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PREFACE,

THE present work contains all the propositions which
are usually included in treatises on Plane Trigonometry,
together with more than six hundred examples for exer-
cise. The design has been to render the subject intelligible
to beginners, and at the same time to afford the student the
opportunity of obtaining all the information which he will
require on this branch of Mathematics. The work is di-
vided into a large number of chapters, each of which is
in a great measure complete in itself. Thus it will be easy
for teachers to select for pupils such portions as will be
suitable for them in their first reading of the book. KEach
chapter is followed by a set of examples; those which are
entitled Miscellaneous Examples, together with a few in
some of the other sets, may be advantageously reserved by
the student for exercise after he has made some progress
in the subject.

As the text and the examples of the present work have
been tested by considerable experience in teaching, the
hope may be entertained that they will be suitable for
imparting a sound and comprehensive knowledge of Plane
Trigonometry, together with readiness in the application
of this knowledge to the solution of problems. Any sug-
gestions or corrections from students and teachers will be

most thankfully received. _
' I. TODHUNTER.

Sr. JorN’S COLLEGE,
Peb. 21, 1859.

In the second edition the work has been revised, and the
hints for the solution of the examples have been considerably
increased.

December, 1860.
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PLANE TRIGONOMETRY..

I, MEASUREMENT OF ANGLES BY DEGREES
OR GRADES.

- 1. TaE word Trigonometry is derived from two Greek words,
one signifying a iriangle and the other signifying I measure, and
originally denoted the science in which the relations subsisting
between the sides and angles of a triangle were investigated; the
science was called plane trigonometry, or spherical trigonometry,
according as the triangle was formed on a plane surface or on a
spherical surface. Plane Trigonometry has now a wider meaning,
and comprises all algebraical investigations with respect to plane
angles, whether forming a triangle or not.

2. We have first to explain how angles are measured. A
plane rectilineal angle is defined by Euclid as the inclination of two
straight lines to one another which meet together, but are not in
the same straight line. And when a straight line standing on
another makes the adjacent angles equal to one another, each
of the angles is called a right angle. A right angle is divided into
90 equal parts called degrees, a degree is divided into 60 equal
parts called minutes, and a minute into 60 equal parts called
seconds, Thus any angle may be estimated by ascertaining the
number of degrees it contains; if the angle does not contain an
exact number of degrees, we can express it in degrees and a fraction
of a degree; or the fraction of a degree may be converted into
minutes and seconds,

3. Thus, for example, half a right angle contains 45 degrees ;
a quarter of a right angle contains 224 degrees, which we may write
T. T, 1
@



2 MEASUREMENT OF ANGLES BY DEGREES OR GRADES.

in the decimal notation 22-5 degrees, or we may express it as
22 degrees, 30 minutes, Similarly, if a right angle be divided into
16 equal parts, each part contains 53 degrees, that is, & degrees,
37 mmutes, 30 seconds.

4. . Symbols aré used- as abbreviations of the word‘s degrees,

minules, seconds. Thus 5° 37" 30” is used to denote 5 degrees,
37 minutes, 30 seconds.

5. The method of estimating angles by degrees, minutes, and
seconds, is almost universally adopted in practical calculations.
Another method was proposed in France in connexion with a
uniform system of decimal tables of weights and measures. In
this method a right angle is divided into 100 equal parts called
grades, » grade is divided irto 100 equal parts called minufes, and
a minute is divided into 100 equal parts called seconds. On
account of the occurrence of the number one hundred in forming
the subdivisions of a right angle, this method of estimating angles
is called the cantesimal method ; and the common method is called
the sexagasimal methed on account of the occurrence of the num-
ber sixty in forming the subdivisions of a degree. The centesimal
method is also called the French method, and the common method
is called the English method.

6. Symbols are used as abbreviations of the words grades,
minubes, and seconds, in the centesimal method. Thus 5¢ 37" 30"
is used to denote 5 grades, 37 minutes, 30 seconds in the
centesimal method. A centesimal minute and second are not the
same 48 a sexagesimal minute and second, and the accents which
are used to denote centesimal minutes and seconds differ from
those which are used to denote sexagesimal minutes and seconds.

7. In the centesimal method any whole number of minutes
and seconds may be expressed immediately as & decimal fraction of

a grade. Thus37minutesis%’(—)ofagmde,thatis‘87ofu

grade; and 30 seconds is (TT::((;)' of a grade, that is 003 of a grade,
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Hemoo 5¢ 37' 30" may be written 55373; and since a grade is
t

(1_(1)3) of a right angle, 55373 may be written as ‘05373 of a
right angle. Notwithstanding this great advantage of the cen-
tesimal method, the sexagesimal method has been retained in
practical calculations, because the latter had become thoroughly
established by long use in mathematical works, and especially in
mathematical tables, before the former was proposed; and such

works and tables would have been rendered almost usecless by the
change in the method of estimating angles,

8. We will now shew how to compare the numbers which
measure the same angle in the English and French methods.

Let D be the number of dagrees contained in any angle, & the
number of grades contained in the same angle. Then since there

D
are 90 degrees in a right angle, go exPresses the ratio of the given
angle to a right angle; and since there are 100 grades in & right
angle, ILO% also expresses the ratio of the given angle to a right

le.
mgH .D_ @
ence g—d—m,
90 9 1
therefore D=m0=1—00=0—100,
100 10 1
and 0—%—D—-§-D=D+§D.

The formula D=G_ilT) @ gives the following rule; From the
wumber of grades contuined in any angle subtract one-tenth of that
number, the remainder is the mumber of degrees contained in the
angle.

The formula 0=D+%Dgivesthefollowing rule; 7o the wum~
bor@fdegmumtaimdinmymglca&im—nfmkqfthatmmbor,
the swmn i3 the number of grades contained i the ungle,

1—2



4 MEASUREMENT OF ANGLES BY DEGREES OR GRADES,

9. Again, let m be the number of English minutes contained
in any angle, p the number of French minutes contained in the
same angle. Then since there are 90 x 60 English minutes in a

right angle, 5%) expresses the ratio of the given angle to a right
~-angle; and since there are 100 x 100 French minutes in a right

angle, iW’:—lW) also expresses the ratio of the given angle to a
right angle, Hence

m [d .
90 x 60 100 x 100’
9x6 27
therefore m=155T0 =50
: 50
and = grm.

Similarly, if 8 be the number of English seconds contained in
any angle, and o the number of French secunds contained in the
same angle,

8 _ (4 .
90 x 60 x 60 100 x 100 x 100°

81
therefore 8=955%
250
and o= _ST 8.

10. The angles considered in Geometry are in general less
than two right angles. We say in general, because angles greater
than two right angles are not altogether excluded. For we may
refer ta the proposition that in equal circles, angles, whether at the
centrés or the circumferences, have the same ratio which the cir-
cumferences on which they stand have to one another; here there )
is no limit to the magnitude of the circumferences, and conse-
quently no limit to the magnitude of the angles; and in the course
of the demonstration given by Euclid, an angle occurs which may
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be any multiple whatever of a given angle, and so may be as great
as we please. )
11. Tt is however usual in works on Trigonometry expressly

to state that there is to be no restriction with respect to the mag-
nitude of the angles considered. Let BAD be any straight line,

C

CAE a straight line at right angles to the former. Suppose a line
AP to revolve round one end 4, starting from the fixed position
AB. When AP coincides in direction with 4AC, the angle which
has been described is a right angle; when 4P coincides in direc-
tion with 4D, the angle described is two right angles; when AP
coincides with 4Z, the angle described is three right angles; when
AP coincides with 4B, the angle described is four right angles.
Then as 4P proceeds through a second revolution, the angle de-
scribed will be greater than four right angles. Thus if AP be
situated midway between 4B and A(, the angle between 4B and
AP will be Aalf a right angle if AP be supposed in its first revolu-
tion; the angle will be four right angles and a half if AP be
supposed in its second revolution; the angle will be eight right
‘angles and a half if AP be supposed in its third revolution; and

80 on.



6 . EXAMPLES, CHAPTER I.

12. The streight lines CAX and B4 D form by their intersec-
tion four right angles; these are called quadrants. BAC is called
the first quadrant, CAD the second quadrant, DAE the third quad-
. rant, and EAB the fourth quadrant. Now suppose any angle
formed by the fixed line 4B and the moveable line 4P; if 4P is
situated in the first quadrant, the angle BAP is said to be in the
first quadrant; if AP is situated in the second quadrant, the angle
is said to be in the second quadrant; and so on.

EXAMPLES.

1. The difference of two angles is 10 grades and their sum is
45 degrees; find each angle.

2. Divide two-thirds of a right angle into two parts, such that
the number of degrees in one part may be to the number of grades
in the other part as 3 to 10.

3. Divide half a right angle into two parts, such that the
number of degrees in one part may be to the number of grades in
the other part as 9 to 5.

4. Find the measure of 1' 5" in decimals of a degree. .

5. Divide an angle which contains n degrees into two parts,
one of which contains as many English minutes as the other does
French. :

6. If one-third of a right angle be assumed as the unit of
angular measure, what number will represent 75 ¢

7. Determine the number of degrees in the unit of angular
measure when an angle of 663 grades is represented by 20.

8. The numbers of the sides of two regular polygons are as
2 to 3, and the number of grades in an angle of one equals the
number of degrees in an angle of the other. Find the angles.

9, Shew that an angle expressed in centesimal seconds will
be reduced to sexagesimal by multiplying by the factor -324.

10. Compare the angles which contain the same number of
English seconds as of French minutes.
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II. CIRCULAR MEASURE OF AN ANGLE.

13. We have explained two methods of estimating angles,
namely, that by means of degrees and subdivisions, and that by
means of grades and subdivisions, and we have stated that the for-
mer method is that which is most commonly used in practical cal-
culations. There is, however, another method of estimating angles
which is of great importance in the theory of mathematics, which
we shall now explain. The object of the present chapter is to es-
tablish and apply the following proposition ; If with the point of
intersection of amy two straight lines as centre a circle be described
with any radius, then the angle contained by the straight lines may
be measured by the ratio of the length of the are of the circle inter-
copted between the lines to the length of the radius. We shall re-
quire some preliminary propositions; the proposition in Art. 14 is
sometimes assuried, and the beginner may adopt this course and
return to the point hereafter.

14. The circumferences of circles vary as their radi.

Let R denote the radius and C the circumference of one circle;
let » denote the radius and ¢ the circumferenee of another circle,
In each circle let a regular polygon of n sides be inscribed, and in
each circle draw two lines from the centre to the extremities of
one of the sides of the inscribed polygon; thus we obtain two
similar triangles. Let P denote the perimeter of the polygon in-
seribed in the first circle, and p the perimeter of the polygon in-
scribed in the second circle. By similar triangles a side of the first
polygon is to a side of the second polygon as the radius of the first
circle is to the radius of the second circle; therefore also

P R
T

Now let P=C—-X and p=c—«; thus

r(C-X)=R(c-=);
therefore 70— Re=rX — Raz.
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Now we assume that by making » as large as we please, the
perimieter of each polygon can be made to differ as little as we
please from the perimeter of the corresponding circle ; thus X and
¢& can each be made as small as we please, and therefore »X — Rz
can be made as small as we please. Hence 7C' — Rc must be zero
for if it had any value @ then 7.X — Rz could not be made less than
w, which is inconsistent with the fact that X — Rz can be made as
small as we please. Thus

rC — Re =
; C ¢
therefore 2=

15. Thus the ratio of the circumference of a circle to its radius
is constant whatever be the magnitude of the circle; therefore of
course the ratio of the circumference to the diameter is also constant.
The numerical value of the ratio of the circumference of a circle to
its diameter cannot be stated exactly; but, as we shall shew here-
after, this ratio may be calculated to any degree of approximation

that is reqpred, _the value is approximately equal to %—2-, and still

?lg ; the value correct to eight: places of
decimals is 3-14159265...The symbol = is invariably used to denote
the ratio of the circumference of a circle to its diameter; hence, if
denote the radius of a circle, its circumference is 2zr, where

= =3'14159....

16. The angle subtended at the centre of a circle by an arc
which is equal in length to the radius is an invariable angle.

more nearly equal to
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With centre O and any radius 04 describe a circle; let AB
be an arc of this circle equal in length to the radius. Then, since
angles at the centre of a circle are proportional to the arcs on
which they stand, )

angle 40B arc AB r 1,
4 right angles  circumference of the circle  Zar 2w’

therefore angle AOB = ii__nﬁl_x;_an;gleg .
m
Thus the angle 40B is a certain fraction of four right angles
which is constant, whatever may'be the radius of the circle.

17. Since the angle subtended at the centre of a circle by an
arc which is equal to the radius is an <nvariable angle, it may be
taken as the unit of angular measurement, and then any angle will
be estimated by the ratio which it bears to this unit.

Let AOC be any angle; with O as centre and any radius 04

] A

describe a circle; let AB be an arc of this circle equal in length
to the radius; let » denote the radius, and / the length of the are
AC.

Then, since angles at the centre of a circle are proport.xonal to
the arcs on which they sta.nd,

therefore . angle AOG’ =- x angle A0B;

tlus result is true whatever the unit of angular measurement ma.y
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e, the sarne unit of conrsa being used for the two angles. If we
take the angle 40B itself for the unit, then this angle must be
denoted by unity ;

thus angle AOC’:;.

" 18, 'We have thus proved that any angle may be estimated by
a fraction which has for its nwmerator the arc subtended by that
angle at the centre of any circle, and for is denominator the radius
of that circle. And in this mode of estimating angles the unit,
that is the angle denoted by 1, is the angle in which the aro
subtended is equal to the radius. We have shewn that this angle

4 nght angles , ; hence the number of degrees contained in this

angle is @ , that is 118‘_0 . If we use the approximate value of
given in Art. 15, we shall find that @—57 *29577951..... ; this

therefore is the number of degrees conta,med in the angle which is
subtended by an arc equal to the radius.

19. - Thus there are two methods of forming an idea of the
magnitude of an angle which is estimated by the fraction are
divided by radius. Suppose, for example, we speak of the angle §;
we may refer to the wnit of angular measurement, which is an
angle containing about 57 degrees, and imagine two-thirds of this
unit to be taken ; or without thinking about the unif at all, we
may suppose an angle is taken'such that the arc subtending it is
two-thirds of the corresponding radius.

20.  The fraction arc divided by radius is called the cireular
measure of an angle. Since, as we have already stated, this method
of measuring angles is very much used in theoretical investigations,
it is sometimes called tlie theoretical method.

21. If r denote the radius of a circle, the circumference is 27r;

hence the circular measure of four right angles is 2%' , that is 97

N




CIRCULAR MEASURE OF AN ANGLE. 11
The circular meagure of two right anglesis ; the circular measure

of one right angle is ; ; and the circular measure of n right angles
is ?, where n may be either integral or fmctidnal

22. We will now shew how to connect the circular measure
of any angle with the meagure of the same angle in degrees. Let x
denote the number of degrees in any given angle, 6 the circular
measure of the same angle, Since there are 180 degrees in two

right angles, i%% expresses the ratio of the given angle to tworight
angles. And since = is the circular measure of two right angles, ;gr

also expresses the ratio of the given angle to two right angles.
Hence

e 9.

180 =
thus .12,
and - 0=%-

23. For example, the citcular measure of an angle of 1 degree

180 ; the circular measure of an angle of 10 degreesm 180‘ the

circular measure of an angle of helf a degree is =~ the cir-

l
180 X3

cular measure of an angle of one minyte is the circular

180x60‘

measure of an angle of one sacond is ; and so on,

w—__..
180 x 60 x 60
Again ; if the circular messure of an angleisgthe number of

3 180 3

degrees oonta.med in the angle i s , that is — i —of 57-2957795...

if the circular measure of an a.ngle is 10, the number of degrees
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contained in the angle is 10. 0., that is 10 x 57-2957795...; and
50 on. '
The student is recommended to pay particular attention to
these points ; especially he should accustom himself to express
readily in circular measure an angle which is given in degrees.

24. Similarly we may connect the circular measure of any
angle with the measure of the same angle in grades.

Let y denote the number of grades in any given angle, 6 the
circular measure of the same angle ; then the ratio of the given

angle to two right angles is expressed by %0 and also by "—ff
Hence
' v _9

200 =’

2000
thus y= =
=Y

and = 700"

The number of grades in the angle which is the unit of circular
Jneasure is @, that is, 63:661977...

25. In Art. 17 we proved that
angle 40C =—£— x angle 40B ;

where nothing is assumed respecting the unit of angular measure-
‘ment, except that the same unit is to he employed for both angles.
Since 40B is an invariable angle, we see that the magnitude of
any angle AOC varies as the subtending arc directly, and as the
_radius inversely. Thus we may say that
angle 400 = ’::ha:: ;
‘when £ is some quantity which does not change with 40C, and the
value of which depends upon the unit of angular ineasurement
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which we please to employ, Suppose, for example, that we wish
to take the half of a right angle a8 our unit; then we require that
A40C should be equal to 1 when the arc is the eighth part of the
circumference; thus

k x Qmrr
8
therefore k=é.
. w
Thus the formula
4 are
angleAOC:; X m

gives the correct estimate of the magnitude of an angle when the
unit is half a right angle.

EXAMPLES,
1. If D, G, C be respectively the number of degrees, grades,
and units of circular measure in an angle, shew that

D_.¢ _2
90 100 =

2. Find the number of degrees in the angle subtended at the
centre of a circle whose radius is 10 feet by an arc whose length
is 9 inches.

3. Find the circular measure of 15, 1",
4, There are three angles; the circilar measure of the first
exceeds ‘that of the second by %) » the sum of the second and third

is 30 grades, and the sum of the first and second 1s 36 degrees
Determme the three a.ngles.

5, Express ﬁve-sixteenths 'of a right angle in cireular measure,
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in degrees and decimals of & degree, and in grades and decimals
of a grade.

6. The angles of a triangle are in arithmetical progression,
and the greatest is double the least; express the angles in degrees,
grades, and circular measure.

7. The angles of a triangle are in arithmetical progression,
and the number of degrees in the least is to the circular measure
of the greatest as 60 to =; find the angles.

III. TRIGONOMETRICAL RATIOS.

26. Let BAC be any angle; take any point in either of the
containing sides, and from it draw a line perpendicular to the other

, P/G

A ' B
side; let P be the point in the side AC and PM perpendicular to
AB. We shall ‘use the letter 4 to denote the angle BAC, Then

PM i erpendicular .
AP,t}m.t phypotﬁ , i called the sine of the angle 4;
AM

4P’ that is by—p:L ke » i8 called the cosine of the angle 4 ;
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' ‘I;—:l[, thntispﬁ—r;:m——b—t,isealledthetangm of the angle 4 ;

%, that is — 0% ___ w,isoalledthowweMofthamgleA;

j_—;;, that is h____gwoe’ is called the secant of the angle 4 ;

;,Tl;,tha.tis _hypothenuss_ rucl,ismnedthemecmuofthemgleA.'

If the cosine of 4 be subtracted from unity, the remainder is called
the versed #ine of A. If the sine of 4 be subtracted from unity, the
remainder is called the coversed sine of 4 ; the latter term however
is rarely used in practice,

27. The words sine, cosine, &c. are usually abbreviated in
writing and printing ; thus the above definitions may be expressed
as follows,

_PM
T 4P’
P
AN’
AP
A’
AN
T AP’
AM
oot d =7

gin 4
tan 4 =
pec A=

cos A

AP
cosecd=ﬁ’

vers A =1—cos 4,
covers 4=1—sin 4,
98. The sine, cosine, tangent, cotangent, secant, cosecant, versed

sine, and coversed sine aro called trigonometrical ratios or trigo-
nometrical functions; sometimes they have been called goniometrical
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JSunctions. A large part of Z'rigonometry consists in the investiga-
tion of the properties and relations of these functions of an angle,
These functions are, it will be observed, not lengths, but ratios
of one length to another; that is, they are arithmetical whole
numbers or fractions.

29. The defect of any angle from a right angle is called the
complement of that angle; thus if 4 denote the number of degrees
contained in any angle, 90 — 4 is the number of degrees contained
in the complement of that angle, This affords another method of
defining some of the Trigonometrical ratios; after defining, as in
Art. 26, the sine, tangent, and secant of an angle we may say

the cosine of an angle is the sine of the complement of that
angle ;

the cotangent of an angle is the tangent of the complement of
that angle;

the cosecant of an angle is the secant of the complement of
that angle,

For in the triangle PAM the angle APM is the complement of
the angle 4; and

sin AP = P22 el sd;

ta.nAPM:Wmdw“lM AM cot A

base T MP ;
hypothenuse AP
sec APM ~base =UP" cosec 4

These results may also be expressed thus:

the sine of an angle is the cosine of the complement of that
angle;

the tangent of ar angle is the cotangent of the complement
of that angle;

the secant of an angle is the cosecant of the complement of
tha.t angle,
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30. The trigonometrical ratios remain unchanged so long as
the angle remains unchanged. '

Let BAC be any angle; in AC take any point P and draw PM

perpendicular to 4B; also take any other point 7 and draw P'M’
perpendicular to 4B, Then by similar trm.ngles ry %{—{;, that

is, the sine of the angle 4 is the same whether it be formed from
44

the triangle APM or from the triangle AP’ M’. The same result
holds for the other Trigonometrical ratios. Or we may suppose
a point P” taken in 4B and P"M” drawn perpendicular to AC;

then the triangles A PM and 4 P"M"” are similar, and 1;}{ Z;,[, .

We now proceed to establish certain relations which hold
among the Trigonometrical ratios.

- 31. We have immediately from the definitions
1 1

tanA_x cotd=1; thereforeta.nA:o—b—tz, cotA=m;

1 .
s 4 secd’

cosecd xgind=1; thereforecosecA=_,l_, ginA:-l*_
in 4 cosec 4

sec A xcos 4 =1; thereforesecA_—l—, cos A=

Also tand LY LM AM &nd’

T. T, 2
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32. To prove that (sin 4)° + (cos 4)' = 1.
In the right-angled triangle 4 PM we have
PM*+ AM*=AP*;

2 1]
therefore ”’—A*},;"_M_ =1,
PHN'  [AMY
therefore (ﬁ + (F) =1 H
that is (sin A) + (oos 4)'= 1.

33. With respect to the preceding proof it should be re-
marked that it is shewn in Euclid, 1. 47, that the square described
on the hypothenuse of a right-angled triangle is equal to the sum
of the squares described on the sides; and it is known that the
geometrical square described upon any line is measured by the
arithmetical square of the number which measures the length of
the line. From combining these two results we obtain the arith-
metical equality

PM* + AM*=AP,

It must be observed that (sin 4)* is often written for short-
ness thus, sin’4 ; similarly (sin 4)* is written thus, sin’ 4. The
same mode of abbreviation is used for the powers of the other Tri-
gonometrical functions, and so the result obtained in Art. 32 is
usually written thus,

gin® 4 +cos' 4=1.
34. To prove that
(sec 4)° =1 + (tan 4)", and (cosec 4)* =1 + (cot 4)*.
In the right-angled triangle APM we have
AP =PM*+ AM*;

P PM*
therefore j_d[' = A—% +1,
A ] P )
therefore (E = (Hf +1,

that is (sec 4)* = 1 + (tan 4)".
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Again, since AP = PM* + AM",
AP 2 3 2
=) -1+ (%)

that is (cosec 4)'=1 + (cot 4)".

The results here obtained are usually written thus,
sec’d =1+ tan’4, cosec’d =1 + cot’4.
35. By means of the relations established in Arts. 31...34 we

are able to express all the other Trigonometrical Ratios in terms

of any one of them; thus, for example, we will express all the
rest in terms of the sine;

cos 4 = /(1 —sin'd); (Art. 32),
in 4 in 4
== J(l"f‘sin. 7y5 (Arta. 31, 39)

_csd_J(1—sin®d)_
== (Arts 31, 32),

tan 4

cot 4

1

1
oo d = o =gy (Arte 31, 39),

cosec 4 =

L (Art. 31),
vers A =1~cos 4=1-,/(1-sin"4). (Art. 32).

Again, we will express all the rest in terms of the tangent;

sin A = 1 1 _ 1 _ tand
“cosecd /(1 +cot’d) 1+ 1\  J(I+tan"4)’
/(1+ )
(Arts. 31, 34),
1 1 ’
cos A

Thecd  J(I+ tan'A); (Arts. 31, 34),
1
cotxi:m; (Art. 31),

sec 4 = /(1 + tan’4) ;
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(1 +tan®4)

cosec d = tend

!
versd=1-cosd=1-
T+ tan’d)
We shall now proceed to determine the values of the Tngo-
nometrical Ratios for some specific angles.

