projective pencils is a conic.

It follows immediately from this definition that (1) a conic is com-

pletely determined when five points on it are given, and (2) that a

conic may be described through any five given points.

The definition is illustrated by the figure. In this figure a real

conic is determined by five real points S, S', A,,, B , C and the pencils

(S.A tB,,G ) and (S'.A B G ) are constructed. P is any imaginary

point on the conic It can be constructed by means of the -Poncelet

figure corresponding to the diameter OK, which is parallel to the real

line AA'BB'CC through the point P, and its conjugate diameter OL.
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By definition the pencils {S.A B^G P) and (S'. -4 .B C'
I)
P) are projective.

This is the case if (ABCP) = {A'B'C'P), where A, B, G and A', B', C
are the points in which the rays of the pencils meet the real line

through P. That this is true may be verified by the figure. If P' be

•the conjugate imaginary point of P, then, the point M, where OL meets

the real line PP', is the mean point of P and P'.

If the angles a, /3, y, 8 determine four points on a circle the anharmonic ratio of

the pencil subtended by these points at the centre is ——^r

—

—. : -.—)-=—J- , and that
* . sin^-'y) sin — 8)'

a— ta — yBm
2

Sln
<->

of the pencil subtended at any point on the circle is
. p-y . /3-S"

8111
2

Sm
~T~

Similarly, if a, j3, y, 8 be the eccentric angles of points on the ellipse -g +^ - 1 =0>

the anharmonic ratio of the pencil subtended by these points at any point on the

. a—y . *

sin —zr-1 sin

ellipse is
. /3—y . 0-S"

Sln
2

Sln -2~

If a, /3, y, 8 be complex angles, this expression still represents the anharmonic

ratio of the four imaginary points on the ellipse (see Art. 74).

88. Through five given points, no three of which are collinear, only

one conic can be described.

In Art. 87 the five points S, S', A, B, C completely determine the

correspondence between the pencils whose vertices are S and S'. Hence

the conic determined by the pencils with vertices S and >S' is com-

pletely and uniquely determined. The only question which arises is

whether the same conic is obtained if, of the five points, S, S', A, B, G,

points other than S and S' are taken as the vertices of the pencils.

That the same conic is obtained may be proved as follows.

To prove that whichever of the five given points, which determine a

conic, are taken as the vertices of the two generating pencils, the same

conic is obtained.

Let A, B,G, D, E be the five given points. Join A to G, B, E and

B to G, B, E. Let a pair of corresponding rays of the pencils so deter-

mined meet at F. Join GF, and let CF meet BB, AB, BE and AE in

K, L, M, N respectively.
.
Then F is the second self-corresponding

point of the ranges GKM and GLN and is a point on the conic deter-

mined by the pencils with vertices A and B.
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Hence {GFKM) = {GFLN).

Consider the pencils, DC, DB, DA and EG, EB, EA whose vertices

are D and E. They determine ranges GKL and GMN on the line GF,

and the second self-corresponding point of these ranges is the second

point in which the conic determined by the pencils, vertices D and E,

meets GF. Let F' be the second self-corre-

sponding point.

Then (CF'KL) = (GF'MN)

which is the same as (GF'KM) = (CF'LN).

But {GFKM) = (CFLN\
Therefore F and F' coincide and the two

conies meet the line CF in the same pair of

points and are therefore the same conic.

Converse.

If A, B, G, D, E, F are six points on a conic the pencils subtended

by the other four points at A and B are projective. But the five points

A, G, D, E, F determine the conic and B may therefore be regarded as

any point on the conic determined by these five points. Hence at any

point on a conic four given points on the conic determine a pencil of

constant anharmonic ratio.

Hence it follows that a conic may be looked upon as the locus of a

point at which four given points, which are on the conic, subtend a pencil

of constant anharmonic ratio. It is sometimes convenient to look upon

a conic from this point of view.

89. Every straight line, in the plane of a conic, meets the conic—
unless it breaks up into a pair of straight lines—in two points which may
be real or imaginary, and may be coincident.

If any two points on a conic be joined to four other points on the

conic, the pencils so formed determine two superposed projective ranges

on every line in the plane. The conic meets each line in the self-

corresponding points of these ranges, which are two points, real,

imaginary or coincident (Art. 81).

There is one and only one tangent at every point on a conic, which

does not break up into a pair of straight lines.

Let the conic be determined by five points A, B, G, P and 0, real or

imaginary. For every point P' on the curve (P' . ABGP) = (0 . ABCP).
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Let P' be a point adjacent to P. Then (P' . ABGP) = (0 . ABGP).

Since P'A, P'B, P'O and the anharmonic ratio of the pencil

(P' .ABGP) are given, the line PP is a given line and is uniquely

determined. This straight line is termed the tangent at P and contains

all the points on the curve infinitely, near to P.

If P' is real there will usually be a real point on the curve infinitely

near to P and also an imaginary point infinitely near to P. Both of

these points lie on the tangent at P >

90. Given two tangents to a conic and their points of contact, to

construct the tangent at any other point on the conic.

Let the tangents at B and G
meet at A. Take P and Q
any two points on the conic

and let GP, BQ intersect at M
and meet AB and AG in G'

and B'.

Then

(B.BPQC) = (G.BPQG).

Therefore

(C'PMG)=(BMQB')=(B'QMB).

Hence G'B', PQ and GB are concurrent at a point T. Let P and Q
coincide. Then G'B', BG and ihe tangent at P are concurrent. From
the harmonic property of the quadrangle TG'PB it follows that, if TP
and AG meet at R, the range ARB'G is harmonic.

Hence to construct the tangent at any point P, join BP to meet

AG at B' and construct R the harmonic conjugate of A with respect to

B1

, C. Then PR is the tangent at P.

Four fixed tangents to a conic determine ranges of constant anharmonic

ratio on all other tangents to the conic.

Let AG and AB be any two tangents to the conic. Take points

Pi, P2 , P3 , P4 on the conic.

Let BPlt BP„ BPS , BP, meet AG in 5/, B{, Bs
', B4

' and let the

tangents at Pu P2 , Ps , P4 meet AG in the points Ru Rit Rs , P4 . Then
the ranges AR&'C, AR2BS'G, AR3BS'G, ARJBJC are all harmonic.

Hence (RiRiRsRi) = (B1'B2B3'Bi
') = the anharmonic ratio of the pencil
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formed by joining Plt Pt , Ps> P4 to any point on the conic = a constant

for all positions of B on the conic.

91. Correlative definition of a conic.

The correlative definition of a conic is as follows

:

The envelope of the lines joining pairs of corresponding points of two

projective ranges is the correlative of a conic.

From this it follows by means of the correlative proofs

(1) that the correlative of a conic can be described to touch five

given lines:

(2) the anharmonic ratio of the range formed by the intersection of

four fixed tangents to the correlative of a conic with a variable tangent is

constant

:

(3) only one correlative of a conic can be described to touch five

given lines, no three of which are concurrent

:

(4) through a given point two tangents real, coincident, or imaginary

can be drawn to the correlative of a conic

:

(5) every tangent to the correlative of a conic has one and only one

point of contact.

From Art. 90 and (2) above it follows that the correlative of a conic

is a conic.

92. If, through the vertices of two projective pencils, a conic be

described, these pencils determine on the conic ranges of points, which

are termed projective ranges on the conic. Such ranges subtend pro-

jective pencils at every point on the conic.

The anharmonic ratio of four points A, B, G, D at any point on the

conic is. written (ABGB). Hence the condition that A, B, G, B and

A', B', G', D' should constitute two projective ranges on a conic is

{ABCD) = (A'B'G'D').

All pairs of superposed projective pencils have a pair of self-corre-

sponding rays. Hence every pair of projective ranges on a conic have a

pair of self-corresponding points. If the points of the two ranges be

joined to any point on the conic, the self-corresponding rays of the

pencils so formed meet the conic in the self-corresponding points of the

projective ranges. Likewise, if through the vertex of an involution

pencil a conic be described, the involution pencil determines on the

conic a range of points which is termed an involution range on the conic.

H. i. g. 9
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The range in question is such that if the points which constitute it be

joined to any point on the conic, the pencil so formed is an involution

pencil.

It follows that, if three pairs of points A, A' ; B, B' ; G, C are such

that the anharmonic ratio of the pencil formed by joining four of them,

not constituting two pairs, to a point on the conic, is equal to the

anharmonic ratio of the pencil formed byjoining the other points of the

pairs to a point on the conic, then A, A' ; B, B' ; 0, C" are pairs of con-

jugate points of an involution on the conic.

Since every involution pencil has a pair of double rays, every

involution range on a conic has a pair of double points.

The correlative theorems and definitions, which hold for a real conic,

are obviously true for the conic in general.

There can be no double point on a conic, which does not break up into

two straight lines. For if possible let there be such a point P. Join P
to any point Q on the conic. Then the line PQ meets the conic in

three points, which is impossible unless the conic breaks up into a pair

of straight lines.

93. It is now possible to prove for a conic in general the important

theorems of projective geometry, which are proved for the real branch

of a real conic in the Principles of Projective Geometry. The proofs

are in most cases similar although in some cases they admit of simplifi-

cation in the case of the general conic. They are shortly set forth in

the following articles. The correlative theorem may in each case be

proved by the correlative method.

Involution property of a conic.

A system of lines through any point S, real or imaginary, determines

on any conic in their plane pairs of conju-
,

gate points of an involution.

Let S be the point and SAA', SBB',

SCC' any three chords through it. Join

AC' to meet SBB' in 0.

Then

(BB'CA) = (C . BB'GA) = (BB'SO)

and

(B'BG'A') = (A.B'BC'A')

= (B'BOS) = (BB'SO).
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Therefore (BB'GA) = (BBCA').

Hence (Art. 92) AA', BB' , CC are pairs of conjugate points of an

involution on the conic.

If SAA', SBB' are regarded as fixed it is seen that SCC is an''

chord through S.
(

Conversely ifAA', BB', CC are three pairs of conjugate points of an

involution on a conic, then AA', BB', CC are concurrent.

Similarly the correlative theorem and its converse may be proved.

of a conic be drawn

94. Pole and polar.

If through a point S chords SAA', SBB', SCC
and L, M, N, ... are the harmonic con-

jugates of S with respect to A A', BB,
CC, ..., then the locus of L, M, N is a

straight line, which is termed' the polar

ofS.

Join A to A', B, C, A, B, ..., and

join A' to A, B, C, A', B,.... Then,

since AA', BB', CC form an involu-

tion, the pencils (A . AA'BB'CC) and

{A'. A'A BB CC) are projective. But

AA' is a self-corresponding ray of the

pencils and therefore (Art. 49(3)) the

pencils are in plane perspective and

pairs of corresponding rays intersect on a fixed straight line s.

Since s, in the figure, passes through U and U', etc., the points

L, M, N in which s meets the chords through S are, by the harmonic

property of the quadrangle, the harmonic conjugates of S with respect

to A, A'; B, B; C, C, .... Hence the locus of these harmonic conju-

gates is the straight line s.

The points where s meets the conic, viz. E and F, are the double

points of the involution AA' , BB, CC, .... They are the points of

contact of the tangents from S to the conic and form a harmonic range

on the conic with any pair of conjugate points 'A, A' ; B, B'; etc.

The correlative theorem for the construction of the pole of a given

line can be proved by the correlative method, which is given for the

case of a circle in Art. [76].

9—2
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Every real point in the plane of a real conic has a real polar with respect to the

conic.

A real conic is a conic which is met by every real line in its plane in u, pair of

points, real, coincident, or conjugate imaginary. A conic with a real branch is always

real as is also a conic with a real equation. The latter includes the former

(Art. 106).

Through a real point S draw real chords SAA' and SBB' to meet the conic in

real points (figure, Art. 94) or in pairs of conjugate imaginary points. These form

the real or semi-real quadrangle AA'B'B, the diagonal points triangle of which has a

real side UU'. The line UU' is the polar of S. By Art. 94 it is the locus of

harmonic conjugates of S with respect to the points of intersection with the conic of

all chords through S.

From the preceding it follows that the polar of a real point with respect to a

conic, which has no real branch, such as the ellipse —^ + j^ + 1 = 0, is real.

95. A conic determines on every straight line in its plane an

involution, the double points of which are the points of intersection of

the conic with the line.

Let s be any straight line in the plane of the conic. On this

straight line take points P, Q, R, .... These points have each a polar

with respect to the conic. Let these polars meet the line s in P', Q',

R', . . . respectively. Then P, P'
; Q, Q' ; R, R' ; ... are harmonic con-

jugates, of the points E and F in which the line s meets the conic.

Therefore PP', QQ', RR', . . . form an involution of which the points of

intersection of s with the conic are the double points. If the conic and

line are real the involution is real.

^Correlatively, a conic determines at every point in its plane an involu-

tion pencil, the double rays of which are the tangents from the point to

the conic. This involution pencil is real if the conic and point are real.

Two points P and P' are said to be conjugate points with respect to a conic

if (PP'QQ')= — 1, where PP' meets the conic in Q and Q'. The correlative definition

holds for conjugate lines.

96. From Arts. 93—95 it follows that the properties of pole and

polar hold not only for the real branch of a conic but for the conic in

general. From the harmonic property of a point and its polar it follows

that every conic is in harmonic perspective with itself, any point and its

polar being the centre and axis of perspective. When the point is real,

the polar is real, if the conic is real. In this case the real branch of the
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conic corresponds to itself and points on imaginary branches correspond

to points on imaginary branches.

If the conic is real and an imaginary point be taken as centre of

perspective and its imaginary polar as axis of perspective, real points on

the curve correspond as a general rule to imaginary points.

97. Pascal's theorem.

The three points of intersection of the three pairs of opposite sides of

a hexagon inscribed in a conic are collinear.

Let A, B, C and A', B', C be any six points on a conic. If A, A'. ;

B, B' ; C, C are looked upon as pairs of corresponding points, they

determine two projective ranges on the conic.

Consider the pencils

(A.'. ABC) and (A.A'KC).

They have a self-corresponding ray AA' and are therefore in perspective.

Hence the lines -which join any pair of

corresponding points of the ranges to A' and

A intersect on a line s, which passes through

K and L in the figure. This line meets the

conic in the pair of self-corresponding points

U and V of the projective ranges on the

conic.

Similarly consider the pencils

(B'.ABC) and (B.A'B'C).

They have a self-corresponding ray BB' and are therefore in perspective.

As in the previous case pairs of corresponding rays of the pencils

intersect on a line s', which passes through K and M. This line

s' meets the conic in the pair of self-corresponding points U and V of

the projective ranges on the conic. Hence s' must coincide with s.

Therefore K, L, M are collinear. But these are the points of inter-

section of the pairs of opposite sides of the hexagon AB'GA'BC. Hence

the theorem is proved.

98. Briarichon's theorem.

The correlative theorem, Brianchon's theorem, may be proved by

the correlative method. The theorem is to the effect that, the three

connectors of the three pairs of opposite vertices of a hexagon circum-

scribed to a conic are concurrent.
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The converse of Pascal's theorem and also of Brianchon's theorem

hold as for the real branch of a conic (see Art. [100]).

In the proof of Pascal's theorem, if A, A'; B, B"; G, C be three pairs

of conjugate imaginary points the Pascal line is real. For in the figure

K, L, M are all points of intersection of pairs of conjugate imaginary

lines and are therefore real.

If A, A'; B,B' are pairs of conjugate imaginary points and G and C
are real, then /the Pascal line is imaginary. For K is real while L and

M are imaginary. The real lines through L and M are the polars of

AA' . GC and BB' . CC. Hence no other real lines can pass through L
and M and therefore the Pascal line is imaginary, K being the real

point on it.

Similarly if A, A' are conjugatejmaginary points and B, B', G, C are

real, the Pascal line is imaginary, M being the real point on it.

The condition that three imaginary points should lie on a real conic

is that the hexagon formed by these points and their conjugate imaginary

points (as opposite vertices) should be a Pascal .hexagon. This condition

is clearly satisfied if the real lines through the imaginary points are

concurrent, for in this case the Pascal line is the polar of their point of

intersection. Hence three conjugate imaginary points, the real lines

through which are concurrent, determine a real conic.

99. Self-corresponding elements.

Determination of the self-corresponding elements of two superposed

projective pencils or ranges.

Let a, b, c and a', V , c' be corresponding rays of two superposed

pencils, vertex S. Describe a conic through S to meet the rays of the

pencils in A, B, G, and A', F, G'.

Let the Pascal line of AFGA'BG' meet the conic in L and M.

Then SL and SM are the self-corresponding rays of the two pencils.

The self-corresponding points of two projective ranges can be obtained

by the correlative method or can be deduced from the preceding.

If tivo conies, real or imaginary, intersect in two points, they also

intersect in two other points, real or imaginary (see page [272]).

Let S and S' be the given points of intersection of the conies (1)

and (2). Take any three points A , B , C on the conic (1). Join these

points to S and S'. Then the conic (1) may be regarded as generated

by the projective pencils (S.A B„C ...) and (S' . A B G„ . . .).
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Let the rays of the first pencil meet the' conic (2) in A, B, G, and let

the rays of the second meet the conic (2) in A', B', C. ' Then the self-

The figure represents the case in which the conies are real and intersect

in two real points (given) and in a pair of conjugate imaginary points.

corresponding points of the ranges ABC and A'B'C are the points of

intersection of the Pascal line of AC'BA'CB' with the conic (2). Let

these points be L and M. Then SL, S'L and SM, S'M are pairs of

corresponding rays of the pencils, which generate the conic (1), and

therefore the conic (1) passes through L and M, which are the two other

points of, intersection of the conies.

100. Desargues' theorem.

Every transversal is cut by a system of conies through four fixed

points, in pairs of conjugate points of an involution.

Let any conic of the system of conies through the four fixed points

Q, R, S, T meet any transversal s in P and P', and let opposite sides of

the quadrangle meet s in A, A' and B, B' as in the figure.
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Then (PP'AB)±(Q.PP'AB) = (PP'TR),

and (P'PA'B) = (S . P'PA'B') = (P'PRT) = (PP'TR).

In the figure the transversal s, which is real, meets the

conic through Q, R, S, T, which are real, in a pair of

conjugate imaginary points. Beal pairs of conjugate

points of the involution are situated on the same side

> of C and imaginary conjugates on opposite sides of G,

where C is the centre of the involution. '

Therefore {PP'AB) = (P'PA'B').

Therefore P, P' are a pair of conjugate points of the involution deter-

mined (Art. 84) by the quadrangle QRST on s, i.e. of a given involution.

Correlatively the pairs of tangents from any point to a system, of

conies, touchingfour fixed lines, are pairs of conjugate rays of an involu-

tion pencil.

This may be proved by the correlative method.

The converse theorems as stated in Art. [101] hold for the general

conic.

One and only one conic, real or imaginary, can be described through

two given points A and B to determine pairs of.conjugates of given

involutions on three given straight lines c, d, e. If the points A and B
are real, and likewise the involutions on c, d, e, then the conic is real.

This can be proved by the method employed in Art. [114(/)].

101. Carnot's theorem.

If the points determined by a conic on the sides BC, CA, AB of any

triangle be A„ A 2 ; B„B,\ C„ C„ then

BA, BAj CBi OR, AG, ACj _
CA, ' CA, * AB,

-

AB, ' BC, ' BC,
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Let the lines A,B, and A 2B2 meet the side BA in Gs and Gt .

C„ C2 ; A, B; and Cs , (74 are pairs of con-

jugate points of an involution (Art. 84).

Therefore

AC, AG
1 _ACS AG,

BC, ' BC2
~ BGl " BC4

"

But by Menelaus' theorem

AC3 _ _J
£C3

Then

and
AC,
BC,

CB,BA,'
AB, CA\

1

Therefore

CB2 BA 2

AB2 GA 2

BA, BA 2 CB, CB,

CA, " CA 2
" AB, ' AB2

AC, = 1.
AC,

' BC, " .BCs

Correlatively if the tangents from the vertices A, B, C of a triangle

meet the opposite sides in three pairs of points A,, A 2 ; B,, B2 ; C1} C2 , then

BA, BA 2 CB, CB2 AC, AC2 _
CA, CA 2 AB, AB2 BC, BC2

~

This may be proved by the correlative method.

The converse theorems as stated in Art. [99] are all true.

102.
, If two conies, real or imaginary, intersect in one point they

also intersect in three other points.

Let the conies S and S' intersect

at A.

Let B be any other point on S.

Draw any chord through B meet-

ing S' in Q and Q'.

Let AQ, AQ' meet S again in R
and R'.

Then the pencils B (Q), B(R)
have a (1, 2) correspondence. For

BQ determines BR and BR', and

either BR or BR' uniquely determines

BQ. Hence there are 2 + 1 or 3

positions in which BQ and BR coin-

cide (Art. [143]). For such positions of BR, Q and R coincide. But
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Q and R can only coincide at a point of intersection of the conies 8 and

S'. Hence in addition to A the conies S and 8' intersect in three

points.

103. The locus of the common

conjugates of points on a fixed line

with respect to two conies is a

conic.

Let P be any point on the

fixed line I and let L and L' be

the poles of I with respect to the

given conies. The polars of P with

respect to the conies are two

straight lines LQ and L'Q, which

pass through L and L' and meet

at a point Q, which is the common
conjugate of P with respect to the

conies. As P moves along I, LQ
and L'Q describe two pencils

through L and L' which are each

equi-anharmonic with the range

described by P and are therefore

projective with each other.

Hence the locus of Q is a conic,

through L and L', and this conic

is the locus of common conjugates

of points on I with respect to the

two conies.

The envelope of the common
conjugates of lines through a fixed

point with respect to two conies is

a conic.

Let p be any line through the

fixed point L, and let I and V be

the polars of L with respect to the

given conies. The poles ofp with

respect to the conies are two points

Iq and I'q which lie on I and V

and have for their connector q a

line
- which is the common conju-

gate of p with respect to the

conies. As p rotates round L, Iq

and I'q describe two ranges on I and

I' which are each equi-anharmonic

with the pencil described by p and

are therefore projective with each

other.

Hence the envelope of q is a

conic which touches I and V, and

this conic is the envelope of com-

mon conjugates of lines through L
with respect to the tw6 conies.

104. Every pair of conies have a common self-conjugate triangle.

The loci of the common conjugates

of points on any two lines a and b with

respect to the conies (1) and (2), are

two conies.

The common conjugate of the point

ab must be on both of these conies,

which therefore intersect in one point.

Therefore, by Art. 102, they intersect

in three other points. Let P be one

of these points. Let Pa and Pb be the
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common conjugates of P on the lines a and b. Then PaPb is a common
polar of P with respect to the two conies. Let PaPb meet the conies in

A, A' and B, B'. The pair of common harmonic conjugates of A, A'

and B, B' together with P form a common self-conjugate triangle of the

conies.

It follows from the preceding that the locus of common conjugates

of points on any straight line with respect to two conies passes through

the vertices of their common self-conjugate triangle.

105. Every pair of conies intersect in four points.

Consider the locus of the common conjugates, with respect to the

conies, of points on a line a which passes through one of the vertices F
of their common self-conjugate triangle. The poles of the line a with

F

a 1/

regard to the conies are two points A and A' which lie on EG, the side

of the common self-conjugate triangle opposite to F. The polars of P
any point on a pass through A and A' and meet at a point P'.

Since A, A' and also the points E, G, F are on the conic which is

the locus of P', this conic must break up into a pair of lines, one of

which is EA'AG and the other FP'.

The polars of P' with respect to the conies pass through P. There-

fore, if FP' be a, the locus of P for different positions of P' on a' is the

line a. Hence the lines a and a form an involution pencil. If FG is

taken as a, then EF is a', so that FG and FE are conjugate, elements of

the involution. Consider the two double rays of this involution. For
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these P and P' lie on the same straight line. Therefore on these lines

the two conies determine the same involution. Hence these lines meet

the conies in the same pair of points.

Similarly there are a pair of lines through E and a pair of lines

through G, which meet the conies in the same points. These six lines

intersect in four points which are common to the two conies. Hence

the conies intersect in four points.

By the correlative method it may be proved that every pair of conies

havefour common tangents!

Since the conies considered in Art. 103 intersect in four points ijb

follows by Desargues' theorem that the locus of common conjugates of

points on a straight line is (1) the locus of common conjugates of all

conies through the four points of intersection of this conic, (2) that the

locus passes through the vertices of the common self-conjugate triangle,'

(3) that it is also the locus of the poles of the line with respect to conies of

the system, (4) that it passes through the harmonic conjugates of the

points, where the sides of the common inscribed quadrangle of the conies

meet the given line, with respect to the vertices, and also through the double

points of the involution determined by the quadrangle on the given line.

No pair of conies real or imaginary can have more than one common

self-conjugate triangle if they intersect in four distinct points.

This is proved in the same way as the corresponding theorem in

Art. [124].

Hence the diagonal points triangle of the common inscribed quad-

rangle of two conies and the diagonal triangle of their common circum-

scribed quadrilateral coincide.

EXAMPLES
(1) Prove that the imaginary tangents from an internal point to an ellipse are

equally inclined to the focal distances of the point. •

(2) Prove that a pair of imaginary tangents from a real point to a conic subtend

equal angles at a focus.

(3) Prove that an imaginary tangent to a conic intercepts on two fixed real

tangents a length which subtends a real constant angle at a real focus.

(4) In Art. 94 if A A' and BB! are pairs of conjugate imaginary points and UU'
meets SAA' and SBB' in A , B ,

prove that U and D' divide A B in the ratio

(internally and externally), where K=-j-^j, and K'= £„, , M and M' being

the points in which OAA' and OBB' are met by diameters conjugate to diameters

parallel to these lines.



CHAPTER V

THE IMAGINARY CONIC

106. Distinction between real and imaginary conies.

Hitherto the conic considered has been the general conic. A real

conic may be defined as a curve which is met by every real straight line

in its plane in a pair of points, real, coincident or conjugate imaginary.

In view of the correspondence between real points and purely

imaginary points this definition may also be stated as follows. A real

conic is a curve which is met by every purely imaginary straight line in

its plane in a pair of points, purely imaginary, coincident or conjugate

imaginary.

It follows that, if a real conic has a real point on it, it has a real

branch. For, if through the real point a real straight line be drawn, it

must meet the conic in a second real point.

If a conic be described from data depending on imaginary points

and quantities, another conic can be described in a similar way depending

on the conjugate imaginary points and quantities. The second conic is

termed the conjugate imaginary conic of the first. If a conic and its

conjugate imaginary conic coincide, the conic in question must be a

real conic.

When only the real rays of the generating pencils of the conic are

taken into account, it is proved in the Principles of Projective Geometry

that a conic determines on every real line in its plane a real involution.

When real, the double points of this involution are the points of inter-

section of the line with the conic. From Art. 95 it is seen that, when

these double points are imaginary, they are also the points of intersection

of the line and conic. Being the double points of a real involution they

are a pair of conjugate imaginary points. Hence all conies considered

in the Principles of Projective Geometry comply with the definition of a

real conic. If a conic of this nature can be described through five

.points or to satisfy other conditions, which determine the conic, the

conic satisfying these conditions must be a real conic.

If a real conic passes through an imaginary point, it also passes

through the conjugate imaginary point.
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For let J. be a point on the conic. Draw the real line I through A.

This real line will meet the conic in the conjugate imaginary point of A,

which is consequently on the conic.

A conic must be real if it passes through

(a) 5 real points,

(b) 3 real points and a pair of conjugate imaginary points,

(c) 1 real point and 2 pairs of conjugate imaginary points, or

(d) 3 pairs of conjugate imaginary points.

In Art. [149] real conies were described to comply with conditions

(a), (b) and (c). Therefore a conic determined by these conditions is

real. The fact that the conic is real in case (d) may be proved as

follows. Let A, A'; B, B'\ G, C, be three pairs of conjugate imaginary

points on the conic. Then

(G . AA'BB') = (C . AA'BB') = (C . A'AB'B).

But if (C. AA'BB) =K+ iK', then (C . A'AB'B) = K-iK'.

.-. (K + iK') = (K-iK'), .-. K' = and (G. AA'BB') is real.

Hence the conic is real. (See Art. 23.)

This result may also be obtained as follows. The four points A, A',

B, B', together with the point C, determine a conic.

The four points A', A, B', B
?
together with the point C', determine

a second conic. This second conic is the con-

jugate imaginary conic of the first., But the

six points A, A', B, E, C, G' all lie on a

conic. Hence the conic and its conjugate

imaginary conic coincide, and therefore the conic

is real.

The conies (a) which can be described through two

pairs of conjugate imaginary points to touch a given real- <a>

line and (b) correlatively the conies which can be described

to touch two pairs of conjugate imaginary lines and to

pass through a real point, are real.

(a) Let A A' and BE be the real sides of a

quadrangle AA'BB, and let A B', A'B be a pair of con-

jugate imaginary sides of the quadrangle. Let the

given real line I meet these pairs of the sides in X, X'

and Y, 7' A conic through A, B, A', B' which touches I will touch I at one of the

double points of the involution determined by X, X', Y, Y'. These double points
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are the common harmonic conjugates of A", X' and Y, ¥' Since one pair of

these are conjugate imaginary points their common harmonic conjugates—which
are the double points of the involution—are real (Art. 8). Hence each of the two
conies through A, A', B, B', which touches I, passes through a real point and
therefore is real.

(6) This is proved by the correlative method.

Of the conies, which pass through one real point, a pair of conjugate imaginary
points, and touch two real straight lines, one pair is real and one pair is a pair

conjugate imaginary conies.

Let K be the real point and A, A' a pair of conjugate imaginary points through
which the conies are described, and I and m
the two real straight lines which they touch.

Then the lines KA and KA' (a! and a")

are a pair of conjiigate imaginary lines.

Hence the points in which they meet the

real lines I and m are pairs of conjugate

imaginary points, i.e. in the figure L, L"
and if', M" are pairs of conjugate imaginary

points. Hence the points A, U, M'', are

the conjugate imaginary points of A', L",

M", respectively.

Hence the double points F' and E' of

the involution determined by K, A , M', L' \ /
are the conjugate imaginary points of the

double-points F", E" of the involution determined by K, A', M", L".

Here the lines F'F" and E'E" are real and they meet I and m in real points.

Hence the two conies corresponding to these chords of contact are real. Art. [106 (&)].

The lines F'E" and E'F" are conjugate imaginary lines and they meet I and m
in two pairs of imaginary points, the first pair being conjugate imaginary points of

the latter pair. Hence the two conies corresponding to these chords of contact are

a pair of conjugate imaginary conies.

Of the conies which pass through a real point, a pair of conjugate imaginary

points, and touch a pair of conjugate imaginary lines, one pair is real and one pair

is a pair of conjugate imaginary conies.

In the pro'of of the last theorem let I and m be a pair of conjugate imaginary

lines. Then M' and L" are a pair of conjugate imaginary points as are also L' and

M". Hence the points A, M', L', are the conjugate imaginary points of A', L"; M".

Therefore the result follows as before.

The correlative theorems hold.

Since, all circles pass through the circular points at infinity, a circle which passes

through one real pbint and a pair of conjugate imaginary points, or through two

pairs of conjugate imaginary points, is real. <
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Analytical.

Analytically a real conic is a conic whose equation does not explicitly contain " i".

The points of intersection of suoh a conic with a real straight line are given by a

quadratic equation, which does not explicitly involve "i", and whose roots are there-

fore real, coincident or conjugate imaginary. This definition includes as real conies

such curves as those given by the equations sc
2+y2+ a2= and -| + j^ + 1 = 0, although

there are no real points on the curves in question.

107. Every imaginary conic contains one real or semi-real

quadrangle.

Let S be the given conic and 8' its conjugate imaginary conic. Let

any real line a meet S in P and P', and S' in Q and Q'. Then Q and

Q' are the conjugate imaginary points of P and P', and P, P' and Q,

Q' determine a real involution on a (Art. 8). Similarly the conies

determine real involutions on any other three real lines b, c and d.

(Si-'" ---. B

Aj' \C
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Describe a conic through P and A, B, C, B. It will pass through

P'. Hence through P and P' there are two conies, viz. S and this new

conic, which both pass through a pair of conjugates of the involutions

on b, c and d. Hence these conies coincide and S passes through A, B,

G, D. Therefore S contains a real or semi-real quadrangle.

The following is a particular case of the preceding.

If a conic be generated by pencils with real or with conjugate imaginary points for

•vertices, it contains another pair of real or conjugate imaginary points.

(a) Let the vertices of the projective pencils be real points Si and S2 .

determine on any real straight line s two projective

ranges in which a pair of real, or conjugate imaginary,

points, A, A', correspond to a pair of real, or con-

jugate imaginary, points, A r and A{ (Art. 83 (1)).

Let A and A' be real. Then in the figure P and

Q are real.

Let A .and A' be a pair of conjugate imaginary

points. Then SiA and Si A' are conjugate imaginary

lines as are S2Ai and 52 -4/. Hence P and Q are a

pair of conjugate imaginary points.

-(&) Let the vertices Si and S2 be a pair of conjugate imaginary points. Let A
and A' be a pair of points which correspond to their conjugate imaginary points A x

and A{ (Art. 83 (2)). Then the pair of conjugate imaginary lines SiA and S^A X

meet in a real point P, and the pair of conjugate imaginary lines SiA' and S2Ai meet

in a real point Q. Hence P and Q are real. <

Let A and A' be a pair of points each of which corresponds to the conjugate

imaginary of the other, so that A and Ai, and A' and A x are pairs of conjugate

imaginary points (Art. 83 (2)). Then SiA and S2A{ are conjugate imaginary lines as

are also SiA' and S2Ai. Hence P and Q are a pair of conjugate imaginary points.

Analytical.

The most general form ofthe equation of a conic is

S+iS'=0,

where S=0 and <S"= are the general forms of the equation of a real conic.

Every imaginary conic whose equation is of the form S+iS'=0 has a conjugate

imaginary conic whose equation is S—iS'=0 associated with it. If the first conic

pass through an imaginary point, the second conic passes through the conjugate

imaginary point. The points of intersection of these conies, through which the

real conies S=0 and S'=0 pass, consist in general of either

,(a) Four real points.

(6) Two pairs of conjugate imaginary points,

(c) Two real points and a pair of conjugate imaginary points.

Hence every imaginary conic contains four points, which constitute either a real

quadrangle or a semi-real quadrangle of the first or second kind.

H. i. G. 10



146 The Imaginary in Geometry

Every imaginary conic has a real or semi-real circumscribed quadri-

lateral.

This may be proved by the correlative method to that employed to

prove the first theorem of this article.

108. JYo imaginary conic can have more than one self-conjugate

triangle real or semi-real.

Let ABC and A'B'C be two self-conjugate triangles of the conic.

(a) Let ABC and A'B'C be real. Join AA' to meet BC and BC
in L and K. Then A', K and A, L are pairs of conjugate points with

respect to the conic, and the conic therefore meets AA' in a pair of

points which are real or conjugate imaginary. Similarly it meets BB'

and GC in pairs of points which are real or conjugate imaginary.

Hence the conic is real.

(6). Let ABC and A'B'C be semi-real. Let A and A' be the real

vertices. Then as before the conic meets AA' in a pair of real or con-

jugate imaginary points. Produce BC and EC to meet at _D. Then

K, D and B, C are pairs of conjugate points with respect to the conic,;

also B', C is a pair of conjugate imaginary points. Hence the conic

meets B'C in a pair of real points (Art. 8). Similarly it meets BC in a

pair of real points. Hence the conic is real.

(c) If ABC is real and A'B'C is semi-real, it may be proved as in

case (6) that the conic must be real.

109. Construction of the self-conjugate triangle—real or semi-

real—of an imaginary conic.

Let ABCD be the real or semi-real inscribed quadrangle of the conic

and let abed be the real or semi-real circumscribed quadrilateral. Then
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the diagonal points triangle of ABGD, and the diagonal triangle of abed,

are both real or semi-real self-conjugate triangles of the conic. Hence

they coincide in a real or semi-real triangle EFG. Therefore the

sides of the quadrilateral abed intersect in pairs on the sides of the

triangle EFG. Also by the properties of pole and polar the points of

contact of a, b, c, d are collinear in pairs with the vertices E, F, G of

the triangle EFG.

Let ABGD be real or semi-real of the first kind.

Then the conic is in real harmonic perspective with any vertex of

EFG for centre and the opposite side for axis of harmonic perspective.

Hence A, B, G, D are all real or are conjugate imaginary in pairs,

and a, b, c, d „ „ „ „ „ •

If A, B, G, D are real and a, b, c, d are imaginary the conic is real.

This is also the case if A, Bj G, D are imaginary and a, b, c, d are real

(Art. 106).

Therefore, if the inscribed quadrangle is real or semi-real of the first

kind, the bircumscribed quadrilateral is real or semi-real of the first kind.

Let ABGD be semi-real of the second kind.

Then the triangle EFG is semi-real. Hence the quadrilateral abed

has a semi-real diagonal triangle, and therefore it must be semi-real of

the second kind.

Therefore the inscribed quadrangle and the circumscribed quadrilateral

of an imaginary conic are always of the same kind, real, semi-real of the

first kind, or semi-real of the second land.

The conic cannot pass through any real points other than A,B,G, D,

or through any pairs of conjugate imaginary points other than A, B,

G, D, for if it did so it would be a real conic.

Likewise the conic cannot touch any real lines other than a, b, c, d,

or any pairs of conjugate imaginary lines other than a, b, c, d, for if it

did so it would be a real conic.

Hence the tangents at A, B, G, D and the points of contact of a, b,

c, d are all imaginary. The tangents at A, B, G, D intersect in pairs

of imaginary points in the sides of the triangle EFG and the points of

contact of a, b, c, d are collinear in pairs with E, F, and G.

It should be noticed that the real or semi-real quadrangle, and

quadrilateral of an imaginary conic are the common inscribed quadrangle

and the common circumscribed quadrilateral of the conic and its conju-

gate imaginary conic.

10—2
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110. Geometrical origin of an imaginary conic.

Any imaginary conic can be described as the conic which circumscribes

a real or semi-real quadrangle and touches either a real line or an

imaginary line. In the latter case the quadrangle is semi-real of the

second kind and the real point on the imaginary line touched by the conic

lies on a side of the diagonal points triangle of the quadrangle.

Correlatively

:

Any imaginary conic can be described as the conic which is inscribed

in a real or semi-real quadrilateral and passes through either a real

point, or an imaginary point. In the latter case the quadrilateral is

semi-real of the second kind and the real line through the imaginary

point, through which the conic is described, passes through a vertex of the

diagonal triangle of the quadrilateral.

These results follow from the last article.

Through the vertices of a real or semi-real quadrangle two conies can

be described to touch a real line. If these conies are imaginary they touch

the real line at a pair of conjugate imaginary points and are therefore

conjugate imaginary conies.

This result follows from Desargues' theorem.

Conies circumscribing a real or semi-real quadrangle so as to touch a

given imaginary line.

Two conies can be described through the vertices of a real or semi-

real quadrangle ABGD to touch an imaginary line I. The points of

contact are the double points of the involution determined by the sides

of the quadrangle ABCD on I. Let these points be E and F. Take

I' the conjugate imaginary line of I. A conic through A, B, C, D may
be described to touch this line at either of two points E' and F'. The
points E, F, E', F' are two pairs of conjugate imaginary points. Hence

the conic through A, B, C, D and E will be the conjugate imaginary

conic of one of the conies through A,B,C,D and E' or F'. Similarly the

conic through- .4, B, C, D and F will be the conjugate of the other one

of these conies.

Similar results hold for the correlative construction of an imaginary

conic.

111. Real conjugate points with respect to an imaginary conic.

Every real point in the plane of an imaginary conic has one real

conjugate point with respect to the conic.
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Let A be any real point. Describe a system of real conies through

the vertices of the real or semi-real quadrangle contained by the given

imaginary conic. Let the polars of A with respect to two of these real

conies meet at A'. Then A and A' are real and are the double points

of the involution determined on AA' by the conies described through

the vertices of the quadrangle. Hence by Desargues' theorem they are

conjugate points with respect to all conies—including the given imaginary

conic—which pass through the vertices of the quadrangle.

The point A' is the one real point on the imaginary polar of A. It

can be constructed as the point of intersection of the polars of A with

respect to the given imaginary conic and its conjugate imaginary conic.
i

Correlatively

:

Every real line in the plane of an imaginary conic has one real

conjugate line with respect to this conic.

It follows from the above that the points of intersection of the real

line AA' with the imaginary conic are a pair of conjugate points of a

real involution. This involution is that determined on the line by the

real or semi-real quadrangle of the conic.

The locus of the real conjugates of real points on a given real straight

line with respect to an imaginary conic, is a conic (a) which passes

through the vertices of the diagonal points triangle of the real or semi-real

inscribed,quadrangle of the conic, (b) which meets the sides of the quadrangle

in six points which are the harmonic conjugates of the points, where the

sides meet the given line, with respect to the vertices, and (c) which meets

the given line in the double points of the involution determined on the line

by the quadrangle. (Eleven points locus.)

Describe two real conies through the vertices of the real or semi-real

inscribed quadrangle of the imaginary conic. The real conjugates with

respect to. the imaginary conic of real points on the given line are the

common conjugates of these same points with respect to the two real

conies. Hence the result follows from Art. [117 (2)].

In the proof in question two imaginary conies could have been

substituted for the two real conies. Hence it follows that the Ipcus—

which is the eleven points locus—is not only the locus—as proved in Art.

[117 (2)]

—

of the real poles of the given line with respect to real conies of

the system, but also that the imaginary points- on the locus are the poles

of the real line with respect to imaginary conies of the system.
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Cremona transformation.

The fact that every real point in the plane of an imaginary conic has one and

only one real conjugate point with respect to the conic affords a method of

deducing geometrical theorems from each other. The points are said to be derived

from each other by what is termed the Cremona transformation.

If A' be the real conjugate of A, the relationship between A and A' is reciprocal.

If A moves along a straight line a, the conjugate point A' describes a conic a',

which passes through three fixed points E, F, G, which are the vertices of the real

or semi-real self-conjugate triangle of the imaginary conic. Conversely if A describes

a conic through E, F, G the conjugate point A' describes a straight line. If a

corresponds to a' and b to V, the point ab corresponds to the point a'V. To a

straight line through any one of the points E, F, G corresponds a straight line

through the same point together with the opposite side ofi the triangle EFG
(Art. [105]). The anharmonic ratio of any four points on a is equal to the

anharmonic ratio of the four corresponding points on a' (Art. [117 (2)]). Hence, if six

points on a form an involution, the corresponding six points on a' likewise form an

involution.