36. To determine the values of the Trigonometrical Ratios for
an angle of 45°,
Let BAC be an angle of 45°; take any point P in AC and

P/G

P ] B
draw PM perpendicular to 4B. Since PAM is half a right
angle APM is also half a right angle; therefore PM = AM,

Now PM*+ AM* = AP

thus SPM = AP

therefore iff) %

therefore %:.15

Thus sin45°=%[=:/1_2; °°°w=%=;71§3
hn45°—%—1 oot 45° = 53r=1;
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A 0
s00 45° = T3y =n/2; odsec 4= ——_J2

vers45°=1—oos45° l—:/é

37. To determine the values of the Trigonometrical Ratios for
an angle of 60° and for an angle of 30°.
Let APB be an equilateral triangle, so that the angle PAB

r

A M B
contains 60 degrees; draw PM perpendicular to AB, then
AM = MR ; therefore AM =3 AB =4 AP.

o AM 1
Thus cos 60°= TF=35

in 0= /(1o a) = /(1-7) =/ (4)

sin 60° J3 1

tan 60° = s 60° = -,--_.,,/3
-1
o1 _ 1.
cot 60 fan 60° ~ /3
1
sec 60° = 60"—2’
1 2
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vers 60°=1 - vos 60°= 1.
And  6in30°con 60°=5; oos 30°=sin 60°=2L;
" tan 30°= oot60’=T oot 80° = tan 60°=,/3 ;
' m30°=cose060--——, cosec 30° = sec 60°=2

NE
vers30°=1— cos 30°=1— ~/3.

38. It may be observed that if an angle be less than 45° the
cogine of the angle is greater than the sine, and if the angle be
greater than 45° and less than 90° the cosine is less than the sine;
these results follow immediately from the triangle PAM (see figure
in Art. 26) since the greater side in a triangle is opposite to the
greater angle.

RXAMPLES,

1. The sine of a certain angle m ; find the other trigono-
metrieal functions of the angle.

9. The tangent of a certain angle is ;, find the other tri-
gonometrical functions of thé angle: ‘
8. 'The cosine of a certain angle is J-g—, find the other tri-
gonometrical functions of the angle. .
4. Bhew that sin’6 tan 6 + cos’d cot & + 2 sin 6 cos §
=tan 0 + cot 6.
5. Shew that 2 (sin" + cos*6) — 8 (sin‘6 + coa*d) + 1 =0.
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Obtain solutions of the following equations:

. nin’0=g-ooso. Y. &inf+ocosf=1. ..

8. cotf=2 ocosf. 9. sin'0—2ma0+%=0.

10. 3sec*0 + 8 =10 sec'd.

11. Given sin (4~B) =7, and oos (4+B) =, find 4 snd B,

IV. APPLICATION OF ALGEBRAICAL SIGNS.

. 39. In the preceding chapter we defined the Trigonometrical.
Ratios, and established certain relations between them; we con-
fined ourselves to angles not exceeding a right angle. 'We shall
now extend the definitions so as to render them applicable to an-
gles of any magnitude; the relations which were established will
then also be found to be true for angles of any magnitude.

40. Let O be a fixed point in a fixed line, and suppose we
have to determine the positions of other points in this line with

M 0 M

respect to O. The position of any point in the line will be known
if we know the distance of the point from O, and also know on
which side of O the point lies. Now it is found convenient to adopt
the following convention ; distances measured in one direction from
0 along the fixed line will be denoted by positive numbers, and

distances measured in. the opposite direction from O will be denoted
by negative numbers. Thus, for example, suppose that distances
measured from O towards the right kand are denoted by positive
numbers, and let # be a point the distance of which from O is
denoted by 2 or + 2 ; then if M’ be as far from O as M is and on -
the other side of O, the distance of M’ from O will be denoted by — 2.
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41. 'We have called this method of determining position by
means of numbers affected with algebraical signs a convention,; we
‘mean by this word to indicate that it is not absolutely necessary
to a.dapt this method, but merely convenient. The symbols +and —
are defined in the beginning of elementary works on Algebra as
indicative of the operations of addition and subtraction respectively.
As the student advances in Algebra he finds that the symbols +
and — are also used as indicative of the qualities of quantities; and
that no contradiction or confusion ultimately arises from this double
mode of considering the symbols, but that Algebra gains thereby
considerably in power. - (See Algebra, Chaps. V. and XIV.)

It may be remarked, that we are at liberty to take either of the
two directions from O as that which will be indicated by positive
numbers; but when the selection has been made, we must adhere
to it throughout the investigations on which we may be engaged.

42. Let OB, OC be two lines which meet at right angles; pro-

C
N P
B [/ R M B
al

duce BO to any point B and CO to any point ¢". Let P be any
point in the plane containing the two lines. The position of P will
be known if we know the distance of P from each of the lines
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BB and C(", and also know on which side of each of these lines it
is situated. Draw PM and PN perpendicular.to the lines BB’
and CC’ respectively. We shall adopt the following conventions;
the distance ON or PM will be expressed by a positive number
when P is above the line BB, and by a negative number when P is
below the line BB’ ; the distance OM or PN will be expressed by a
positive number when P is to the right of CC", and by a negative
number when P is to the left of CC".

43. A similar convention may conveniently be adopted with
respect to angular magnitude.

Let a line AP start from the position 4B, and by revolving in
one direction round 4 trace out the angle PAB, and let this angle
be denoted by a positive number ; then if the line AP start from
the position 4.8 and by revolving round 4 in the opposite direction
trace out the angle P’4 B, this angle may be denoted by a negative
number. If, for example, each of the angles BAP and BAF is
one-third of a right angle, and we denote the former by the

P’
positive fraction % , the latter may be denoted by the negative

fraction — 1—5
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44, Woe shall now give our extended definitions of the Trigo-
nometrical Ratios.

€ g
4 M B M 4 B
c C

A B A B

Let 4B, AC be two lines at right angles ; let a line revolve
round the point 4 from 4B towards AC and come into any position
AP; draw PM perpendicular to AB or 4B produced. Then con-
sider AP always as positive ; consider 4 M as positive or negative
according as M is on the same side of AC as B is, or on the opposite
side; and consider PY as positive or negative according as P is on
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the same side of 4B as C is, or on the opposite side. Let the angle
PAB be denoted by 4, then
ind=22 wnd-PH wou-22,
cosA;s—A—E, ootA:}%—;, cosecA:%,
versA=1-cos 4, covers 4 =1-—sin 4.

Thus the Trigonometrical Ratios are always whole numbers or
fractions positive or negative.

We have therefore Trigonometrical Ratios for any positive
angle whatever may be its magnitude ; and we have also Trigono-
metrical Ratios for any negative angle by adopting the convention
that the Trigonometrical Ratios for any negative angle shall be the
same as they would be for what we may call the corresponding posi-
tive angle. Thus, for example, in the last figure we may consider

BAP a8 a negative angle, the magnitude of which is — '—'-r; then the

Trigonometrical Ratios will be the same as for the angle formed
by revolving the moveable line 4P in the positive direction until
it reaches the position which it has in the figure; so that the

Trigonometrical Ratios for the angle ‘—?—; will be the same as
for the angle 21—%.

45. It follows immediately from the definitions, that if two
angles differ by 4 right angles or by any multiple of 4 right angles
the Trigonometrical Ratios of the two angles are the same.

46. The following relations which have been already esta-
blished for angles not exceeding a right angle, will now be seen in
like manner to hold universally whatever be the magnitude of an
angle positive or negative.

.tandx oot A=1, secdxecosd=1, ocoseod xsin4d=1,
sin® 4 +cos’4 =1, sec' 4=1+tan’ 4, cosec’4 =1+ cot’ 4.

tan 4=
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It must be observed that from such an equation as
sin' 4 +cos*'4=1,

we can infer only that sin 4 == ,/(1—cos’ 4), or that
cos A =s,/(1—sin’ 4) ; we shall have to determine in any parti-
cular case which sign must be ascribed to the rudical.

47. The supplement of an angle is its defect from two right
angles. Thus if 4 denote the number of degress in any angle,
180 — A is the number of degrees in its supplement ; if § be the
circular measure of an angle, = —0 is the circular measure of its
supplement. The verbal definition of the word supplement might
appear to limit the word to the case in which the original angle
is a positive angle less than two right angles ; but the word is
used in a wider sense, 8o that if 4 be any number positive or
negative, the angle denoted in degrees by 180 — 4 is called the
supplement of that denoted in degrees by 4. Similarly, whatever
0 may be, the angle whose circular measure is = — 0, is called the
supplement of that whose circular measure is 6.

48. To compare the Trigonometrical Ratios of any angle and
w8 supplement.

Let PAB be any angle, produce B4 to B and make P’AB'=PAB;

B A M B
take AP= AP, and draw PM and P’ M’ perpendicular to BE',

The angle P’ AB=180°—P’AB =180°—- PAB; thus P’AB is
the supplement of PAB. The triangles PAY a.nd PAM’ are geo-
metrically equal in all respeots ; now
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. PM . 0 M
smA:—E, sm(180—A)=27,—;

and since PM and P’M’ are equal in magnitude and of the same
sign, we have

sin 4 =sin (180°— 4).

AM AM’
Also cosA:A—-P, eos(lSO"—A):F;
now AM and AM’ are equal in magnitude, but since they are
measured in opposite directions from 4, they are of opposite sign ;
thus

cos 4 = — cos (180°—- 4).

The other Trigonometrical Ratios of the angle A may be com-
pared with those of the supplement either by direct use of the
figure, or by employing the two results already established ; thus,
adopting the latter method, _

gin (180°~4)  sin4

tan (180°~4) = cos(180°—4) =Tomd ~tn 4,
cos (180°-4) —ocosd
oot (180° 4) = o (0e—g) = g =~ ook
, 1 1
seo (180°~ 4) =G 4) ~Zeosd ~ 24
1 1
cosec(lSO"—A)=sin(180°_A)= = = cosec 4,

vers (180°— 4) =1 — cos (180°~ 4) =1 + cos 4.

Thus the sine and the cosecant of any angle are respectively
the same as the sine and cosecant of the supplement of the angle ;
all the other Trigonometrical Ratios of any angle, except the
versed sine, are numerically equal to the corresponding Ratios
of the supplement of the angle, but are of opposite sign.
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49. To prove that sin (~ ) = — sin A and cos (— 4) = oos 4.

/ g
z A\ B
\P\
M/A ’
o

Let PAB be any angle; draw PM perpendicular to BAF,
and produee it to P so that P may be equal in length to MP,
and join AP. Then the angles 4B and PAB which are measured
in opposite directions from AB are numerically equal, and if
PAB be denoted by 4, then 7’AB will be denoted by —4. And
PM
F )
and P M is numerically equal to PM, but of opposite sign; thus

. gin (— 4A)=—sin 4,

. PM
BID.A: 2?, sm(—A):

Also cos (—4)=—7% =—5 =cos 4. -

Moreover, tan (- 4)= ::: g: :3 _= czinAA
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oot(_A)—"“E‘j; _mA —oobd;
sec(—A):a:_—A)=o—3:—A=mA;
cosec (— 4) = 1 1 —cosec 4 ;-

sn(—4) —snd
vers (—A)=1—cos (~A) =1—cos 4 =vers 4.
50. To prove that sin (180°+ 4) = —sin 4 and cos (180° + 4)
=—cos 4.

Let PAB be any angle, produce P4 to P so that 4P may be
equal in length to AP. Draw PM and P’M’ perpendicular to

¥ 5/

Pl

BAB. Then if PAB be denoted by 4, the angle 4B measured
in the same direction from 4B will be denoted by 180°+ 4.

The triangles PAM and P’ AM’ are geometrically equal in all
respects ;

and sin 4 =22 sm(lsouA)_ﬂ[
AM oo gy A
oosA—ZT,, cos (180 +A)—-

Now PM and P’M’ are numerically equal but of opposite sign ;
also AM and AM’ are numerically equal but of opposite sign ; thus

gin (180° + 4) =—sin 4, cos (180°+ 4) =~cos 4 ;
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sin (180°+ 4) —sind
cos (180°+4) —cos 4

cos (180°+ 4) —cos 4
8in (180°+4) —sind

similarly sec (180°+ 4)=—sec 4, cosec (180° + 4)=— cosec 4.

It is obviously only another mode of expressing the two funda-
mental results if we write ‘

sin 4 =—sin (4—180°), cos 4=~ cos (4 —180°).

moreover tan (180°+4)= =tan 4,

cot (180°+ 4) = =cot4d;

"~ 51, The results of Arts. 48, 49, and 50, are true whatever
be the magnitude of the angle 4, and whether 4 be positive or
negative. This the student should carefully notice. First con-
sider Art. 49; whatever the magnitude of A may be, positive or
negative, we shall always have PM P forming a straight line, and
the points P and P equally distant from M and on opposite sides
of it; and the angles PAB and P’AB will be numerically equal
but of opposite sign. Thus we become certain of the universal
truth of Art. 49. Next consider Art. 50; the essential points of
the demonstration are that M and M should be equally distant
from 4 and on opposite sides of it, and that P and P’ should be
equally distant from the line B4A.B and on opposite sides of it; and
the figure assures us that these essential points are always secured.
If PAB be any positive angle, then by adding to it an angle of
180° we obtain the angle formed by 4B and AP. If P’AB be
any negative angle, then by adding to it an angle of 180° we
obtain the angle formed by 4P and 4B. Thus we become certain
of the universal truth of Art. 50. The universal truth of Art. 48
may be made to depend on that of Art. 43 and that of Art. 50.
For we have

in A = — sin (4 — 180°), universally, by Art. 50,

in (4 — 180°) = — &in (180°~ 4), universally, by Art. 49,
therefore sin 4 =sin (180°— 4) universally.

Again  cos 4 =—cos (4~ 180°), universally, by Axt. 50,
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cos (4 — 180°) = cos (180°—4), universally, by Art. 49,
therefore cos 4 =— cos (180°~4), universally.

52. To shew that sin (90° + 4) = 008 A,
and cos (90° + 4) =—gin 4.

PI

B M’ pr M B

Let PAB be any angle; let AP’ be at right angles to AP and
80 situated that a moveable line can pass from the position 4P to
the position AP by revolving round A4 in the positive direction
through & right angle. Then if PAB be denoted by 4 we can
denote P’AB by 90°+4. Take AP’=AP and draw PM and PM’
perpendicular to BAB. Then the angle PAM iz geometrically
equal to the angle AP’ M’, and the triangles PAM and P’ AM’ are
geometrically equal in all respects. And
. M CAM
sm(90°+A)=A7-, oosA:F;
now P’M’ is numerically equal to AM and both are of the same
sign (Art. 42); thus
8in (90°+4) =cos 4.
. AM® . PM
Agam Ccos (90°+A)=A-—1,—, sin 4= 27;
now AM’ and PM are numerically equal but of opposite sign
(Art. 42); thus 08 (90°+4)=—sin 4.

53. In order to prove that the proposition in the preceding
article is universally true, we must examine the different cases
T. T. : 3



-84 APPLICATION OF ALGEBRAICAL SIGNS.,

that can occur; the figure in the preceding article supposes that
4 is a positive angle terminated in the first quadrant. The an-
nexed three figures shew 4P in the second, third, and fourth
quadrants respectively.

In every case it will be seen that the tnangles PAM and
P AM’ are geometrically equal in all respects; also P’ and AM
are of the same sign, and AM’ and PM are of opposite sign. Thus
the proposition may be seen to be true if 4 be any positive angle.

P

B’ N’ A4 - B.
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Pl

\

\

The four figures of this and the preceding article will also shew
the truth of the proposition for any negative angle; the last figure
for example applies when 4 is between 0 and — 90°, the third figure
when 4 is between — 90° and — 180° the second figure when 4 is
between — 180° and — 270° and the first figure when 4 is between
~270°and - 360°.

54, If A be the number of degrees in any angle, then the
angle which is expressed in degrees by 90 — A4 is called the com-

plement of the angle 4; s‘og_o is the circular measure of the

complement of the angle whose circular measure is . The term
complement of an angle has already been introduced (Art. 29), but
the angle contemplated then was a positive angle less than a right
angle; This restriction however will be no longer retained. We
may now shew universally that the sine of an angle is equal to the
cosine of us complément, and the cosine of an angle equal to the
sine of its complement. These propositions may be proved by
examining different cases as in Arts. 52 and 53; or they may be
deduced from results already established. Thus, for example, we
have proved that

sin (90°+ 4) = cos 4, universally (Arts. 52, 53),
also gin (90°+4) = sin (180°~ 90°~ 4), universally (Art. 51),
therefore sin (90°—4) = cos 4, universally.

3—2
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Then if we suppose 90°—~A4=4" we have 4=90°~4'; thus
sin 4'=cos (90°— 4”), universally,

55. It will now be found that we are able to express the
Trigonometrical Ratios of any angle whatever in terms of the
Trigonometrical Ratios of some positive angle not exceeding a
right angle. For in the first place by the formule sin (—4)
=~—gsin 4 and cos (—4)=cos 4, and those which follow from
these (see Art. 49), we can make the Trigonometrical Ratios of
any negative angle depend upon those of the corresponding posi-
tive angle; and so we need only consider positive angles if we
please. By Art. 45 any multiple of four right angles may be
rejected; thus, so far as its Trigonometrical Ratios are concerned,
we may replace any angle whatever by an angle less than four
right angles. Then by the formulse sin (180°+ 4)=—sin 4, and
cos (180°+4)=—cos 4, and those which follow from these (see
Art. 50), we may make the Trigonometrical Ratios of any angle
depend upon those of an angle not exceeding two right angles.
Lastly, by the formule sin (180°—4)=sin4 and cos (180°— 4)
=~cos 4, and those which follow from these (see Art. 48), we may
make the Trigonometrical Ratios of any angle depend upon those
of an angle not exceeding a right angle,

For example,
sin 600° = sin (360° + 240°) = sin 240° = sin (180° + 607) = — sin 60°,
Tan (—1000°) = — tan 1000° = — tan (720° + 280°) = — tan 280°
=~ tan (180° + 100%) =~ tan 100° =~ tan (180° - 80°) =tan 80",

56. To trace the changes in the sine of an angle as the
angle varies.
~ Let BAB and CAC" be two lines at nght angles, and suppose a
lme AP of constant length to revolve round one end 4 from the
fixed position 4B so that P traces out the circle BCB'C’. From
any positiop of P draw PM perpendicular to B4B’; then
PM .

gin PAB=—; P
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67[

When 4P coincides with 4B the perpendicular PM vanishes
thus when the angle is zero so also is its sine. 'While 4P moves;
through the first quadrant PM is positive, and continually in-
creases until 4P coincides with 4C, and then PM is equal to 4AP;
thus as the angle increases from 0 to 90° the sine increases from
0 to 1. While AP moves through the second quadrant PM is
positive, and continually decreases until AP coincides with 4B -
and then PM vanishes; thus as the angle increases from 90° to
180° the sine diminishes from 1 to 0. 'While AP moves through
the third quadrant PM is negative, and increases numerically
until 4P coincides with 4(C’; thus as the angle increases from
180° to 270° the sine is megative and increases numerically from
0 to —1. While 4P moves through the fourth quadrant PM is
negative, and decreases numerically until AP coincides with 4.B;
thus as the angle increases from 270° to 360° the sine is megative
and decreases numerically from —1 to 0,
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57. To trace the changes in the cosine of an angle as the angle
varies.

‘With the figure of the preceding article we have

AM
cosPAB:F.

At first AF coincides with AB and then AM = AP; thus when
the angle is zero the cosine is 1. While 4P moves through the
first quadrant AM is positive and continually decreases until 4P
coincides with AC and then 4M vanishes; thus as the angle in-
creases from 0 to 90° the cosine diminishes from 1 to 0. While AP
moves through the second quadrant 4 is negative and increases
rumerically until AP coincides with AB’; thus as the angle increases
from 90° to 180° the cosine is negative and increases numerically
from 0 to —1. 'While AP moves through the third quadrant AM
is negative and decreases numerically until 4 P coincides with AC";
thus as the angle increases from 180° to 270° the cosine is negative
and decreases numerically from —1 to 0. While 4P moves through
the fourth quadrant 4M is positive and continually increases until
A P coincides with 4.8 ; thus as the angle increases from 270° to 360°
the cosine is positive and increases from 0 to 1.

58. To trace the changes in the tangent of am angle as the
angle varies.

‘With the figure of Art. 56 we have

PM

tan PAB= T
At first AP coincides with 4B and then PM vanishes and
AM=AB; thus when the angle is zero so also is its tangent.
‘While 4P moves through the first quadrant PM and AM are
positive; PM continually increases and AM continually decreases
until 4P coincides with AC ; thus as the angle increases from 0 to
90° the tangent increases from 0 without limit, so that by taking
an angle sufficiently near to 90° we can make the tangent as great
as we please; this is usually expressed for the sake of abbreviation
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thus, the tangent of 90° is infinite. While AP moves through the
second quadrant PM is positive and-AM is negative; PM con-
tinually decreases and AM increases numerically until AP coincides
with 48’; thus as the angle increases from 90° to 180° the tangent
is negative and decreases numerically from an indefinitely large
value to zero. 'While 4P moves through the third quadrant PM
and AM are negative; PM inorenses numerically and AM de-

creases numerically until AP coincides with 4C’; thus as the angle
increases from 180° to 270° the tangent is positive and increases

from O without limit, so that by taking an angle sufficiently near

to 270° we can make the tangent as great as we please; this as

before is abbreviated into the tangent of 270° is infinite. While

AP moves through the fourth quadrant PM is negative and AM
is positive; PM continually decreases numerieally and AX in-

creases until AP coincides with 4B; thus as the angle increases

from 270° to 360° the tangent is negative and decreases numerically

from an indefinitely large value to zero.

Similarly the changes in the cotangent of an angle may be traced.

59. 7o trace the changes in the secant of an angle as the angle
vortes. .

The changes in the secant of an angle may be traced by means of
the figure in the same way as those of the sine, cosine, and tangent ;

or we may use the formula sec PAB= , and infer the

1
cos PAB
changes in the secant from the known changes in the cosine ; we
will adopt the latter method. As the angle increases from 0 to 90°
the cosine diminishes from 1 to 0; thus the secant increases from
1 without limit, so we may say the secant of 90° is infinite. As
the angle increases from 90° to 180° the cosine is negative and in-
creases numerically from 0 to —1; thus the secant is negative and
decreases numerically from an indefinitely large value to —1. As
the angle increases from 180° to 270° the cosine is negative and
decreases numerically from —1 to 0; thus the secant is negative
and increases numerically from —1 to infinity. As the angle
increases from 270° to 360° the cosine is positive and continually



40 APPLICATION OF ALGEBRAICAL SIGNS,

increases from 0 to 1; thus the secant is positive and continually
diminishes from infinity to 1.
Similarly the changes in the cosecant of an angle may be traced.
60. Since vers 4=1—cos 4, as the angle increases from 0 to
180° the versed sine increases from 0 to 2, and as the angle in-
creases from 180° to 360° the versed sine diminishes from 2 to 0.

61. Thus we see that the sine and cosine may have any value
between —1 and +1; the tangent and cotangent may have any
value between — o and + oo ; the secant and cosecant may have
any value between — 0 and —1 and between +1 and + . And
it will be found on examination that no Trigonometrical Ratio
changes its sign except when it passes through the value zero or
the value infinity. The versed sine is always positive and may
have any value between 0 and 2.

62. The following table of the values of the Trigonometrical
Ratios of certain angles is formed from the results of the preceding
chapter and the present chapter.

0° | 30°| 45°] 60° 90°| 120° | 135° | 150° {180°
. 111 (3 NL] 1 1
sine 0] 3 N7 5|1 B 72 3 0
. J3| 111 1 1 J3
cosine 1 5 7§ 3|0 |35 |- ﬁ -5 |- 1
: 1 . 1
tangent 0 7 1 (/3| | /3| -1 |- 73 0
1 1
cotangent | o |,/3 | 1 7 0 B - 1 | -\/3 | ™
2 2
secant 1 J3 V2| 2 oo | -2 | =2 |- 73| 1

L 2
cosecant | | 2 |[,/2 N 1 73 2 2 | o
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EXAMPLES,
1. Determine the values of the Trigonometrical ratios for an
angle of 585°
2. Also for an angle of 690°.
3. Also for an angle of 930°.
4, Also for an angle of 6420°.