It will be convenient to term conies which pass through the same three points,

'

three point conies, and conies which pass through the same four points, four point

conies.

^_ The method may be illustrated as follows. Consider Desargues' theorem and

let a', b', d be three four point conies. Take three of the points of intersection of

these conies as E, F,. G. Then to a', V, d correspond three straight lines a, b, a

which meet at a point, since a', V, d intersect in a fourth point. Hence since

a', V, d determine an involution on any transversal s
1

, the corresponding points,

viz. the points of intersection of a, 5, c with the conic s, form an involution.

Hence the theorem which corresponds to Desargues' theorem is to the effect that

three concurrent straight lines determine an involution on a conic.

From the involution property of the quadrilateral it follows that if four three

point conies intersect in pairs in A, A', B, B, C, C" the connectors of these points to

any one of the three points of intersection of the conies form an involution pencil.

From Brianchon's theorem it follows that if six three point conies be described

to touch a given straight line, three of the three point conies, which can be drawn

through pairs of points of intersection of these six conies, meet at a point.

If a pair of the points E, F, G are the critical points the results obtained by this

method are similaT to those obtained by inversion.

Generally in this method (1) to a conic corresponds a quartic curve through

E, F, G, having nodes at these points, (2) to a conic through one of the points

E, F, G corresponds a cubic curve through E, F, G having a node at one of these

points, (3) to a conic through two of the points E, F, G corresponds a conic

passing through two of the vertices of the triangle, (4) to a conic through the

three points E, F, G corresponds a straight line.
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112. Harmonic locus of two imaginary conies.

As in Art. [133] it may be proved that the envelope of a chord which

is cut by two imaginary conies in pairs of points, which are
,
harmonic

conjugates, is a conic, which touches the eight tangents, which can be drawn

to the two conies at their four points of intersection. This conic is

generally imaginary.

The correlative and also the converse theorems can also be proved

as in Art. [133].

The envelope of chords cut harmonically by a conic and its conjugate

imaginary curve is a real conic, which touches the eight tangents which

can be drawn to these curves at their four points of intersection.

In this case the four points of intersection form a real or semi-real

quadrangle ABCD.

(1) Let A, B, C, D be real. The tangents to the two conies at these

points, being" tangents to conjugate imaginary curves at the same real

points on the curves, are pairs of conjugate imaginary lines. Thus, if a

and a' be the tangents to the two conies at A, they are conjugate

imaginary lines. Hence the harmonic locus of the conies touches four

pairs of conjugate imaginary lines and is therefore real. (Art. 106.)

(2) Let A and B be real and G and D a pair of conjugate imaginary

points. '-The tangents a and a' at A and the tangents b and b' at B to

the two conies are two pairs of conjugate imaginary lines. Let c and c'

be the tangents at G, and d and d' the tangents at D. Then as C is an

imaginary point the lines c and c' are not conjugate imaginary lines.

Consider however c and d'. They are tangents to conjugate imaginary

curves at conjugate imaginary points and are therefore conjugate

imaginary lines. Similarly c' and d are conjugate imaginary lines.

Hence in this case also the harmonic locus touches four pairs of con-

jugate imaginary lines and is therefore a real conic. (Art. 106.) '

(3) Let A and B and also G and B be pairs of conjugate imaginary

points. Then as in the last case a and b', a' and b, c and d', and c' and

d, are pairs of conjugate imaginary lines and as they are tangents to the

harmonic locus it is a real conic. (Art. 106.)

Hence the harmonic locus of two conjugate imaginary conies is a

real conic. For its equation see Art. 114.

Similarly the correlative locus is a real conic.
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113. Analytical.

Let S=0, S'—O, be the equations of two real conies, 2=0, 2'= their tangential

equations, and *=0 the tangential equation of the envelope of lines cut harmoni-

cally by the conies.

Consider the conic S+iS'= 0. Its tangential equation is 2-2' + i'*=0. Here

the conic contains a real or semi-real quadrangte given by S=0 and <S"= 0, and has

likewise a real or semi-real circumscribed quadrilateral whose sides are given by

2-2'=0, *=0.

The fact that *=0 is one of these equations, shows that the real or conjugate

imaginary tangents are tangents to the harmonic locus of S=0, and *S"= 0.

Consider the conic 2+t'2'=0. Its ordinary equation is AS- A'S' + iF=0, where

F=0 is the locus of points from which tangents to 2= and 2'=0 form a harmonic

pencil. •

Hence the conic has a real or semi-real circumscribed quadrilateral the sides of

which are given by 2= and 2'=0 and has likewise a real or semi-real inscribed

quadrangle whose vertices are given by

AS-A'S'=0, F=0.

The locus of points the tangents from which to the conies 2= and 2'=0 form

a harmonic pencil passes through these points.

Let the equation of the conic be

S+iS' = Q (a)

Consider the two real conies

£=0,

and S' = 0, \

when these conies intersect in four real points or two pairs of conjugate imaginary

points. The conies then have a real self-conjugate triangle. Hence S and jS" may
be written in the form :

'

S = au2 + bv2 + cw2
,

S'= a'u2+ b!'v
2+ c'w2

,

where u, o and w are linear functions of x and y.

Hence the equation (as) may be written

(a + las') u2+ (6+ ib') v2+ (c+ id) w2= 0,

or replacing u, v and w by x, y, z, as

(a + ia!) x2 + (b + ib') y
2+ (c+ ic') z2= (1)

The vertices of the inscribed quadrangle of this conic are given as the points of

intersection of the real conies,

ax2 + by2 +C22 =0, (2)

a'x2 + b'y2 + c'z2= (3)

' The tangential equation of (1) is

I
2 m2 n2

as + ios- b+tb c + ic v
'

v a'+ a' b' + b 2 N ' c2+ c 2 v '
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Hence the circumscribed quadrilateral is given hy

1\m^+°^o, W
a?+ a'2 b2+ b'

2 c2 + c'
2

j / ^
2

7/ ™2
, n2

r. m\and **+&+V F+F +,f
?+F-°

(
±

(0

(i) The values of x2
, y

2 and z2 obtained from (2) and (3) are the same as

the values of -=-

—

^, T,—,,,, -=—T. obtained from (6) and (7). Hence, if the
a2+a 2 ' b2 + b 2 c2+ e 2 w

values of x, y, z are real, the values of I, m, n will be real Hence, if the inscribed

quadrangle is real, the circumscribed quadrilateral is real, and if the inscribed

quadrangle is semi-real of the -first kind the circumscribed quadrilateral is also

semi-real of the first kind (cf. Art. 109).

(ii) Consider the polar reciprocal of (2) with regard to the conic

\Ja2+ a'2 x2 + iJW+V2
y
2+^J+d2 z2= 0, (8)

which is always real.

The line lx+ my+nz = touches (2) if

? +£ +-= » (9)
a b c

The polar of x', y', z
1 with respect to (8) is

\/a2+ a'2 xx'+ \JW+V2 yy
1+ «Jc

2 + c'
2 zz'= 0.

Substituting in (9) the locus of x'y'z
1
is

r'2 i/2 z'2

(cfi+a'2
) — +(62+ b'

2
)
\- + (c2+ d2

) - = 0.
v 'a b c

The x, y, z equation of (6) is

<a2+ a'2) -+(b2+ b'2
)V + (c2+ d2

)
-=0.

V 'a b x
c

Hence the polar reciprocal of (2) with respect to (8) is (6).

Similarly „ „ (3) „ „ (8) is (7).

Hence the polars of the vertices of the quadrangle with respect to (8) are sides

of the quadrilateral. This confirms (i).

(iii) The polar reciprocal of (1) with respect to (8) is

a2 + a'2 .
,
b2+b'2

„ ,
c2 + c'

2
2

.

a+ ia b+ib " c+ic

or (a - ia') x2+ (b - iV) y
2+ (c- id) z2= 0.

This is the conjugate imaginary curve of (1). Hence the polpr reciprocal of (1)

wit\i respect to (8) is its conjugate imaginary curve.

114. Harmonic and anharmonic loci of two conies.

The equation of the envelope of a line, which is cut in constant anharmonic

ratio by two conies S=0 and *S"= 0, can be easily obtained as follows :

All conies of the system S+\S'= are cut by a transversal lx+my+ns=0

in an involution two pairs of conjugate points of which A, A' and B, B are given as
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the points of intersection of the line lx+ my+nz=0 with the conies S=0 and

S'= Q.

The double points of this involution are given by the values of X, viz. X
x
and X2 ,

'which are obtained from the tangential equation of <S+X»S"=0, i.e. from

'2 +X*+X22'=0,

$

and XiX 2= |;.

But by example (6), Art. 27, if (AA'BB')= n,

Therefore the equatioia of the anharmonic locus is

1 A+/»Y_(>»+>«)
1

-G3 22'.

The harmonic locus is * = 0, for l+/i=0 in this case.

The equation of the common points is *2= 422', for fi= in this case.

Correlatively the equation of the locus of points, the tangents from which form

a pencil of constant anharmonic ratio fi, is

The corresponding harmonic locus is F=0, for l+fi= in this case.

The equation of the common tangents is F2 = 4,AA'SS', for fi= in this case.

In the preceding 1

*= 2 (6c'+ cb' - %ff) P = la-P (suppose),

and F= 2(BC' + OB' - 2FF') x^-sA jx2 (suppose).

Consider the two conies

S+iS' = 0, and S-iS'= (1)

The tangential equations of these conies are

2-2'+ i'*=0 and 2-2'-i'*= 0.

The equations *= and ^=0 of the preceding become in this case

2(2+ 2') = 0, (2)

and 2(AS+A'S'-F+&1 )
= 0,

where *!= is the x, y, z equation of *= 0.

Hence the equations of the anharmonic loci of the conies (1) are respectively

(2 +27=(-}^)
2

{(2-2')2 +n '.....(3)

and. (A5+A'^"- JF+*1
)2=^l±^Y{(A-e')2+(e-A') 2}(*2 +/S"2) (4)
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If n—O (3) becomes 422'= *2
, which is the equation previously obtained for the

points of intersection of the conies.

The x, y, z equation of 2 (2+ 2') = is 2(aS+A'S' + F)=0.

Consider the two conies

2+i2'=0 and 2-i'2'= 0.

The x, y, z equations of these conies are

AS-A'S' +iF=0 and AS-A'S'-iF=0.

Their *=0 and F=Q equations become respectively

Ai2+ A'22'-AA't- +Fi

(A-e')*+(e-A')2
•

2(SA+S'A')=0,

where Fi= is -the tangential equation of F=0.

Hence their anharmonic loci are

(A22+ A'22'-AA'*+ i?'1 )
2 =(^

X
Y{(A-e')2 + (e-A')2

}
2
(2

2+ 2'3
) ) (1)

(SA+S'Ay=(j^\
2

{(AS- A'Sif+F"} (2)

If fi= equation (2) gives the same equation of the common tangents as that

previously obtained.

Hence it follows that the anharmonic loci of two conjugate imaginary conies are

real conies.

115. Anharmonic loci of two conjugate imaginary conies.

These may also be obtained as follows :

Consider the conies S=0 and S'=0.

The points of intersection of the line lx+my+nz=0 with the first of these are

given by

(cl2+an?-2gln)x2+ 2 (clm—fln-gmn+ hn2)xy+ (em2+ bn2— '2fmn)yi= (1)

with a similar equation (2) for the points of intersection of the line with the second

conic.

But if X be one of the anharmonic ratios of the points given by

a1x2 + 2h
1
x+b1=0 and a1'x

2+ 2h1'x+b1
'= 0,

by example (3) Art. [14]

(UA' ~ afii ~ «i'6i)
2= 4 (j±£) * (A,

2 - o,6,) (A,'2- <*,'&,').

Now, if the values from (1) and (2) are substituted in this equation and 2, 2', *
are the tangential equations of the conies and their harmonic locus, this becomes at

once

*2=4(S)
222 '

(3)
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Consider the conies S+iS'—O and S-iS'= 0.

Their tangential equations are

2-2'+i*=0

and 2-2'-i*=0,

and their harmonic locus is

2 + 2'= 0.

Hence from (3) their anharmonic locus is the real curve

(2+ 2')2=(^)
2

{(2-2') 2+*2
}.

116. The locus of real points at which a pair of conjugate imaginary

points A and A' and a pair of imaginary points B and C subtend a

pencil, whose anharmonic ratio is real, is a cubic curve.

Let B and C be the conjugate imaginary points of B and C. Let

P be a real point on the locus.

' Then if (P . AA'BO) =K + iK'
,
(P . A'AB'C) = K- iK'. <

Therefore since K' = 0,

(P . AA'BG) = (P . A'AB'C).

Hence the pencil subtended at P by the three pairs of points is an

involution pencil and the required locus is the cubic obtained in Art.

[142 (3)], which passes through the six points A, A', B, B', C, C.

(1) If the chords AA', BB', CC are concurrent at the six points

A, A', B, B', C.C lie on a conic and the cubic breaks up into this conic

and the polar of with respect to the conic. (See Art. [98].)

(2) In the general case the construction for certain points on the

cubic is given in Art. [142 (3)].

In case (1) the points subtend at a pencil whose anharmonic ratio

may be 0, 1, or x , and in case (2) the same applies to points on the lines

AA', BB, CC in all cases, since two of the four rays coincide.

In the proof of the involution cubic given in Art. [143 (3)] the three

pairs of points A, A' ; B, B' ; G, C are assumed to be real. From the

preceding it follows that this need not be the case. Any of the pairs

of points may be pairs of conjugate imaginary points. In case (1) the

six points, whether real or conjugate imaginary, subtend an involution

pencil at real points on the polar of 0.
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This result may be proved analytically as follows

:

Take AA' for axis of x and let the coordinates of A and' A' be ia! and — ia'.

Let the coordinates of B and C be b + ib', c+ic' and k + ik
1

, l+il' respectively.

Then the connectors of the points A, A', B, C to any point P {x, y) meet the

axis of x in points given by

(y-e)Z-CJ7 (y-c)X + c'X {y-l)X1 -l'X{ Ay-l)X{ + l'X,

where X=by- ex, X'= 6'y— c'a;, Xx
= -£s?, X{=Ky — J!x.

The condition that the anharmonic ratio of a range should be real is given in

Art. 24. The relation in this case can be reduced to the form

1
(2
,_ C)S +C'! (y_Z)»+ f2

(y-c)X-e'X' {jj-l)Xx -VX{

a' 2 X 2+ X'2 Zj2+AY2

= 0.

In this determinant, if y is made equal to zero, the result is zero. Hence y is a

factor and the curve is a cubic.

117. To find the equation of the conic, points on which subtend a pencil of

anharmonic ratio K+iK' at any fowr given points.

Let the coordinates of the four given points A, B, C, D be xxyx ; x2y2 ; x^;
xtyt respectively.

The connector of the point x^yi to the point P (xy) meets the axis of # in a

point X,, at a distance
*#—^,from the origin.

Substituting this and the similar values in the usual expression for au anharmonic

ratio and equating the result to K+iK', the equation of the conic is found to be

--K+iK'.

If the four points A, B, C, D are real this result is at once obtained from the

fact that

x
, y
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118. Theorem. The anharmonic ratio of the four points of

intersection of the conies S = and S' = at any point of the conic

S— XjS'=0 is —"—- :
-=?—=-, where Klt K2 , K3 are the roots of the

jti-2 A. JUL 2 -Kg

discriminating cubic of S— \S' = and the quantities Kx , Kit Ks and X

are interchanged according to the order in which the points of intersection

of the conic are taken in the anharmonic ratio.

Let S - K.S' -0,5-K2S' = 0, S-K3 S' = determine respectively

the pairs of lines P^, PSP, ; P.P,, P^P, ; P^, P2PS . Let be any

point in the plane and let S — \S' = be the conic through 0, Plt P2 ,

P3 , Pt . Then the equations of the polars of with respect to the three

pairs of lines and this conic are of the form P —K1P'= 0, P —K2P' — 0,

P —KSP' = 0, P — \P' = 0, the last being the equation of the tangent

at to the conic.

Now the polars of two fixed points with respect to four conies through

four fixed points form two projective pencils. Hence the pencils formed

by the polars of any two points with respect to the same four conies of

the system have the same anharmonic ratios. But the polars of P2

with respect to the three pairs of lines and the conic considered are

P^Pz, P,P3 , P.Pi and PXP^ the tangent at P, to the conic S-\8' = 0.

But (Px . PzPzPtPJ = (0 . P^PsPiP,) by the anharmonic property of

the conic. Hence (0 . PzPsPtP]) equals the anharmonic ratio of the

polars of 0. That is to say it is equal to

K2
— X K2

— fl)

The author is indebted to Mr S. G. Soal for this proof. The result

may also be proved analytically for the imaginary conic by means of

Art. 117.

119. The theorem proved in the last article affords an easy method of

distinguishing between real arid imaginary conies which pass through the four

vertices of a real or semi-real quadrangle.

Consider the conic S— A/S"=0 and let the four points of intersection of the conies

£=0 and S'= be real or two pairs of conjugate imaginary points. In this case

2Ti , K%, K3 are all real.

(i) Hence if the conic is real the anharmonic ratio of four real points or of two
pairs of conjugate imaginary points on the curve is real : if the conic is imaginary

the anharmonic ratio of the four real points on the curve or of the two pairs of

conjugate imaginary points on the curve is imaginary.

Let the four points of intersection of the conies £=0 and (S'= be two real

points C and D and a pair of conjugate imaginary points A and A'. In this case
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.STi and A~2 , two of the roots of the discriminating cubic, are a pair of conjugate

imaginary quantities a + ia', and a -id, while the third root Z3 is real.

Hence

(AA'CB) =
a + ia

'rf :

?+-**=* = K+-iK' (suppose).
a —ta-Ks a-iu'-\ v rr

'

Let X be real, then

(A'ACD)=^m,=K-iKl

, .-.Kt+K'^l.

Let X be •' i," then (A'ACD)+ K-iK' and the relation Ki+ E'i= l does not hold.

(ii) Hence if the conic is real an anharmonic ratio of two real points (C and D)
and a pair of conjugate imaginary points {A, A') on the curve is K+iK' where

K 2+ K'2= \ ; if the conic is imaginary the anharmonic ratio of the two real points

(C, -D) and the two conjugate imaginary points (A and A') on the curve is K+iK'
where ^2 + /r2

=t=l.

The only case in which the anharmonic ratio of the points of intersection of S=0
and <S'=0 at any point of the imaginary conic S+iS'=0 can be real is when two of
the roots Kit K2 , Ks are equal, in which case the anharmonic ratio is 1, 0, or oo

.

If a conic passes through a real or semi-real quadrangle and through a real

point, the curve is real, for the equation to determine \does npt involve "i."

If a conic passes through a real or semi-real quadrangle and through an imaginary

point, the conic is real or imaginary according as it passes or does not pass through

the conjugate imaginary point. The condition necessary and sufficient is that the

hexagon formed by the six points is a Pascal hexagon. (See Art. 98.)

A real conic can always be described through three pairs of conjugate imaginary

points the real connectors of which are concurrent, for the Pascal line of the hexagon
so formed is the polar of the point of intersection of the connectors.

(iii) Generally the anharmonic ratio of a pair o£ conjugate imaginary points

(A, A') and of two imaginary points (B, C) on a real conic is imaginary. If, how-
ever, the real chords through A, B, C are concurrent at a point the anharmonic
ratio is real.

Let B' and C" be imaginary conjugates of B and C. Then if

(C'.AA'B0)=K+iK, {C. A'ABC')=K-iK'.

Since B and C" are on the conic

(AA'BC)=K+iK' and (A'AB'C') = K-iK'.

If AA', BB', CC are concurrent the six points form an involution on the conic

a,nd (AA'BC)= (A'ABC).

.
•
. K +UC=K-iK'. .. K'= 0.

(iv) Generally the anharmonic ratio of four imaginary points A, B, C D on a
real conic is imaginary. If however the real chords through the points are con-

current at a point the anharmonic ratio is real.

Let A', B, C, J)
1

be the conjugate imaginary points of A, B, C, D. They are on
the curve.
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Hence if (ABCD)= K+iK', {A'B'G'D) = K-iK'.

But {ABCD) = (A'B'C'iy).

Hence K+iE' = K-iIC, -. Ar'=0.

In case (iii) when the chords are concurrent the four points -subtend a pencil of

an anharmonic ratio 0, 1, or oo at 0, and a pencil of real anharmonic ratio at any

real point on the polar of 0. The latter follows from the fact that the six points

A, A', B, B', 0, C" subtend an involution at such a point (Art. 116).

In case (iv) when the chords are concurrent the four points subtend a pencil of

real anharmonic ratio at and also a pencil of real anharmonic ratio at any real

point on the polar of 0. The latter follows from the fact that the six points A, A',

B, B', C, C subtend an involution at such a point (Art. 116).

(v) Generally at any point on a real conic through the points the anharmonic

ratio of

(1) Three real points and an imaginary point

;

(2) Two real points and two imaginary points
;

(3) One real point and three imaginary points
;

(4) One real point, a pair of conjugate imaginary points and an imaginary

point

is imaginary.