5. TFind all the angles between 0 and 900° which satisfy the
relation tan 6=1.

6. Find all the angles between 0 and 900° which satisfy the
relation cos’ 0 = 4.

7. Find all the values of versin 1-:' where n is any integer.

8. Find all the values of sin {71215+(— 1) %} where #n is any
integer.

9. Solve sin’f+cos’§=0.

10. Solve 2sin®6—~5cosf—4=0.

11. Trace the changes in the sign and value of cos 6 —sin @
as @ changes from 0 to 2.

12. Also of cos® 6 — sin® 6.
13, Also of tan 6 + cot 6.

. 4ab . .
14, Is sec’ 0= @by a possible equation ?
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V. ANGLES WITH GIVEN TRIGONOMETRICAL
RATIOS.

63.  To construct an.a'ngle with a given sine or cosine.

(44

Required an angle the sing of which is a given quantity a.
Describe a circle with unity for its diameter, and take any diameter
AB of this circle; with centre B and radius @ describe a circle ; let
C be one of the points where this circle meets the former circle ;
join AC and BC. Then ACB is a right angle, and the sine of BAC

is %g , that is a; therefore BAC is such an-angle as is required.
If the cosine of the required angle is to be a, then the same

construction may be made, and 4BC will be such an anglé as is
required. '

64. To construct an angle with a given tangent or cotangent.

Required an angle the tangent of which is a given qimntity a.

Take a line 4B the length of which is unity; draw BC at
right angles to 4B and equal in length to a, and join C4. Then
the tangent of BAC is g—i , that is a; therefore BAC is such an
angle as is required.
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'If the cotangent of the required angle is to be @ then the same
construction may be made, and ACB will be such an angle as is
required.

(A4

4 B

65. If an angle is required to have a given cosecant, then
since the cosecant is the reciprocal of the sine, the angle must
have a known sine; therefore the angle may be found by Art. 63.
Similarly if an angle is required to have a given secant, or a given
versed sine, then the cosine of the angle is known and the angle
may be found bv Art. 63.

‘We shall now proceed to find expressions which include all the
angles which have a given Trigonometrical Ratio. In the re-
mainder of this chapter we shall express all the angles that occur
in circular measure.

66. To find an expression for all the angles which have a

given sine.
Let BAC be the lea.st positive angle which has the given sine;
(A /C'
B A B

denote this angle by a. Produce BA to any point B’ and make
the angle B4C’'= BAC ; then BAC'=r—a.

Now it is obvious from the figure that the only positive angles
which have the same sine as a are 7—a, and the angles formed by
adding any multiple of four right angles to a or to w—a ; that is,
angles included in the formul®e 2n7+ae and 2nw+w—a, where n is
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zero or any positive integer. Also the only megative angles which
have the same sine as a are— (7 +a), and — (27 —a), and the angles
formed by adding to these any multiple of four right angles taken
negatively; that is angles included in the formule 2n7— (r + a),
and 27w — (27 —a) where n is zero or any negative integer. All
the angles which have been indicated will be found on trial to
be included in the formula
nr+(—1)q,

Where n is zero, or any integer positive or negative. Also all the
angles included in this formula will be found among the angles
which have been indicated. Thus the formula nw+(—1)"e in-
cludes all the angles which have the same sine as a, and all the
angles which it includes have the same sine as a.

This formula also determines all the angles which have the same

ocosecant as a.

67. To find an expression for all the angles which have a given
cosine. .
Let BAC be the least positive angle which has the given cosine;
denote this angle by a. Make the angle BAC"=BAC. Now it is
4

A\ B

. a‘
obvious from the figure, that the only positive angles which have
the same cosine as a are 27 —a, and the angles formed by adding
any multiple of four right angles to  or to 2= —a ; that is, angles
included in the formul®e 2n7 + a and 2n7 + 27 — a, where n is zero
or any positive integer. Also the only negative angles which have
the same cosine as a are — a, and — (2x—a), and the angles formed by
adding to these any multiple of four right angles taken negatively ;

that is, angles included in the formule 2n7—a and 2nw— (27 —a)
where 7 is zero or any negative integer. All the angles which have
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been indicated w111 be found on trial to be included in the formula
2nnr * a,

where n i8 zero or any integer positive or negative. Also all the

angles included in this formula will be found among the angles

which have been indicated. Thus the formula 2n & e includes all

the angles which have the same cosine as a, and all the n.ngles which

it includes have the same cosine s a.

This formula also determines all the angles which have the same
secant or the same versed sine as a.

68. Toﬁndmwprudmfwallthcmgkew]nbhhmagim
tangent.
Let BAC be the least positive angle which has the given tan-

gent ; denote this angle by a. Produce BA to any point B’ and
CA4 to any point (",

c'

4

Now it is obvious from the figure that the only positive angles
which have the same tangent as a are 7+ a, and the angles formed
by adding any multiple of four right angles to a or to = +a; that
is, angles included in the formul®e 2nx +a.and 2n7 + 7+ a, where
n is zero or any positive integer. Also the only negative angles
which have the same tangent as a are— (7 —a), and — (2« —a), and
the angles formed by adding to these any multiple of four right
angles taken negatively ; that is, angles included in the formul®
20w — (x —a) and 2nw— (27 —a) where n is zero or any negative
integer. All the angles which have been indicated will be found

on trial to be included in the formula

nr+ a,
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where n is zero, or any integer positive or negative. Also all the
angles included in this formula will be found among the angles
which have been indicated. Thus the formula nx +a includes all
the angles which have the same tangent as o, and all the angles
which it includes have the same tangent as a.

This formula also determines all the angles which have the same
cotangent a8 a.

69. In Art. 66 we shewed that if @ be the least positive angle
which has a given sine, the formula nw +(—1)*a includes without
excess or defect all the angles which have the same sine as a; it
was convenient for distinetness in the demonstration to suppose a
the least positive angle which has the given sine. But this restric-
tion can be removed, for we can shew that if 8 be any angle, the
formula nx +(—1)*B will include without excéss or defect all the
angles which have the same sine as 8. For suppose a to be the
least positive angle which has its sine equal to sin 8; then, from
what has been proved, we know that 8 must be one of the angles
included in the formuls mw + (- 1)"a where m is zero, or any in-
teger positive or negative. Suppose then 8=#mr+(—1)a; there-
fore nw+(—1)'B=nw+(-1)"rr+(~1)**"a; and all we have to
prove is, that this formula includes without excess or defect all the
angles included in the formula mw+(—1)"a. If % be even the
formulee correspond by taking m=n+r ; if n be odd, the formule
correspond by taking m=n—# The formula nx+(—1)"8 will
of course also include without excess or defect all the angles which
have the same cosecant as f3.

70. Similarly we may shew that if 8 be any angle, the angles
which have the same cosine or secant or versed sine as 8 will be
included without excess or defect in the formula 2nw+f; and that
the angles which have the same tangent or cotangent as 8 will be
included without excess or defect in the formula nz + 8,

. 71. Before leaving this part of the subject we will recur to the
definitions of the Trigonometrical Functions ; we considered them
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as ratios formed by comparing the sides of a right-angled triangle,
but formerly they were differently defined, and it is advisable to
notice the old definitions in order that the student may understand
allusions to them which will occur in his reading.

(44 p’

Let 4 be the centre ofa.nycu-c]e, AB a radius, BP any arc;
draw the radius 4€ at right angles to 4B, and draw tangents to
the circle at the points B and C; produce 4P to meet the first
tangent in 7 and the second tangent in ¢ ; draw PM perpendicular
to AB. Then the old definitions are as follows, in which the lines
of the figure are considered to be functions of the arc BP. PHM is
the sine of the arc BP, AM i its cosine, BT is its tangent, Ct is its
cotangent, 47 is its secant, A¢ is its cosecant, BM is its versed sine;
also the line joining B and P is the chord of the arc BP., Thus
the terms sine, cosine, &c., formerly denoted certain lines and not
certain ratios. On the old system the lengths of the sine, cosine,
&o, depended on the radius of the circle considered, so that it
became necessary to state what length was ascribed to this radius
in any investigation.
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72. Tt is easy to connect the values of the old and new Trigo-
- nometrical Functions ; for
Pl[

sine of the angls PAB._

sine of the mPB:PM;
thus sine of the arc=radius of circle x sine of the angle,
. sine of the arc
and  sine of the amgle-m.

Similar results hold for all the other Trigonometrical Functions.
Thus from any formula in the modern system which involves Func-
tions of Angles, we can deduce the corresponding formula in the
ancient system which will involve Functions of arcs, and vice versa.

For example, if 4 denote any angle, we have (Art. 32)

sin® 4 +cos® 4 =1,
Now let a denote the arc corresponding to 4 in a circle of radius
r; then, using the old definitions
sin® @ N cos’a
r r
5o that’ sin’a + cos®a =1,

=1,

We mtiy notice that the sine of half the angle PAB
%PB PB
=ig3;
and therefore the chord of an arc = radius of circle x twice the sine
of half the angle.

73. Since the sine of an arc is equal to the radius of the circle
multiplied by the sine of the angle, it follows that if the radius of
the circle be unity the numerical value of the sine is the same in
both systems ; and a similar result holds for the other Trigonome-
trical Functions, Thus any formula expressed in the ancient sys-
tem may be immediately converted into a formula expressed in the
modern system by supposing the radius of the circle to be equal to
unity.
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74. The old definitions give some indications of the origin of
the terms stne, cosine, &e. The word sine seems derived from the
Latin word sinus a bosom, the arc is supposed to represent a bow,
and thus gets its name, and the string, half of which represents the
sine of half the arc, would come against the breast of the archer.
The words tangent and secant are naturally derived from the old
definitions. (See Penny Cyclopedia; article Trigonometry.)

75. The modern method has now completely superseded the
ancient method in English works ; it was introduced by Dr Peacock.
(See Peacock’s Algebra, Vol 1. p. 157). It may however be
observed, that it is stated by Professor De Morgan (Z'rigonometry
and Double Algebra, p. 18), that “ Rheticus, who gave the first
complete trigonometrical table, and invented the secant and cose-
cant to complete it, used the method of ratios.”

EXAMPLES.

—
.

‘Write down the general value of § when tan 6=1.
2. 'Write down the general value of 6§ when sin §=1.
3. Write down the general value of § when cos =1.. -

‘Write down the general value of 6 when cos 6=— % .

5. Find all the values of @ which satisfy sin® @ =sin® a.

6. Write down the general value of 6 when cosec'0=%. :
7. Find all the values of 8 which satisfy cos® 6=cos'a.

8. 'Write down the general value of § when sec? 6= 2.
9. Find all the values of 6 wlnch sa.hsfy tan® 0 = tan® a.

10. Write down the geneml value of § when tan’ 0- -

11. Shew that all the angles which have both the same sine
and the same cosine a8 a, are included in the formula 2nx + a.
12. Write down the general Value of 6 which satisfies both

sin 0—-—.% and cos 9—‘-—_—"—@
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VI TRIGONOMETRICAL FUNCTIONS OF TWO
- ANGLES.
76. To express the sine and costne of the sum of two angles in
terms of the aines and cosines of the angles themselves.

o M [24

Let the angle COD be denoted by 4, and the angle DOE by
B; then the angle COE will be denoted by 4+ B. In OF take
any point P, draw PM perpendicular to OC, and PN perpendicular
to 0D ; draw NR perpendicular to PM and NQ perpendicular to
OC. Then the angle PNR is the complement of RN, that is of
NOC ; therefore NPR is equal to 4.

PM RM+PR NQ PR

Nowsm(A+B)— =—oFP ~0P*OP

NQ ON PR PN
“oN'OPTPN'OP
=sin 4 cos B+ cos 4 sin B.
cos (4 +B)_2¥_ ———QQ QM_ 0@ _ ¥R
0Q ON NR NP
“ON'OP” NP'OP
"=cos 4 cos B—sgin 4 sin B.
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77. To express the sine and cosine of the difference of two
angles in terms of the sines and cosines of the angles themselves.

‘

b/ L2
P .
1/ M [44

Let the angle COD be denoted by 4, and the angle DOE by
B; then the angle COE will be denoted by 4 —B. In OF take
any point P, draw PM perpendicular to OC and PN perpendicular
to OD; draw NE perpendicular to MP produced and NQ perpen-
dicular to OC. Then the angle PN R is the complement of PN,
and is therefore equal to ONQ ; therefore VPR is equal to 4.
PM EM-RP NQ RP

T OP T OP 0P
NQ ON RP PN
“ON OP PN'OP
=sin 4 cos B—cos 4 sin B.
OM 0Q+ QM OQ NR
s (d-B)~0p="0P ~0P*OP
OQ ON NR PN
=0y oPt PN OP
* =co8.4 cos B+sin 4 sin B

Now sin (4- B)-=
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78, -To assist the student in remembering the 'preceding
demonstrations, we may observe that the point P is taken in the
* line that bounds the compound angle we are considering ; thus, in
proving the formulw for sin (4 + .B) and cos (4 + B) the point 2
is taken in the line which bounds the angle 4 + B, and in provihg
the formule for sin (4 — B) and cos (4 — B) the point P is taken
in the line which bounds the angle 4 — B. After the construction
is completed, the principal step consists in shéwing that the angle
NPR is equal to 4; it will be seen from the construction that
this is the case, for the lines PN, RP are respectively perpendi-
cular to the lines which form the angle A, and thus form an angle
equal to 4.

79. The formule established in Arts. 76 and 77 are true
whatever may be the size of the angles 4 and B; the student may
exercise himself by going through the construction and demon-
stration in different cases; it will be found that the only variety
which occurs in the construction consists in the circumstance that
the perpendiculars instead of falling upon certain lines may fall upon
those lines produced, We will, as an example, prove the formulse
in Art. 76, when each of the angles 4 and B is less than a right
angle, and their sum greater than a right angle. )

R

- T ] 0 i - a
Let the angle COD be denoted by 4, and the angle DOE by
B ; then the anglé' COE will be denoted by 4 + B. In OF take

\
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any point P, draw PM perpendicular to CO produced and PN
perpendicular to OD; draw NR perpendicular to PM and NQ
perpendicular to OC. Then the angle PNR is the complement of
RNO, that is of NOC ; therefore NPR is equal to 4.
Now sin (4 + B) —£M M————RO}PR gg + 5115
NQ ON PR - PN Cee
=on " op* PN OP

=sin 4 cos B +cos 4 sin B.
oM .
Also M(A+B)=57f
here we must remember that OM being measured to the left of O
is a negative quantity, and we may put for it 0Q — @M, that is
0Q — NR; thus
_O0Q-NR _0Q AR
os(4d+8B)=—5p— ~0P ~OF
_0Q ON_NE PN
~ON'OP PN 'OP
=cos8 4 cos B —gin Asin B.

80. The formule established in Arts. 76 and 77 may be ¢on-
sidered the fundamental formule of the subject; it is important
therefore that they should be shewn to be universally true. As
we have intimated in the preceding article, the student might
convince himself of their universal truth by examination of all -
the cases that can occur; but we may arrive at the required result
more decisively by making use of some theorems which have already
been completely established. '

The formule we have to prove are

gin(4 + B)=sin dcos B+cos dsin B......... (1)
cos(A+B)=oos4cosB—sinAsinB........ .......... ).
sin(4—B)=sind cos B—cos A sin B.........cc.u...e. (3):

co8 (4 — B)=cos 4 cos B +sin 4sin B............... v (4)
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Now in Arts. 76 and 79 we have shewn that (1) and (2) hold for
all positive values of 4 and B, which do not exceed a right angle;
and in Art. 77 we have shewn that (3) and (4) hold for all positive
values of 4 and B which ‘do not exceed a right angle, provided 4 be
greater than B. 'We ghall first shew that the restriction of 4 being
greater than B may be removed from (3) and (4).
By Art. 49, gin (4 — B) =—sin (B - 4),
and cos (4 — B)=cos (B 4);
if then we know that

8in (B — 4) =sin B cos 4 — cos Bsin 4,
and | co8 (B — A)=cos Bcos 4 +sin Bsin 4;
we know also that

sin (4 — B) =sin 4 cos B - cos 4 sin B,
and cos (4 — B)=cos 4 cos B+sin 4 sin B.

Therefore if (8) and (4) hold for values of 4 and B comprised
between any limits when 4 is greater than B, they hold for values
of 4 and B comprised between the same limits when 4 is less
than B. ‘ .

Thus we know that the four formule are all true for any
positive value of each angle between zero and a right angle. We
shall next shew that if all the formuls are true for values of 4 and
B comprised between certain limits, these limits may be increased
by a right angle. For by Art. 52,

8in (90° + 4 + B)=cos (4 + B)=cos 4 cos B —sin 4 sin B
=sgin (90°+ 4) cos B + 008 (90° + 4) sin B;
" in this way, from the truth of (2) for any limits, we can infer the
truth of (1) with an increase of 90° in the limits of either angle.
Similar considerations apply to all the other formuls ; and thus
the limits become as large as we please.

Lastly, the truth of the formule for any negative angles may
be established ; suppose 4 and B both negative, let 4=— A4’ and
B=-F; thus T



TRIGONOMETRICAL FUNCTIONS OF TWO ANGLES. 55

sin (4 + B) =sin (~4’~ =—gin (4’ + B, by Art.'49,
= (sin 4’ cos B’ + cos 4’ sin B)
=gin (— 4") cos (— B’) + cos ( — 4’) sin (- B))
=gin 4 cos B +cos 4 sin B,

Similarly all the other formulse may be shewn to be true when both
the angles are negative, or when one of the angles is negative.

81. From the four fundamental formulse a large number of
other formulse may be deduced we shall give some examples of
such deductions,

82, In the expmsslons for sin (4 + B) and ooe(A+B) put
B=A; thus
" pin24=2sitdcosd; »
00824 =cos® 4 —sin* A=1-2gin*4=2cos"4-1.

Thus 1+ cos24 =2 cos' 4,
1 —cos 24 =2sin’ 4,
1-cos24 ey *

and Tromad ™ 4

83. From the four fundamental formuls we hgve
sin (4 + B) + sin (4 — B) = 2sin 4 cos B,
gin (4 + B)—sin (4 — B)=2cos 4sin B,
cos (4 + B) + cos (4 — B) =2 cos 4 cos B,
co8 (4 — B)—cos (4 + B)=2sin 4 sin B.
Let A+ B=C and 4 — B =D; therefore
4=3}(C +D)and B=}(C—D); thus

_smC'+emD=2smg;—£0ﬁ8£—TD,

sin(C —~sin D= 2oosg—g£sm02D,
0+Dm0—‘D
2 2

c+D ., €~ D

. eosD cos 0= Zsin—z—-—nm 3

: cosG'+obsD=2'oos
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84, Sin(d+B)sin(d-B) -

_(mnAoosB+cosAsmB)(sonosB eosAamB)
=sin"4 cos' B—cos' 4sin* B
= sin” 4 (1 - sin” B) — (1 — sin” 4) sin* B
=sin* 4 —gin* B
And  cos(4 +B)cos (4—-B)
' = (cos 4 cos B — smAsmB)(oosAoosB+smAsmB)
= cos® 4 cos’ B —sin' 4 gin' B
‘= cos*® 4 (1 - sin® B) — (1 — cos* 4) sin* B
* 4 — sin® B = cos* B—sin® 4.

o sin(4+B) sindoos B+oosdsin B
85. Tan(d+B)= oA B) =~ cos A oos B—sin Asin B
divide both numerator and denominator of the last expression by

sin 4 sinB

cos 4 cos B
oos 4 cos B; thuswegetm

" oosd cos B )
. tan 4 +tan B
therefore M(A+B)=m.
Suppose B = 4 ; thus we obtain
2tan 4
2‘1‘ [—tan’4°
sin(4 -~ B) sonosB oos A sin B
Ton (4 - B) = cos(d -B) oosAoosiﬂnnAsmB
gind ginB
_oosA oosB‘ tan 4 ~ tan B
ST sndsnB l+ta.n..4ta.nB
1+ —
cos 4 cos B

Suppose for exa.mple that B =45° so that tanB l then we
shall obtain

1+tan tan 4 -1
ta.n(A+45")- th, tan (4 - 460)_th+1
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d08(4 + B) cosA cosB—sin 4 sin B
sin (4 + B) sin'd cos B+ cos 4 sin B

86. Cot(4+B)=

. cosd o8B _, '
_emnd sinB oot AdootB—1
- 24_'._0013— cot 4 +cot B *
‘" gind  sinB .
Suppose B =4 ;. thus we obtain
' cot'4 -1 S

oot 2 = 4

cot A cot B+1
cotB—cot 4 '

. ‘o s 2 5in 4 oos 4 .

divide both numerator and denominator of the last expression by
2sind Co

Similarly oot (4— B)=

cos' 4; thus we get —m;

2tand

therefore sin 24 = m .

. $ 4 ain?
Also eos24=oos',4-sinu=::_,j+_;u";",§ (Arts. 82 and 32)
sin® 4

“oosd 1-tan"d
A~ Thtan’4”
.A‘ .

"1

1+

2aixiA+BcosA_>B
sind+sinB. 22y ¥y
SAd—mmB- ATy -3 (At 89
2 008 —— sin ———

2 "3

88.
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2005A+BOOBA—B
cos 4 + cos B ) 2 TN
cosB-oosd 5 A+ 5 A-p At 8)
2sin — — gin ——
. 2 2
. A+B A-B
=00t——§—00t——2——. .

8in 4 sin B sin 4 cos B + cos 4 sin B
89. Ta'nA"'th:__cosA"'oos'_—B— \ wos 4 oos B

gin (4 + B)
TewdcosB" )

_ sin (4 — B)
Similarly - tanA—tanB:m.
sin 4 cosA_sin'A+oos’A
cosd sin 4~ sindcosd

1 _ 2 2
“sindcosd 2sindcosd s 24

sind cosd sin®d —cos® A4

90, Tan 4 +cotd =

tanAfOOtA=cosAfsi;1A= sin 4 cos 4
cos 24 2c0824
" sind cosd ~ gin24 =200t 24.

91. 8in 34 =sin (24 +4)=sin24 cos 4 +cok 24 sin 4
=2¢8in4 cos"4 +(1 ~ 2 sin* 4) sin 4
=2sin4d (1 -sin"4)+ (1 -2 sin*4) sin 4
=3 8in 4 — 44in* 4.

cos 34 = cos (24 + 4) =cos 24 cos A —sin 24 sin 4

=(2 cos* 4 —1) cos.d ~ 2 cos 4 sin® 4
=(2 cos”4 —1) cos A — 2 cos 4 (1 — cos” 4)
=4co®4-3cos 4.

gin34 3sind-—4sin’4

Hence tan 34 = Too' 4 —Sco 4"

/
/
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Divide both numerator and denommntor by cos® 4 ; thus
3tan4d

—4tan®4
Stnd
tan 34 =24 3
4-
_ Btand (1+tan’® 4)—4dtan 4 _ 3tand —tan' 4
= i 3(+wn'd) (Art.34) = gt

92. 7o find the values of the Trigonometrical Ratios for an
angle of 15° and an angle of 75°

sin 15° = gin (45°— 30°) =sin 45° cos 30° — cos 45°sin 30"=%;

(] 0 0 ) 0 .. J3+1

cos 15° = cos (45° — 30°) = cos 45° cos 30° + sin 45 nn30’=——2—7—;

_sinls_J/3-1_(J3-1)_
ks v Rty % Sk Bk A L

cos15° /3+1 (J8+1)
sin16°~ /3-1. 2
1 2,/2 » 1 2.2
0 - = —
oo 10 1 BT = T = B
. _ ~/3+l. 0 o_a3-1
And mn75"--cosl5"==—2‘\/2 ; cos 75°=sin 15°= Nl ;
tan 75°=cot 15°=2+ ,/3; eot75°=tan15°=2—J3,

cot 15°=

=2+.3;

2,/2 . 2,/2
sec75°=eosecl5"=JT‘{—1-; cosec 75° = sec 15° = ,\/3"-/0-1

93. If sin A =sin B and cos 4 =cos B, then either A and B
are equal, or they differ by some multiple of four right angles.
For cos (4 —B)=cos 4 cos B +sin4 gin B
*4 +sin®4=1;
‘therefore 4 — B=0, or a mu.ltlple of four right angles taken pom-
tively or negatively. (Art. 67.) L
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94. Ifcosd =cos B and sin 4 = —sin B, then A + B s zero,
or a multiple of four right angles positive or negative. :
L ]
For the given relations may be written'

cos A =cos(~B), sind =sin (- B). (Art. 49.)

Hence by the preceding article 4 —(— B), that is 4 + B, is zero or
some multiple of four right angles taken posizively or negatively.

EXAMPLES,

Prove the following identities :

L

S G W

=

10.

11.
12,

13/

14

1.

‘cos 4 —sin 4

‘T+tan® (45°—4)
 4tand (1-tan'd)

cos 4 +sin 4 =tan 24 +sec 24.

2sin* 4 sin* B + 2 008" 4 cos®* B=1 + cos 24 cos 2B. .

" tan (45° + 4) — tan (45°— 4) = 2 tan 24.

sin 34 cosec 4 - cos 34 sec 4 = 2.
8sin 4 —sin 34 =2 sin 4 (1 - cos 24).
sind +2sin34 +sin54 sin 34
sin 34 +2sin~5A+sin7A— sin 54 °
gin B sin (24 + B)
sind~ sind
sin44 =4sin4 cos’ 4 —4 cos 4 sin® 4.
cosd —cos 34
sin 34 —sin 4
€08 24 —cos 44
sin 44 —sin 24
cosec 24 + cot 44 = cot 4 — cosec 44.

cos® (4 — B) + cos* B —2 cos (4 — B) cos 4 cos B = sin’ 4.
gin® (4 — B) + sin® B + 2sin (4 — B) sin B cos 4 ='sin’ 4.

(450
1-tan"(45°-4) . o

~2cos(4d +B).

=tan 24.

=tan 34.

—sin 44,
[ +tan’ 4)° sin 44.




16.

17,

18.
19.
20.
21.

29.
23,
24,
2.

26

o7,

28.

29.
30.

. cos 4 =cosnd +cos(2n—1)4

EXAMPLES. CHEAPTER VL.

sin 4 (1+ tan 4) +cos 4 (1 + cot A) = sec 4 -+cosec 4.

sin 34 + 008 34 l+2sm2A
#m34—cos34 ~ 1-Zsmad 224~ 45")

cos A4 + cos (120° - A)+con(120°+A) 0.
4sind sm(60° 4) sin (60°+ 4) = sin 34.
4 008 4 008 (120°— 4) cos (120°+ 4) = cos 34.
8in 34 sin® 4 + cos 34 cos® 4 = cos®24.

cos® 4 sm33A +sin®d %% 34 sindd

3 "~ 1 ° RN
cos nd cos (n + 2) 4 — cos’(n + 1) 4 +sin’d = 0.
sin 4 = sin nd + sin (2n - 1) 4

= tan nd.

sin nd cosec’d sec 4 — cos nd sec’A cosec 4
=4 sin (n — 1) 4 cosec’24.

co8104 +cos 84 + 3 cos44 + 3 cos 24 = 8005Aoos3A

cot A + cot 24 + cot 44 ' :
=cosec 44 (2 + 2 cos 24 + 3 cos 44).

< 28in24 + 2 cos 24

oosee 4 = A —sind —os34d +mn3d

c08’24 = (cos 4 —sin 34)" + 2 cos 4 sin 34 (cos 4 —sin 4)".
—8in’4 = cos 24 (1 - } sin"24).

Solve the following equations:

3L
'3_2.
34.
36.
38.

40.

| (]
tan -_o)foot(zfq)=4.

1
sin40+sin6=0. 33. sin76-sin=sin30.
sino+'cos0=~%. 35. sin 50 =16sin*d.

cos 30 cos 260 +.cos #=0. 37. sin'30,+sin20)+sin0=0.

ta.n0+tan( +o)_.. 39. tan 26 = 8 cos" — cot 0.

( +0) 3ta.n(—-—0)
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VII. FORMULZA FOR THE DIVISION OF ANGLES.

95. In Art. 82 change 4 mto 4 ; thus we obtain

A V.|

- 1+oosA

therefore sm%— =

96. SBince we niay suppose either the positive or negatlve sign
to be placed before the radical quantities in the preceding article,
we see that corresponding to one value of cos 4 there are teoo values
of sm% and fwo values ofcos%; and the reason of this may
be assigned. For if a be an angle which has a given cosine, then
the formula 2 & a includes all the angles which have this given

cogine; therefore any expression which gives the value of _ain%

in terms of cos . may be expected to give the value of the sine of
every angle included in the formula } (2n7 +a). Now

o () . a . @
sin mr:k§)=smmroos§*cosmrsm§

= & cos mr sin § =& sin § 5
thus two values occur which differ only in sign, Similarly, any

% in terms of cos a may be
expected to give the value of the cosine of every angle included in

the formula 4 (2nr «a). Now

expression which gives the value of cos

a e . . a
cos8 nr-hﬁ):coswoosé-?mnnrmné-

@nrma s cos =
= -— =2 -
N 2 2’

thus two valugoccur which differ only in sign. -



FORMULZE FOR THE DIVISION OF ANGLES. 63

97. If cosd only be given and nothing more be known
respecting 4, then the ambiguity of sign which occurs in Art. 95

cannot be removed. If however 4 itself be given, then%m a
known angle, and therefore we know whether sm—g- is positive or
negative; and also whether oos‘% is positive or negative; thus we
know which sign is to be taken with each radical quantity. Or if
we merely know in which qnadrant‘ the angle % lies, we can
determine the proper, signs; for example, if % is an angle between
180° and 270", both its sine and cosine must be negative quantities.

08. ByArt.82 sind=3sin% e},
also 1=sin'%+oos'%,
thus (sinf;l+eos%).=l+sin4,
and (sm—Az-—-cos:;- ’=l—san;
therefore sm%+oos% =1 +8n4). i 1),
and fin % — con = /(1 = i ). @;
therefors  Bsin = /(1 +gin4) + /(1-sind), |
and 2 008 5 =/(1 + sin 4) — /(1 ~ sin ).

99. Bince we may suppose either the positive or negative sign
to be placed before each of the radical quantities in equations (1)
and (2) of the preceding article, we see that corresponding to one

value of smA there are four values for oosg- aud_four values for
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sm%, and the reason of this may be assigned. For 1fa.bea.nangle

which has a given sine, then the formula nr+ (~1)*a includes all
the angles which have this given sine; therefore any expression
which gives the value of sin%'in terms. of sin « may be expected
to give the. value of the sine of every angle included in the
formula ;{mr + (— 1)*a}. First suppose 7 even a,nd equal to 2m ;
then

sma}{mr+(—1)'a}=sin(m1r+§)=sinmu-oos.§+oosmarsin§

| =cosmmwsing =ksin g
. S A
Next suppose » odd and equal to 2m +1; then
sin,}{n-;r+(—1)"a}=sin(m¢r + ¥> =sinmr oos—2—+ oosrmrsin-"—;-
—wsmwsihﬂ—aésin" bl
= Ty TR on 5.
Thus four values occur for the sine of half an angle when the sine
of the angle is given. .

Similarly any expression which gives the value of cos % in
terms of §in ¢, may be expected to givt; the value of the cosine of
every angle included in the formula -}{'mr+ (~1)"a}. First sup-
pose n even and equal to 2m ; then .

08 § -+ (~ 1)'a} = 008 (7 + 3) = cosmm 00 % +sinmmsin s
wo; g—*_ . .
Next suppoeenodd a.nd equal to 2m+l then
oos;{nﬂ(-l) a}=cos (m+T)=cosmcos-_2_+sinmnin1;l
'—cos cos’r—a—-l-cosr_a—-b . a
.~ = COB M C! —g = T-—- mn-z—.
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Thu.‘s‘ﬁmf values ocour for the cosine of half an angle when the
sine of the angle is given.

100. If sin4 only be given and. nothing more be known
respecting 4, then the ambiguities of sign which occur in Art. 98
cannot be removed. If however A itself be given, or if we merely
know in which quadrant the angle A lies, we can determine the

proper signs; for in any particular case we may proceed as follows,
We have

sin 2+ con g =k /(1 +i0 4) crevoen reereneene(D)y
singfoos%=*~/(1-sin4) ...... reseeennenenne(@).

Now suppose, for example, that 4 les between 0 and 90° then ‘—;

lies betowoen 0 and 45°; thérefore cos’s and sin 3 are both positive

aiul'c’os‘—4 is greater than sin % ; henoe the left-hand member of (1)

is a positive quantity, and we must therefore take the positive sign
in (1), and the left-hand member of (2) i8 & negative quantity, and
we must therefore take the negative sign in (2). Therefore if 4
lies between 0 and 90°, we have

4 4 .
sin 5 + 008 5 =+,/(1 +8in 4),

. 4 V| .
smi—cos—f=—~/(l—sm.4);

therefore 2sin%=+J(1+sinA)-—,~/(lf-sinA),

2oos%,=+,-/(1 +8in 4) + /(1 —sin 4).
For a.hother exmpie, suppose that 4 lies between 270° and 360°,
then 3 lies between 135° and 180" therefore eosA is negatwe,

and smA is positive, a.ndcocs‘4 is numencally greaterthm sm‘i,'

T. T. b
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hence the left-hand member of (1) is a negative quantity, and we
must therefore take the negative sign in (1), and the left-hand
member of (2) is a positive quantlty, and we must therefore take the
positive sign in (2). Therefore if 4 lies between 270° and 360° we
have

.4 4 . ‘
sm§+cos§=—~/(l + sin 4),

sm%—cosA_+,,/(l —sin 4) ;

therefors - * 2sin% = — /(1-+sin 4) + (1 ~sin 4),

«-2cos%=— N(1 +sin 4) - /(1 —sin 4).

101, It is easy to give general formule for determining the

 onin A ooed and sind _cosd . T
mgnso sm-§+cos§ an smg—oos2 or.

4
sin 3 +cos——J2(J2mn2 +7§cos2) J2mn(2 4)
now sin (7 + Z) is positive if % + Zhes between 2nx and (2n+1)m,

and negative if % + g lies between (25 + 1) 7 and (2 + 2) =, where’

n is zero or any integer positive or negative. Thus sin %+ cosA;2

is pomtwe if % lies between 2n —Z- and 2w + i—’-r, and negative if

hes between 2mr+ a.nd 2 + ZE . Simila.rly

. A A 4 =
sin 5 — cos - = / 28in (5‘2

and hence we can infer that sin 4_ cosé is positive if 4 lies between:

-2 2
2mr+ and 2mr+—, and negai:nrelfﬁ lies between 2nr+%?
d — i
an 2mr+*
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3
102. By Art. 85, tand= ;
1-tan*4
’ 2
.\ 4
put ¢ for tan 4 ; thus ctan§+2tan-§—c=0;
therefore mng=:i::égif2.

103. The reason why two values occur in finding the tangent
of half an angle when the tangent of the angle is given, may be
assigned as before. For if a be an angle which has a given tangent,
then the formula nx+ a includes all the angles which have this
given tangent; therefore any expression which gives the value of
tang in terms of tan a may be expected to give the value of the
tangent of every angle included in the formula § (n7 +a). First
suppose 2 even and equal to 2m ; then

hn%@r+@=um(mw+§)=hn§.
Next suppose n odd and equal to 2m + 1, then

T+a - T+a

ko a : a
tan;(mr+a) »ta.n(m w4+ — ) tﬂn—z—'_m(§+§)=-—00t§.

Thus two values ocour for the tangent of half an angle when the
tangent of the angle is glven.

2

104. If tan 4 only be given and nothing more be known
respecting 4, then the ambiguity of sign which occurs in Art. 102
cannot be removed. If however 4 itself be given, or if we merely
know in which quadrant -42- lies, we.know whether tan% is positive
or negative, and thus we know which sign we must take.

105. By Ast. 91, " oond = 4cos® %—Scos';

Thus if cos 4 be given we have a cubic equation for determining:
5—2
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cos % ; and the reason for this may be assigned as before. For if a

be an angle which has a given cosine, then the formula 2nz+a
includes all the angles which have this given cosine; therefore any

expression which gives the value of cosg in terms of cos ¢ may be

expected to give the value of the cosine of every angle included in
the formula } (2nw=a). Now n is of one of the forms 3m, 3m + 1,
3m—1, First suppose n=3m ; then

cos §(2mr=l=a)=f:os (2ﬂb7r-h§)= c0s 3.

Next suppose n=3m+1; then

27r=ha.) Ira
=cos

cog%(an*a);cos(2mw+ 3 3

Last suppose n=3m—1; then

cos} (2n1r=ba) =cos (2m7r - 2”; ") =008 2”; z

I +a 27 —a

3 %73

106. By Art. 91, sinA=3sin%—4sih'g-.

Thus three values occur, namely cos 5 3» €08

Thus if sin 4 be given, we have a cubic equation for determining

sin % ; and the reason for this may be assigned as before,

EXAMPLES.
1. Shew that 2sin —=—,J(1+smA) ,J(l smA), when 4

lies between 450" and 630°, . -

2. Obtain cosg in terms of gin 4 when 5 Hes between: 405°

and 495° - : R
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3. Obtain sin % in terms of sin 4 when % Hes hetwoon - 45"
and - 135°, . )

4. Determine the limits between which 4 must lie in order
that .
2sin 4 =—,/(1 +sin 24) + /(1 —sin 24),
and ° 2 cos 4 =—,/(1 +8in 24) —,/(1 — sin 24).

5. Determine the limjts between which 4 must lie in order
that

2 cos 4 =—,/(1 +sin 24) + /(1 —sin 24).,

6. Determine the limits betweep which 4 must lie in order
that .
2sin 4 =,/(1 + sin 24) — /(1 —sin 24).

7. Divide a given angle into two parts whose sines shall be
in a given ratio,

8. Divide a given angle into two pa.rt.s whose cosines shall be
in a given ratio,

9. Divide a given angle into two parts whose tangents shall
be in a given ratio.

10. Given m"%:z — /3, fnd sin 4.

11. Given sin 210*=- -12-, find cos 105"

12. Given tan 24 __?4, find sin 4 and oos 4.
13. Find tan 165° from the known value of tan 330°,

A  2gin A -sin 24

t ]
14. Shew that tan®*— 3 m

15, vers (180°~ 4) = 2 vers 1 (180° + 4) vors 3 (180"~ 4).

e . 1/
16. (cos 4 + cos B)' + (sin 4 + sin B) =4cos’§(A—B).

\
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17,

18,

and

19,
20.
‘21, .
22.
2.
24,
25.
26.
2.

28.

29.

30.

EXAMPLES. TCHAPTER VII.

(c08 4 — 08 BY' + (sin 4 - sin BY' = 4 sin’ 7 (4~ B).

Shew that sin 224°= M cos 22}° =_L_<2; V)

tan 22§°=,/2- 1.
(tanA+cotA)2tan2(1 t“n'z) (1 ta.n';)

secA tan 4’

0) *+co8 (4 2) A/(?;: o)

e sec 4 + tan 4
t““(4 2)

,J(l-q-'sin0)=1+2sin—- J(l—mg).' :

c08* 7=+ 008* §—+cos QE-}- oI _3

8 8 8 82

o W2-1
tan7§———J2+J3.

tan1424°=2 + /2 - /3 - /6.
Ifta.n:c-(2+J3)ta-n ﬁndtheva.lueoftanz.

Ifa= (n+ *6) m, find tan a + cot a.

Ifa=-", find the value of cosa oos 13a

17° cos 3a. + cos 5a”
If sec (¢ + a) + 8ec (¢ — a) = 2 sec ¢, shew that
.cos¢=.\/2oosg.
0. (1+c\d ¢
Iftani— ‘]: 2,shewthat
o008 0= cosp—c

1-cos ¢’
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. VIII. MISCELLANEOUS PROPOSITIONS.

107. To find the sine and cosine of an angle of 18°.

Let 4 denote an angle which contains 18°, then 24 contains
36° and 34 contains 54°; hence sin 24 = ¢os 34,

therefore . . 2sinAdcos A=4cos4~3cos4d;

divide by cos 4, thus 2sind=4cos'4-3=1-4gin’ 4,

therefore 45in*4 +28ind-1=0;

by solving this quadratic equation we obtain
sin4=‘1‘:~/5.

Since the sine of an é.ngle of 18° is a positive quantity we must
take the upper sign, therefore

sin 18°= 'Ji"l,

and o0 18°= (1 —sin?18)= Y102 20)

108. T find the sine and cosine of an angle of 36°.
00836 =1 — 2ain’ 18°= 1 -2(J64_ 1)'=1 +4~/5,

sin 36° = /(1 — cos® 36%) = '/(1—04'”—5).

109. Hence the values of the Trigonometrical Ratios for
angles of 54° and 72° are known ; for

sin 54° = cos 36°, cos 54° =gin 36°, sin 72° = cos 18°, cos 72°=sin 18°.

110. The reason why more than one result was obtained in
Art. 107, is that the equation sin 24 =cos34 is true for some
other angles besides the angle which contains 18°. This equation
may be written

008 (90° — 24) = cos 34.
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Hence we conclude that 90° — 24 must either be equal to 34
or to one of the angles which have the same cosine as 34 ; thus
every admissible value of 4 will be found from the equation

90°—24=n.360°%34;
where n is zero or any integer positive or negative;
90° —n. 360°

23 °
For example, if =0 and we take the lower sign in the de-

thus A=

nominator, we obtain 4 = —90°; this value of 4 makes cos 4 =0,

and thus we see a reason for the appearance of the factor cos A
which was removed by division in Art. 107. Again, if we put
n=1 and take the upper sign in the denominator, we obtain
A——27—0. - b4°; andsin'(—54")——sin54°——oos36°——1+——‘/5;

= 5 = ) - = ! - 4 2
and thus we see a reason for the appearance of the other root in the

quadratic equation of Art. 107, besides the root which we used.

111, Toﬁmdtheumandcommqfamangleof9°andqf¢m
angle of 81°
By Art. 100,
sin 9°+ con 9= /(1 + sin 18) =20,

gin 9°— oos9°——,J(1 sm18")—_'/(5 ~/5)

therefore sin 9° = NGB+ ~/ 5)4 N (5 —/5) ,
0089°="/(3+J5)I"/(5—~/5)_
 And sin 81°=cos 9",  cos 81°=sin 9"

" We have now found expressions for the sines and cosines

of the following angles, 9°, 15°, 18°, 30°, 36°, 45°, 54°, 60°, 72°, 75’
81°. (See Arts. 36, 37, 93, 107, 108, 111.)

Since 3°=18°-15° we can obtain the sine and cosine of 3°
from those of 18° and 15° by Art. 77; and then by means of Art.
76 combined with results already obtained, we can easily find the
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sines and cosines of any angle comprised in the series 3°, 6° 9°,
12°, &e.
112. In Arts. 87 and 91 we have given expressions for sin 24,

cos 24, sin 34, and cos 34 in terms of sin 4 and cos 4; we may
also express the sines and cosines of 44, 64, &c. in a similar way.

For sin (n+ l)A+sm(n 1)4 =2sinndcosd ;

therefore sin (n + 1) 4 = 2 sin n4 cos 4 —sin (n— I)A
let n=3; thus sin44 =2sin 34 cos 4 —sin 24 ;
let . n=4; thus sin 64 =2 sin 44 cos 4 —sin 34 ;

and so on ; thus we can find in succesgion sin 44, sin 54, &c., in
terms of the sine and cosine of 4. :

Similarly, the formula

cos (n + 1) 4 + cos (n — I)A 2 cos nd cos 4,

may be used to find in succession cos 44, cos 54, &c.

This subject will be considered again hereafter, and we shall
then give general formule for the sine and cosine of #4 in terms
of the sine and cosine of 4. for any integral value of 7.

113. "It is easy to find expressions for the Trigonometrical
Ratios of any compound angle in terms of the Ratios of the com-
ponent angles. For example,

sin (4 + B+ C)=sin (4 + B) cos '+ cos (4 + B) sin C
=gin 4 cos B cos ' + sin B cos C cos 4
+8in C cos 4 cos B —sin 4 sin Bsin C.
Cos (4 + B+ C) = cos (4 + B) cos C —sin (4 + B)sin ¢

= cos 4 cos B cos €' — cos 4 sin B sin O

]
—

. —-c_onginAsinC’—cosC’sinAsinB.
gin(4d+B+0C)

cos(d+B+C) - .

__sinAcos Beos C'+sin B cosC cos 4 +sin C'cos 4 cos B—sin 4sin Bein (',
" cos A cos B cos C—cos A sin Bsin C—cos Bsin 4sin (' —cos C'sin 4sin B°.

Tan (4 + B+ C)=

divide both numerator and denominator of the last expression by
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cos 4 cos Bcos C; thus we obtain
‘ tan 4 + tan B + tan €' — tan 4 tan B tan 0
tan (4+ B+ 0) =1 r Btan C—tanCtan 4 —tan 4 tan B’
Suppose B and (' each equal to 4 ; thus we have
3tand —tan’4
Rk o Ty
114. When three or more angles are connected by some
relation, we may often find that some simple relation exists among
some of their Trigonometrical Ratios, thus, for example,
if4 + B + C = 180", then will
gin 24 + sin 2B + sin 2C = 4 sin 4 sin B sin C. .
For - sin 24 + sin 2B = 2 sin (4 + B) cos (4 — B) = 2 sin C cos (4 — B)
and sin 20 =28in C cos C=—2sin C cos (4 + B), (Art. 48);
therefore :
sin 24 + gin 28 + sin 2C = 2 sin ' {cos (4 — B)—cos (4 + B)}
=4 sin C'sin 4 sin B.
Again, if 4 + B+ ('=180°, then will '

cos A + cos B + cos O'=l+4sinzl2-'A sin%Bsin%O.

For oosA+oosB=2cos%(A+B)cos%(A—B)
~9sinlcC L4 B
=2sing cosﬁ-( - B);
and o cosC'=1—2sin'%C'; therefore
, ' 1 1 .1
cosA+cosB+cosC=l+2sm§O' oosﬁ(A—B)—smEC
"9 1 1 1 :
=1+2sm-2—0.{cos§(A—B)—cosE(A+B)}
1 1 '

=1+4sin%Asin§Bsin§C'.

Again, if 4 + B + €'=180°, then will
' tan A + tan B + tan C = tan 4 tan Btan C.
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For tan 180° =0, therefore tan (4 + B+C)="0; and therefore by
Art. 113, tan 4 + tan B + tan C — tan’4 tan B tan C'= 0.
Again, by Art. 113, ’
1 —tan Btan C'—tan C'tan 4 —tan 4 tan B
0ot (4 +B+0) = 4n A+ tan B+ tan O — tan A tan B tau 0 *

now cot 90°=0; hence if 4 + B + C = 90°, then will
1 =tan B tan ('+ tan C'tan 4 + tan 4 tan B.

115. For another example, suppose we have to investigate
what relation must exist among the angles 4, B, C, in order that’
cos® 4 + o8’ B + cos’ C + 2 cos 4 cos' B cos O — 1 may be zero.

cos® 4+ cos* B +cos’ O+ 2cos dcosBcosC—1

= (cos 4 + cos B cos C)* + cos’ B + cos’ €' — 1 — cos" B cos* C
‘=(cos A+cos Bcos )" +1-gin"B+1 —sin*C-1

—(1-sin*B) (1 —sin’C)

=(cos 4 + cos B cos ()" —sin® Bsin® C

=(cos 4 + cos B cos €'+ sin B sin C) (cos 4 + cos B cos C —sin B sin C)
={cos 4 + cos (B — C)} {cos 4 + cos (B +C)}

_ A+B-C A-B+C A+B+C B+C-4

=4 cos cos cos cos .

T2 2 2 2

Hence in order that the proposed expression may be zero, one of
the four cosines last written must be zero, and thus one of the four
compound angles must be some odd multiple of & right angle. -

MISCELLANEOUS EXAMPLES,
Prove the following formules :

cos (4 +B+0)
w—sm—.l—tanﬂtanC—taniﬁ'tanA—tanAtanB.

sin(4+B+0C)
cosdoos Boos = 1204+ tan B +tan €~ tan A tan Btan C.

L

2.
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3. sin(a— ) +sin (B—--y)+sin (y— a)

‘+4sin“‘2’35in‘8;”sin7_;“=o.
4. 43sin (0 — a) sin (Mm@ — &) cos (6 — mb)
=1+ cos (20 — 2m0) — 0os (20 — 2a) — cos (2mf — 2a).
gin (a+/) cos 8 —sin (a + ) cos y =sin (8 — y) cos (a + B+7y).
6. cos(4 +B+C)+cos(d+B-C)+cos(4+C-B)
+cos (B +C—A4)=4cos 4 cos B cos C.

* 7. cos 2+ cos 2B + cos y = 4 o8 (a + B) 008 (B + 7) 008 (y + a)

—co82(a+B+y).
o sin 4 ginB
" Sn(d—B)sin(4—0) " sin(B-C)sn (B-4)
sin ¢

* (0= A)sn (C=B) "~
9. cos(a+ B)sin B—cos(a+y)siny
=sin (a + B) cos B —sin (a + ) cosy.
10. sin(a+ B —2y) cos B —sin (a+y—2B) cos y
=sin (8—y){cos (B+y~a)+ cos (a+y— ) + cos (a + B~-1y)}.
11 sin(4+B+C)sin B =sin (4 + B) sin (B + C) —sin 4sinC.
12. sinasin B sin (8—a)+ sin Bsin ysin (Y~ B)
+ 8in y 8in @ sin (a — y) + sin (8 —a)sin (y — B) sin (a — y) = 0.
13, cos (a+ B)sin(a— B) +cos (B +7)sin (B—7)
+co8 (y + 8) sin (y — 8) + cos (3 + a) sin (§ —a) =0,
14, sin (8— B)sin (a —y) +sin (B —y) sin (a —8)
+sin (y—8)sin (a— 8) = 0.
If A+ B+C=180° prove the following formulse contained in
the examples from 15 to 35 inclusive.
15, cot§+ootg+oot(—;-cot%cot§ootg. .