In case (3) if the real lines through the three imaginary points (A, B, C) are

concurrent at and meet the conic again in A', B', C", their conjugate imaginary

points, join to D to meet the conic again in a real point D1

. If D and D are

distinct the anharmonic ratio is imaginary, but if D and D' coincide, then

{ABCD)= {A ,EC'D).

.-. K+iK'=K-iK'. : A"=0.

Hence the anharmonic ratio is real.

Similarly the anharmonic ratio in case (4) may under certain circumstances be

real.

120. Construction of conies from real data.

If a conic is given by the fact that it either passes through real

points or touches real straight lines, it is easily possible to distinguish

between the cases when this conic is real and when it is imaginary.

Using the notation of Art. [144] and denoting a real conic by 1 and an

imaginary conic by 1. i, the results are as follows

:

(1) [:•:] =1, (4) [:///] = 4 or 4. i,

(2) [::/]=2or2.i, (5) [////] = 2 or 2. i,

(3) [•///] = 4 or 4. i, (6) [/////]= 1.

In case (2) the conic is real or imaginary according as the double points

of the involution determined by the four points on the line are real or

imaginary.
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If in any position of the line the double points are real and the line

be rotated round a fixed point on it, till it passes through one of the

four fixed points, A, the double points in the new position coincide with

A and the two conies are coincident. After the line has passed through

A, the double points become imaginary and the two conies are a pair of

conjugate imaginary conies.

In case (3) the four conies are either all real or are two pairs of

conjugate imaginary conies. By Art. [113 (E)] the points of contact of

the conies with the two straight lines are the intersections of these lines

with the connectors of two pairs of double points of two involutions

situated on real lines. If the four double points are real the inter-

sections of their connectors with the given lines are real and therefore

the four conies are real. If one pair of these double points (which form

a ,real or semi-real quadrangle) or both pairs, are pairs of conjugate

imaginary points, the points of contact of the conies with the two lines

are imaginary and the conies are two pairs of conjugate imaginary conies.

This may be proved as follows. Let the given lines be p and p' and

the two pairs of double points conjugate imaginary points A, A' and B, B.

Then AB and A'B" are a pair of conjugate imaginary lines and they

meet p and p in two pairs of conjugate imaginary points. Hence one

pair of the given conies are a pair of conjugate imaginary conies.

Similarly, since AB' and BA' are a pair of conjugate imaginary lines,

the other pair of conies are a pair of conjugate imaginary conies.

If A and A' be a pair of real points, say D and E, and B and B' be

a pair of conjugate imaginary points, the lines DB, T)B' are a pair of

conjugate imaginary lines as are also the lines EB and EB': Hence the

same result follows in this case.

121. In the statement Art. 120 a pair of conjugate imaginary

points may be substituted for a pair of real points, or a pair of conjugate

imaginary lines for a pair of real lines, in the determining elements

(see Art. 106), except (a) that in (2), if the four points are two pairs

of conjugate imaginary points, the conies must be real (Art. 19, case 11)

with a similar alteration in (5) ; and (6) that in (3), if the three points

are real and the tangents are conjugate imaginary lines, the conies are

real as the double points of the involutions are real, and, if of the three

points two are conjugate imaginary, then a pair of the conies are real

and a pair are conjugate imaginary conies, with similar alterations

in (4). [See Art. 106.]

H. I. G. 11
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122. Foci of an imaginary conic.

If the equation of the conic be

ax2+ Ihxy+ by2+ 2gx+ 2fy+

c

= 0,

it can be easily proved that the coordinates of the foci (a, #) are given by the

equations

ns =/3s=
( _&)^. and a^=h~,

ft w
after the origin has been transferred to the point ~, -^.

It can also be proved that, if T be the sum of the measures
N
of the distances of

any point on the curve from a pair of conjugate foci,

y2= 2{+ x/(a-6)
2+4A2 -(a+ 6)}^r2 '

where the + sign is to be taken according to the pair of conjugate foci considered.

Hence the sum of the measures of any point on an imaginary conic from a pair of

conjugate foci is constant.

123. Every imaginary conic contains a real or semi-real quadrangle which by a

real projection (Art. 86) may be projected into a square ABOD, real, semi-real of

the first kind, or semi-real of the second kind. Take the real diagonals of this

square, OA and OB, as axes of x and y respectively.

Then in the three cases the coordinates of the vertices are respectively

:

ABC D
1st case a, 0, a - a, , 0, - a '

2nd case ia, 0, ia - ia, 0, - ia

3rd case a, 0, ia —a,0 0, ia

Hence if X be one of the anharmonic ratios, which any point on the curve

subtends at these points, the equations of the conic in the three cases are from

Art. 117, respectively:

(1) x*+y2 -a?=2xy—--,

(2) #2+jr2+a2=2^£±i,

(3) -#2 +i/2+a2= 2iOT^±^. Cf. Art. 137.
A— 1 "

124. Foci of the conies into which a pair of conjugate imaginary conies

can be projected.

In cases (1) and (2) of the last article the conic and its conjugate imaginary

conic have their axes in the same real directions and. have a common real centre

(Art. 86). It can be proved geometrically or analytically .that the eight foci of the

two conies are four pairs of conjugate imaginary points^ which lie four on each of the

two real axes.

If fij and Q2 be the critical points and the tangents from Qj to the two conies

are au ai, and 6^ 6/, and from Q2 to the two conies a2 > <h' and 62 > &s'» then the
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pairs of tangents which are conjugate imaginary lines may be taken as ax and 62 ,

a{ and b2', ch and bh a{ and b{. Consider the quadrilateral ax a{b2b{. The points

ai&2 and a{b£ are real points, also axa{ gives the conjugate imaginary point to

62 62'- Hence the two diagonals of the quadrilateral, which are at a finite distance,

are real. They may be easily shown to be at right angles, and their point of inter-

section is the centre of the two conies. There is a second quadrilateral Ogdfe'&i&i'

with similar properties.

125. Real conies having double contact at a pair of conjugate imaginary
points.

Consider the real conies S=0 and S-\a2 =0, where a is a linear expression in

x and y.

If the line a=0 meets the conic S=0 in a pair of conjugate imaginary points the

conies have double contact at these points.

Take a line through the centre parallel to a= as axis of y and its conjugate

diameter with respect to S=0 for axis of x. The equations of the two conies will

then be of the form
ax*+ by*-1=0,

and aa?+ byi -\-k{x-lf=Q.

These conies can be graphed for the pair of conjugate diameters, which are the

axes of x and y, and it will be found that their imaginary branches touch.

The properties of conies having double contact at real points, which were proved

in Art. [130], are true also for conies having double contact at pairs of conjugate

imaginary points.

In Art. [134] it was proved that the harmonic locus of a conic and a pair of

points was related to the conic in such a way that if a simple quadrilateral was

circumscribed to the conic and inscribed in the harmonic locus, an infinite number

of quadrilaterals could be similarly described.

If the pair of points are on the conic, the harmonic locus of these points and the

conic has double contact with the conic at these points. Hence given a real conic

and a real line, another conic can be described to have double contact with the first

conie at the points where it is met by the line, which also possesses the property

that an infinite number of simple quadrilaterals can be circumscribed to the first

conic and inscribed in the latter.

This should be compared with the property of conies having double contact

proved in Art. [131]. The conies in question possess the remarkable property that

not only do the sides of the inscribed quadrilateral meet in two points on the chord

of contact, but the connectors of their points of contact with the other conic also

pass through these same points.

The properties of conies having double contact at a pair of conjugate imaginary

points may be obtained at once from the fact that, in a real plane perspective, two

such conies may be made to correspond to a pair of concentric circles.

11—2



CHAPTER VI

TRACING OF CONICS AND STRAIGHT LINES

126. Graphic representation of the imaginary.

Although in the preceding pages of this book the term " graph of an

imaginary point" has been used, and in certain places—especially in

Ghapter II—diagrams of imaginary branches of curves have been given,

such use of " graphs " and figures is not essential, and these have been

used rather as a convenient way of expressing what was meant or of

explaining and illustrating results, than because their use was essential.

The graphical representation of the imaginary must always, .from the

nature of the original hypothesis, be difficult and defective. Still some

representation is felt to be better than none—as long as the limitations

of the method employed are clearly understood. In this chapter, for this

reason, the representation of imaginary and complex points by means of

what were termed in Chapter II Poncelet figures will be more fully

considered.

In Chapter I, for convenience the graph of an imaginary point on a

fixed straight line at a distance il from a fixed point

on the line was defined as being the point at a

distance I from the point 0. Hence, to obtain a

representation of a point P, whose position is deter-

mined by an imaginary.length ix measured parallel

to a real axis of x and a real length y measured

parallel to a real axis of y, it is natural to measure

a length ON along OX equal to x' and a length

NP' equal to y' and parallel to Y, and thereby to obtain a point P',

which represents P graphically.

A point Q, referred to the same axes of coordinates and determined

by coordinates x", iy", may be represented in the same way, remem-
bering that in this case distances parallel to the axis of y are imaginary

and those parallel to the axis of x are real. This is possible, but
there are certain advantages in modifying somewhat this system of

representation.

In this modification—the advantages of which have already been

apparent in Arts. 72 and 77—with the usual system of real axes, the
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positive imaginary axis of x is taken along OX and the negative

imaginary axis' of x along OX' , but the positive imaginary axis of 'y

is taken along OT' and the negative imaginary axis of y along OY.

This system of coordinates will be adopted generally in this chapter.

Representation of imaginary straight lines through the origin.

30 •

Consider the straight line ax + iby = 0. Here —— ='-. Hence the° —ty a'

line may be represented by OP in the figure. But the equation of the

line may be written iax — by = 0. Hence — = - . Therefore in this case

also the line is represented in the figure by OP. Similarly the line

ax — iby = has the same graph in whichever way its equation is

written.

t

127. Tracing of real conies.

If imaginary and complex points are taken into account in tracing

a conic, xt + ix2 and yx + iy2 may be substituted in the equation of the,

curve for * and y,- where xu x^,yx , y2 are real. If real and imaginary

parts of the resulting equation are equated to zero, two equations

connecting the four quantities xu xit yx , y2 are obtained. Arbitrary

values may be given to any two of these four quantities and the -values

of the remaining two may be obtained from the equations. Hence it

follows that the equation represents graphically not a* single Curve but

a system of curves.



166 The Imaginary in Geometry

(a) To trace the curve

a?

r = 1.

All points on the curve are obtained by giving to x the value xt + ix2 ,

where X,. and x2 can have all real values from — oo to + oo . No two

points thus obtained can coincide, for their x coordinates will in all

cases be different.
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of the form iy, but such a branch may exist. When it exists, it may be

termed the (i, i) branch.

(4) Give x2 all values from — qo to + oo . The corresponding values

of y are real and the corresponding branch of the curve is that marked

{i, 1) in the figure. For this part of the curve the coordinates are ix

Vs x*
and y. It is the real part of the curve j- = 1. It may be termed

the (i, 1) branch.

The above may be called the parent curve, which consists of a real

or (1, 1) branch and a purely imaginary or (i, i) branch, together with a

(1, i) branch and an (i, 1) branch.

It would be possible to determine further points on the curve by

giving a constant value to x2 . In this case it would be necessary to

find the corresponding values of y for all real values of x
x
in the equation

fa + wj' f ,

a? ^b* '

x%
I]

2

where x2 is constant. This is the same conic as—
; + tj — 1=0 with its

a2 o2

centre displaced along the axis of x through a negative distance ixa .

Such a curve however is an imaginary conic, and conjugate imaginary

points are not as a general rule situated on the locus. Hence it is

more satisfactory to find the further imaginary points on the curve by

another method.

Two conjugate imaginary points x1 + ix2 , y± + iy2 and x1
— ix2 , y± — iy.z

lie on the real straight line = -—— ; Their mean point is the
x% y2

real point x1} y±, which is on this straight line. The equation of the

tangent at either of the points, where the line joining the origin to the

point xlt yx meets the curve, is of the form

a3
+

6s

This is parallel to the line joining the conjugate imaginary poirits if

^l^ + ii|? = 0. This relation holds if the pair of conjugate imaginary

points lie on the curve (see Art. 130). Hence the real line joining the

pair of conjugate imaginary points and the connector of their mean

point to the origin are parallel to a pair of "conjugate diameters of the
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conic. If these conjugate diameters are taken as axes of coordinates,

the equation of the conic is

^ + ^-1 =

where a' and b' are the lengths of the corresponding semi-conjugate

diameters.

If this curve be traced for real and for purely imaginary values of

a? ifi

the coordinates, as the curve —, + %- — 1 = was traced, certain new
a" o2

branches of the curve are found. Thus

:

(1) the (1,1) branch is found as before,

(2) the (1, i) branch is replaced by another hyperbola, which touches

the real branch at the ends of the diameter, which is the axis of x,

(3) the (i, i) branch in this case, as before, does not exist,

(4) the (i, 1) branch is replaced by another hyperbola, which touches

the real branch at the ends of the diameter, which is the axis oi,y.

By taking different pairs of conjugate diameters for axes'of coordinates

all points on the conic are obtained and no points except those on the

real and the purely imaginary branch occur more than once. These

branches may be called Poncelet figures. They are also, for reasons
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given hereafter, termed (a, /3) branches of the curve, where a and y8 are

the angles which the pair of conjugate diameters, which determine

them, make with the major or transverse axis of the conic.

(b) To trace the curve

a2 62

It will be noticed that this equation may be written

2l 4. (Ma

_ i

a8

"
1"

62

Hence the same graph is obtained as in the previous case, provided

the axis of y be changed from real to imaginary and vice versa.

Thus in this case :

(1) gives an ellipse, as in the previous figure, which is the (1, i)

branch,

(2) gives a real hyperbola as in the previous figure, which is the

(1,1) branch,

(3) this branch, which is the (i, 1) branch, again does not exist,

(4) gives the same curve as before, but it is a purely imaginary

(i, i) curve.

(c) To trace the curve

This may be written

a2 "*"
62

{ixf f_
a?

+
b*

In this case

:

(1) gives an ellipse of the form (i, 1),

(2) gives a hyperbola of the form (i, i),

(3) does not exist, but if it did it would be of the form (1, i),

(4) gives a hyperbola of the form (1, 1), i.e. a real curve.

In cases (b) and (c) the (a, /3) branches may be obtained in the same

way as for; the curve —- + j-2
— 1 = 0.

(d) To trace the curve

a2 o2



170 The Imaginary in Geometry

This equation may be written

{ixf (iyY

a2 b2
-1=0.

a' o°

Hence

:

(1) gives an ellipse of the form (i, i),

(2) gives a hyperbola of the form (i, 1),

(3) does not exist, but if it did it would be of the form (1, 1),

(4) gives a hyperbola of the form (1, i).

It follows that all central conies, when traced for all real, imaginary

and complex points on the curve, have figures of the same type, and

that a real ellipse, an imaginary ellipse and a hyperbola differ from each

other only in so far that the (1, 1), (i, i), (1, i) and (i, 1) branches are

interchanged and that different branches of the parent curve develope

into the (a, /3) branches. Thus in the case of a real ellipse the (a, /3)

branches are hyperbolae, and in the case of a real hyperbola the («, 0)
branches are ellipses.
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Let 2/2 be zero.

(1) If yt be given all real values from — 00 to + 00 , the correspond-

ing values of x are real and positive, and the real parabola marked with

a continuous line in the figure is obtained.

Let y, be zero.

(2) If y2 be given all real values from — 00 to + 00 „ the correspond-

ing values of x are real and negative, and the parabola marked with a

dotted line in the figure is the curve obtained. This is a parabola equal

to the real parabola but with its axis turned in the opposite direction.

This is the (1, i) branch. •

The branches (1) and (2), which are the (1, 1) and (1, i) branches,

constitute the parent curve.

The (a, /3) loci are obtained by taking any diameter and the tangent

at the point, where it meets the real branch, as axes of coordinates.

They consist of parabolas with axes parallel to the chief axis of| the

parabola and all touch the real branch. They are obtained by tracing

the equation of the parabola in the form y*— ka'x = 0.

128. Special case of the real circle.

The locus represented by %2+y2+a?=0 is according ,to definition a real conic,

although it has no real branch.

It has an (1, i) branch, the circle in the figure, and also an (i, 1) branch and a

(1, t) branch, both of which are rectangular hyperbolae.

'
';x
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Any real line through the centre meets the curve in a pair of conjugate

imaginary points, which are the double points of a real involution. Pairs of conju-

gate points are, if real, on different sides of and are such that OP .0P"= —a2
.

If the distance of one point from is a purely imaginary quantity, the distance of

the other is purely imaginary and the points are on the same side of 0. Pairs of

conjugate points of this involution are inverse points with respect to the curve.

If P be taken such that the distance OP is purely imaginary, the polar of P is

the line TP'T' in the figure.

If P be taken such that the distance OP is ,real, the polar of P is. the line

QP"Q' in. the figure.

Since the coordinate geometry of purely imaginary points is the same as that of

real points, the properties of purely imaginary points on- the curve are the same as

those of real points on the real circle.
,

'

,

*

Special case of the real conic.

The locus represented by ,'-g +^4-1 = is /according to definition a real conic.

Its properties may be deduced from those of the : real ellipse '—$ + jj
1 = in the

same way that the properties' of the curve ^2
-)-y

2
-t-a

2= 6ah be deduced from those

of the circle a;
2+y2 - a2 =0. This conic has a director circle the equation of which

is #2+y2+ a2+62=0 and likewise a pair, of real foci situated on the minor axis. It

may be shown that the sum of the measures of the distances of these points from

any point on the curve is equal to 2ib; The corresponding directrices are real.
'

129. The fact that there is ,only one tangent at any point to a" conic may be

verified as follows.

Let y=f{x) be the equation of a curve so that /(#i) is the value of y corre-

sponding to a value xx of x. Then, if h be a small increment to %i,

The connector of the points given by xx and stii+h, disregarding powers of h

above the first, is

X Y 1

*i /(*i) 1 =0,

X Y 1

«, /(*,)' 1 =0.

i /'ta) o

As this does not involve h, the equation of the connector of the points does not

depend on the nature of the increment given to xlt i.e. the same result is obtained

whether the increment is real or imaginary.

Geometrically the result seems to depend on the fact that infinitely small and
infinitely large quantities may be regarded in the limit as either real or imaginary.
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130. To find the condition that the point x1 + ix2 , yx + iy2 , which is

x2 y2

on the curve —, +T5=1, should lie on that branch of the curve whose
a2 o2 J

axes are the conjugate diameters, which are inclined at angles ot and /3 to

the axis major of the conic.

If x and iy are the coordinates of the point referred to the conjugate

diameters, given by a and /3, as axes, x is equivalent to x cos a along the

axis of x, and a; sin a along the axis of y, while iy is equivalent to

iy cos /3 along the axis of x, and iy sin /3 along the axis of y.

Hence the coordinates of the point x, iy, referred to the principal

axes of the conic are

xx + ix2 = x cos a + iy cos /3, yx + iy2 = x sin a + iy sin /3.

Therefore

X} = x cos a, yi=x sin a, x2 = y cos /3, y2 = y sin /3.

Therefore ^ = tan a, ^ = tan /3.
X\ x2

Hence the coordinates of a point on the (a, /3) branch are of the form

«j + ix2 , a?! tan a + ix2 tan /3.

If the point ^ + ixz , yy + iy2 is on the conic

-l^l +y^l =1 and *2f+^ = 0.
a2 o2 a2 o2

Therefore M« = - -
t
= tan a tan /3.

If points, whose coordinates are xx + ix2 , xx tan a + ix2 tan /3 and

Xi+ix2 , x{ tan a + iaea
' tan yS, are on the conic, they lie on the same

branch of it. For different values of xlt x2 , a and y3, the point having

coordinates of this form may be any point. Hence by substituting

these expressions in the equation of a central conic the points on the

different (a, /S) figures are obtained.

It will be noticed that, for a point to be on the curve,

62

tan a tan # = ,

Cb

and that if a and /3 are connected by this relation, there are an infinite

number of points on the corresponding branch of the curve.

62
.

If the relation tan a tan y8 = is not satisfied, there are no points

on the curve. Thus, corresponding to a diameter given by a, there are
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only imaginary points on the curve when the conjugate diameter is

associated with it. The planes or figures obtained by associating

together the values of a and /8, which determine conjugate diameters of

the conic, will be termed the nest of the conic. In this respect the real

conic is essentially different from the imaginary conic for which there

is no nest. The general use of coordinates of the form xx + ix2 and

xl tan a+ix2 tan /9 is considered in the following Articles.

131. General conclusions.

In the parent branch of a real conic, it has been shown that when

the graph is formed for the axes of the conic, there are or may be four

parts, viz.

- (1) The real or (1, 1) branch.

(2) The purely imaginary or (i, i) branch.

(3) The (1, i) branch which is an Argand diagram, the real axis

being the axis of x.

(4) The (i, 1) branch which is an Argand diagram, the real axis

being the axis of y.

The (1, 1) branch represents the curve as usually considered.

The (i, i) branch is the curve, which' the equation represents on the

assumption that the squares of all lines are negative. With this as-

sumption it is as real as the real branch and it has identical properties.