16. sinA+sinB+sinC’=4cosg-cos-§cos%.



17.

18.
19.

20.
2L

22.

23.
24,

25.

26.
27.

28.

29.

30.

EXAMPLES. CHAPTER VIII. ({4

4 B, C
sin 4 —sin B+sin C'= 451!12008261!12

cos 24 + cos2B +co8 20 + 4 cos A cos Beos C+ 1 =0,
cos 44 + cos 4B + cos 4C + 1 = 4 cos 24 cos 2B cos 2C.

4 B (o 4 sr—Amw—B —C
008—2-+908§+008§= CO! 1 1 ©o8 4..~

A 008§+ g=4eos1r+A r—B s1r+0
08 g—clgtosy g O’

4 B Cc -4 ., x—B , »-C
sm+sin2+sin 14sm4Asm4nn4.
sin® 4 + sin® B +8in®* C — 2 cos 4 cos B cos C = 2.

sin® 24 + sin® 2B + sin® 20 + 2 cos 24 cos 2B cos 20 = 2.

A B B C C, 4
tan2tan2 tan2tan2 ta.n2tan— 1.
sin 4 +sin B —sinC A, B
smd+smBrsnC SRigWRy:

1+ cos 4 cos B cos C=cos 4 sin Bsin C' + cos Bsin 4 sin O
+ cos C'sin 4 sin B.

cot A + cot B + cot C =cot A cot B cot C
+ cosec 4 cosec B cosec C.

C' _ (sin B +sin C'—sin 4)(sin C+sin 4 — smB)
4 sin 4 sin B

The expression cot 4 + sanA C will retain the same

value if any two of the qua.ntmes 4, B, 0, be interchanged.

3L

32.

A B, C
tan 4 + tan B + tan O tan 5 tan 5 tan 5

(sin 4 +sin B+sin C)°  2cos A cos B cosC'’

sm-nA+mnnB+smn0=4sin’—‘2£cos”TA‘oos"—23-eds’#,

if n be an integer of the-form 4m + 1 or 4m+3.
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33. mnnA+smnB+smnC'——4cos"gr 'n’—.;s{ nfsm%,
if n be an integer of the form 4m or 4m + 2. o

34 oos‘é+cos§-+cosg—4oosB+0 4+0C ,4+8

L omgTomgTosy= g g ;g
tan 4 +tanB+tan0+tanA+tanB+tanC
tanB tan(C tand tanC  tand tan B

=gec 4 sec Bsec (' — 2.

. 36. If the sum of four angles be two nght angles, the sum of
their tangents is equal to the sum of the product of the tangents
taken three and three.

a1. ]_ft_ELti‘:_Zf)_ ::: =1, prove that tanAtanB ta.n’C'

tan’a  cos B (cos 2 — cos a)

35.

3. Given'tan'ﬁ=oosa(cos.z—cosﬂ)’
shew that ta.g' ; = tgn’%taln’%.

39. 'Ifcos’0=z——:—;, 008’9’=x‘;, $:=$:,
shew that < tan'g-' taxi'%:tan'—zé.

40. Ifcosa=cos Bcos = ;aosﬁ’cos¢’,and

sina= 2sm¢ ¢,shewthatta.n’; ta.n'ptan’g

4, petn(e—p) sin(a+ 9 show that
) gin 8 - sin 6
cotﬁ—eota—cot(a+0)+cot(a—ﬁ)

tan o ] - tan 8
4. If(sma mﬂ) = tan*a — tan’ 3, then oos 0= 025

. 43. If tan ¢ =cos 6 tan a, and tan o’ =tan0mn.¢,
‘ d+a, a-—-id

thenonevalneoftan’%mtan 5 . tan 7
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44, TFind the relation between the angles a, 3, y, when the
cosines are eonnected by the relation
. 1—cos'a—cos"B— oosy+2cosacosﬁoosy=0.
ta.n‘(0+a)___ta.n(0+/3)=tan(0+‘y)’thenwm‘
x y z
sin® Y+2 . 40 T g N
(a— B)+y——_zsm(ﬂ z_wsm(‘y a)=0.

tan0 tan® ¢ l.a,n sin 6 aind;

+—p=1 =
tan’e ~ tan®g  ’ gine sinB’

45. If

:c+y

46. If
sgina
W(1=cosacosB)’

sin(f—a) a cos(0—a) o
47. If - (0 ﬂ) b Idm—'b—n

shew that sinf=

aa’+ bb
then oos (o~ A)=Crab .
L 8in 6 cos ¢
: 48. Having given ta.n¢_=m, shew that one of the
valnesoftan¢mtan tan(4 2) ¢
49. Given cos@=cosacos B, cos§ = cosa’ cosf,
ta.ngta.na'—tang,shew_ﬂmtsin’ﬁ:(seca—l)(seca';-l).

50. Having given that sin (B + C'— 4), sin (C + 4 — B), and
sin (4 + B—C) are in arithmetical progression, shew that ta.nA.
tan B and tan C, are in arithmetical progression.

51. If the sines of the angles of a triangle be in arithmetical
progression, the cotangents of the half angles are also in ariths
metical progression,

52. If the sum of the squares of the a.ngles of a triangle=1, -
the difference between the greatest and least angle is equal to the_
mean angle. :
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53. If A, B, C be the angles of a triangle, and
. 4, B a-1
sig(A+%)=nsm%,shewthattan-ﬁta.n-g=:-———+l.
54. If A, B, O bethe angles of a triangle, and -
sind sinB sinC .
— = —— = ——, then .
x y P

c A B
(x‘y)°°t'§+(!/—z)00t-§+(z—w)cot§=0.

55. If A+ B+ C=mnr where mis any integer, then
' tan 4 + tan B + tan C'= tan 4 tan Btan C.

56. Ifa, B,y be any angles, show that

. . . a By
sma+sm,8+smy-—4cos§cos§cos2

g e+Bity—mf Ba-B-y+w BP-a-y+r

=2sin 1 lg:os I + cos y

a+B+‘y—1r}
yamal

+ cos

:‘3'y—¢1.4-ﬁ+1r_‘_ms

IX. CONSTRUCTION OF TRIGONOMETRICAL
. TABLES,

116.  If 0 be the circular measure of an angle less than a right
angle, 0 i8 greater than sin @ and less than tan 6.

Let 40B be an angle less than a right angle and let OB = 04;
from B draw BM perpendicular to 04 and produce it to C 8o that
MC = MB; draw BT at right angles to OB meeting O4 produced
in 7', and join CT. Then the triangles MOC and MOB are equal
in-all respects, so that the angle 70C = the angle 70.B ; therefore
the triangles 7'0C and T0B are equal in all respects, so that 7'CO
is a right angle, and 7C = TB.
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‘With centre O and radius OB describe an arc of a circle BAC;
this will touch BT at B and C7 at C.

Now we assume s an axiom that the straight line BC is less
than the arc BAC; thus BM the half of BC is less than BA the
half of the arc BAC; thereforeg—jBl is leestban%i; that is, the
sine of AOB is less than the circular measure of 40B,

B

cf
Again, we assume as an axiom that the arc BAC is less than
the sum of the two exterior lines B7"and 7'C’; thus B4 is less than

BT ; therefore -g—; is less than gg, that is, the circular measure of
AOB is less than the tangent of 40B.

Hence sin 6, 6, and tan § a.rem asoendmg order of ma.gmtude
if0belesst1mn2

117. 'We have assumed two axioms in the preceding article;
the first is so obvious that it will be readily admitted; but the
second is more difficult. The student is recommended to postpone
this point for future consideration. It is however not difficult
to shew that the assumption may be made to depend upon another
almost identical with that which we have already been compelled
to make in Art. 14. " For divide the arc BAC. into any number of
arcs and draw tangents at the points of division ; then from the fact

T. T 6



82  CONSTRUCTION OF TRIGONOMETRICAL TABLES.

that two sides of a triangle are greater than the third, it follows
that the perimeter of the portien of a polygon thus formed, is less
than the sum of BT and 7'C by a finite difference. Moreaver
this perimeter diminishes as the number of points of division is
increased. Now assume as in Art. 14 that the perimeter of the
polygon can be ‘made to différ as little as we please from the arc
BAC by sufficiently. increasing the number of sides and diminishing
the length of each side; thus it follows that the arc BAC is less
than the sum of B7Z' and 7'C.

118, The limit of

unity.
For sin 6, 0, and tan § are in ascending order of magnitude;

gin 0

when 0 is indefinitely bimimhed is

divide by sin @; therefore 1, —0—0 , and ITO are in ascending order

of magnitude. Thus Lehes in value between 1 and 10, but

when 0 is zero, cos § is unity; hence as 6 diminishes indefinitely

sin 0 0

* the limit unity.

And as tan0-=sm0x 1 y. the limit of tan 0 when 6 is
6 0 ~ cosd [

indefinitely diminished is also unity.

119. It must be carefully remembered that in the important
proposition of the preceding article, 8 is the circular measure of the
angle considered. If any other unit of angular measurement be
adopted instead of the unit of circular measure, the limit under
. consideration will not be unity. For example, let us find the limit

gonsiders
of "“;"' when n is indefinitely diminished. Let 6 be the circular

—.—0— approaches the limit unity, Therefore also sin 6 approaches

measureofanangleofndegrees,theno—m,thus
n'n'n°_ain0__1r_ amo
% 180,180 0
w
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Now when 7 diminishes indefinitely, 4 does so also, and the limit

ofi"—:—o is unity; bence the limit of«————whennmdxmxmdhed

indefinitely is —— i 80’ which is the circular measure of an angle of

sin n’
when

one degree. Similarly we may prove that the limit of

n is indefinitely diminished is the circular measure of an a.ngle of
one minute; and so on.

120. If&bcthecircula/rmeweqfapoaiﬁwmgkkutham
arightangle,sinoisgreatcrthanG—%—'.
06 6 0. [
For sin = 2mn2oos2,andtan§mgreaberthan-2-, therefore
sm2 is greater than ocosg, therefore sin § is greater than

2%005’%, that is greater than Geos’g,

]
0(l—sin’g). And sin*d s Tess than(-g-), therefore @ fortior

that is greater than

3
sin 0 isgreaterthano(l-% ; thatis, sind is greater than 0—J .

121, Thus we see that if 6 lie between zero and a right angle

sin 6 is less than 6 Aiid'greaterthano-%'. And cos =1~ 2 sin* 2.

. ] 2
Thus cos @ is greater than 1_2(f) that is greater than l—%.'

(BEUAY

~33 , that is less than

Also cos @ is less than 1-2

1- 0. 0‘ 2(32) thereforeafortwnoos@mleuthan
1.0
. Z716
6—2
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122. To calculate approximately the sine of 10”,

. , s 107
The circular measure of 10” is m, that 18 =~ 64800’

therefore the sine of 10” is less than and greater than

64800

——.  — — —__7r o . a1
64800 4(64800)‘ If we take for = the approximate value

3-141592653589793... we find = '000048481368110...' the

64800

sine of 10” is therefore less than this decma.l fractlon. And ————~ %2800 4800

is less than 00005, therefore a fortiori, sin 10” is greater than
000048481368110...... =1 (00005)"; that is, sin10” is greater

than 000048481368078......

. We have thus found two decimal fractions between which
gin 10” muyst lie, and these decimal fractions agree in their first
twelve figures; therefore we may say that

sin 10” = -000048481368......
and we are certain that the error is less than 1(];“

The value of cos 10” may then be found approximately since it
is ,/(1—sin® 10”); or we may make use of the results established
in Art. 121. Thus it will be found that as far as thirteen places
of decimals we have

cos 10”7 =-9999999988248......

123. It appears from the preceding article that as far as
twelve places of decimals we have sin 10”= the circular measure
of 10”; and in the same way we may shew that sin 1”=the cir-
cular measure of 1” very approximately. And if » be any small
number of seconds, we shall have approzimately sin n”= the circular
measure of #n”=n times the circular measure of 1”=n x sin 1"

the circular measure of n’
Thus »= -
sin 1
number of seconds in any small angle is found approximately by

approximately ; that is the

A
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dividing the circular measure of that angle by the sine of ‘one
second.

124. We shall now shew how to calculate the sines of angles
which form an arithmetical progression having 10” for the common
difference. )

Let: a denote any angle, then

sin (n + 1) a + sin (n — 1) a = 2 sin na cosa ;
suppose 2 cosa =2 — &, then

sin (n+1)a +sin(n—1)a = (2 — k) sin na,
therefore sin (1 + 1) a — sin na = sin na — sin (n — 1) a — % sin na.

Now suppose = 10, then sin « is known and cos ais known,
and therefore % is known; we put # =1, and thus we obtain the
value of sin 20” —sin 107, and thence the value of sin 20”; next
we put z =2, and thus we obtain the value of sin 30” — sin 20%,
and thence the value of sin 30”; next we put =3, and so on.
It will be seen that the only laborious part of this operation
consists in the multiplication by % of the sines as they are suc-
cessively found; but from the value of cos 10” it follows that
% = 0000000023504, and the smallness of % facilitates the process.

125. When the sines of angles up to 45° have been calculated,
those for the remainder of the quadrant might be deduced by the
theorem -

sin (45° + 4) — sin (45° < 4) = 2 cos 45°sin 4 =, /2.sin 4;
this would require the multiplication of the sines already found by
the approximate value of ,/2. If however we calculate the sines
of angles up to 60°, those for the remainder of the quadrant may
be very easily found from the theorem

sin (60°+ 4) — 8in (60° — 4) = 2 cos 60° sin 4 = sin 4.
126. When the values of the sines of all the proposed angles
in the first quadrant are known the values of the cosines are also

known, for the cosine of any angle is equal to the sine of the com-
plement of the angle. The values of the tangents can be found by
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dividing the sine of every angle by the cosine of that angle. The
tangents of angles greater than 45° may be easily inferred from
those of angles less than 45° by the theorem

tan (45° + 4) — tan (45°~ 4) = 2 tan 24,
which gives

tan (45°+ 4) = tan (45°— 4) + 2 tan 24.
The cotangents are known since the cotangent of any angle is equal
to the tangent of the complement of the angle. The cosecants may
be obtained by calculating the reciprocals of the sines; they may
however be obtained more simply from the tables of ta.ngents by
the theorem

cosec 4 __{mA +oot-g-}
The secants are known since the secant of any angle is equal
to the cosecant of the complement of the angle.

. 127, Inthe method adopted for calculating the sines of angles,
the sine of 10” was first obtained to twelve places of decimals, and
then the values of sin 20", sin 30", &c. were deduced in succegsion,
It will not however follow that the values of the sines of all the
angles are correct to twelve places of decimals, and it is therefore
useful to be able to test the extent to which the results are correct;
and moreover it is essential to be able to test the correctness with
which the calculations are performed. We may for this purpose
. compare the value of the sine of any angle obtained in the manner

which has been explained with its value obtained independently.
Thus, for example, we know that sin 18’ = "/54_ 1 ; thus the sine
of 18° may easily be calculated to any degree of approximation, and
by comparison with the value obtained in the tables we can judge
how far we can rely upon the tables. There are however two
formulss which are usually called formule of verification from the
fact that they can beeaalyusedtovenfyanypartoftheea.lenlated
tables. Thege formulm are
sin 4 + sm(72°+.4)-—nm(72°—A) ulsin(36°+A) ~8in{36°~ 4),
008 A + 008 (72° + A) + 008 (72° — 4) = cos (36° + 4) + cos (36° — 4);
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they may be readily proved; for
sin (720 + 4) = in (72" — 4) = 2 co8 72" sin 4 =¥~ L sin 4,

NLES!
3

therefore sin 4 + sin (72° + 4) - sin (12" — 4) =sin 4 + 2L in 4
_Wfo+1
2
Similarly the second formuln,may be proved ; or it may be deduced
from the first by changing 4 into 90° - 4.

Then if we ascribe any value to 4, and take from' the tables
the values of the sines and cosines of the angles involved, these
values must satisfy the formule of verification to a certain number
of places of decimals, if the tables have been correctly calculated to
that number of decimal places.

gin (36° + 4) — gin (36°— 4) = 3 cos 36° sin 4 = sin 4,

smA =gin (36° + 4) — 8in (36°— 4).

128. Bome further remarks upon Trigonometrical Tables will
be given in a subsequent chapter, in which we shall explain the
method of using such tables. We will add here some theorems
- which will extend the results obtained in Art. 121; these theorems
will furnish interesting examples although not of any immediate
practical importance.
1°%5 - . cos 5.
sin .

numdq‘imtelytmreawdu —

129, szmuqfooafoos” ®. o when the integer

For sing =2 sm; cos =

'
P ®R MR MR
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z = % sin z
Therefore. 0085 C0B 7 COB 5. 008 o5 = s
: 2" sin 57
: r
i
Now : sinz _sinz 2 ,
. Zsing 7 sng
2" 2*
and the limit of this when = is indefipitely increased is sn ,
. x
' Ll
since by Art. 118, the limit of p is unity. This result is
sin —
2!

sometimes cited as Euler's Formula.

za

130, To prove that sin « is greater than & — 4

By Art. 121, coszisgreaterthanl——x—.;

therefore eos;cos;isgreaterthan(lb_— g;)(l—%:),
. . z*
and » a./'oruo‘r:(gt-eai;ertlmm1—(E-H.Ei ;

x x ®, o -z
thereforecosﬁcoszoosgmgreater than {1 —(7+ ;—:)}{I -—Ef},

L o o
and afodmgreaterthanl— ?+-2—5+;—:).
By proceeding in this way we find that
2z z oz,
€08 5 COB 7 COB Z...... oosi—,mgrea.terthan'
o o 2 2

1- '2—..+2—5+f,+......+2—._+—, >
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that is, greaterthanl—i L
2 l——I !
2l

and

Hence, by Art. 129,
ml"—’xsgreateri;lm.n l—g,

therefore sinzisgrea.tertha.nz-—e

By proceeding as in Art. 121, we may now shew that
a:' «*
cos & is less than 1— 3+3q"

(Serret's Trigonometry.)

MISCELLANEOUS EXAMPLES.

1. Let P be any point in a semicircle whose diameter is 4B

and centre ('; draw PM perpendicular to 4B, and draw PA, PB;

from ‘this construction, observing that the angles BPM and PAM
are each equal to half of PCB, deduce the formula o

l-—cosd .4
1+cosd 9
. . N 0 ¢
tan - tan -
acosp—b 2 2
2 Moeob=r g B Tavh " Tah

3. If tan'0 = 2tan® ¢+ 1, then cos 20 +sin' =0
4, If sec 20 = 2sec 0 cosec 0, then cosec 20 = cosec® 6 —sec’ &
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. ¥If tan @ = n tan ¢, shew that tan® (9 ¢) cannot exceed
(n-1) 1)'

6. Beducesin0+sin¢—cos0sin(9+4r)toasingletelflg. 3
7. Shew that '
sinBcosa(tana+tanf)  sin(a-p)
T-cos(a+f) cosBani(a+h)

. 8. 'What is approximately the height of an objéct which =t
the distance of a mile subtends at the eye an angle of one minute?

=‘10

9. Find approximately the distance at which a circular plate
of six inches diameter must be placed so as just to conceal the
Moon, supposing the apparent diameter of the Moon to be half a
degree. :

10. Ifsin 34 =nsin 4 be true for any value of 4 besides zero,
or two right angles, or a multiple of two right angles, shew that
must lie between 3 and — 1; solve the equation when n=2.

msina cosa

11, Iftanﬁ——nw,shewthattan(a—ﬁ) (l—n)ta.na.

12, If sin 30 be given, determine the number of va.lues of
tan 6.

13. Prove that 64 (cos® 4 + sin® 4) = cos 84 + 28 cos 44 + 35.

14. TFind all the values of § and ¢ which satisfy
0050 cosp+1=0.

15. If ' sm'(a+,3)—sma+sm’ﬁ 2 sin asin B cos (a — B),
shew that

16. Find the limit of
diminished.

%, when 6 is mdeﬁmtely
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Solve the following equatio:

17,
18.

19.

20.

21.

- 22

23.

24,
25.

26.

27.

28.

29,
30.
31,
32,
33,

34,

35,

gin 6 + cos 6 = /2,

/3 sin 0 — cos 0 = \/2,

sin20'=coso.

(4 — o/3) (sec 6 + cosec fy=14 (sin f-tan § + cos § cot ).
oosO—oos20=sin§0f.

cot 0 —tan @ = cosd + gin 6.

2sin®§ +sin* 20=2,

tan0+2oot20=sin0(l+tan0tan%).

sin’20—siﬁ'0=sin’%. e

0

oose00=cosec§.

cos 0 eos 38 = cos 50-cos7H.

sin03in30=%.

4sin’§ +6in*20=3.

(1 —tan 6) (1 +8in 20) =1 + tan 6.

sin 0+ sin 20 + sin 30 + sin 40 =0.
gin 6 —cos 0 = 4 sin 6 cos 0.

(oot §—tan )*(3 ~ /3) = 4 (2+ .J3)
2,J2oos(£—0)‘(1+§in0)'=.l+bos20.

gin 90+ sin 50 + 2 sin* = 1.
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X. LOGARITHMS AND LOGARITHMIC SERIES.

131. It will be necessary now for the student to become
acquainted with the nature and use of logarithms, and the mode
of calculating them. As it is usual to introduce into works on
Trigonometry a chapter on these subjects, we shall repea.t here
what we have given in the A4lgebra.

132. Suppose a* =n, then 2 is called the logarithm of n to the
base a; thus the logarithm of a number to a given base is the
index of the power to which the base must be raised to be equal
to the number.

The loga.nthm of n to the base a is written logn; thus
log,'n « expresses the same rela.tmn 88 a@" =n..

133. For example 3= 81; thus 4 is the loga.nthm of 81 to
the base 3. _

If we wish to find the logarithms of the numbers 1, 2, 3, ......
to a given base 10, for example, we have to solve a series of equa~
tions 10* =1, 10°=2, 10°=3,....... ‘We shall see in some sub-
sequent articles that this can be done approximately, that is, for
example, although we cannot find such a value of 2 as will make
10° = 2 exactly, yet we can find such a value of # as will make 10*
differ from 2 by as small a quantity as we please,

‘We shall now pmve some of the properties of logarithms.
134, The logarithm of 1 18 O whatever the base may be.

For a*=1 when 2=0.
135. The logarithm of the base itself is unity.
For . a*=a when =1,

136. 1'leogm,thmq/'aproductueqmzltothecwmofthc
logarithms of its factors. -
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For let z=1log,m, y=1log,n;
therefore m—-a‘, n=a’;
therefore a'@ =a"t?;
therefore log.m=x+y=log.m+log.u.

137. The logarithm of & quotient is equal to the logarithm of
the dividend diminished by the logarithm of the divisor,

For let z=log,m y=log,n;
therefore m=a", n=a";
therefore 2% e

therefore log.:—':=z—y=log.m—log.n.

138. The logarithm of any power, integral or fractional, of a
number is equal to the product of the logarithm of the number by the
index of the power.

For let m=a"; therefore m"=(a*)"=a",
therefore log, (m") = 2r =1 log, m.

139, To find the relation between the logarithms of the same
number to different bases.

Let z=log,m, y=log,m;
therefore m=a" and =V ;
therefore a’=b;
therefore %=b -and b'—a,
therefore ' ;—-log.b and < =log, a.
' @

Hence yl=:qlo,g,a, md:m.»

Hence the logarithm of a number to the base b may be found
by mnltlplymg the logarithm of the number to the base a by

1
o log.a, or bylg,ﬁ
We may notice that log, a x log,b=1. .
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140. In practical: caloulations the only base that is-used is
10; logarithms to the base 10 ave called. common logarithms. We
will point out in the next two articles.some peculiarities which
constitute the advantage of the base 10. We shall reqmre the fol-
lowing definition; the integral part of any logarithm is called
the characteristic, and the decimal part the mantissa. .

141. In the common system of logarithms, if the logarithm
of any number be known we can immediately determine the loga-
rithm of the product or quotient of that number by any power
of 10. .