The branches (1, i) and (i, 1) differ in one respect from the Argand

diagram in common use. In an Argand diagram it is usual to assume

that, if the real variable and also the imaginary variable are infinite,

the point at infinity is obtained. This is not the case in the present

instance. There are at infinity at any rate two points—if not four

—

one given by an infinite positive value of the real variable and an

infinite positive value of the imaginary variable, the other by an infinite

positive value of the real variable and an infinite negative value of the

imaginary variable. These two points are the circular points at infinity

which from a certain point of view are more distant from the origin

than other points on the line joining them,.which is the line at infinity.

An Argand diagram is of course a graphic representation of the

quantities which make up a complex variable.

If the conic be graphed for a pair of conjugate diameters making

angles a and /3 respectively with the axis major of the conic, it has been

shown that there are again four branches, viz.
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(1) The rearor (1, 1) branch.

(2) The purely imaginary or (i, i) branch.

(3) The (1, i) branch, in which the axis of x is the real axis.

(4) The (i, 1) branch, in which the axis of y is the real" axis.

The branches (1, 1) and (i, i) are the same graphically as those of

the parent graph, but the branches (3) and (4) are different and vary

with different values of a and /3. They may be regarded as Argand

diagrams in which the axes of coordinates are not at right angles.

Whatever value is given to a there is always one corresponding

value of /3, and. for every value of B there is one value of a. The graph

gives the point of intersection with the curve of real lines parallel to

the B axis. Hence with a series of such figures the points of intersec-

tion of all real lines with the conic are given graphically. Also since

one real line passes through every imaginary point, all points on the

curve are graphically represented.

132. General representation of points by Poncelet or (a, B)

figures.

The preceding renders it possible to conceive the points which exist

in a plane, when the values of the determining coordinates of a point

are or may be complex.

Through any point, which may be taken as origin, draw two rect-

angular axes. There are with respect to these rectangular axes four

systems of points, viz.

(1) Those whose coordinates are real or (1, 1) points.

(2) „ „ „ purely imaginary or (i, i) points.

(3) „ „ „ of the form (1, i).

(4) „ „ , „ of the form (i, 1).

Take any real line through the origin making an angle a with the

axis of x. With this may be associated any other real line through the

origin making an angle B with the axis of x. Let lengths real and

purely imaginary be measured along or parallel to these, lines, and let

such lengths be regarded as the coordinates of a point.

Then, as in the preceding case, there are four systems of points, viz.

(1) Those whose coordinates are real or (1, 1) points.

(2) „ „ „ purely imaginary or (i, i) points.

(3) „ „ „ of the form (1, i).

(4) „ „ „ of the form (i, 1).
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The (1,1) and (i, i) points are the same as in the preceding case. The

(l,i) and (i, 1) points are different. By varying a and ft the coordinates

of all complex points in the plane may be thrown into this form.

Any value of ft may be associated with any value of a. Hence since

the graphs of a real conic are such that tan a tan ft = — -r , where

an? + by" — 1 = is the equation of the curve, it follows that the graphs

of a real conic lie in a limited number of the (a, ft) planes, and in each

plane in which the graph exists there are an infinite number of points.

The same is true for a pair of conjugate imaginary lines when they

are graphed with respect to their real point as origin. (See Art. 76.)

The coordinates of a point as set forth in the preceding have been

termed the principal coordinates of the point (Art. 8). To find the

points on a given line which are in an (a, ft) plane, it is only necessary

to substitute in the equation the values xx + ix2 , xx tana + ix2 tan ft, and

equating real-and imaginary points to find the corresponding real values

of Xi and x2 . It is sometimes more convenient to substitute xt + iy2 tan y
and xx tan a. + iy^ for x and y.

In order to obtain graphically the points of intersection of two

curves, it is not necessary that the o and ft of the two graphs should be

the same. It is only necessary that the /3's should have the same value,

when the two origins are real with respect to each other. Thus in

Art. 49 when the points of intersection of a conic, having a real branch,

with a pair of conjugate imaginary lines were obtained, the direction of

ft was .obtained from geometrical considerations. The corresponding

values of a for the two graphs were deduced and the points of inter-

section of the curves were obtained. This is always possible when the

two origins are real with reference to each" other. If the origins are

purely imaginary points with reference to each other it is necessary for

the real axis to have the same direction in both graphs. Generally in

the case of the intersections of an imaginary line with a conic—having

a real branch—the points of intersection tie in two different (a, ft)

figures, but, if the two values of ft are equal, they lie in the same (a, ft)

figure. Such a case arises, if the line is the connector of a pair of points

on the curve which lie in the same (a, ft) figure.

133. Change of origin in the case of graphs.

(a) A curve may be graphed as already set forth for (a, ft) planes

with respect to some centre of symmetry such as the centre of a conic
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or the real point on an imaginaryline. Then, if the origin be transferred

to any real point, the graph will be the same but the aVill be changed

and will not be constant for points on the same branch. This arises

from the fact that the real coordinate of each point on the branch

considered has to be combined with the real coordinates of the new

origin. Hence the direction of the real coordinate is changed and

the a becomes different for different points on the same (a, /3) figure of

the original origin. . The /3 however is unaltered.

(b) A similar process may be employed, when the new origin is a

purely imaginary point. In this case however the a remains unaltered

for points in the same (a, /3) plane, while the /3 is changed.

(c) If the new origin is a complex point with respect to the original

axes, its position may be determined by means of its principal coordinates.

In this case a new real length and a new imaginary length have to

be combined with the a, and /3 lengths of the graphs of each point so

that the a and /3 of each point of the graph are changed.

From the above it is seen how the vector method of treating

imaginary coordinates becomes possible in the case of the general

theory.

134. Poncelet or (a, £) figures.

In each case xi+ix2 and x\ tana+ ixi tan are substituted for x and y in the

equation of the locus, and the real and imaginary parts of the resulting equation are

equated to zero.

(a) Real straight line.

(1) Origin on the line.

Let the equation of the line be ax+by=0. The resulting equations are

x
1
(a+6tana)=0, x2 {a + bta,n^)= 0.

For these to be satisfied by values of x
1
and x

2
other than zero, it is found that

tana=tan j3= --=_.

Hence it follows that the real and imaginary axes must coincide with the real

line, and therefore the real line gives the full graphic representation of the line (cf.

Art. 1).

(2) Origin any real point.

Let the equation of the line be ax+by+ c=0. The resulting equations are

Xx (a+ b tana) + c=0, X2(a+bta,n/3)=0.

Hence tan 0= — t . Substituting this value in the first equation, it follows that

Xx (tan a - tan /3) + t = 0.

h. I. G.
'

12
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Hence, if tanj3= — r , there are for each value of a an infinite number of values

of x2 tut one definite value of x
x

. Hence the points all lie in the plane (1, 1) and

the planes la, tan -1 ( - t)) • This is geometrically consistent with the previous

result.

(6) Real conic.

(1) Origin the centre.

Let the equation of the conic be ax2+ %hxy+ by2 = l. The resulting equations are

a-,
2 {a+ 2k tan a+ b tan2 a} - x2

2 {a+ 2A tan |3 + 6 tan2 /9}= 1

and xlxi {a + h (tan a+tan /3) + b tan a tan |3}= 0.

Hence, if a+ A(tana + tan/3)+6tanatan/3=0, there are an infinite number of

points in the plane (a, 0). That is, there are an infinite number of points in the

planes of the nest of the conic but in no other (a, /3) planes.

(2) Origin any real point.

Let the equation of the conic be f(x, y)=0. The resulting equations are

f(xu 3'
1 tana)-.»5!

2 (a+ 2/jtan/3+ &tan 2
/3)= 0, (1)

and x2 [x1 {a+h(ta,na+ta.np) + bta,iiata,np}+ (g+ftajip)]= (2)

If #2= the real points on the curve are obtained.

If #2 % the equation (2) is identically satisfied, if

<7+/tan/^=0 and a+ /i(tan a+tan/3) + 6tanatan/3= 0.

Hence the conic has an infinite number of points in one (a, /3) plane of its nest,

viz. the plane for which /3= tan -1 ( _ 2
J

. This plane has its /3 parallel to the polar

of the origin and its a is the line joining the origin to the centre of the conic. For

no other plane of the nest are there points at a finite distance. For all planes

outside the nest of the conic

ff+/tan/3
Xi=-a+h (tan a+tan 0) + b tan a tan '

/(#!, Xi tan a)

2 a+2Atan0+6tan2 |3'

Hence for given values of a and /3, there is one value of xu and if the value of x
2
2

is positive, two values of x
2 , which differ only in sign. Hence the corresponding

points are a pair of conjugate imaginary points.

If the value of #
2
2 is negative there are no points on the branch considered.

These results are geometrically consistent with those obtained in Art. 127.

(c) An imaginary straight line.

(1) Origin the real point on the line.

If the equation of an imaginary straight line is combined with the equation of

its conjugate imaginary straight line an equation of the second degree is obtained,

which does not involve the imaginary explicitly.
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The equation may be graphed with respect to the real point on the lines, as if it

represented a real conic.

Let the equation of the lines be ax2+ 2hxy+6
iy

2=0.

Branches are found to exist which correspond to values of a and |3, which satisfy

the relation

a+A(tana+tan/3)+ 6tan n tan/3=0.

That is, branches, which are graphically pairs of straight lines, exist in the planes

for which a and give lines, which are real pairs of harmonic conjugates of the pair

of conjugate imaginary straight lines. These planes are said to form the nest of the

straight lines. No points exist in other planes than those of the nest (Arts. 76

and 77).

(2) Origin any real point.

Let the equation of the line be

ax+ by+ c + i(a'x+ b'y+c')= 0.

Then xt (ct+ fttana) — x2 {a' + b' tan|3) + c =0, (1)

and x2 (a+b tan (3)+.% (a' + b' tana) +c'= (2)

From (1) and (2)

Xi {ac' — a'c+(b(/ — cb') tan a} — .v-2 {a'c' + ac+ {b'd+ be) tan j3} = 0.

a'c'+ac
Hence, if tan a- and tan/3= —

b'c'+bc
there are an infinite number of

cb' — be'

points in the corresponding (a, 0) plane.

Generally,however there is only one point in an (a, 0) plane, viz. that given by

the equations (1) and (2). As a particular case there is only one real point on an

imaginary line, i.e. the one point in the (1, 1) plane. If a line joins or contains two

points in an (a, 0) plane, that plane is termed the plane of the line, and it contains

an infinite number of points in that plane. The relationship of these results to

those given in (1) is obvious geometrically.

135. Table of graphic representation by means of (a, 0) planes.

In the following, real and purely imaginary points, including the origin, are

omitted.

Nature of locus

Real straight line.

(1) Origin on line

Its equation

ax+ by=

(2) Origin any point ax+by+c^O

Planes in which there are points

The one plane

(tan- (- j), tan- (-»)),

in which there are an infinite number of

points.

The planes (a, tan -1 1 -r)), where a

can have any value. There are an in-

finite number of points in each of these

planes.

12—2
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Nature of locus Its equation Planes in which there are points

Imaginary straight line—together with its conjugate imaginary line.

(1) Origin the real ax2+2hxy+by2=0 An infinite number of points in all (a, /3)

point on the line planes, for which a and /3 are harmonic

conjugates of the lines. These planes

form the nest of the lines. *

(2) Origin any real axi+ 2ha:y + by2

point + 2gx+2fy+ c= 0,

where A=

Real conic.

(1) Origin the centre . aaP+ tyuey

+ byi+ c= 6

(2) Origin any real ax2+ 2hmy+ by2

point +2gx+ 2fy+c=0

Imaginary conic.

(1) Origin the centre S+iS'= Q

(2) Origin any real S+iS'=
point

Imaginary conic—special case.

Origin the centre S+iS'=

An infinite number of points in the (a, ^)

plane, the a axis of which passes through

the real point on the line, the /3 being

its harmonic conjugate with respect to

the lines. One point on all other (a, /3)

planes except those of the nest, in which

there is no point at a finite distance.

An infinite number of points in all (a, /3)

^

planes, where a, /3 determine conjugate

diameters, i.e. in the nest of the conic.

An infinite number of points in the (a, 0)

plane, the a of which passes through the

centre, the /3 being parallel to the con-

jugate diameter. Two points in all

other (a, /3) planes except those of the

nest, in which there is no point at a

finite distance.

Not more than four points in any (a, 0}
plane. If there are any points in a*n (a, /3)

or (/3, a) plane, the sum of the points in

these two planes is four (Art. 144).

Same result as when the centre is the

origin (Art. 144).

If <S"= are a pair of lines which are

conjugate diameters of S=0, there are

an infinite number of points in the (a, /3)

plane, whose axes are the ' conjugate

diameters S'=0 (Art. 145).

It follows that, as a straight line has always an infinite number of points in

some (a, /3) plane, the most general straight line can be found by joining two points

in some (a, $) plane. A conic does not always contain an infinite number of points

—or more than four points—in any (a, 0) plane. Hence the most general form of a

conic cannot be obtained by describing a conic through five points in the same

(a, |3) plane. The conic so obtained is the special case alluded to above.
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136. Intersections of an imaginary line and a real conic.

An imaginary line must, by Art. 134, lie in one of the (a, 8) planes of the centre

of the conic.

(1) The line may lie in one of the planes forming the nest of the conic, in which
case it has a continuous graph in that plane. This graph may or may not meet the

graph of the conic in that plane. If it meets it, the line intersects the conic in two
points in the (a, 8) plane in question. If the two graphs do not intersect, the line

meets the conic in two points in different (a, 8) planes.

Let the equations of the line and conic referred to the axes of their common
(a, 8) plane be

x iy , , x2 y2

7
+-2= l and _+f- = i,

I m a 2 b 2

V2 a'2

and let K=—. - -=- and L= 1 + K.m2
I
2

Then for one of the points of intersection

_o^vA£_o^ . _ a'V JL V2

X~ m K ,IK'
iy~

I K + mK~
(a) If L is positive this point and also the other point of intersection, obtained

by changing the sign of JL, are in the common (a, 8) plane.

(6) If L is negative the coordinates of the point may be written as

a'2 .a'b' ,
—

r d2 (V ,—f\ .a'b'*

,

—
T ( V 1 \

IK mK a lK\d J mK \ a sj - L)

liy= Mx, y=M'x be the equations of the pair of lines which are the (a, /3) axes

of this point, M=— \J'
— L and M'=—- , , so that MM'=—^ and the lines in

a a ij — L &

question are a pair of conjugate diameters of the ellipse.

The coordinates of the other point of intersection are obtained by changing the

sign of V — L. Hence these two points are not in the same (a, 8) plane.

(2) The line may lie in one of the planes which do not form part of the nest of

the conic. It cannot then intersect the conic in two points in the same (a, /3) plane,

for it only contains one point in planes other than the plane in which it is situated.

The two points of intersection may be constructed by means of Art. 49.

The tangent to the (a, 8) branch of a curve at any point on that branch lies in

the plane in question. Hence in the first of the cases dealt with in this article the

pole of the line is in the (a, 8) plane considered. Even in the second and third cases

this is also true.
i

Intersections of straight lines and conies.

A real straight line intersects

(a) A real straight line in the (1, 1) plane.

(6) An imaginary straight line in the (a, 8) plane, in which 8 is parallel to the

real line and a is the harmonic conjugate of 8 with respect to the imaginary line and

its conjugate imaginary line.
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(c) A real conic in the (t, 1) plane or in the (a, ft) plane, in which ft is parallel

to the real line, and a is the conjugate diameter of this line with respect to the conic.

(d) An imaginary conic in two points in different (a, ft) planes, which may he

determined as follows. Obtain the equation of the pair of imaginary lines joining

the centre of the conic—or any real point—to the points of intersection of the line

with the conic. This can be done at once analytically. Then by (6) above the

points of intersection of the real line with these lines can be obtained.

An imaginary straight line intersects

(e) A real straight line in the (a, ft) plane, in which ft is parallel to the real line

and a 'is the harmonic conjugate of ft with respect to the imaginary line and its

conjugate imaginary line.

(/) An imaginary straight line in the (a, ft) plane, in which ft is parallel to one

of two of the sides of the diagonal triangle of the quadrilateral determined by the

imaginary lines and their conjugate imaginary lines. These sides are the axes of

perspective of the two involution pencils, of which the imaginary straight lines are

the double rays. The points of intersection of the imaginary lines are on these real

axes of perspective and the corresponding a's are obtained by joining the real points

on the imaginary lines to the mean points of the opposite vertices of the quadri-

lateral, which are situated on the axes of perspective.

(g) A real conic in two points generally in different (a, ft) planes. The real lines

on which these points are situated may be constructed as explained in Art. 49, and

the corresponding values of the a's may be obtained as in (/) or from the equations

of the line and conic (Art. 136).

(h) An imaginary conic in two imaginary points. These may be found as

follows. Express the equations of the conic and straight line in the forms

,

X%
- ,w + /z. ^m.-l=0 an<* U+iA^—.-, + (B+iB)—!L--\=*0.

(a+ ia'f (b+iVf v ' a + ia'
K ' b.+ib'

Let the units of length along the axes be a+ ia' and b+ib'. Then the equations of

the conic and straight line are respectively

#2+#2-l= and (Ax+By-l) + i(A'x+B'y)=Q.

The points of intersection of these can be found by (g).

137. Properties of (a, ft) figures.

Every real point is in the (1, 1) plane and every purely imaginary point is in the

(i, i) plane. Every real point is also in all the (a, ft) planes, the a axes of whieh pass

through the point in question, and every purely imaginary point is in all the (a, ft)

planes, the ft axes of which pass through the point in question. Thus all points are

in the (a, ft) planes, and the (1, 1) and.(i, i) planes may be regarded as a regrouping

of the real and purely imaginary points or as two planes of reference. From the

latter point of view, given a definite origin, the planes (1,' 1) and (i, i) may be
regarded as superposed. Then if any line a be drawn in the (1, 1) plane through

the origin and any line ft be drawn in the (i, i) plane through the origin, the plane

(a, ft) is the plane determined by this pair of intersecting straight lines.
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The following are some properties of (a, £) planes considered in relation to the

(1,1) and (i, i) planes.

Every complex point may be -defined

by a real and a purely imaginary co-

ordinate in some (a, /3) plane. This con-

struction is unique. The point in question

is said to be situated in this (a, /3) plane.

Through every complex point in an

(a, /3) plane an infinite number of straight

lines may be drawn in that plane and

one straight line in every other (a, f$)

plane, including the (1, 1) and (i, i) planes.

[See (b) below.]

Every real point contains an infinite

number of straight lines in the (1, 1)

plane and also an infinite number of

straight lines in all the (a, 0) planes, the

a axes of which pass through the point

in question. The lines in the (1, 1) plane

are real and the lines in the (a, |9) planes

(with the exception of the axis) are

imaginary.

A purely imaginary point has similar

properties.
,

Every complex line may be defined by

a real and a purely imaginary intercept

on the axes of an (a, /3) plane. This

construction is unique. The line in ques-

tion is said to be situated in this (a, /3)

plane.

On every complex straight hne there

are an infinite number of points in its

(a, /3) plane and in every other (a, /3)

plane, including the (1, 1) and (i,i) planes,

there is one point on the straight line.

[See Art. 134 (c) (2).]

Every real line contains an infinite

number of points in the (1, 1) plane and

also an infinite number of points in all

the (a, /3) planes, the j3 axes of which are

parallel to the given line. The points in

the (1,1) plane are real and the points

in the (a, /3) planes (with the exception

of points in which the axis of a meets

the line) are imaginary.

A purely imaginary line has similar

properties.

(a) The line ax + by+c+i (a'x+ b'y+ c')=0 lies in the (a, |3) plane for which

a= tan~ and /3=tan~
— ca — ac

be'-b'c
^

b'c'+ bc '

This follows from the fact that the line contains the real point and the purely

imaginary point given by the equations

and

x y
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Let a line in the (a, /3) plane meet the axes of that plane in, points at distances

a and ib from the origin. Referred to the axes of % and y the coordinates of these

points are a cos a, a sin a and ib cos /3, ib sin /3.

Hence the equation of the line joining these points is

^•(asin a-ib sin/3) + y (-acosa+i&cos/3) + ia&sin(0-<i)=O (2)

Comparing coefficients in (1) and (2), it follows that

tana=--5, tan /3= — -=7,
n d

C'-jA^+B2 -C'\/A'2+ B'2

°"~ AB'-BA' ' ,AB'~BA'
'

Hence the equation of the imaginary line (1) can be uniquely expressed in the

plane (tan -1 ( - n ) , tan -1 ( - -.=-,

J J
in the form

X ,
• iY =

' C
^A^+B2 'VA'2+B'2

~ AB'-BA
'

The axes of this plane are Ax+By=0 and A'x+B'y=0. The condition that

the line (1) should lie in a plane of the nest of the conic a'xP+ b'y2 +c'= is that

AA '
1 * a a'

(6) To find the equation of the line through a given imaginary point which lies in

a given (a, /3) plane.

Let the coordinates of the point be Xi + ix^, xt tan a+i#3 tan (3, and let the plane

be the (a, 0) plane. »

The equation of the line may be written in the form

y — x1 tan a — ix2 tan /3= (to+ im!) (x—xx
— ix%). 1

If this be the same line as

ax+by+ c+i(a'x+ b'y+c') = Q,

then by (a)

c c
ta,nd=m — m'—, and tan/3'= m+»i' —

a c

Therefore

tan a' —m_ in' _ c _ (tan a — tan a) xx _ „ .