For  log, 10" x N =1log, N +log, 10" =log, NV + n,

N .
logw:l 7 =log,, N —log, 10" =log, /N —n,

That is, if we know the logarithm of any number we can
determine the logarithm of any number which has the same
figures, but differs merely by the position of the decimal point.

142, In the common system of logarithms the characteristic
of the logarithm of any number can be determined by inspection.

For suppose the number to be greater than unity and to lie
between 10" and 10™**; then its logarithm must be greater than
n and less than n +1; hence the characteristic of the logarithm
is .

Next suppose the number to be less than unity, and to lie

between IIT and l—Olm', that is, between 10~ and 10~**"; then
its logarithm will be some negative quantity between —n» and
— (n+1); hence if we agree that the mantissa shall always be
positive, the characteristic will be —(n+ I).

‘Wee shall now proceed to investigate. formule for the caleula-
tion of logarithms..

143. To expand a* maaemqfascauimgpoweraq/'x,
&,wapwndammbcrmaoemqfascmdmgpoweﬂqu
logarithm to a given base. -
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& = {1+ (-1 =t+a(a-1)+ 2D 1y
z(z—1)(z—2 - z(z—1)(z—-2)(z-3 ‘
(1 22_)( 1y + % 1).(2.3.£ da-1ts....
=l+zja-1=3@-1) +}@—-1 -} @=1)"+......}

+ terms involving 2, o*, &c.

This shews that a* can be expanded in a series beginning
with 1 and proceeding in ascending powers of z; we may there-
fore suppose.that

a= l+c,z+c,m"+c,x"+c.z+ ...... .

where ¢, ¢, ¢, ...... are quantities which do not depend on 2,
and which therefore remain unchanged however z may be
changed ; also

e,=a-1-a-1y+3(@-1-@-1)+......
while ¢, ¢, ...... are at present unknown; we proceed to find
their values. Changing « inte 2+ y we have

@t =1l+e (z+y)+e,(@+y) +e,@+Y) + e
but at=daad=a"{l +ex+ca’ +ca’+...... }

Since the two expressions for a”*¥ are identically equal, we
may assume that the coefficients of x in the two expressions are
equal, thus .

e, +2cy+3cy +4ey+......=ca’
=c¢, {l+ey+ey’ +ey +.....}

In this identity we may assume that the coefficients of the
corresponding powers of y are equal ; thus

20,=0," therefore, ¢, =

2’
36,=cc,; theref S _9
»=0i0; therefore, o,=5% =y,
4c,=6,,; therefore, c,= =95 o’
) £°1.3.3.4
b '“” 5!—“’-+

Thus, a‘=1+cz+—l——~+
_ 23
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Since this result is true for all values of x, take & such tha

cx=1, then :¢:=l and
ol

!1-—1+l+ LI —1+ H
a’l= E2‘+ B-{-E ...... H
1
this series is usually denoted by ¢; thus a‘ = e, therefore a =¢%

and ¢,=log,a; hence, . . s
a'=41+(log,a)z+(ﬂ‘c) +(1°gi:3’) T reer
“This result is called the Exponential leorem
Put ¢ for a, then log,a becomes log, e, that is, unity, (Art. 135);
thus,

= l+w+

'E L4 ..... .

‘With respect to the asaumptum which has been made twice
in the course of this article, the student is referred to the clm.pter
on Indeterminate Coefficients in the Algebra,

144. By actual calculation we may find approximately the
numerical value of the series which we have denoted by e; it is
2-718281828......

145. To ea,pand log, (1+x) in a series of ascending powers
of x.
We have seen in Art. 143, that ¢, =log,a; that is, by
the same Axticle,
loga=a—-1-4(a-1 +3(@-1’-3(@-1)+......

For a put 1+ «; hence,

log,(l+z)=ac—§+———+ ......

This series may be applied to calculate log, (1 +) if = is a
proper fraction; but unless # be very small, the terms diminish so
slowly that we shall have t0 retain a large number of them; if z
be greater than unity the series is altogether upsuitable. .= 'We-
shall therefore deduce some more convenient formulz.
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146. 'We have

2 £ 2
log,(l-l.-x)—z-§+—3-—-z+ ..... .
therefore log,(1 - 2)=—2— ‘;' ‘:’; ’;

by subtraction we obtain the value of log, (1 + ) —log, (1 — ),

that is, of 10&%" ;

l+2z 2
therefore log,1 2{z+-§+3-+ ...... } ......
In this series write ——— for , and therefore - 2 for lj—z
m+n -

thus

m m—-n 1/m-n\* 1/m-—n\®
10&;=2{m+n+3<m) +3 m) +} ....... .

Put » =1, then

lo gfm-1 1 1 ) 'm l) }
gmea(nl Imody 1mo1y

Again in (1) put m=n+1, thus we obtain the value of

log” 1 ; therefore -

log, (n + 1) — log,n

1 1 1
_2{2“1 + S @Iy @I } ...... -(3)
. 147 The series (2) of the preoedmg article will.enable us to.
find log, 2 ; put m = 2, then by calculation we shall find
log, 2 = 6931471.......

From the series (3) we can calculate the logarithm of either of
two consecutive numbers when we know that of the other. Put

T, T, 7
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n =2, and by making use of the known value of log, 2, we shall
obtain
log, 3 =10986122......

Put n=9 in (3) ; then log, 9 =log, 3* = 2 ]og, 3 and is therefore
known ; hence we shall find

log, 10 = 2:3025850......

Logarithms to the base ¢ are called Napierian logarithms,
from Napier the inventor of logarithms; they are also called
‘natural logarithms, being those which occur first in our investi-
gation of a method of calculating logarithms. We have said
that the base 10 is the only base used in the practical appli-
cation of logarithms, but logarithms to the Napierian base occur
frequently in theoretical investigations.

148. From Art. 139 we see that the logarithm of & number

to the base 10 can be found by multiplying the Napierian loga-
1 1

rithm by Tog, 10 that is, by 330258509° by 43429448 ; this

multiplier is ca.lled the modulus of the common gystem.
The series in Art. 146 may be so adjusted as to give common

logarithms ; for example, take the series (3), multiply throughout
by the modulus which we shall denote by w ; thus :

1 1 1
plog.(n+1)—plogn= 2"{2n+1 3(2n+1)a YE@n+ly }
that is,

’ o [ 1 1 1
1080 {n + 1)"1°3'°“=""{2n+ 17 3@n+1y " 5@n+1p " }
Similarly from Art. 145 we have

o of o
log, (1 +2)= p{w-—-2—+3—-‘:—+...}.
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149. The quantity e is incommensurable.

For suppose if possible ¢ = — ~ 2 where m and n are integers; thus

—= 2+ 1 + 1 + —1-+
n ET
multiply both sides by | »; then
L1 1 1
mln=l=an integer 4oy + ) )@@

1 1 1

v A 9 )Y rvra) Sy e Y e o

is a fraction, for it is greater tlmn 1 and Jess than the geome-
trical progression

LIRS S NN
n+l (n+1) (n+1P "

thatis,lessthan;‘.

Thus the difference of two integers is equal to a fraction, which
is absurd. Therefore ¢ is incommensurable.

150. We will conclude this chapter by investigating two
limits which will be useful hereafter. ’

To find the limit of (eos ’L:) when n is increased indefinitely.
Let u=(cos'—l).=(l—sin"—");; then
n, n,
Jog u =log (1-sin',;‘:)i= 21og (l—sin’s>

=_%( +1mn +l'°a+ ...... )
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.. @
s —
Now nsin > =a— Z — o when 7 is increased indefinitely (Art.

n

118); therefore nsin’ i =asin 5: 0 ultimately; and similarly

nsin=, nsin®=, ...... vanish ultimately. Therefore logu=0;
n n .
therefore w =1. Thus the required limit is unity.

.oa\"
sin —

To find the limit of when n i8 increased indefinitely.

« Q@
sin—
‘We know by Art. 116 that _a_n is less than 1 and greater than

n

sini . e sin;'z
=~ , that is, greater than cos —; hence | == ] is less than 1" or
tan= " 2
n . A 4

1 and greater than (cos 5). ; and by the preceding article the

. sin —
limit of ( cos s) is unity, therefore the limit of Tn ) is unity.

n

HISCELLANEOUS EXAMPLES,

1. Find the loganthm of 128 to the ba.se J4
2. Find the logarithm of 243 ¥/9 to the base /3.

3. Fmd the. fo]lowmg loganthms, log. 2187, log,,*0001,
log,cos 45°. "~ . - .

1
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4. Find approximately the value of # from the equation
58—‘8 = 2.4-”
having given log 2 = :301030.
5. Given log 224 = g and log 125 = b, find log 2 and log 7.

o

Required the characteristics of log,725, and of log, 3/(-0725).
7. Given log 2 = 301030, log 405 = 2:607455, find log -003.
8. Given log2=-30103, log7 =-845098, find log98 and
log (%3)‘
9. Given log 2 = ‘30130, log 3 = 47712, find log (-0020736)3.

10. Deterx.lﬁne the sum of the series

2 4 &6 .
E3.+E+_Li+'..de'nf
11. Shew that
e 1 1+2 1+2+3 1+2+3+4 .
§—@+ 3 + [ + E +...ad inf.

Find 2 from the following six equations :
12. 4sinzsin(@—a)=2cosa—1.
13. 008 B /(6" ") + a sina =z sin f.

14. sina+ sin (z — a) + sin (22 + ) =sin (¢ + a) + sin (22 - a).
- 3\ . 1 .
15. cos(m+§)a+cos(x+§)a=sma.

16. z'cosa oos(a—g) +:vcos_(.a-'-ﬁ);'=2908§.
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17. eot 2*"'a — cot 2" = cosec 3a.
18. Solve the equation m vers 0 =n= vers (a — 0).
19. Solve the equation cosnf + cos(n — 2) 6 =cos 6.

20. Solve the following equation, and shew that there are
seven positive values of 6 greater than 0 and less than 2,

gin 6 + sin 30 = sin 20 + sin 46.

21. Find tanz from the equation tan x= tan 8 tan(a +z);
and shew that in order that tan # may be real, tan 8 must not
lie between (sec @ — tan a)® and (sec a + tan a)’,

22, Find the least value of § which satisfies

tan (F-6) +tan (5 +6) = (22 SN

23. Given sin®(n + 1) @ =sin*nf + sin®(n — 1) 6 where (n + 1) 6,
nf, and (n—1)0 are the angles of a triangle, find an integral
value of =,

24. Reduce to its simplest form and solve the equation

cos* 0 — cos'a = 2 cos’d (cos @ — cos a) — 2 sin”f (sin 0 — sin a).

25. Shew that all the angles which have the same sine as
a are included in the formula (2n + 2)1-* (——a)

26. Bhew that all the angles which have the same cosine
as o are ipcluded in the formula (n + —;—)r+(— 1)'(a-12r).

27. The ambiguity = in the formula

4 . 4 .
ME-ME-:*J(I—'HI_A)
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may be réplaced by (—1)", where m is the greatest integer con-
tained in 2—73—(;(")5, A being expressed in degrees.

28. The ambiguity = in the formula
4 =,/(1+tan’4)-1
3 tan 4
may be replaced by (- 1)", where m is the greatest integer con-

90+ 4
180 °’

tained in 4 being expressed in degrees.

29. If tan (cotx) = cot (tanx), shew that the real values of

« are given by sin 2z = , where # is any integer except —1.

4
@+

30. Shew how to express cos% .in terms of cos 4, where n

is any positive integer. *

3l. From the equation cosz=, / 1_+_2c>os_2m deduce the

formula for sinz in terms of sin 2, and shew how the proper
signs for the radicals may be determined.
32. If the expression

A co8 (0 + a) + B sin (6 + B)
A’sin (8 + a) + B'cos (6 + B)

retain the same value for all values of 6, then will o
A4'— BB =(4'B - AB)sin (o - f). ' )

33. If the sum of two angles is given, shew that the sum
of their sines is greatest and the sum of their tangents is least
when the angles are equal.

34, If A+B+C=90° shew that unity is the least value
of tan’d + tan’B + tan*C.
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35. If A+B+C=180% show that unity is the least value
of cot®d + cot®B + cot’C. . .

36. If 4+ B+C=180° then
2cot 4 +2cot B+ 2cot C is greater than

cosec 4 + cosec B + cosec C.

37. Shew that the sum of the three acute angles which satisfy
the equation cos’d + cos’B + cos’C' =1 is less than 180,

. 88 If each of the angles 4, B, C' be less than 90°, then
sin (4 + B+ C) is less than sin 4 +sin B +sin C.

. . of
39. Find the limit of (cqs %) when n s increased indefinitely.

. ’ . )
40. Find the limit of (cos %) when n is increased indefinitely.
tan®0

41, Show that sin § i groater than tan §— 2,

XI. USE OF LOGARITHMIC AND TRIGONOMETRI-
CAL TABLES.

151. In the preceding two chapters we have shewn how
tables of the values of the Trigonometrical Ratios may be cal-
culated and how tables .of logarithms may be calculated, and we
shall now shew how to use such tables; we begin with tables of
logarithms. ' It is obvious that tables of logarithms may be cal-
culated to various degrees of approximation; they may be calcu-
lated to 5,6, 7 or'a higher number of decimal placés. For a list
of logarithmic and trigonometrical tables, the student may consult
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the articles Tables in the Penny Cyclopeedia and its Supplement.
Different tables present some variety in their mode of arrange-
ment, and are usually accompanied with full explanation of their
peculiarities and the methods of using the tables; we shall not
enter into any minute account of the way in which tables may
be used with the greatest advantage, but shall give such general
illustrations as will enable the student to avail himself of any
set of tables for the purpose of occasional calculation. The loga-
rithms will always be supposed taken to the base ten.

152. We may observe that throughout all approximate cal-
culations it is usual to take for the last figure which we retain,
the figure which gives the nearest approach to the true value.
Thus for example, suppose we have the decimal fraction -3726;
if we wish to retain only three places of decimals we should write
‘373 and not *372; the former is too large and the latter too small,
but the excess in the former case is ‘004, and the defect in the
latter case is 006, so that there is a smaller error in the former
case than in the latter case. Thus we have this general rule,
when only a certain number of decimal places is to be retained—
strike off the rest of .the figures and.increase the last figure retained
by 1 if the first figure struck off be 5 or greater than 5.

‘We now proceed to explain the use of tables of common loga-
rithms; and we shall use tables of seven places of decimals,

153. To find the logarithm of a given number.

If the number be contained in the Table we have merely
to take the decimal part of the logarithm immediately from the
Table and prefix the characteristic (Art. 142). For example,
required the logarithm of 534. The table gives ‘7275413 as
the decimal part, and the characteristic is 2; therefore

© log  534=27275413,
Similarly, log 53400 = 4-7275413,
" log 0534 =37275413.
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In the last example the characteristic is — 2, and this is de-
noted by the bar placed over the 2.

Suppose, however, that the given number is not contained
in the Table; the Table for instance may give the logarithms
of numbers from 1 up to 100000 and we may require the logarithm
of 5340234, Here we can take from the Table the logarithm
of 5340200, and the logarithm of 5340300; we have

log 5340300 = 6-7275657
log 5340200 = 67275575

difference = 0000082

The required logarithm of course lies between the two logarithms
which we have taken from the Table. Now we see that cor-
responding to the increase 100 in the number there is an increase
‘0000082 in the logarithm; and we assume that corresponding
to an increase 34 in the number there will be a proportional
increase in the logarithm. Let a denote the quantity which
we must add to the logarithm of 5340200 in order to obtain
the logarithm of 5340234; then we have from the assumption
which we have made the following proportion:

100 : 34 :: 0000082 : x;

therefore & = 1%“0 x 0000082 = 0000028 (Art. 152);

therefore log 5340234 = 6-7275575 + 0000028 = 6:7275603.

154. We assumed in the preceding article that the increase
in a logarithm is proportional to the increase in the number; this
is a case of what is called the principle of proportional parts, and
although it is not strictly true, yet it is in most cases sufficient for
practical purposes. 'We shall in the next chapter investigate the
subject, and shew to what degree of approximation we can rely
upon the principle of proportional parts.

155. The process given in Art. 153 is facilitated in large

Tables in the following manner. Required the logarithm of
23453487,
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" log 23454000 = 7-3702169

log 23453000 = 7-3701984 STt
difference = 0000185 3| 558
Here by the process of Art. 153 we have to é Zég
- 487 . 4 8 6| 1110
muli;lply 0000185 by 1006° that is, by 10 + 100 g iigg
+ 7=, Now the multiplication is effected for 911665

1000
us, and the results given in a small Table headed Proportional
parts, which is printed on the same page as the two logarithms
which we have taken from the Table; the small -Table shews that
4 x 10000185 = 10000740, 8 x ‘0000185 = -0001480, 7 x -0000185
=-0001295; and from these results, by dividing by 10, 100 and
1000 respectively, we obtain the three parts which we require.
The process may be arranged thus:
log 23453000 =7-3701984

add for 4 . 740
8 1480
7 1295
7-3702074095

therefore, retaining 7 places of decimals,
" log 23453487 = 7:3702074.

156. We have taken as our example a whole number; if a
decimal fraction, or a mixed quantity formed of a whole number
and decimal fraction, be given, we may throw aside the decimal
point, and find the -decimal part of the logarithm of the whole
number thus obtained; then by prefixing the proper characteristic
we have the required logarithm. Thus, for example, required the
logarithm of ‘23453487 and of 234:53487. The decimal partof
the logarithm is *3702074; therefore

log ‘23453487 = 1-3702074
log 234:53487 = 2:3702074.
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157. To find the number which corresponds to a given logarithm.

If the decimal part of the logarithm be found in the Table, we
have merely to take the number which corresponds to it, and put
the decimal point in the number in the place indicated by the
characteristic. For example, required the number which has for
its logarithm 27275413. Corresponding to the decimal part
7275413 we find in the Table the number 534, and as the charac-
teristic is 2, there must be one cypher before the first significant
figure (Art. 142); -therefore the number which has the given
logarithm is -0534.

Suppose, however, that the decimal part of the given logarithm
is not contained exactly in the Table; for example, let the given
logarithm be 13702074, we shall find that the decimal part of this
logarithm is not in the Table; we have, however, corresponding to

- the number 23454 the decimal part of the logarithm -3702169,
and corresponding to the number 23453 the decimal part of the
logarithm 3701984 ; thus

log 23454 = 4-3702169
log 23453 = 4:3701984

difference = +0000185

The excess of the given decimal part of the logarithm above
*3701984 is ‘3702074 — 3701984, that is -0000090. The required
number of course lies between 23454 and -23453; let d denote
its excess above 23453, then assuming that the increase of the
number is proportional to the increase of the logarithm, we have

' *0000185 : ‘0000090 :: 1 : d;

90
therefore d= 185 = 486,

* Therefore log 23453-486 = 4:3702074,
and log 23453486 = 1-3702074 ;

thus the required number is ‘23453486,
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158, We may save the labour of dividing 90 by 185 in the
preceding example by means of the Table of Proportional parts
given in Art. 155; the process of division, if performed, will stand
thus : .

185) 90-0 (486
740 :

1600
1480

PUN—

1200
1110

Now the products 740, 1480, 1110, are furnished ready in the
Table referred to, so that we need only perform the subtractions
and put down the following steps: -

90
4 740
160
8 1480

1200
6 1110

159. We will now give some examples of the use of logarithms.
Required the product of 3670257 and 12-61158.
Log 36702 = 3-5646897
: 5 - 60
7 -8
Log 3670257 = 35646965
Log 12611 =1-1007495
b : 172
8 : 28
Log 12:611568 = 1-1007695
' 3:5646965

by adding the logs 46654660
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Decimal part of log 46287 *6654590

70
7 66

4 40
4628774

Thus the required number is 4628774, the position of the
decimal point being determined by the characteristic 4.

160. Required the quotient of -1234567 by 54-87645.

Log -12345 = T1-0914911
6 211
7 25

Log 1234567 = 10915147

Log 54876 = 17393824
4 32
5 4

Log 54'87645 = 17393860

10915147
17393860

by subtracting 3-3521287

Decimal part of log 22497 = -3521246

41
2 38

2 30
2249792

Thus the required number is 002249722; there are two
cyphers before the first mg'm.ﬁca.nt ﬁgure, because the character-
istic of the logarithm is 3.
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161. Required the cube of -3180236.

Log 31802 =T1-5024544
3 41
6 8

Log 3180236 = 15024593
3

2-5073779
Decimal part of log 32164 = -5073701

78
5 67
8 110
3216458
Thus the required number is 03216458,

162. Required the cube root of ‘3663265.
Log -36632 = 15638606
6 71
5 6
Log ‘3663265 = 1-5638683

‘We have now to divide 1-5638683 by 3 ; that is, we have to
divide — 1 + 5638683 by 3. It is convenient to write the num-
ber to be divided thus, — 3 +2:5638683 ; then by dividing by 3
we obtain — 1 + ‘8546228, that is, 1-8546228.

1-8546228
Decimal part of  log 71552 = -8546218
0 10

2 100

7155202
Thus the required number is *7155202.

‘We now proceed to the use of Trigonometrical Tables.

163. To find the sine of a given angle.
If the given angle be one which is:contained in the Table of
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the sines of angles the required sine is furnished immediately by
the Table; we proceed then to the case when the given angle lies
between two which are contained in the Table. For example, re-
quired the sine of 44° 35" 25”, having given from the Table
sin 44° 36’ = 7021531
sin 44° 35" = ‘7019459
difference =--0002072

The required sine of course lies between the two sines which
we have taken from the Table ; let « denote its excess above the
sine of 44° 35’, and assume that the increase of the sine is propor-
tional to the increase of the angle, therefore

60” = 25” :: 0002072 : =,
therefore  a= ‘Z—g x 0002072 = -0000863.

Therefore sin 44° 35’ 25” = *7019459 +-0000863 = -7020322.

We have thus again assumed the principle of proportional
parts, and we shall assume it -throughout the present chapter,
reserving the investigation of it for the following chapter.

164. To find the angle which corresponds to a given sine.

. If the given sine be found in the Table the required angle is
furnished immediately by the Table; we proceed then to the case
when the given sine lies between two which are contained in the
Table. For example, required the angle which has for its sine
6970886, having given from the Table

sin 44° 12’ = -6971651
sin 44° 11’ = 6969565
difference = 0002086

The excess of the given sine above the sine of 44° 11’ is
*6970886 - *6969565, that is, 0001321,

The required angle of course lies between the two angles which
we have taken from the Table; let n be the number of seconds in
its excess above 44° 11’, then

- *0002086 : *0001321 :: 60 : m,
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60 0001821 _ 60 x1321
" =00 % 0002086 ~ 2086 _ °

Therefore the required angle is 44° 11’ 38",

therefore

165. To find the cosine of & given angle.

If the given angle be one which is contained in the Table of
the cosines of angles, the required cosine is furnished immediately
by the Table; we proceed then to the case when the given angle
lies between two which are contained in the Table. For example,
required the cosine of 44° 35" 25”, having given from the Table

cos 44° 35" = -7122303
cos 44° 36" = ‘7120260

difference = ‘0002043

Since in the first quadrant the cosine decreases as the angle in-
creases, the required cosine will be less than the cosine of 44° 35/,
and the required cosine of course lies between the two cosines
which we have taken from the Table; let  denote its defect
below the cosine of 44° 35, then

60 : 25 :: 0002043 : 2,

therefore x= g—g x ‘0002043 = *0000851.

Therefore  cos 44° 35" 25” = -7122303 — -0000851 = 7121452,

, 166.  To find the angle which corresponds to a given cosine.

If the given cosine be found in the Table the required angle is
furnished immediately by the Table; we proceed then to the case
when the given cosine lies between two which are contained in the
Table. For example, required the angle which has for its cosine
+7169848, having given from the Table

cos 44° 11"= 7171134

cos 44° 12/ = -7169106
difference = 0002028
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The given cosine falls short of the cosine of 44° 11’ by ‘7171134
— 7169848, that is, by ‘0001286 ; the required angle of course lies
between the two angles which we have taken from the Table; let
n be the number of seconds in its excess above 44° 11, then
0002028 : -0001286 :: 60 : =,
0001286 _ 60 x 1286
0002028~ 2028

Therefore the required angle is 44° 11’ 38”.

therefore » =60 x = 38.

167. It will not be necessary to give examples for the other
Trigonometrical Functions ; the important fact to be remembered
is that in the first quadrant the tangent and secant increase as the
angle increases, and the cotangent and cosecant decrease as the angle
increases ; thus the tangent and secant are treated in the same way
as the sine, and the cotangent and cosecant in the same way as the
cosine.