— to'

—
tan j3' - to

—
c'
~ (tan /3' — tan /3) x%

~ * " ''

Hence
Jff2 tan

/

3' + taiia' -K (tan a - tan jf) 1+I{2 '

and

. ,_Ktaaff-ii/asxa_ (tana'— tan a) #, tan ft — i (tan & - tan /3) #2 tan a'

K— i (tana' — taua)#i — i (tan/^— tanj3)#2

If the plane (a', /J") is taken to coincide with the plane (a, j3), then the only

relation connecting to and to' is

(tan a — m) (tan — in)= — to'
2

.

This relation is satisfied by the to4oto' of every line in the plane (a, /3).
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(c) To find the point on a given 'imaginary line, which is in a given {a, 8) plane,

any real point being the origin.

Let OX and OF be the axes determining the (a, 8) plane, in which it is required

to find the point on the given line. Let 0' be the

real point on the given line, and through 0' draw
OY' parallel to OF. Let OX' be the harmonic

conjugate of O Y' with respect to the line and its

conjugate imaginary line. ' Let O'P be the graph of

the line for the axes OX' and O'Y'. Let OX meet

OX' in N. Draw NP parallel to OY to meet the

graph of the line in P. Then P is the required

point. For its coordinates are the real length ON
measured parallel to OX and the purely imaginary

length NP measured parallel to OY.

Hence it follows that the points on an imaginary line in the (a, 8) planes with

any fixed real origin, obtained by keeping 8 constant and varying a, are all on the

graph of the line with its real point as origin for the plane, for which B has the

given value and a is the harmonic conjugate of 8 with respect to the given line and

its conjugate imaginary line.

138. The imaginary conic.

The general equation of an imaginary conic, which may be written

shortly as S+ iS' = 0, where $ = and S' = are the general equations

of two real conies, may be treated in either of two ways.

(1) Transformations of the axes of coordinates may be limited to

such as are real.

(2) Transformations of coordinates may be allowed, which involve

the imaginary.

. In case (2), as a general rule certain points will be changed from

real to imaginary and vice versa. Transformations of type (1) will be

considered in the first instance.

Transformations involving a real change of coordinates.

Such transformations depend on the fact that every conic has a real

or semi-real inscribed quadrangle. One pair of opposite sides of such a

quadrangle are real. Hence the equation of every conic can be obtained

in the form
S+2ih'xy = 0, (1)

the axes of coordinates being a pair of real sides of the real or semi-real

quadrangle which are inclined at an angle to.

If the bisectors of the angles between the real sides be taken as the
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axes of coordinates, the coordinates are rectangular and the equation

may be written
,

S + 2iA'(3/!-mV) = (2)

If a, d, b, b' are the intercepts made by the conic on the pair of real

sides of the quadrangle, (1) may be written in the form

bb'x2 + ady2 - bb' (a + a')x- ad (b + b')y + aa'bb' + 2 (h + ih').xy = 0,

, (3)

where a, d, b, V may be real, or purely imaginary and conjugate in pairs.

Generally the form of the equation of a conic depends on whether

the inscribed quadrangle is real, semi-real of the first kind or semi-real

of the second kind.

If the conic has a real self-conjugate triangle, the equation of the

conic referred to this triangle as triangle of reference can be expressed

in the form

ax2 + by1 + cz* + i (aV + b'y' + c'z2) = (4)

139. Forms of the equation of a conic into which an imaginary conic can

be projected by a real projection.

(A) (1) Let the conic have a real inscribed quadrangle.

Project the vertices into a real square, the diagonals of which are 2a.

Take the diagonals for axes of coordinates.

The equation of any conic through the vertices is

x2+

y

2+ 2hxy= a2
.

(2) Let the conic have a semi-real inscribed quadrangle of the first kind.

Project the vertices into a semi-real square of the first kind, the diagonals of

which are 2ia.

Take the diagonals as axes of coordinates.

The equation of any conic through the vertices is

%2+y2+ 2hahj= - a2
.

(3) Let the conic have a semi-real inscribed quadrangle of the second kind.

Project the vertices into a semi-real square of the second kind, the diagonals of

which are respectively 2a and 2i'a.

Take the diagonal of length 2a as axis of .v and the other diagonal as axis of y.

The equation of any conic through the vertices is

x2—y2+ 2hxy=a2
.

In the above h is or may be a complex quantity.

(B) (1) Let the diagonal triangle of the inscribed real or semi-real quadrangle

be real.

Project one side to infinity and the other pair of sides into orthogonal lines.
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Take these lines as axes of coordinates.

Then the equation of the conic is of the form

y
2

^=1 or (A + iA')a;*+ (B+ iB')f= l.
{a + ia'f {b+ibj

(2) Let the diagonal triangle of the inscribed semi-real quadrangle be semi-real.

Project the pair of conjugate imaginary vertices into the critical points.

Take rectangular axes through the centre of the conic, which is real.

The equation of the conic is then of the form

(sc+iyf (x-iyf _
{a+ia!f

+
{b+ib'f

'

140. Transformation of axes involving the imaginary.

Let the equation of the conic be

(a+ ia') x2+ 2 (k+ih') xy+ (b+ib')y2+2 (g + ig
1

) x+2 (f+if) y+(e + ic')=

or a
l
x2+ 2h1 xy + b1 y

2+ 2g1 x+2f1 y+ cl =Q,

the axes being inclined at an angle a>.

J? f
If the origin be transferred to the point -~

, -=^ and the bisector of the angles

between the axes of coordinates be displaced through an angle

, , 2Ai — (ai+6,)coS(B
\ tan -1— . , . V ,
i

(«!— &i) sm<»

the new axes being rectangular,
(
the equation of the conic is

X2 Y2 1

where Jt
~

x ^ am, a

""A^sin2 *)'

C\ ax+ &,—2^008 0)

and
, C? (a, + &i cos fi> - 2h

x )
2 + (a

x
- 5Q2 sin2 o>

with the usual -notation.

The equation (1) is of the form

X 2
_

Y2

[a+ia'f^ {b + ib'f '

or (A+iA')X2 +(B+iB')Y2 =l.

141. Nature of an imaginary conic.

A conic may be imaginary either by nature or by displacement.

Such a conic as ^ +W* -

+ £ = 1, where *, is constant, is according to

the definition of Art. 106 imaginary. If however the origin is moved
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through a distance ix2 the equation becomes — +^ = 1. Hence such a

curve may be regarded as imaginary by displacement. If the constants

which determine the nature of the curve, such as the semi-axes, the

latus rectum or the angle between a pair of straight lines, involve " i,"

the curve is said to be imaginary by nature. This is the case when the

quadratic equation for the axes of the conic involves the imaginary

explicitly or when its roots are imaginary. In the latter case the

equation of the curve is of the form

(a + ibf
+
(a-iby~

'

Thus with the notation of Art. 140, (1) if «/& and Jp are real and Jc

is positive, the conic is imaginary by displacement, (2) if Jh and Jp are

real and Jc is negative, the conic has a pair of conjugate imaginary

axes, (3) if Jh or Jv is imaginary or complex, the conic generally is

imaginary by nature.

142. Tracing of an imaginary conic.

The author is not acquainted with any satisfactory way of represent-

ing graphically the points on an imaginary conic in the general case.

There are three possible ways of proceeding, but none of these seems po

lead to satisfactory results.

(a) It is possible to transform the equation of the conic as explained

in Art. 140 into the form

of
s

tf _
(a+ia'f

+
(b + ib

,y~

Lengths measured along the axis of x may then be regarded as multiples

real or imaginary of a 4- ia, and those measured along the axis of y as

multiples real or imaginary of b+ib'. This method however does not

seem to lead to satisfactory results.

(b) If as in the case of a real conic the points in (a, /8) planes are

sought, it is found that as a general rule (see Art. 143) there may be

four such points in any plane, but generally not more than four points.

Hence this method does not lend itself to graphic representation.

(c) It is possible to obtain a graphic representation by substituting

for the systems of real parallel lines in an (a, /3) figure systems of lines

satisfying certain conditions, but the graphs obtained in this way are

of a complicated nature.
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Thus, if the equation of the conic be

ax2 + by2 + c + i (a'x2 + b'y2) = 0,

it is possible to construct the harmonic locus of ax2 + by2 + c=0 and

a'x2 + b'y2 = 0, which is a real curve. The tangents to this curve inter-

sect the conic and its conjugate imaginary conic in conjugate imaginary

points, the locus of whose mean points is

(ab' + b'd) {(a*2 + by2

)
2 + (a'x2 + by)2

} -he {fb
2a' + x2a2

b')
2

- 4c (ab' - ba'fxy (a'x2 + b'y2
) = 0.

This curve would therefore intersect the tangents to the harmonic locus

in points, which would give the real parts of the coordinates of the

points on the conic, and a graph corfld be obtained by measuring off the

appropriate imaginary lengths along the tangents. The same method

could doubtless be employed, substituting any anharmonic locus for the

harmonic locus.

The method (a) groups in the same figure points, whose coordinates

referred to the same axes through the centre are of the form k(a + id),

l(b + ib'), where k and I are real or purely imaginary quantities.

143. In every (a, 0) figure there may be four points, but not more thanfour point!,

on the conic

ax2+ %hxy + by2 + i (a'x2+ 2h'xy + b'y2)= e.

If l+sdi + iil'+#2) and m+ x1 tana+i(wi'+#2tan#) be substituted for x and y
and the real and imaginary parts of the resulting equation be equated to zero, there

are no values of I, I', m, m', a, and /3 which render the two equations thus obtained

identical or which make one of the equations identically zero in the general case.

If 1=1'=m=m'=0, the two equations are

x-fT - Zx^zC -x£Tx
=c, (1)

x^T+ 2x1 xiC -x2
2 T{= 0, (2)

where =a+h (tana + tan/3) + 6 tanatan/3, T =a +2A tana+5 tan2 a,

C'= a'+A' (tan a+ tan /3) + V tan a tan /3, T' = a' + 2h' tan a+ V tan2
a,

Tt =a +2h tan /3+ b tan2
/3,

T{= a'+ 2h' tan + V tan2
0.

Looking upon (1) and (2) as the equations of two conies, the coordinates of a

point on which are x1} x%, it is seen that for given values of a and /3 there are not

more than four pairs of values of xx and x2 . Hence the result follows.

Equation (1) is that of a conic and (2) that of a pair of straight lines. Only real

values of x
x
and x2 are required. Hence for such to exist (2) must represent a pair "

of real lines and be equivalent to

T' (x^X^ (x1
-\

2x2)=0, (3)

where Xi and X2 are real.
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From (1) and (2) as? (CT+C'T')-xJ (T
1
C+T

1
'C')= cC. (4)

Writing this equation as x^A—x^B^cC, (5)

the values of x2 are given by

^ =A^TB °r AX^B (6)

The condition for the existence of points in a given (a, /3) plane is that these

expressions should.be positive.

It may be noticed that if xt +ix2 , a^tana+ia^tan/S be substituted •for x and y in

an equation,

(1) if ix
l
and ix2 be values of Xi and x2 , these values give'a point ( — x2 , xt ) in

the (/3, a) plane
;

(2) if a pair of values ±x2 correspond to a given value of x
x , the points so

obtained are a pair of conjugate imaginary points
;

,„. .„ , y Xtana+itanS
(3) if Xi-Xvs, * = T—-.

?-.

X A+ l

Hence the point x, y lies on this imaginary line through the origin.

144. In the case of the conic

ax2+ 2hxy+ by*+i (a'x^+^h'xy+ by)= c,

if there are any points in the (a, /3) or (/3, a) planes, the sum of the number of points

in these planes is four.

Since there are points in one or other of the planes, equation (2) of the last

article can be expressed as equation (3). Hence the values of x2 are given by (6).

These values are either real or purely imaginary. The real values give points in the

(a, /3) plane and the purely imaginary values give points in the (ft a) plane. The

sum of the numbers of these points is four.

145. Special case of an imaginary conic.

If in the case of the conic considered in the last article the lines

a'x2 + 2h'xy + b'y*=0 are a pair of conjugate diameters of the conic

am? + 2hxy + by2 = c, the relation (2), Art. 143, is satisfied, when a and /3

are such as to determine this pair of conjugate diameters. In this case

T' = 2\' = G= 0. Hence there are in this case an infinite number of

points on the conic in these (a, /3) and (/3, a) planes.

The corresponding values of xy and x2 are given by

x1"T-2xlx2C'-x2
!lT1 = c.

The conic in this case is not generally imaginary by displacement.

If a pair of real sides of the semi-real or real quadrangle of an

imaginary conic are taken as the axes of coordinates and a new figure is

obtained by projecting the side of the self-conjugate triangle opposite

to their point of intersection into the line at infinity, it may happen
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that the vertices of the semi-real or real quadrangle of the imaginary

conic so obtained are determined by a conic of which the axes of

coordinates are a pair of conjugate diameters. In this case the equation

of the imaginary conic is of the form

ax2 + by2 + lihxy = c.

Substituting x± + iy2 tan 7 and ,Xx tan « + iy2 for x and y, it is found

that

a (x? - y? tan2
7) + b (x^ tan2 a - y2

2
) - 2hx1y2 (l + tan a tan 7) = c, . . .(1)

and x1yi (ata.ny+ b tan a) + h (xf tan a — y£ tan 7) = (2)

If a«= 7 = 0, (2) is satisfied and (1) becomes

ax^ — by2 — 2hx1yi
= c.

Hence there are an infinite number of points in the (1, i) and {i, 1)

planes of the conic.

Conic through five points in the same (a, 0) plane.

If a conic be described through five points in the same (a, |3) plane its equation

by expanding the determinant, obtained by eliminating the constants, is found to be

* + 2hxK+b(&\ + 2gx+ 2fK+c= 0, (1)

or ax2 — 2ihxy — by2 + 2gx — 2ify+e= 0, (2)

where a, b, c, f, g, h are real.

Let A< be the discriminant of this equation, and A the discriminant of (1) when

the " i'h " are omitted. Let C; and C be the corresponding minors of c.

Then, it will be found that

A,= — A and Ci—-C.

Hence the equation referred to parallel axes through the centre is

ax'1 - by2
+-^, — 2ikxy=0.

The axes x=0,y= are conjugate diameters of the curve ax2 — by2+ -~=0, and

therefore the conic considered comes under the special case of the imaginary conic.

Conic imaginary by displacement.

Consider the conic

ax2+ 2ihxy - by2 + 2gx - 2ify+

c

= 0,

where the axes are rectangular.

Referred to parallel axes of coordinates through the centre, the equation with the

notation of the preceding is

- ax2+2ihxy-by2+7,=0.

2ih
Turn the axes of coordinates through the imaginary angle | tan ~

' -—r

.
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A
The equation is then a'%;2+ &'2«2 + 7v = 0, where a! and V are given by

' v *

a + b= a' + b' and a&+A2 =a'&'.

Therefore a' - 6'= ± J(a - bf - 4A2
.

If (a - 6)
2 > 4h\ the values of a' and b' are real and the conic is imaginary by

displacement. If this condition is not satisfied the axes of the conic are conjugate

imaginary quantities.

In form (A), Art. 139, in cases (1) and (2), if h is purely imaginary the conic has

a pair of conjugate imaginary axes. The same holds in case (3) except that when h

in i.h is <1, the axes of the conic are real and the conic is imaginary by displace-

ment.

' 146. Modulus of reduction in an (a, 0) figure.

In an (a, /3) figure let P represent a point and let PN be y, ON be x, and the

angle PCW bed.

Let /3 — a be <a. Then

PN=x——; -^r=Kx (suppose).
sin (<o - 8)

x rr

Then

OF1 graphically=«:!+ Jff'V+3^2^ cos a,

OP2 actually =x2-kV+2i^K cos <a.

actual value of OP2 _ 1 -Z2+ 2iK cos o>

graphical value of OP* ~ 1 +R2+2K cos a>

= B? (suppose).

2_ sin2 (<» — 8) — sin2 6

+

2i sin (co — 5) sin cos o>

sin2
(<o — 8) — sin2 6+ 2 sin 5 sin (<o - 8) cos a>

_ sin a sin («o - 28)+ 2i sin (to — 6) sin cos <o

sin2
(u

= cos 28 — c. sin 25 + 2i sin 8 . c (cos 6 — c sin #X where c= cot a>,

= cos 20 {1 +w2
}+ c sin 2(9 {i- l}-ic2

.

If

If

If

If

Hence by means of R, the modulus of reduction, the actual distance from the

origin of a point in an (a, /3) figure can be deduced from its graphic representation.

The imaginary angle represented by a real graph.

Graphically a triangle ONP, in which ON is a, NP is ib, and ONP is a real angle

o>, is represented by a real triangle GiT./* in which NP is 6. Let the angle PON of

the imaginary triangle be 8t and that of the real triangle 8.

" = 2«
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Then - =^-s and *-*£-va shi(0+ <b) a sin (^+ a)

Therefore . *f°* -,
.**"* -fg (suppose) (1) .

sin^j+a) sin(0+ ») s ^
rr '

Hence
, . lA'sinu , , „. 2iiTsin<»(l-j'A'cos(») ,„>
tan(9i= =—^ and tan20

i
= ——= i t^ <p- (2)

1 - iK cos a * 1 - 2iA cos w — A^ cos 2o>

From (1), if ^ = a+ s<p, it is found by equating real and imaginary parts of the

equation that

, „ -A2 sin2w 2iKsma> .„.
tan 2a= — and tan2sd>= ,

(J)
1+A 2 C08 2<B 1+A 2

The value of tan2(a + s$) derived from (3) is in agreement with the value of

tan %&i derived from (2).

Given any imaginary length A+iB measured along a line, it is possible to deter-

mine this length by means of (a, 0) axes inclined at any given real angle a.

Let a and ib be the coordinates of the end of the length A+iB.

Then (A +iBf= a2 -b2 + 2i'a& cos a>.

Assume that " A 2 - B2= a1 — b2 and 2*AB—%iab cos a.

Then A 2-B2= a2 -b2 and AB=ab cos u.

.-. a2+ b2=+./(A 2 -B2
)
2 + 4^-^ = +K, where A" is >A i -B*.~ V COS2 a> ~

.-. 2a2= (4 2-52)±/f and 262= -{A2-B2)±K.

If the positive sign of the square root is taken, a and b are both real. If the

negative sign is taken for the square root both a and 6 are purely imaginary, that
,

is, a is imaginary and ib is real.

147. (a, B) figures for the critical lines of a point.

Probably the two most remarkable of all the properties of the critical lines of a

point are the following :

(1) If any pair of lines at right angles through the point be taken as axes of

coordinates the equation of these lines is x2+y2=0. . If real lengths be measured

along the axis of x and imaginary lengths along the axis of y a graphic representa-

tion of the lines can be obtained. But if any other pair of lines at right angles

through the point be taken as axes of coordinates the equation of the pair of

critical lines is still x2+y2=0 and they can be graphed in the same way.

(2) Each of the critical lines may analytically be regarded as making the same

angle with every real line in its plane (Art. 78).

The first of these properties can however be explained at once and the second is

an immediate consequence of the first.

In Art. 76 it was shown that if the equation of a pair of imaginary lines is given

in the form y
2+m2x2= 0, i.e. if the axes of coordinates are the pair of real bisectors

of the angles between the lines—which are of course at right angles—a graph exists

in all the (a, /3) planes for which a and /3 satisfy the relation tana tan/3= - m 2
. If

for the lines y
2+m2x2=0 be substituted the lines y

2+x2= 0, this condition becomes

h. I. G. 13
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tanatan£f= - 1. Hence the axes for the graphs of these lines must be at right

angles and for all pairs of axes at right angles a graph exists. Hence the property

of the critical lines set forth in (1) is simply that for them as for other imaginary

lines (a, £) figures can be constructed. For all pairs of axes at right angles the form

of the equation of the critical lines is the same (Art. 96).

In the general case a pair of conjugate imaginary straight lines have only one

pair of harmonic conjugates (real) which are at right angles.' These are the bisectors

of the angles between the lines. In Art. 77 it was shown that the graph of an

imaginary line derived from its equation referred to two (a, /3) axes makes with

either of the bisectors the same angle as that deduced from its equation referred

to the bisectors as axes of coordinates. In the case of the critical lines there are

an infinite number of these bisectors. This result shows that the angle made
by a critical line with any of these bisectors must be the same as that made by it

with any 1 one of another pair of bisectors, i.e. with any real line in the plane.

Hence these two remarkable properties of the critical lines are only particular cases

of well established theorems.

It is instructive to work out directly, by substituting xt+ ix2 and xt tana +t>2tan^

for x and y, the (a, /3) figures of a pair of critical lines (see Art. 76).

EXAMPLES
(1) Show that the line joining the points Xi + ix

2 , y\ + iy% and x± — ix%, —yi+ iy^

lies in the (1, i) plane.

(2) Prove that the vertices of the real or semi-real quadrangle of the conic

ax2+ 2hxy+ by2+ i (a'x2 + %Kxy+ Vy2
)=

c

lie in one or other of the planes (1, 1), (i, i) or (a, 0), where a, give the directions

of the common harmonic conjugates of ax2 + 2hxy+ by2=0 and a'x2+2h'xy +b'y2 =0.