168. The Tables of Trigonometrical Functions which we have
hitherto considered are called Tables of the natural Functions to
distinguish them from other Tables which we now proceed to con-
sider. The Table of sines of angles for example is called a Table of
natural sines ; if we take the logarithms of the sines of all the angles
which have been calculated we form a new Table which is called a
Table of Logarithmic sines. Similarly, we can form a Table of the
logarithms of the cosines of angles, and a Table of the logarithms
of the tangents of angles, and so on ; these Tables are called respect-
ively Tables of logarithmic cosines, Tables of logarithniic tangents,
and so on.

169. The great advantage which we obtain from these Loga-
rithmic Tables is that calculations are much abbreviated with their
assistance; this is especially the case, as we shall see hereafter, in
what is called the solution of T'riangles. We have stated as suffi-
ciently obvious that these Logarithmic Tables may be calculated by
taking the logarithms of the values of the Trigonometrical Functions
which have been already tabulated; it will be shewn however in
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the higher parts of the subject that the Zogaréthmic Tables can be:
calculated independently, that is, without the use of the Tables of
the natural Functions. . We proceed now to exemplify the use of
the Tables of Inganthmc Functions,

170. Since the sine of an angle is always less than unity
the logarithm of the sine will always be a negative quantity; also
the same remark is true for the cosine. The logarithm of the
tangent of an angle will be negative if the angle be less than
45°, and the logarithm of the cotangent of an angle will be
negative if the angle be greater than 45°. In order to avoid
the occurrence of negative quantities in the Tables it is found
convenient to add 10 to the logarithm of every Trigonometrical
Function before registering it in the Tables; the logarithm so
increased is called the Zabular logarithm and is usually denoted
by the letter Z. Thus L sin 4 means the ZTabular logarithm
of the sine of 4, and it is equal to the real logarithm of the
sine of 4 increased by ten. Of course in calculations we shall
have to remember and to allow for this increase of the real loga-
rithms; this will be seen when we come to the solution of T'ri-
angles. In what follows we shall exemplify the use of the Tables
of Logarithmic Functions.

171.  To find the tabular logarithmic sine of a given angle.
If the given angle be one which is contained in the Table
of the logarithmic sines the required result is furnished imme-
diately by the Table; we proceed then to the case when the given
angle lies between two which are contained in the Table. For
example, required the tabular logarithmic sine of 44° 35’ 25”7,
having given from the Table
L sin 44° 35’ 30" = 9-8463678
L sin 44° 35" 20" = 9-8463464
difference = 0000214 :
The required tabular logarithmic sine lies of course between the
two which we have taken from the Table; let = denote its excess
8—2
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-above the tabular logarithmic sine of 44° 35 20”; then by the
principle of proportional parts

10 : 57 :: 0000214 : =,
57
10

Therefore L sin 44° 35" 256”7 = 9-8463464 + ‘0000122 = 9-8463586.

thus z=—= x ‘0000214 =-0000122.

172. 7o find the angle which corresponds to a gwm tabular
logarithmic sine.

If the given tabular logarithmic sine be found in the Table
the required angle is furnished immediately by the Table; we
proceed then to the case when the given tabular logarithmic sine
lies between two which are contained in the Table. For example,
required the angle which has for its tabular logarithmic sine
9 8432894 having given from the Table

L sin 44° 11’ 40” = 9-8432923
L sin 44° 11’ 30” = 9-8432707

difference = -0000216

The excess of the given tabular logarithmic sine above that of
44°11' 30” is 9-8432894 — 9-8432707, that is, -0000187. The re-
quired angle of course lies between the two angles which we have
taken from the Table; let # be the number of seconds in its excess
above 44° 11’ 307, then

0000216 : -0000187 :: 10 : =,

0000187 10 x 187
therefore n=10 x 70000316 — 216 = 87.

Therefore the required angle is 44°11’ 38”°7.

173.  To find the tabular logarithmic cosine of a given angle.

If the given angle be one which is contained in the Table of the
logarithmic cosines the required result is furnished immediately by
the Table; we proceed then to the case when the given angle lies
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between two which are contained in the Table. For example, ye-
quired the tabular logarithmic cosine of 44° 35" 25”7, having given
from the Table

L cos 44° 35’ 20" = 9-8525789

L cos 44° 35’ 30" = 9-8525582

difference = 0000207

The required tabular logarithmic cosine lies of course between
the two which we have taken from the Table, and is less than the
tabular logarithmic cosine of 44° 35’ 20”; let x denote its defect
below the latter; then

10 : 57 :: 0000207 : =,

thus z = 21% x 0000207 = -0000118.

Therefore L cos 44° 35’ 25”7 = 9-8525789 — -0000118 = 9-8525671.

174. To find the angle which corresponds to a gien tabular
logarithmic cosine.

If the given tabular logarithmic cosine be found in the Table
the required angle is furnished immediately by the Table; we
proceed then to the case when the given tabular logarithmic cosine
lies between two which are contained in the Table. For example,
required the angle which has for its tabular logarithmic cosing
9-8555086, having given from the Table

L cos 44° 11’ 30" = 9-8555264

L cos 44° 11’ 40” = 9-8555060
difference = 0000204

The given tabular logarithmic cosine falls short of that of
44° 11’ 30” by 98555264 —9:8555086, that is, 0000178. The
required angle of course lies between the two angles which we
have taken from the Table; let » be the number of seconds in its
excess above 44° 11’ 30”; then

0000204 : 0000178 :: 10 : m»,
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0000178 _ 1780 _ o,
0000204 ~— 204 ~ "

Therefore the required angle is 44° 11’ 38”7,

therefore n=10

175. It will not be necessary to give examples for the other
Trigonometrical Functions; the important fact to be remembered
is that in the first quadrant the tabular logarithms of the tangent
and secant tncrease as the angle increases, and the tabular logarithms
of the cotangent and cosecant decrease as the dngle increases; thus
the tangent and secant are treated in the same way as the sine, and
the cotangent and cosecant in the same way as the cosine.

EXAMPLES,
1. Given - log 12440 = 4-0948204, .
log 12441 = 40948553,
find log 12440-35.
2. Given log 1-0686 = 0288152,

log 10687 = -0288558,
find the number of which the logarithm is -0288355.

3. Given log 23456 = 4-3702540,
log 23457 = 4-3702725,
form a table of proportional parts for the intermediate numbers,
and find log ‘2345638,

4. Find the number whose logarithm is — (1:8753145), having
given '
log 1-3325 = "1246672, log 1-3326 = -1246998.

5. Given log 3:865 =-5860244,
log 3-8551 = -5860356,

find log (-00385504)%.
6. Given log  24=1-3802112,

log 4-8989 = 6900986,
log 4-8990 = -6901074,

find (24)% to six places of decimals.
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7. Given . log 14271 = 4-1544544,
log 20313 = 4:3077741,
log 20314 = 4-3077954,

find (142-71)%. } 4
8. Given log 7= -8450980,
log 58751 = 4-7690153,
log 58752 = 4-7690227,

find (-07)? to seven significant figures.

9. Given log2=-3010300, log 5-743491="-7591760,
find the fifth root of ‘0625.

10. Given log2:7=:4313638, log5-:172818= 7137272,
find the value of 27°%.

11. Given log71968 =4-8571394, diff. for 1=-0000060,
find the value of \/(-0719686) to seven places of decimals.

12. Given log103=2-0128372, log7440942 = 6871628,
find (1-03)™.
13. Find the value of 64 {1 —(1-05)™}, having given
log 105 = 2-0211893, log 37689 = 4'5762140.
14. Find approximately 5%, having given
log 2= 301030, log 1562944 =-193943,

log 349485 = 5543428, log 3655 = -562887,
. log 3656  =-563006.

15. Having given
log 12=1-0791812, log1-257915=-0996512,
log 1:1121568 = -0498256, find the value of
(1-44)°— (1-44)7'
16. Having given

log 105 = 2'0211893, log 5303214 = 67245391,
log 3768894 = 6576214, find the value of

5 {tvaap o)
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17. Given ‘sin 47° = 7313537,
sin 48° = 7431448,
find sin 47° 1, |
18. Given sin 7017’ = 1267761, | '
sin 7° 18’ = 1270646, '
find sin 7° 17’ 25,
19. Given L sin 17°1’ = 9-4663483,
Leinl?® = 94659353,
find Lsinl70' 12,
20. . Given L sin 26° 24’ = 9-6480038,
L sin 26° 25" = 9-6482582,
find L sin 26° 24’ 12",
91. Given L cot72"15 = 95052891,
L oot 72°16 = 95048538,
find L cot 72° 15 35",

29. Given L cot 81° 46'= 91604569, diff. for 10”= 0001486,
find the angle whose L cot is 9-1603493.

23. Given L cos20° 35" 20” = 99713351, difference for 10”
= 0000079, find the angle whose L cos is 9-9713383.

24. Given L cos 34° 24’=9-9165137, diff. for 1’=-0000865,
find Z cos 34°.24’ 26", and also the angle whose L cos is 9-9165646.

25. Given L &in 37° 19’ = 9-7826301, diff. for 1’=-0001657,
L cos 37° 19 = 9:9005294, diff. for 1’ = -0000963,

find . Lsec37°19' 47", and L cot 37° 19’ 47"

26. Given Lsin 32° 18'=9-7278277, diff. for 1'=-0001998,
L cos 32° 18’ =9:9269913, diff. for 1’ =-0000799,

find L sine, Z cosine, and L tangent of 32° 18’ 24”6,
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XII. THEORY OF PROPORTIONAL PARTS,

176. "We shall now investigate the principle of proportional
parts, the truth of which was assumed throughout the preceding
chapter. The logarithms in the present chapter are supposed to be’
‘logarithms to the base 10; and we will suppose that the Table of
logarithms is calculated to seven places of decimals, and that it con-
tains the logarithms of every whole number from 1 to 100000.

177. Toskewthatthechwngeqfthelogwhmuapprowmatcly
propoﬂwnaltothechamgeqfthenmnber
‘We know that log(n+d)—logn=logn+d=log('l +§),
d &  d
and by Art. 148, log(1+d) =k(5 -3 37-)

where p is the modulus, so that p = -43429448...

Suppose that » is an integer containing five ﬁgures so that » is
not less than 10000, and suppose that d is not greater than unity.

,and a fortiort less than -000000003;

pa’ YA
Then Wmlesstha.n4(10000
pd’,

375 5 18 less than one ten-thousandth part of this, and so on.

Hence at least as far as seven places of decimals we have

log (n + d) —'log1;=%d.

This equation establishes the required result ; for it shews that
if the number be changed from # to n + d the corresponding change
in the logarithm is approximately %l, that is, the change of the
logarithm is approximately proportional to the change of the number.

178. The principle of proportional parts is thus shewn to hold
4n the case of the logarithms of numbers to a sufficient degree of
accuracy for practical use. For when we wish to find the loga-
rithm of a given number we can suppose the decimal peint in the
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number placed after the fifth figure, so that the number is thus
made to lie between two which differ by unity and which are both
contained in the Table; and we have shewn that as far as seven
places of decimals the change of the logarithm is proportional to
the change of the number. Then we can if necessary change the
‘position of the decimal point and make the corresponding change
in the characteristic of the logarithm ; and thus we finally obtain
the logarithm of the original given number. Similarly we may
proceed if we want to find the number which corresponds to a
given logarithm lying between two in the Table.

179, We will now shew how the result of Art. 177 is apphed
in practice. We have

log(n+d)—-logn=%d-,

also . log (»+1)— logn—'—" & suppose, -
thus log (n + d)=log n + db.

Now 3 being the difference of two known logarithms is furnished
immediately by the Table; and to obtain the logarithm of (n +d)
we multiply this known quantity 8 by the given fraction d and add
the product to the logarithm of n. This is the rule which was
used in the preceding chapter; Art. 153, in order to find the
logarithm of a given number, <

Again, suppose we require the number which corresponds to a
given logarithm. Let # and n + 1 be integers between which the
* required number lies, and denote the required number by n +d.
Then log (n+d)—logn is known; call it , and let & denote the
known quantity log (n+1)—logn; thus dd=z; therefore d= %; .

This is the rule which was used in the preceding chapter, Art, 157.

180. We shall now proceed to examine how far the principle of
proportional parts holds in the case of the natural Trigonometrical
Functions; this we shall do by considering these Functions sepa~

¢
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rately. 'We shall suppose throughout this chapter that the angles
which occur are positive angles not exceeding a right angle; this is
sufficient because it has been shewn that any Trigonometrical
Function of any angle is equal to the same Function of some posi-

tive angle not exceeding a right angle; see Art. 55.

-18L.  To prove that in general the change of the sine of an
angle is approximately proportional to the change of the angle.

‘We have sin (9 + %) — sin 6 =sin A cos @ — sin 6 (1 — cos &)

1- cosh)
sinh

—smhcos0(l —tan @

=sinhcos€(l—-ta.n0tan§).

Let us now suppose that A is the circular measure of a very
small angle so that sin 4 =4 approximately; thus, approximately,

: sin (6.+#)~sin 0= 008 (1 ~tan 6 tan )
let us also suppose that 6 is not very mnearly equal to g so that

tan @ is not very large, and thus tan 0 ta.nl‘

3 may be neglected.

‘We have then, approximately,
sin (0 + k) —sin 0= h 008 6,
and this establishes the proposition.
Similarly, sin'(f — A) —sin 6 =— A cos 6 approximately.

182. We may however require to know more exactly the
amount of error to which we are liable in using the result of the
preceding article; this point we will now examine. The approx-
imate value of sin (6 + k) —sin 6, is £ cos 6, while the exact value is
sin/ cos@ —(1— cosk) sin §; thus to obtain the approximate value we
change sinA into 4 in the first term of the exact value, and we neglect
the second term of the exact value. First then consider the error
produced by writing A for sin 4. The circular measure of an angle
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of one degree is l"rﬁ; and by Art. 130 sin 4 cannot diﬂ'erfrox'nhbyy

so much as %, 50 that it may be shewn that for an angle of one

degree the sine cannot differ from the circular measure by so much
as ‘0000001. Hence if our calculations extend to only seven
placez of decimals no error will be introduced by changing sin &
into 4 even for an angle of one degree, and a fortiori no error will
be introduced by the change if we restrict A to be not greater than
the circular measure of an angle of one minute. Next consider the
error produced by neglecting the term sin@ (1 —cosh), that is,

NP : b
281!108111'%. Since sin 6 is never greater than unity and sin 3 is

. t ]
less than g, the value of the term neglected is less than %; and if

k VYe the circular measure of an angle of one minute ’% is less than

0000001. - Hence if our calculations extend to only seven places
of decimals no error will be introduced by neglecting the term
gin 6 (1 — cos k) if we restrict % to be not greater than the circular
measure of an angle of one minute.

Therefore if we have a Table of natural sines calculated for
every minute to seven places of decimals, no error will be intro-
duced by our calculating to seven places of decimals the sine of an
angle which lies between two in the Table from the formula

sin (9 + &) —sin 6 = & cos 6.

183. 'We will now shew how this result is applied in practice.
Suppose that we have a Table of natural sines calculated for every
minute, and that we require the sine of an angle which lies be-
tween two in the Table. Let & be the circular measure of an angle
of one minute; let 6 and 6 + % be the circular measures of the angles
in the Table between which the given angle lies, and let 6 + A be
the circular measure of the given angle. Then

gin (0 + &) - sin 6 =% cos 6 = § suppose,
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sin (9 +4) — sin 0= hoon 0= 23;
thus sm(0+h)_sm0+ 8= sm0+608,

where s is the number of seconds in the angle of which 4 is the
circular measure. Now & is the difference between two consecutive
sines in the Table, and is therefore furnished immedia,tely by the
Table, and we must multiply this known quantity by % and add
the result to sin § in order to obtain sin (f + A). This is the rule
which was used in the preceding chapter, Art. 163,

Again suppose that we require the angle which corresponds to
a given natural sine. Let £ be the circular measure of an angle of
one minute; § and 6 + % the circular measures of angles in the
Table between which the required angle must lie, and let 8 + 4 be
the circular measure of the required angle. Then sin (4 + ) —sin 6
is known; call it 2, and let 3 denote the known quantity

sin (0 + &) — sin 6; therefore -’%:z, therefore %: g—; let s be the
number of seconds in the angle of which the circular measure is 4,

then 60 8’ therefores-%. This is the rule which was used

in the preceding chapter, Art. 164,

184, When 0 is nearly g, since cos § is then very small, the

term A4 cos 6 will be very small if A be the circular measure of a
small angle. Thus the difference between the natural sines of two
angles, each of which is nearly equal to a right angle, is very small ;
this is expressed by saying that the differences in the sines of con-
secutive angles are mnearly insensible when the angles are nearly
equal to a right angle. There is also another point to be noticed
in this case; we have

gin (6 + &) — sin f = sin A cos 6 — (1 — cos k) sin 6;
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the ratio of the second term to the first is numerically

sin 6 (1 — cos k)
cosfsink

Lo . .

5 this ratio

will be a sensible quantity unless {2"- be extremely small. Thus the

second term ought not to be rejected in comparison with the first

that is, tanOta.ng-, and when 6 is nearly equal to

term unless % be extremely small. This is expressed by saying

that the differences in the sines of consecutive angles are irregular
when the angles are nearly equal to a right angle. In the present
case this irregularity is not of much importance on account of the
accompanying ¢nsensibility.
185, 'We have shewn that, approximately,
sin (@ +A) —sin6="% cos 6;

change 6 into g—ﬂ’, thus

0’+h) sm(——o') hoos (T o')
that is, cos (6 — k) —cos ¢ =hsin

_and by changing the sign of & -
cos (¢ + k) — cos & = — h sin 6.

It is convenient to deduce this formula from that already
proved, because we thus know, without a new investigation, the
amount of error to which we are liable in using it; it may how-
ever be proved independently, as we will now shew.

186. To prove that in general the chamge of the cosine of an
angle is approximately proportional to the change of the amgle.
‘We have )
08 (0 — &) —cos @ = sin & sin 6 ~ cos 6 (1 — cos %).
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—-smhsme(l—cotol cosh)

sinA
=siﬁhsin0(1—oot0ta.n§).

Let us now suppose that 4 is the eircular measure of a very
small angle, so that sin 2 = approximately; thus, approximately,
008 (6 — k) — cos 6= 4 ainO(l—wtOtan%);

let us also suppose that 6 is not very small, so that cot 6 is not very

large, and thus cot 4 ta.ng may be neglected. We have then,
approximately,
cos (6 — k) — cos @ = A sin 6,
and by changing the sign of 4,
co8 (6 +4) — cos @ = —4 sin 6
and this establishes the proposition.

187. From the result of the preceding article, we can deduce
the rule used in Arts. 165, 166 of the preceding chapter; the
method is the same as that which we have already given in Art.
183. The only peculiarity to notice is that the cosine diminishes
as the angle increases.

And by proceeding as in Art. 184 we see that the differences
in the cosines of consecutive angles are nearly insensible and are
also #rregular when the angles are very small,

188. 7o prove that in general the change of the tangent of an
angle is approwimately proportional to the change of the angle.

‘We have tan (0 +h)—tan0=8in(o+h) gin 6

cos(0+h) cosd
sm(0+h)coso cos (0 +A)sind _ sm(0+h 6) sink
cos (0 + &) cos 0 “cos(@+k)cos @ cos (6 +h)cos
sin A tan A

= Cos'0(cosh—sinktand) cos'd(1—tand tan k)’
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Let us now suppose that 4 is so small that we may put 4 for
ta.n‘h, and also that @ is not nearly equal to ;—': so that tan 6 tan A
may be neglected. We have then, approximately,

: 13
tan(0+h)—tan0=cos,o=hsec'0,
also by changing the sign of A
tan (0 — &) — tan 6 = — A sec’6; .
this establishes the proposition.

189. From the result of the preceding article we obtain the
same rule for the tangent as we obtained in Art. 183 for the sine.
‘We will now proceed to examine the amount of error to which
we are liable in using the approximate formula of the preceding
article. We have

tank
cos’d (1 — tan 6 tan A)
=tanh sec’6 (1 + tan 6 tan & + tan*6 tan®h + ...);

thus if we take only the first term tan % sec’6 we neglect a series
of terms beginning with tan’k sec’d tan 6, that is approximately
(1 +tan"6) tan 6. Now if we have a table of natural tangents
calculated for every minute and we wish to find the natural
tangents of intermediate angles the greatest value of A is the cir-

= tan & sec’d (1 — tan 6 tan k)~

cular measure of one minute, 'that is, I—SObeT(T’ or ‘0003 approxi-

mately. Hence the numerical value of the greatest error is not
less than (“0003) (1 + tan®6) tan 6, and therefore even if § be not

greater than % we are liable to an error in the seventh place

of decimals. If, however, we have a table calculated for every
ten seconds the greatest value of A is the circular measure of

ten seconds, that is, m’%—m, or ‘00005 approximately; in

this case we shall be free from error in the seventh place of
decimals until tan @ is about as great as 6; the table shews that
tan 80° is rather less than 6.
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-190. Since tan (0 +%)—tan 6=F%Asec’ 6 approximately, and
sec @ is never less than unity, the differences of consecutive tan-
gents are never insensible,; but as we have shewn in the preceding
article, the differences are #rregular when the angles are nearly

right angles.
191. 'We have shewn that approximately
tan (6 + k) — tan @ = A sec’ 0 ;

change 6 into ’2—'—0', thus

tan (g-mh)—tm (’2’ - a) =hsec'(g - a'),
that is cot (¢ — k) — cot @ =k cosec’ &,
and by changing the sign of 4
cot (¢ + k) — cot @ = — h cosec® .
This may be proved independently, as we will now shew.

192. 7o prove that in general the change of the cotangent of
an angle 8 approximately proportional to the change of the angle.
_cos(6—h) cosf '
‘We have cot(e—h)—ooto—m—m
_cos(9—h)sinf—cosfsin(f—%) sin(9—6+h)

sin (0 — A) sin 6 "~ sin (6 — &) sin 6
sin A sink ’
“sin(0—%)snd s’ 0(cosh— sin cot 0)
tanh

T sin' 6 (1—tan h cot 6)° »
Let us now suppose that % is so small, that we may put 4 for
tan 4, and also that 6 is not very small, so that cot 6 tan % may be
neglected. 'We have then approximately

eot(0—h)—oot0=§i:—,o

=h cosec’ 0,
also by changing the sign of &

cot (0 + k) —cot =—h cosec’ 6 ;
this establishes the proposition.

T. T, 9
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193. To prove that in general the chamge of the secant of an
angle s proportional to the change of the angle.

1 1
s (@) ol
_cos @ —cos (0 +4) sinhsinf+(1—cosh)cosf
“cosf@cos(+h)  cos®O(cosh—sinhtan 6)

‘We have sec (0 + k) —secl =

ta.nhsin0(l+tan%'cot0)
cos' 0 (L —tan 0 tan k)

Let us now suppose that % is so small that we may put 4 for
tan A, and also that 6 is neither very small nor very nearly equal

to g, so that tan 6 tan 4 and cot 6 tan g may be neglected. We

have then approximately

sec(0‘+h)—sec0=h—inoi

= h sin 8 sec’ 0
cos® 6 ’

also by changing the sign of &
sec (0 —h)—secO=—hsin 0 sec’ 0 ;
this establishes the proposition.
194. We have shewn that approximately
sec (0 + k) —sec § =k sin 0 sec’ 6 ;

change 6 into g—e', thus

sec 7—;—0’+k)—sec(g— ?’):h sin g—-0’) sec’(%-—@’) R
that is cosec (¢ — k) — cosec & = h cos ¢ cosec’ ¢,
and by changing the sign of 4 '
cosec (¢ + k) — cosec ' =—h cos @ cosec’ ¢
This may also be proved independently.
195. The amount of error to which we are liablé in using the

approximate formule of the preceding two articles may be in-
vestigated as in Art. 189. It will be seen that the differences of

v
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consecutive secants are insensible and irregular when the angles
are very small, and they are trregular when the angles are nearly
right angles; the differences of consecutive cosecants are irregular
when the angles are small, and insensible and irregular when the
angles are nearly right angles.

‘We will now proceed to examine how far the prineiple of pro-

portional parts holds in the case of the Logarithmic T'rigonometrical
Functions.

196. To prove that in general the change of the tabular loga-
rithmic sine of an angle is approximately proportional to the change
of the angle.

‘We have approximately sin (6 + &) =sin 8 + A cos 6,

therefore “i”—@*—") =1+hcotf;
sin 0

therefore log sin (0 + A) — log sin 6= logw =log(1 + A cot 6),
and log (1 + 4 cot 6) = phk cot @ approximately (Art. 148), where p is
the modulus; thus approximately
log sin (6 + &) —log sin 6 = pk cot 6,
also by changing the sign of A4
log sin (6 — &) —logsin 6 = — ph cot 6.
If L stand for tabular logarithm, we have
L sin (0 + k)= 10 + log sin (0 + &),
Lsin =10 +logsin6;
therefore Lsin (0 = A) — L sin @ === ph cot 6.
This establishes the proposition.