(3) Prove with the notation of Art. 143 that the points of the conic, which lie

in the (a, /3) plane, are situated on the pair of straight lines whose equation is

T,'(y-#tan a)2+2Ci(y-xtim a) (y-x tanj3)+ T'(y-#tan'j3)2=0.

(4) Prove that the graph of the curve ,

ax2+by2— l+i(by— Ix) (ly+ax)=0

in' the (a, /3) plane in which it has a continuous graph is the real part of the conic

bx2 ay2 xy(l2+ ab) 1

p+F ~ W+a~2 + «/W+a~2VJ*+F ~ lT+ak

'

referred to the a, /3 axes as axes of coordinates.

(5) The locus of points, from which pairs of tangents can be drawn to a hyper-

bola such that the sum of the angles which they make with the axis of x is — , is a

portion of a rectangular hyperbola.

(6) The locus of a point, the tangents from which to the ellipse ^ +^-1=0
make angles with the axis of x the sum of which is ^ , is the rectangular hyperbola

x2 -y2 -a2+b2=0.
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(7) Prove that the point on the line ax+ iby=\ which is in the (a, /3) plane is

a — ib tan a
(
a — ib tan ff) tang

a2+62 tanatan j3' a2 + b2 tan a tan $

(8) Show that if a, a', h, k, h', and k' are finite quantities and \ in the limit

approaches the value zero, the connectors of the two points Qx and Q2 whose co-

ordinates are respectively r-H-A, -r-+k and rr-+h', ^-r—\-k', to the, origin are theXX XX
critical lines of the origin.

(9) Hence show that the points Q : and Q2 may be regarded as representing the

circular points at infinity in the most general case and that these points in a

particular case are a pair of conjugate imaginary points.

(10) Hence prove that in the general case the measures of the distances of the

circular points at infinity from the origin are indeterminate quantities.

13—2



CHAPTER VII

THE IMAGINARY IN SPACE
i

148. In Chapter I an imaginary point was defined as a double point

of a real overlapping involution situated on a real straight line. The

real lines, on which such involutions were situated, were assumed to lie

in a plane, so that the bases of the involutions were intersecting straight

lines. In this chapter this restriction is removed so that the points

considered, both real and imaginary, are situated in space.

A straight line may be regarded as a fundamental conception or may
be defined as a locus such that one and only one straight line can be

drawn to pass through two given points, and aplane as the surface generated

by straight lines all of which intersect in pairs at points at a finite or

infinite distance. It follows that two straight lines cannot intersect in

more than one point. If they so intersected, two straight lines could

be drawn to join their two points of intersection. It is assumed that two

intersecting straight lines uniquely determine a plane.

A plane is determined by any three points A, B, G, which are not

collinear. Join B and G to A by straight lines. Then, if P and Q be

any two points on these lines, the straight line PQ intersects AB and

AG and therefore the three lines lie in the same plane.

It follows that a point and a straight line determine a plane, and that

if two points on a straight line lie in a plane, every point in the straight

line lies in the plane.

The locus ofpoints common to two planes is a straight line.

Let A and B be two points common to two planes a and a'. Only

one straight line can be drawn to join A and B. Every point on the

line AB lies in the plane <r and also in the plane a. Hence the theorem

follows, for if there were a common point of the planes a and a, which

was not on the line AB, the planes a and <r' would coincide in the

plane determined by this point and the line AB.

A plane and a straight line—which does not lie in the plane—
determine a point.
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Let a- be the plane and I the line. Take A any point in the plane

a- and construct the plane a through A and the line I. This plane

intersects the plane a- in a line <rcr'. I being in this plane meets <t<t' in

one point. This point is the point of intersection of I and o\

Planes which intersect in the same straight line are termed coaxal

planes.

Three planes which are not coaxal determine a point.

Let the planes be <t, a', a". Then a, </ intersect in a straight line I,

and I meets a" in a point. This is the one and only point common to

the three planes.

Hence the following correlative relations are obtained:

Three non-collinear points de- Three non-coaxal planes deter-

termine a plane. mine a point.

Two points determine a straight Two planes determine astraight

line. line.

A point and a line determine a A plane and a line determine a

plane. point.

Two intersecting straight lines Two intersecting straight lines

determine a point. determine a plane.

If in the above the determining elements are real, the line, point or

plane so determined is real.
,

Parallel planes are such as contain more than one system of lines of

the one parallel to a system of parallel lines of the other. Parallel planes

form a coaxal system of planes the axis of which is entirely at infinity.

Analytical.

Let P be any imaginary point in space. Let P' be its conjugate

imaginary point. Then PP' is a real line, for P and P' are by definition

the double points of a real involution on a real straight line. Let M be

the mean point of P and P', which is real. Through M draw a real plane

a perpendicular to the real line PP'. Then PM is a purely imaginary

quantity. The position of M in the plane <r is determined by two real

coordinates. Hence the coordinates ofP are of the form a, b, + ic, and

those of P' of the form a, b, — ic. If the planes of the coordinate axes

are changed the coordinates of P and P7
are of the form

a + ia', b + ib', "c + ic,

and a — ia', b — ib', c — ic.
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It follows that if the equation of the plane, which contains three given

imaginary points, is of the form

(I + il') x + (m-+ im') y + (n + in') z = k + ik',

that of the plane which contains the thr.ee conjugate, imaginary points

is of the form
(I — il') x+ (m — im') y + (n — in') z = k — iW.

These planes in the equations of which the sign ofi the imaginary

is changed are termed conjugate imaginary planes.

A line is determined by the equations of two planes which p
x

ass

through the line. These may be transformed into the shape

x-(a + ia') y-(b + ib') z — (c + ic')

(k + ik') - (a + ia)

1. Every imaginary point has

a conjugate imaginary point.

If the coordinates of the point

are

a + ia', i + ib , c+ic,

the coordinates of the conjugate

imaginary point are

a— ia', b — i¥, c — ic.

2. Through every imaginary

point there is one and only one real

line, which is the connector of the

point to its conjugate imaginary

point. Through this line pass all

real planes which contain the point.

The equation of the line join-

ing the point a + ia', b + ib', c + ic

to its conjugate imaginary point is

l'-_ar— a — ia' _-Vj^—' b — ib'

~T~a — ia —a — f,a

or
_y-<

a'- b' c'
'

This line is obviously real

(I + il') -(b+ ib') I (m 4- im) - (c + ic)

'

Every imaginary plane has a

conjugate imaginary plane.

If the equation of the plane is

ax +by + cz+d
+ i (a'x + b'y + c'z + a") = 0,

that of the conjugate imaginary

plane is

ax + by + cz + d
- i (a'x + b'y + c'z + d') = 0.

In every imaginary plane there

is one and only one real line, which

is the line of intersection of the

plane and its conjugate imaginary

plane. This line is the locus of all

real points in the plane?

'

The real points in the plane

ax + by+cz + d

+ i (a'x + b'y + c'z + d') =

are given by

aa) + by + cz + d =
and a'x + b'y + c'z + a" = 0.

These points lie on a real

straight line, which is also the real

line in the conjugate imaginary

plane.

ib'-b-ib'

:—C — ic'

ic' — c — ic'

z — c
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3. The linejoining twoimagin-

arypoints isihe conjugateimaginary

line of the line joining their con-

jugate imaginary points.

4. Two conjugate imaginary

lines, determined as the connectors

of two pairs of conjugate imaginary

points, meet at a real point, if the

real lines through the two pairs of

conjugate imaginary points are con-

current, i.e. if the two pairs of con-

jugate imaginary points lie in the

same real plane ; otherwise they do

not meet at all.

The condition that the line

x — a- la y—b — ib'

k + ik' — a — id I + il' — b —ib'

z—c- %c

m-ji-im —c — ic

should intersect the line obtained

by changing the sign of i, is

a V c'

k'' V m' = 0.

k — a l — b m — c !

This is the condition that the

real lines through the imaginary

points determining the lines should

meet at a point (see 2 above).

If this condition is not satisfied

there is no real point on the con-

jugate imaginary lines and they do

not intersect.

5. Iftwo imaginary points are

such that the real lines through the

The line of intersection of two

imaginary planes is the conjugate

imaginary line of the line of inter-

section of their conjugate imaginary

planes.

Two conjugate imaginary lines,

determined as the lines of inter-

section of two pairs of conjugate

imaginaryplanes, lie in a real plane,

if the real lines in the two pairs of

planes are concurrent, i.e. if the two

pairs ofconjugate imaginary planes

meet in a real point ; otherwise they

do not lie in a plane at all.

The condition that the line

ax + by + cz + d

+ i (ax + b'y + cz + d') =

kx + ly+mz + n

+ i (k'x + Vy + m'z + li) =

should intersect the line obtained

by changing the sign of i, is

abed
k I m n

a' b' c d'

k' V ml n'

This is the condition that the

real lines in the determining planes

should meet at a point, i.e. that

they should lie in a plane (see 2-

above).

If this condition is not satisfied

there is no real plane through the

conjugate imaginary lines and they

do not lie in a plane.

If two imaginary planes are

such that the real lines in the planes

= 0.

\
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points are not concurrent, no real are not coplahar, no real point

plane can be drawn through their exists on their line of intersection,

connector.

This follows from 4. This follows from 4.

149. Systems of lines and planes

through a real point.

A real point P contains

(1) An infinite number, of real planes,

which intersect in an infinite'number of

real lines through the point P. These

planes are determined by P and any

other twp real points.

(2) An infinite number of planes

determined by P, a real point A and an

imaginary point Q. These planes may
be real, in which case the plane con-

tains Q>, the conjugate imaginary

point of Q.

All those planes which pass through

a real point .A as well as through P
intersect in the real line AP.

(3) An infinite number of planes

determined by P, Q and R, where Q -and

R are imaginary points. If a particular

plane contains the conjugate imaginary

points of Q and R, it is real. Otherwise

it is imaginary.

Planes of this system intersect in

imaginary lines through P.

Systems of lines and planes through

an imaginary point.

Through an imaginary point P there

passes one real line, which is the con-

nector of P to its conjugate imaginary

point P'.

Through the line PP' pass an infinite

number of real planes, all of which con-

tain P and P'. These are the only real

planes which contain P. Hence if a real

plane passes through an imaginary. point,

it also passes through the conjugate

imaginary point.

Systems of lines and points in a real

planp.

A real plane o- contains

(1) An infinite number of real points,

the connectors of which are an infinite

number of real lines in the plane o\

These points are determined by a- and

any other two real planes.

(2) An infinite number of points

determined by <r, a real plane a-' and an

imaginary plane crx . These points may
be real, in which case the point con-

tains <7i', the conjugate imaginary

plane of o-j.

All those points which are contained

by a' as well as by <r lie in the real

straight line tr<r'.

(3) An infinite number - of points

determined by <r, <rx and o-2 , where o-t
and

<72 are imaginary planes. If a particular

point contains the conjugate imaginary

planes of u
x
and o-2 , it is real. Otherwise

it is imaginary.

Points of this system lie on imaginary

lines in a.

Systems of lines and points in an

imaginary plane.

In an imaginary plane o- there is one

real line, which is the line of intersection

of the plane with its conjugate imaginary

plane o-'.

On the line io-u' there are an infinite

number of real points, which are in the

planes <r and a. These are the only real

points in the plane a-. Hence if a real

point lies in an imaginary plane it is also

in the conjugate imaginary plane.
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Through the line PP' also pass an On the line tra-' are also an infinite

infinite number of imaginary planes, nuinber of imaginary points, which are

which are conjugate in pairs. All of conjugate in pairs. All of these points

these planes have the line PP' for their have the line <ra for their real line and
real line and therefore contain no other therefore contain no other real line,

real line.

In all these planes an infinite number Through these points an infinite

of imaginary lines can be drawn through number of imaginary lines can be drawn
the point P. in the plane <r.

Through the point P and any other By means of the plane a- and any
two points, real or imaginary, an infinite other two planes, real or imaginary, an

number of imaginary planes can be infinite number of imaginary points can

drawn. These imaginary planes intersect be constructed. These imaginary points

in an infinite number of imaginary lines determine an infinite number of imagin-

through P. ary lines in the plane it.

150. Projection from an imaginary centre.

Projection from .an imaginary centre of points in one real plane into

points in another real plane.

Let S .be the centre of projection, S' its conjugate imaginary point,

o- the first plane and a the second plane.

(1) All real points in one plane are projected into imaginary points

in the other plane with the exception of the points where the line SS'

meets the planes and the real points on the line of intersection of the

planes a and a. The points which correspond to these points are real.

Consider any real point P in the plane o- other than the special

points mentioned above. SP is an imaginary line since it does not pass

through S', the conjugate imaginary point of S. It contains one real

point P and therefore cannot contain any other real point. Hence P',

the point where SP meets the plane &', is an imaginary point.

(2) Every conic is projected into a conic. '

Take A, B, C, D and P any five points on a conic L in the plane a.

Let these points be projected into the points A', B', C, B' and P'.

Then (P . ABGD) = (P . A'B'G'B'). Hence as P moves along the conic

L, the point P' will "move along the corresponding conic L'.

(3) A real conic can always be projected into a real conic.

Consider the conic L in the plane o\ Take any real point Q in the

plane a outside the conic L, i.e. so that real lines can be drawn through

the point which meet the conic in imaginary points.
'
Draw any real
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line s through outside the plane a and take two conjugate imaginary

points $ and S' on this line. Take *S for centre of projection. Through

draw any real straight line, a in the plane a- to meet the conic L in

conjugate imaginary points A x and A 2 . Then the plane SS'AiA^ is

real and &4j is an imaginary line in this plane. It therefore contains

a real point A 3 .

Similarly draw through in the plane a two other straight lines

b and c. From these derive as above points B^ and d and on their

connectors to, S determine the real points B3 and C3 .

Take the plane A 3B3G3 as the plane o-'.

By construction the three imaginary points Au Blt C^ on the conic L
project into the real points A s , Bs , Cs in the plane a, which must be on

the conic L' into which the conic L is projected by (2). Also the conic

L meets the line a<r' in a pair of points real, coincident or conjugate

imaginary. Through these points the conic L' passes. Hence the

conic L' contains three real points and a pair of points either real or

conjugate imaginary. Hence the conic L' is real.

Instead of seeking the projection, in which Au Blt Cx are projected

l'(S J

into A 3 , B3 , G3 , it is possible to project Alt A 2 , B1 into real points A a ,

A t , B3 , where A it Bt , Ct are the points corresponding to A iy Bit G2 .

It should be noticed that A 3 is the point of intersection of SAi and

S'A* and that tjhe points Bs and C3 may be constructed in a similar

manner.
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Let SS' meet A 3A 4 in N and let A 3A t meet a in M. Since Jf(LA^
is harmonic, M is a point in the polar of with respect to the conic.

Also NOSS' is harmonic and therefore' N is fixed when S, 0, 8' are

fixed.

Consider the plane A 3AtBs . It meets a in M a point on the polar

of 0. Also -4 S4 4 and 53 JS4 intersect at N and therefore Bt lies in this

plane and is the projection of i?2 on the plane. Hence the plane

A 3AiBsBt meets a in the point If, where BsBt meets b. Hence it

intersects o- in the polar of 0.

Similarly the plane B^iC^i intersects a in the polar of 0. Hence
since B3 , B4 are common to the planes A 3A 4BsBt and _B3.B4C3 C4 these

planes coincide. Hence (1) all pairs of conjugate imaginary points

obtained by drawing real chords through to meet the conic are projected

into real points, and (2) for all positions of S the line aer' is the polar

of 0.

• (4) All projective theorems, which are true for real points on a conic,

are also true for imaginary points on a conic.

Construct the projection as in (3) so that the real points for which

the theorem holds are not the point SS' . cr or the points on era'. Then

the theorem is obvious.

Similarly it follows that projective theorems, which are true for real

points on- real straight lines, are true for imaginary points on real straight

lines.

This affords a general confirmation of the results obtained in the

earlier chapters.

151. Graphic representation of the imaginary in Solid Geo-

metry.

Let the axes of coordinates be rectangular and let the coordinates of

any point P he oci + iao2 , yx + iy«, z^ + iz^

Let Px be the point xx , ylt zx , and let P2 be the point x2 , y2 , z2 . Let

be the origin and let OPi and 0P2 be r^ and r2 . Let the direction

cosines of OP^. and 0P2 be respectively cos a, cos /3, cos 7 and cos a', cos ft',

cos 7'. Then the coordinates of P are rx cos a+ir2 cos a', rx cos ft+ir2 cos ft'

and 7
1

! cos 7 + ir2 cos 7'. These values may be substituted in the equation

of a Surface in order to find the principal coordinates of the point P,

which are rx and r2 , measured in the directions given by cos a, cos/3,

cos 7 and cos a, cos ft', cos 7'.



204 The Imaginary in Geometry

(A) To trace, a real plane^

Substituting in the equation in its usual form it is found that

r
1

! (I cos a + mcos8 +ncosy)—p = (1)

and r2 (I cos a' +m cos 8' + n cos 7') =0 (2)

From (2) it follows that the direction of the imaginary coordinate

may be any direction parallel to the plane and that the coordinate r2

may have any value.' From (1) it follows that the point P± may be

anywhere in the plane. Hence from the origin a real vector r^ may be

drawn to any real point in the plane and through that point an imaginary

vector may be drawn in any direction in the plane and of any length

to determine a point in the plane.

(B) To trace a real conicoid.

. Let the equation of the surface be

a? y" z* , A

Substituting in this equation it is found that

(cos2 a cos-8 cos2
7) 2

(cos2 a' coss /3' cosiVl_ n •(1)

, (cos a cos a' cos 8 cos ff cos 7 cos 7')
and ^{—^+^V— + ^V-^r°--(2

>
'

Consider the line OP^ It is a diameter of the conicoid whose

direction cosines are cos a, cos 8, cos 7. (2) is the condition that the

line OPe should lie in the diametral plane of OPt . If this condition is

fulfilled (2) is satisfied.

Let the point P
s
be given. Then P^P^ is parallel to the diametral

plane of 0P1 and

r, U'
cos2

/3 cos2
7\

-I—rs—h—^— — 1

cos2 a cos2 8' cos2 7'
1 -— -1 —

a2 62
c2

.(3)

, T cos2 a' cos2
.i8' cos2 7' 1

where r is the length of the, semi-diameter in which the line through

the centre, whose direction cosines are cos a', cos/3', cos 7', meets the

conic in which the diametral plane intersects the conicoid.

™ .. . „ ( „ /cos2 a ' cos2 8 cos2 y\ ,

)

, .

.

Therefore r2
2 = r2

|
n2

(^-^ +-^ +-^J
- lj (4)
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Hence the imaginary points on the conicoid which have Pi,, as repre-

senting the real parts of their coordinates, lie in a plane through Px

parallel to the diametral plane of 0PX and at such distances from P,

that they are situated on a conic similar and similarly placed to the

section of the ellipsoid by the diametral plane of 0PX .

As the point P, moves along OP^ the linear dimensions of the conic

on which the points lie vary as

/ „/cos2 a cos2
/8 cos3

7\ _ /%,* w, 2 z? ,

If OPx be taken as axis of z and the axes of x and y are any pair of

conjugate diameters in the diametral plane of 0Plt and cos a, cos a', ...

are the direction ratios of r^ and r2 , then

cos a = cos B = cos 7' = 0.

.

,

„ /cos2 a cos2 B cos2 7\ z?
Also n^ +T +VW

, 1 cos2
a' cos2 6'

and - =—— +
r2 a2 ¥

Hence (4) becomes

,
/cos2

a' cos2 )8'\ _ 2. _ ,

Therefore -% - %' + % = 1

.

a2 o2
c2

This is the surface which is the graph of the branch in question of

the conicoid.

This result may be obtained,as follows. Take QP± as axis of z and

two conjugate diameters in the diametral plane of 0PX as axes of

coordinates. Then, if x, y, z are the coordinates of points on the branch

in question, of the surface, z is real,and x and y are imaginary. Hence

,
x, y, z are respectively ix2 , iy2 and z. Substituting in the equation of

• x 2 v 2 £2

the surface it is found that the graph in question is—^ —^ + — = 1.

This is an hyperboloid of two sheets which touches the real ellipsoid

where it is met by the diameter' OP^. The same surface is obtained

whatever pair of conjugate diameters in the diametral plane are taken

for axes of x and y.

If OPi is taken as an. .imaginary axis, the coordinates of a point on

the corresponding branch are xu y± and iz2 and the equation of the
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graph is -\ + tj—\ = !• This is an hyperhploid of one sheet, which

touches the real ellipsoid where it is met by the plane 2= 0. It is the

same whatever pair of conjugate diameters in the plane z = are taken

as axes of coordinates. Hence for each diameter and its diametral

plane, there are in addition to the (1, 1, 1) alnd (i, i, i) branches, two

hyperboloidal branches of the form (i, i, 1) and (1, 1, i). These two

x2 y2 S2

hyperboloidal branches have a common asymptotic cone — + y^
—- = 0.

Hence it is seen that the parent branch of the conicoid

»2 f z*
-, r>

consists of eight parts, viz. the (1, 1, 1) (i, 1, 1) (1, i, 1) (1, 1, i) (1, i, i)

(i, l,i) (i, i, 1) (i, i, i) branches. The branches 2 to 4 and 5 to 7 are of

the same type.

The typical branches are

(a) (1, 1, 1) branch which is the ellipsoid

-.+£+'-1-0.
a? o2 c2

(b) (1,1, i) branch which is an hyperboloid of one sheet

a?
+

b* c2
'

(c) (i, i, 1) branch which is an hyperboloid of two sheets

_^_2/!+i
2

_i = o
a? 62 c2

(d) (i,i,i) branch which does 1 not exist in this case. Its equation is

a? y2 z* ., „

a2 ¥ &

The hyperboloids (b) and (c) have a common asymptotic cone

«2
y

2 z\ n—\-- =
a? b* c2

The conjugate loci may be obtained by taking any point.A' on the

ellipsoid and associating with QA' as axes of coordinates any pair of

conjugate diameters OB', '00' in the diametral plane of Oil'.
~

The equation of the,ellipsoid is then

£ + £+--1-0
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As in the case of the parent branch there are eight branches of the

curve, of which four are typical.

(a) (1, 1, 1) branch is the same ellipsoid as before.

(b) (1, 1, i) branch is an hyperboloid of one sheet which touches

the ellipsoid where it is met by the plane z = 0. Its equation is

a'
2+ &'2

c'
2

(c) (i, i, 1) branch is an hyperboloid of two sheets, which touches

the ellipsoid at the ends of the diameter, which is the axis of z. Its

equation is

a'2 b 2 c 2

(d) (i,
1

i, i) branch does not exist in this case. Its equation is

When it exists it is the same as the corresponding partof theparentbranch.

The two hyperboloids (b) and (c) have the common asymptotic cone

Consider the eonicoid

a'2
+

b'* c'
2

^2 fl»2 ^2

a2
fi
z c2

and any real plane parallel to the yz plane. Let the plane be x— h=0 and let h< a

This plane meets the eonicoid in the conic

V2 22 , h2

— H—= 1 .

62 c8 a2 '

,

This is an ellipse. It has a real branch which corresponds to a real branch of the

eonicoid. It also has imaginary branches. Consider the branch of the ellipse for

which y is real and z purely imaginary. This branch gives points on the eonicoid of

the form (1, 1, i).
' To obtain the principal coordinates of suph points the x and y

coordinates must be combined into a single real coordinate. This gives a real

coordinate—say OP\—in the xy plane and an imaginary coordinate perpendicular to

this plane that is parallel, to the axis of z. For this particular branph the coordinates

of all points on the eonicoid will be of this form. As however OP\ will generally be,

different for different points, these points will not generally lie on the same branch

of the surface.

The hyperboloids may be graphed in the same way as the ellipsoid.

The branches will be found to be of the same nature. The paraboloids

may also be graphed.
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(C) To trace an imaginary plane.

Let the equation of the plane be

Ix + my + nz + iK (l'x + m'y + n'z) = 0,

where P+m2 + n2 = l and I'
2 + m' 2 + n'2 = 1.

The equation of the conjugate imaginary plane is

Ix + my + nz— iK (l'x + m'y + n'z) =

and the combined equation of the two planes

(Ix + my+ nz)2 +K2 (l'x + m'y + n'z)2 = 0.

^

Let Ix + my + nz = be the plane X, l'x + m'y + nz = the plane \',

and let s be the real line of intersection of the planes.

Let Pj and P2 be as previously defined. Then on substituting in

the equation of the plane it is found that

rj. XI cos a- r2K .
2£' cos a =0 (1)

and r2 . Oleosa +^K .%l' cosa = 0, (2)

where "21 cos a = I cos a. + m cos /3 + n cos 7,

%l ' cos a = l' cos a + m' cos /8 + n' cos 7, etc.

From (1) and (2)

XI cos a . XI cos a +K2
. XI' cos a! . XV cos a = (3)

This is the condition that the line 0P2 should. lie in the diametral

plane of OPx with respect to the pair of conjugate imaginary planes,

that is, if the plane determined by P^ and s be <ru arid <rs be the plane

harmonic conjugate of a\ with respect to the pair of conjugate imaginary

planes, OP^ must lie in the plane a2 .



The Imaginary Plane 209

Wherever the point P, is situated in the plane ax , P2 must lie in the

plane a2 ; and conversely wherever P2 lies in the plane a2 , the point P,

must lie in the plane ov Hence the relation between the points P, and

P2 and the planes a, and o-2
' is reciprocal.

Give Pj a definite' position in the plane a,. Then rlt cos a, cos/3,

cos 7 are given. In the plane a2 draw a line 0P2 in any direction

determined by cos a', cos/3', cos 7', so that relation (3) is satisfied.

Then from (1) 1 = j^¥^-. =^- ,Kr2 . 2,1 cos a K .p2

where p x is the perpendicular from P, on \ and p2 is the perpendicular

from P2 on \'. But p, is given and therefore p2 is constant. Hence the

locus of P2 is a line (in the plane cr2) parallel to s. If P, moves along

a line parallel to s this line is unaltered. Hence as P\ or P2 moves in

the planes cr, and <r2 along a line parallel to s, the other point describes

another line parallel to s. The distance P,P equals 0P2 , where P is in

the plane a2 , which can be drawn through P1 parallel to <r2 . Hence

the locus of P is a straight line obtained as the line of intersection of

planes through P, and P2 parallel to o-2 and a,.

If Pi moves along OP,, i.e. if cos a, cos/3, cos 7 are constant but r,

varies, then the locus of P2 , for each value of rlt is a straight line parallel

to s. The same is true in regard to the locus of P.

Consider a section of the figure by a plane OP±PP2 , where OPi

varies but the directions of OPi and 0P2 are fixed.

Then from (1)

OP1 OP, K$l' cos a'

7TS = p-o = -^Ti = a constant.
OP2 P^P it cos a

Hence, as Pi moves along OP,, the locus of P is a straight line OP
.through 0. This is true for all planes OPzPP,. Hence the locus of P,

when Pj has any position in the plane a,, is a plane determined by one

position of P and s the real line in the pair of conjugate imaginary

planes. When both these conjugate imaginary planes are considered

P may Be in either of two such planes. In the preceding a, and cr2 may

be any pair of planes harmonic conjugate of the given pair of conjugate

imaginary planes. Hence the graph of a pair of conjugate imaginary

planes consists of a system of pairs of planes which pass through their

real line.

The coordinates of a point on such a graph may be constructed as

follows. Let ffj' and a2 be the {a, /8) planes which are real harmonic

h. 1. g. 14
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conjugates of the plane and its conjugate imaginary plane. Take Px any

point (real) in ov Draw through P1 a plane parallel to <r2 . It meets

the graph in a line parallel to the real line in the imaginary planes.

The coordinates of any point on this line are 0P1 real (where is the

origin) and PXP imaginary.

Thus the coordinates of a point of the graph are any real vector in

the plane a^ and an imaginary vector parallel to the plane a2 .

The preceding may be illustrated as follows.

Consider two conjugate imaginary planes o- and a', which iiitersect in a real

line «. Draw a real plane X perpendicular to s to meet s in 0' and er and tr in a pair

of conjugate imaginary lines I and I'. Consider the figure in the plane X. In this

plane there are an infinite number of real pairs of harmonic conjugates of I and I'.

Let a and /3 be a pair of these lines. The graph of either of the lines I and I', when

a and /3 are taken as axes, is a straight line in the plane X. Let P be any point of

this graph and let OPx and PXP (xx and iy2) be its coordinates. Then the planes

si, si', sa, s/3 form a coaxal harmonic pencil. Referred to any point on s as origin,

the coordinates of P are real lengths 00' and xx—which combine with a real length

OPx—and the imaginary coordinate iy. These are the principal coordinates of P.

The locus of P is obviously one dr other of two planes through s.

152. Solid perspective.

Consider any point S and any plane s (the centre and plane of perspective).

Take any point in space A. Join S to A to meet s in AT
. Take a point A' on SA

such that (SNAA')=\ (a constant). Then A' is termed the corresponding point of

A in the perspective.

In this way if A be any point of a solid figure a, then the point A' of another

solid figure o-' corresponds to A.

If A be a point on a straight line a, the point A' will be on another straight line

a' which is said to correspond to a, and as the point A moves along the straight line

a the point A' will move along the straight line a'. This follows from considering

the plane perspective in the plane Sa. The corresponding lines a and a' intersect on

the plane s.
*

If two lines a and b in the figure <r intersect, they determine a plane. Take any

point P in this plane. Then any line I in this plane through P meets a and b. To

P corresponds a point P'- To I corresponds a line V through P' which intersects

the lines a' and V which correspond to a and b. Hence P' lies in the plane a'b', which

corresponds to the plane ab. Therefore to a plane corresponds a plane and corre-

sponding planes intersect on s.

If any line Sff be drawn through S to meet s in N and a point V be taken on

SN such that •

(SNVn)=\,
SV

then the locus of Fis a plane parallel to s, since ^™=X (a constant). Also to every

point on this plane there corresponds a point at an infinite distance in the second
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figure. But it has been shown that generally to a plane corresponds a plane. Hence
it is assumed that all points at infinity in the second figure, and consequently in

every solid figure, lie in a plane, which in this perspective corresponds to the plane

in which V is situated, i.e. to the vanishing plane v.

The points at infinity in the first figure o- correspond to points in the second
figure determined by

ifw sv sw
°r ^ ^W= ^' "'"

~NV ' ~WW~^" Hence the ratios of V and W are the same with

,

respect to S and If, when these points are interchanged. Hence the distance of V
from S is the same as the distance of W from If. These lengths may be measured

, on the perpendicular from S to, s. Hence the locus of W is a plane w parallel to s

and v.

Therefore if S be the centre, s the plane, and v and w the vanishing planes of

a solid -perspective,

(1) All points in the planes v and w correspond to points at an infinite distance

in the other figure. '

(2) If a plane a meets the vanishing plane v in the line av, then S . av is

parallel to a', and a' is the plane parallel to the plane (viz., S . av) drawn through

the line a . s.

From this it follows that, from a certain point of view, all points at infinity may
be regarded as lying in a plane. The method here sketched may be employed to

find the properties of solid figures.

To prove that by a rotation round its real line, through an imaginary angle, an

imaginary plane may be superposed on a real plane.

Every imaginary plane has an equation of the form

(ax+by+cz+d)+i(a'x+ b'y+ c'z+ d')=0, (1)

and the equation of its conjugate imaginary plane is

(ax+by+cz+d)-i(a'x+b'y+c'z+d')=0 , (2)

The real line s in these planes is the line of intersection of the real planes '

ax+ by+ cz+d=0, (3)-

and a'x+ b'y+ c'z+d'=0 (4)

Through any real point A on this line draw a real plane o- perpendicular to this

line. It will meet the planes (3) and (4) in real lines sx and s2 and the conjugate

imaginary planes (1) and (2) in a pair of conjugate imaginary lines *{ and s{. In the

real plane n- through the point of intersection of the conjugate imaginary lines s{

and s{ pass the pair of real lines Sj and s2 , and as in Art. 51 the line s{, by a rotation

round A through an imaginary angle, may be brought into coincidence with the real

line «x . By this process ^he imaginary plane (1) is brought into coincidence with

the real plane ax+ by+cz+ d=0.

Hence it follows that there is nothing essentially different between a real' and an

imaginary plane. As in the case of real and imaginary straight lines, the difference

lies in their relation to points outside themselves.
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EXAMPLES

(1) Show that in an imaginary projection all the real points on a real straight

line except two can be projected into imaginary points on another real line.

(2) Prove that the real lines in the imaginary planes, which pass through an
imaginary line, form a system of surfaces of the second degree.

(3) Prove that the real lines through the imaginary points, which lie on an
imaginary straight line, form a system of surfaces of the second degree.

(4) Prove that an imaginary point a+ia', b+ib', c+ ic', contains a purely

imaginary line the equations of which are

ix-\-o! _ iy+b' _ iz+ c'

a b c

(5) Prove that a purely imaginary plane contains a purely imaginary line which

is parallel' to the real line in the plane.

(6) In Art. 25 prove that if S=Sx=S2 , the values of all the anharmonic ratios

of the four points are either -ax or —a>2 , where <»i and a2 are the two imaginary

cube roots ofunity.

(7) Prove that if (ABCB) = - »j, then (ABCD)= (ACI)B)= (ADBC).
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The reference numbers refer to articles

Angle between real and imaginary lines,

sine, cosine and tangent of, 56
between two imaginary lines, sine, cosine

and tangent of, 61
between real and imaginary planes, 153
purely imaginary, construction of, 66

measurement of, 67
representation of ' trigonometrical

functions of, 68
imaginary eccentric, 74

real bisectors of, 66
Angles, imaginary, relations connecting

trigonometrical functions of, 69
subsidiary angles of, 69 and 70

use of meridional tables to obtain, 70
trigonometrical function of, used for

integration, 75
Anharmonic ratio, definition of, 5

of real pencil, 10
of imaginary pencil, 82
of real and imaginary points, 23
of four collinear points, condition that

it may be real, 24
of pencil formed by connectors to four

points, 23
Anharmonic ratios of four collinear points,

relations connecting, 25
Axiom I, 1

Axiom II, 51

Bisectors, real, of an imaginary angle, 66
Brianchon's theorem, 98

Carnot's theorem for general conic, 101
Ceva's theorem for real triangle and imagi-

nary transversal, 16
for imaginary triangle and , imaginary

transversal, 65
Circle, square of imaginary tangent to, 32

met by chord through fixed point in

points product of whose distances

from fixed point is constant, 32
real, through a real and an imaginary

point, 32
Circles, determine, same involution on

radical axis, 33 >

determine same involution on line at

infinity, 33
orthogonal, determine inverse points on

any diameter, 31
points of intersection of, 36

Circular points at infinity—see Criticalpoints

Coaxal circles, ratio of tangents to, from
variable point on coaxal circle,

constant, 32
Common conjugates with respect to two

conies (general) of points on fixed

line, a conic, 103
.self-conjugate triangle of two conies, 104

Conic, general, definition of, 87
determined by five points, 88
met by a line in two points, 89
one tangent at a point to, 89
correlative of anharmonic property of,

90
correlative of, a conic, 91
projective ranges and involutions on, 92
pole and polar with respect to, 94
determines involution on every line in

its plane, 95
Pascal's theorem for, 97
Brianchon's, theorem for, 98
Desargues' theorem for, 100
Carnot's theorem for, 101
projection of real branch into imaginary,

151
imaginary and real branches in perspec-

tive, 96
contains real or semi-real quadrangle, 107

Conic, real, definition of, 106
when real, 106, 119, 125
construction of from real data, 120
involution determined by on a straight

line, 38
variable chord through fixed point meets

in points product of whose dis-

tances from fixed point is in con-
stant ratio to squares of parallel

diameters, 42, 43
connectors of points of intersection of

two straight lines with, 45
intersection of imaginary straight line

with, 49
Conic, imaginary, contains a real or semi-

real quadrangle, 107
cannot have more than one real or semi-

real self-conjugate triangle, 108
every real point has one real conjugate

with respect to, 111
locus of real conjugates of points on a

straight line with respect to, is

eleven points locu^s of line and real

or semi-real inscribed quadrangle,
111
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Conic, imaginary (cant.)

harmonic locus of, 112
foci of, 122
focal properties of, 122, 124
equation of, 138
equation of projection of, 139
by nature or displacement, 141
tracing of, 142
four points on, in (a, (3) and (/3, a)

planes, 143
special case of, 145
real conjugate points with respect to,

111
real conjugates of points on line with

respect to, locus of, 111

Conies, real points of intersection of, 48
Conies, conjugate imaginary, intersect in

real or semi-real quadrangle, 107
have real or semi-real circumscribed

quadrilateral, 107
harmonic locus of, » real conic, 112,

113, 114
anharmonic locus of, a real curve, 114,

115
Conies, general, with two points of inter-

section, intersect in four points, 99
with one point of intersection, intersect

in four points, 102

twOj locus of common conjugates of

points on fixed line with respect

to, a conic, 103

have common self-conjugate triangle, 104
intersect in four points, 105
eleven points, loous of, 105

Conies having double contact at imaginary
points, 125

Conjugate imaginary points, 2

determined by circle on a straight line, 31

Correlative properties, of imaginary points

and lines, 12

of imaginary points and planes, 148,

149
Correspondence, real and imaginary, 83

Critical lines, 22, 78, 147
Critical points, all circles meet line at

infinity in", 34
all conies through, are circles, 34

nature of, 22, 78

Desargues' theorem, 100
Distances, measurement of, 3, 56, 61

Duality, principle of, in space, 147, 148, 149

Equation of coDic, point on which sub-

tends pencil of constant anhar-
monic ratio, imaginary, at four

fixed points, 117
imaginary, 138, 139

of lines and planes in space, 149

Focal properties of an imaginary conic,

122, 124

Foci of a conic, construction of, 46

of imaginary conic, 132

Geometry of the sheaf, 150

Harmonic property of semi-real quadrangle

and quadrilateral, 18

imaginary quadrangle and quadrin

lateral, 84
conjugates, common, of two pairs of

points determined, 8, 31

of given pair of points with given

mean point determined, 31

perspective, general conic in, 96

Imaginary coordinates, direction of, 126

Infinity, plane at, 153
Intersections of a real and an imaginary

straight line, 10, 76
of STeal conic and an imaginary line, 49

of two general conies, 99, 102, 105

of real and imaginary straight lines with
real conic, 136

Involution, extended conception of, 7

imaginary, 7

when real, 8
property of semi-real quadrangle and

quadrilateral, 19
pencil, 22

determined by circle on line, construc-

tion of, 29
determined by conic on line, construc-

tion of, 38
on conic, 92
on conic determined by chords through

fixed point, 93
determined by conic on every line in its

plane, 95
Involutions, any two, real, in plane per-

spective, 20

Lines, system of, through a point, 80
imaginary, in space, 147, 148, 149'

Locus of real points at which a pair of

conjugate imaginary points and
two imaginary points subtend a

pencil of real anharmonic ratio, 116

Measure of an imaginary length on a real

line, 56
an imaginary line, 61

Measurement of an imaginary length on
• a real line, 3

on an imaginary line, 56, 61

of imaginary angles, 67
Measures of sides of closed figure on real

line, sum of, zero, 58
imaginary line, sum of, zero, 62

Menelaus' theorem for real triangle and
imaginary transversal, 15

for imaginary triangle and imaginary
transversal, 65
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Parallel lines, 53
Pascal's theorem, 97
Pencils with imaginary vertices, 82
Perpendicular lines, 54
Perspective, solid, 152
Plane at infinity, 152
Plane, imaginary, 148, 149, 151, 152
Pole and polar with respect to a conic,

94, 95
Poncelet figure of a circle, 30

of two circles, 37
of a real conic, 39
of foci of a conic, 46
of critioal lines, 157
of imaginary lines, 76

Principal coordinates of a point, 8

Projection of an imaginary length on a
real line, 55 '

,

of points on an imaginary line, 81

of two real and a pair of conjugate
imaginary points, 26

of two pairs ^of conjugate imaginary
points, 26

of points into the critical points, 85

from a real centre, 85
from an imaginary centre, 85, 150
of real branch of conic into the imagi-

nary branch, 150
Projective ranges and pencils, 21, 81

on » conic, 92

Quadrangle and quadrilateral, semi-real, 17
harmonic property of, 18
involution property of, 19

Eatio of imaginary points, 4

Eight angles, imaginary lines at, defined, 22

Self-corresponding elements of projective
' ranges and pencils, 99
Solid perspective, 153 -

Square, semi-real, 27
projection of quadrangle into, 86

Straight line, imaginary, defined, 9
tracing of, 76

Sum and difference formulae for angles be-

tween imaginary and real lines, 60

imaginary lines, 64
Superposed projective ranges and pencils,

21, 81
pencils with critical lines for self-cor-

responding rays are equal pencils,

35

Tangent, only one at point on real conic,

129
Tracing of real line, 136

of imaginary straight line, 76
of a real conic, 127
of circle and ellipse, 127

of lines and conies, 134
of real conic, any origin, 136
of imaginary conic, 142
of special case of imaginary conic, 145
modulus of reduction in, 146
change of origin in, 133
generalconsideration concerning, 131,132

Triangle, semi-real and imaginary, 14
construction of, when one side greater

than sum of other two, 50
with two real lines for side's, 59
with three imaginary lines for sides, 63
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The reference numbers refer to articles

(a,,p) figures, 125

Anharmonic ratio of real and imaginary
points, 5

Conie, real, 106
nest of, 130
parent branch of, 127
general, 87

with real branch, 28

imaginary, 106
by displacement, 141

by nature, 141
special case of, 145

Conjugate imaginary points, 2

imaginary lines, 9

loci, 30
Critical lines and points, 22, 78

Diameters of a conic, 41

Eccentric angle complex, 74

Foci of a conic, 45

. Imaginary point, 1

length, 1, 51

straight line, 9
angle, 51, 52

Imaginary (cont.)

correspondence, 83

conic, 138

Measure of an imaginary length,. 56, 61

of an imaginary angle, 70
Modulus of reduction, 146

Nest of a conic, 130
a pair of imaginary straight lines, 1341

Perpendicular lines, 22
Pole and polar, 94
Poncelet figures, 30 ',

Principal coordinates of an imaginary
point, 8

Projection of an imaginary length, 55
Projective ranges, 6

Semi-real triangle, 14

quadrangle, 17
quadrilateral, 17

, square, 27, 86
Subsidiary angle, 68

Trigonometrical functions, 56, 6l
of purely imaginary angles, 67
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