197. 'We will now shew that in general the principle of pro-
portional parts holds approximately in the case of the other
tabular logarithmic functions, and then we will consider the

amount of error to which we are liable in using the approximate
formulz.

198. We have shewn that approximately
L sin (0 +A)— L din 6 = ph cot 6,
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o T
change 6 into 5~ #, thus

Lsm(-—0’+h) Lsm(-—o') ph oot (7 0')
that is L cos (¢ — k) — L cos ¢ = ph tan ¢,
and by changing the sign of 4
Lcos(¢ +h)—L cos =—ph tan .
This proves the principle in the case of the tabular logarithmic
cosines,

- 199. 'We have shewn that approximately
log sin (6 + &) —log sin 6 = ph cot 6,

and log cos (0 + k) —log cos 6 =—ph tan f ;
then by subtraction
log sin (8 + &) —log cos(0 + h) —{logsin § —log cosf}= p]a(oot0+tan0),
that is log tan (6 + &) — logta.nG_Azo,
. O
therefore Ltan(0+h)—Lta.n0—m—n—20,
and by changing the sign of A
__ 2
Ltan (0—-h)—L tan0-—§n—29.

This proves the principle in the case of the tabular logarithmic
tangents. By changing 6 into ?2:_ ¢ we obtain
Lot (¢ )= L cot@=u 200
this proves the principle in the case of the tabular logarithmic
cotangents.

200. We have shewn that approximately
log sin (6 + k) — log sin 6 = pk cot 0,
1 1
therefore logsin(0+h)_1°gsin0=—"]" cot 6,

that is log cosec (4 + &) — log eosec f = — pk cot 6,
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therefore L cosec (0 + k) — L cosec 6 = — ph cot 6,
also by changing the sign of A
L cosec (6 — )~ L cosec § = ph cot 0 ;
this proves the principle in the case of the tabular logarithmic

cosecants. By changing 6 into g—ﬂ’, we obtain

Lsec(( +h)—Lsect ==ph tan @ ;

this proves the principle in the case of the tabular logarithmic
secants.

201. From the results of Arts. 196—200 we obtain the rules
which were exemplified in Arts. 171—174. It will be observed
that we have deduced the approximate formulse for all the other
logarithmic functions from that of the logarithmic sine; thus if we
investigate the amount of error to which we are liable in the case
of the logarithmic sine, we shall know the amount of error for all
the other logarithmic functions. The approximate formulse how-
ever for the other logarithmic functions may be obtained inde-
pendently, and we will for example give the investigations for the
logarithmic cosine and the logarithmic tangent.

202. To prove that in general the change of the tabular loga-
rithmic cosine of an angle i8 approximately proportional to thé
change of the angle.

‘We have approximately  cos (6 —h)=cos 6+ A sin6, -

therefore - ﬁ(—‘9———-i)=1+l:.izmw,
cos 0

therefore log cos (6 — &) — log cos 6 =1log co'-;cggi) =log (1+ % tan 6),
and log (1 +4 tan 6) = ph tan 6 approximately (Art. 148),
therefore  log cos (§ —A)—log cos 6 = ph tan 6 approximately,
therefore L cos (60— k) — L cos 6 = ph tan 6,
and by changing the sign of 4

L cos.(0 + k) — L cos 6 =— pk tan 6,
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203. To prove that in general the change of the tabular loga-
rithmic tangent of an angle is approximately proportional to the
change of the angle.

We have approximately tan (6 + &) =tan 6 + 4 sec®d,
tan (6 +4) ~ h sec® 6

tan 6 =1+ tan 0

therefore log tan (6 + %) — log tan @ = log (1 + 2k cosec 26)

therefore

=1+ 2/ cosec 20,

= 2ph cosec 20 approximately,
therefore - L tan (0 + k) — L tan 0 = 2uk cosec 26,
and by changing the sign of 4
Ltan (9—A) — L tan 6 = — 2k cosec 26.

204. We will now proceed to consider the amount of error to
which we are liable in using the approximate formula

L sin (0+h)— L sin 0= ph cot 6.

In obtaining this formula log (1 + 4 cot @) was taken equal to
ph cot 0, so that the square and higher powers of & cot § were
neglected. But when 8 is very small cot 4 is very large, and thus
A? cot® 6 may be too large to be neglected; this case then will
require further examination.

‘We have shewn in Art. 181 that '
sin (9-+ )~ sin 0 =sin & cos (1 —tan 6 tan 3

let us suppose A so small that we may write 4 for sin % and g for

tan b thus approximately

2,
sin 0+ 5) —sin 0= cos 0 — > sin,
. 2
therefore M:l«l—hwte—’i,
. snf 2
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sin (6 + &)
sin 6

therefore log =log (l +h cot 6 — ’—;—

_ h M RN

8
=ph cotO—F—g—(l +cot’ ) + ... ;
thus if we omit powers of % higher than 4* we have
3
logsin(0+h)—logsin0=;4hcot0—7cosec’0.

If our Table is calculated to every ten seconds, then the
greatest value of A is the circular measure of ten seconds, that is
about *00005; and g =4 approximately. Thus the greatest error

3
to which we are liable is about GL(I):;:’J . This error will become
sensible in calculations to seven places of decimals if 6 is less than
an angle of 5 for the tables shew that the sine of 5° is less than

Yo, and so the cosecant of 5° is greater than 10.

Thus we see that the differences of consecutive logarithmic
sines are irregular when the angles are very small.

When 6 is very nearly a right angle, cot 0 is very small
while cosec’ § is not very small; thus the above formula for
log sin (6 + A) — log sin O shews that the differences of consecutive
logarithmic sines are nearly insensible when the angles are nearly
equal to a right angle, and that these differences are at the sameo -
time irregular.

From these results we can immediately infer the correspond-
ing results for the logarithms of the other trigonometrical func-
tions ; they will be found enunciated in Art. 206.

205. It appears from the preceding article, that when an
angle is small it cannot be accurately determined from its loga-
rithmie sine nor the logarithmic sine from the angle by means of
the common tables, because although the differences of consecutive
logarithmic sines are then sensible, yet they are trregular. To
obviate this difficulty three methods have been propcsed. '
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First Method. We may have a Table of logarithmic sines
calculated for every second for the first few degrees of the quadrant ;
in this case the greatest value of % is the circular measure of one

2
second, and thus % cosec” 6 becomes small enough to be neglected.

Second Method. 'This is called Delambre’s Method. A Table

is constructed which gives the value of log _02 + L sin 1” for every

second for the first few degrees of the quadrant.

Let 6 be the circular measure of an angle of n seconds, then
6 = n sin 1” approximately (Art. 123),

”

therefore log sn; o_ log nm;nnl,, =log sin n” — log n — log sin 1,

=L sin n’—logn — L sin 17,

therefore  logn=Lsin n”*(log su; ! i )
If the angle is known, then the Table gives the value of

log =5 9.+ Lsin 17, and log  can be found from a Table of the loga-

rithms of numbers; thus the formula enables us to find Z sin n”.

If the value of L sin »” is given and we have to find », we pro-
ceed as follows; since L sin #” is known we can find approximately
the value of the angle, and then from the Table we get the value
of log su; 6 + Lsin 1”; then the formula gives uslog n, and we can
find » by an ordinary table of logarithms of numbers. In this
operation we are liable to an error by using an approximate value

of moﬂ instead of the real value. But it may be inferred from

Chap. 1x. and will be more fully shewn hereafter, that when 6 is

small sin 6 is very nearly equal to 1 —9’6— » and thus a small error in

0
6 will not produce any sensible error in our calculations, since
Io sm0W111vm‘yfarle:s;smpldlythan0

[
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Third Method. This is called Maskelyne's Method. It may be
used if Tables such as those described in the other methods are
not accessible.

It may be inferred from Chap. 1x. and will be more fully shewn
hereafter, that when @ is very small we have approximately

sinf=0-2 g

G ©08 0=1- 35
therefore 87—0 =1- %: (1 - ——) approximately,
= (cos 6)} approximately,
therefore log sin @ =1log 6 + } log cos § approximately.

This formula gives log sin 6 at once if 6 be given. If log sin 6
be given, we must find an approximate value of 6, and then find
log cos @ approximately ; then we have

log 6 = log sin 6 — } log cos 6.
Here since cos § varies far less rapidly than 6, we are free from
sensible error by using an approxzimate value of log cos 6 instead of

the real value. A similar formula may be found for the tangent
of a small angle ; for

tan 6 = sm;_o = ( 0') <l - 0— i approximately,

tan 6 ¢
therefore 5 = (1 - __) (1 + _)

=1 + 3 (1 - —) approximately,
therefore  log tan 6 =log 6 — § log cos 6 approximately.

206. We will now sum up the results of the investiga-
tions of the present chapter.

The principle of proportional parts is applicable to all the
trigonometrical functions natural and logarithmic with certain
exceptions, which occur when the angles are small or nearly equal
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to a right angle. In the exceptional cases the differences of
consecutive functions are sometimes ¢rregular only; sometimes
they are nearly ¢nsensible, and then they are also irregular.

For the natural functions we have the following exceptional
cases. For the sine the differences are insensible when the angles
are nearly right angles; for the cosine they are insensible when
the angles are small. For the tangent the differences are ir-
regular when the angles are nearly right angles; for the cotangent
they are irregular when the angles are small. For the secant
the differences are insensible when the angles are small, and
irregular when they are nearly right angles; for the cosecant
the differences are irregular when the angles are small, and in-
sensible when they are nearly right angles.

For every logarithmic function the principle of proportional
parts fails both when the angles are small and when they are
nearly right angles. For the log sine and the log cosecant the
differences are irregular when the angles are small, and insensible
when they are nearly right angles. For the log cosine and the
log secant the differences are insensible when the angles are
small, and irregular when they are nearly right angles. For the
log tangent and the log cotangent the differences are irregular
when the angles are small and when they are nearly right angles.

207. In using Trigonometrical Tables it is necessary to avoid
as much as possible the cases in which the principle of pro-
portional parts does not hold. In other words, we must endeavour
to use a Table such that the differences of the function corre-
sponding to given small differences of the angle are both sensible
and regular. If the differences of the function are insensible
for a certain number of decimal places we cannot by any method
determine the value of the function for any intermediate angle,
or perform the converse operation, so long as we are restricted
to the certain number of decimal places. If the differences of
the function are irregular we cannot determine the value of the
function for an intermediate angle, or perform the converse
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operation, by the principle of proportional parts, though we may
by retaining the terms which were neglected in the first approxi-
mation.

208. If we have to determine an angle from its natural
sine or cosine it will be advisable to employ the natural sine
if the angle be less than 45°, and the natural cosine if the angle
be greater than 45°. For the differences of consecutive sines
vary approximately as the cosine of the angle, and the differences
of consecutive cosines vary approximately as the sine of the
angle ; thus the differences of consecutive sines are greater or
less than the differences of consecutive cosines according as the
angle is less or greater than 45° A similar remark holds for
the logarithmic sine and cosine. ;

209. The student who is acquainted with the elements of
the Differential Calculus will see that all the results of the present
chapter may be obtained from Taylor’s Theorem ; and thus these
results may be easily retained in the memory, or at least readily
recovered when required. For example, consider the natural
sine; we have by Taylor’s Theorem

sin (0 +A4)=sinf+h cosé—% sin (6 + AA),

where A is some proper fraction, This formula shews that if
we put
sin (0 + %) =sin @ + & cos §
H

the error is less than ’;— . Moreover we see that when 6 is small the

principle of proportional parts is especially applicable, for then
2

the term % sin (0 + Ah) is extremely small in comparison with

fcos 6 ; and on the other hand, when 6 is nearly g the principle
S
is not so appropriate, because then w

D) sin (6 + M) may be sensible

in comparison with % cos 6,
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Again, by Taylor's Theorem, we have
2
log sin (0-+ %) =log sin 0 + ik cot 6225 cosec? (9 -+ N3,

where p is the modulus and A some proper fraction. This equa-
tion shews that the principle of proportional parts is in general
applicable for the logarithmic sine, but that the differences of
consecutive logarithmic sines are irregular when the angles are
small, and insensible and irregular when the angles are nearly
right angles. '

210. The following application of Taylor'’s Theorem will give
a good mode of estimating the amount of error involved in the
principle of proportional parts. Take the logarithmic sine for
example; we have

log sin (6 + &) =log sin 6 + uk cot (6 + Ak),

where A is some proper fraction. Thus the approximation
uses cot § instead of cot (f +Ak). The true value in fact of
log sin(6 + &) —log sin # must lie between pk cot @ and ph cot (6+4),
8o that the error is less than ph {cot 6 — cot (6 + A)}.

MISCELLANEOUS EXAMPLES.

1. From one of the angles of a rectangle a perpendicular
is drawn to its diagonal, and from the point of their intersection
lines are drawn perpendicular to the sides which contain the
opposite angle; shew that if p and »' be the lengths of the
perpendiculars last drawn, and ¢ the diagonal of the rectangle,

prapi=ct
2. If two circles whose radii are @ and & touch each other

externally, and if 6 be the angle contained by the two eommon
tangents to these circles, shew that

. o 4(a—0)/(ad)
MO—W.
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3. Given sec a sec 0 + tan a tan 6 =sec B, find tan 6.
4. Find the limit when =0 of

. 0
81!1500820 tan® 0

vers 0 cot 6 ° snd Ofsec20—l'

5. Shew that eot-q is greater than 1+cot@ for all values

2

of 6 between 0 and .
0 tanfO+c-1 0
6. Ift&n——m, find ta.n§.

7. Find the condition necessary that the same value of 4
may satisfy both the equations
a sec’ §—b cos 0 = 2a, bcos®d —a sec 0 =2b.

8. Eliminate a and B from the equations
@ = 8in a cos B sin 0 + eos a cos 6,
b = sin a cos 8 cos @ — cosa sin f,
¢ =sina sin 8 sin 0.

9. Eliminate a and 8 from the equations .
b+ccosa=wucos(a—0), b+ccosB=wucos(B—0), a—B=28
and shew that «* — 2uc cos 0 + ¢* =b° sec’ 8.

10. Eliminate # from the equations

atan® § —x 2a tan 6

tan Jatan2d tanZa+tan2a C %5

and shew that 6 =a+a/, or -2-+a+a'.

11. Eliminate  and ¢ from the equations
ginf +8in p=a, cosd+cosp=>, cos(d—¢)=c.
12. Eliminate 6 and ¢ from the equations ‘
wcosf+ysinf= a, @ cos(6+2¢)— ysm(0+2¢)_.a,
b sin (0 + ¢) =a sin .
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13. Eliminate # and y from the equations
tanx+tany=a, cotx+coty=>H, z+y=c.

14. Eliminate 6 from the equations

x sec®*f@—cos*d 2b

3 0tes 8 Yy 6+ cos’ 0.

15. Eliminate 6 from the equations
(a+5) tan (0 - ¢) = (a—5) tan (9+ §),

a cos 2¢ + b cos 20 =c.

16. Given ?—:cosa—;'l:cos€+—z~:cos g,
. a a b

d x _ Y .
an sin(0+0) &n(6—¢) sin 20’
' sinf & ‘
shew that Yl

17. Eliminate ¢ from the equations
ycosp—xsing =acos2¢p, ysing+ x cosp=2q sin2¢;
and shew that  (v+y)}+ (@ —y)t=24%

18. Eliminate 6 and ¢ from the equations
sin B8

sin
cos 0= na °Of ¢= =

sin a’
cos (0 —¢) =sin B siny;
and shew that tan’a = tan® B +tan®y.

19. Eliminate 0 from the equations

m = cosec 0 — sin 6, = =sec @ — cos 0.
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20. Eliminate 6 from the equations

] in?
xsin 6 —y cos 6= /(="+¢"), co;o'*mz'o:x'iy"

21. Eliminate 6 and 6 from the equations
gin® 0+ cos®@=b, a'sin®@ +acos'd =V,

atan@=a'tan @,

and shew that +

1.1
Tatd’

| et
| =

22. Given 2'+y'=a'+d", axy=absinag,

cos'@ sin*d 1

T"'T”:?’

shew that = cot 260 =cot 2a + ? cosec 2a.
cosx cos2x cos 3z
23. If = = , shew that
al al a.

s 2 X _2“:—“'1—“:
81N 2— ia .

o4 If sma: sm3:c sin bz

@, . ay Gy

’

a,—20,+a;, a,—3a

@y a,

shew that

: 30
95. Given cosac_cos(m+0)=cos(x+20)___cos_(a:+ )’

a, a, Y a,

shew that _ 182 4
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. g, _ 08 2a cos2a’ '
26. If sin’ ¢ ——~——-—A or (@ +d) then

tan(zu:a).
tan(%*a’)
sin (4 - ,B)cosa cos (a+6) sin B ~0,

sin (¢ — a)cosB cos (p— @) sina

tan 0 tana  cos(a— ﬂ)
fangtanp " oos(arf)”

shew that tan 6=} (tan 8 +cota), tan¢ =4 (tana—cot g).

ta.n'q—; =

217.

and

2 _sinBsind _tan(f—a)
l+2 _cos(B—60) . cotB ’

28. If
prove that a'=( cot §—2cotﬁ) (ta.n%+2 cotB).

29. leenmn95m¢—-smasmﬁ, tan ¢ cos 8= cot2,prove

that one of the values of sin g

30. Given sinp=nsinf, tan ¢ =2 tan 6, find the limiting
values of n that these’equations may coexist.

is sin gsinﬁ.

31. Shew by means of a Trigonometrical formula that
if z+y+2z=2ayz

2 2y 2 2 2 2

then 1—m’+1—y’+1—z’=1—w"1—y"1——z"

32. Find the values of v, z, y, 2 from the equations

v=o—=—T=-.—; T+Y+2=2m

33. Find the limit of (cos ax)““""” when ¢ is zero.
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34. From a table of natural tangents which goes to 7 places
of decimals, shew that an angle may be determined within about
z¥oth part of a second when the angle is nearly 60°.

35. When an angle is very nearly equal to 64° 36/, shew that
the angle can be determined from its L sine within about y#;th of a
second ; having given log,10. tan 64° 36’ = 48492, and the tables
going to 7 places of decimals.

36. Shew that
(1_tm'i§-) (1_tm'§,) <l—ta.n'2f.) ...... ad inf.= 2.

37. If 4, B, C, be positive angles which satisfy the equation
sin’4 + sin*B +sin*C =1,
prove that 4+ B+C is greater than 90°

38. A circle is drawn touching the tangent and secant of a
given angle a, as well as the corresponding arc; find its radius and
explain the double value. If one value be equal to the radius of

the original circle, shew that a = ;—'

XIII. RELATIONS BETWEEN THE SIDES OF A
TRIANGLE AND THE TRIGONOMETRICAL FUNC-
TIONS OF THE ANGLES.

211. 'We shall now investigate certain relations which hold:
between the sides of a triangle and the Trigonometrical Functions
of its angles; these relations will be applied in the following
chapter to the solution of T'riangles. 'We shall denote the angles
of a triangle by the letters 4, B, C, and the lengths of the sides
respectively opposite to these angles by the letters a, b, ¢; thusa, b, ¢
are numbers expressing the lengths of the sides in terms of some unit
of length such as a foot, or a yard, or & mile. The unit of length
may be whatever we please, but must be the same for all the sides.

T. T, 10
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212. In a right-angled triangle eack side
18 equal to the product of the hypothenuse into
the cosine of the adjacent angle.
Let ABC be a triangle having a right angle
at C; then
j—%_cosA %:oosB;

therefore d=ccosd, a=c cos.B.
Since cos 4 =sin B and cos B =sin 4, we may also enunciate

the proposition thus——in a right-angled triangle eack side is equal
to the product of the hypothenuse into the sine of the opposits angle.

213. In any right-angled triangle eack side is equal to the pro-
duct of the tangent of the oppostte angle into the other side,
From the figure of the preceding article we have

BC AC
a0° W B=gs;

therefore a=btand, b=g tan B,

tan 4 =

Since tan 4 =cot.B and tan.B=cot 4, we may also enunciate
the proposition thus—in any right-angled triangle each side is
equal to the product of the cotangent of the adjacent angle into the

214. In any triangle the sides are proportional to the sines qf
the opposite angles.

/l[\ / ; |
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Let ABC be any triangle, and from 4 draw 4D perpendicular
to the opposite side meeting that side, or that side produced, ip D.
If B and C are acute angles we have from the left-hand figure,

therefore AB gin B = AC sin C,
¢ sinC
therefore z = siTB'

If the angle C be obtuse we have from the right-hand figure,
AD =AB sin B, and AD = AC 5in (180°~ C) = 4C sinC;

therefore AB sin B=AC sinC,
: e sinC
therefore z= m.

If the angle C be a right angle, we have from the figure of
Art. 212,

AC=AB sin B,
¢ 1 sinC
therefore 7B B’
- . ¢ sinC
Thusltlsprovedthatmeverycaseb—-m. .
Similaily 2S04 g0 _sind

b sinB ¢ snC
The results may be written symmetrically thus,

215.  To express the cosine of an angle of a triangle in terms
of the sides.

Let 4BC be a triangle, and suppose C' an acute angle, '(See the
left-hand figure of the preceding article.) Then by Euclid IL 13,

AB*=BC*+ AC*-2BC.CD, -
and ‘ CD=A4C cos(C;
therefore ¢ =a"+b"— 2ab cos C.
10—2
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Next suppose C an obtuse angle. (See the right-hand figure of
the preceding article.) Then by Euclid II. 13,

AB*=B(C*+ AC*+ 2BC.CD,

and - CD=A4C c0s(180° — 0) = — AC cvs C,
therefore ¢=a"+¥"-2bcosC.
a'+b'—-c

2ab

Moreover when C is a right angle, o® +3*=c* and cos( is 2zero;
thus the formula just found for cosC' is true whatever the angle
C may be. ,

b+c'-a ’+a'-b

Similarly, eosA:T, cos B= Soa

Thus in both cases we have cos (' =

216. In every triangle each side is equal to the sum of the
product of each of the others into the cosine of the angle which
makes with the first side.

From the left-hand figure in Art. 214, we have

BC=BD +DC=AB cos B + AC cos C,
that is, a=c cosB+bocosC.
From the right-hand figure in Art. 214, we have
BC=BD—-DC=AB cos B—AC cos(180°-C)
=AB cos B+ AC cos C,
that is, a=ccos B+b cosC.
Similarly, in every case, we shall have
b=acosC+ccosd,
and : c=bcosd +a cos B. i ' .

217. To express the sine, cosine, and tangent oflm(ftm amglc

of a triangle in terms of the sides.

‘We have by Art. 215,

b'+c'—af
oosd=——gr,

-
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B+’ —a* ek (k) N

2b¢ 2bc ?
gned _@+8-9(are—d)

9 4be

therefore l-ocosd=1-

therefore

Let 28=a + b + ¢ so that 8 is half the sum of the sides of the
triangle; then
a+b-c=a+b+e—-2¢=2(s—c)
a+c—b=a+b+c—2b=2(s-b).

Therefore A (c b)(a c)

s—b)(s—c
o ey

. . g8 2 CRp. |
Also 1+oos4=1+b+°'"“—(b“) <,

W% 2e  °
therefore A (“ +b+ )b +o—a) l(c—a)
4be
and % ﬁm

methevﬂnmofsin%andoosi;- we deduce

tand = \/(7_17)(_87)
tan 3 s(s—a)
The posxtrve #ign must be given to the radicals which occur in
this article, because -42- is less than a »right angle, and therefore its
sine, cosine,:and tangent are all ‘positive.

Similar expressions hold for the sine, eosme, and ta.ngent of
half of each of the other angles,
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218. Since sin4 =2ain%cos-%, we obtain

. (e—0)(s—¢) s(s—a)
sind =32 \/ be ' be

2
=-6;~/a(a—a)(a— b) (8—c).

Or we may find sin 4 directly from the known value of cos 4 ;
s 9 g1 _(0"+"—a")
thus . sin*4=1 e
_ %" +2c%a* + 2a°D° — a* - b —c* |
- 4b*c’ ?

. N2 + 2% + 20 —a* — b - ¢*
therefore gin 4 = ca 2b: d i ;

the former expression may be shewn to agree with this by forming
the product of the factors s, 8—a, 8 — b, and s—e.

219. We have proved the formule in Arts. 214—216 inde-
pendently from the figures; we may however observe that it is
easy to deduce those in any two of the articles from those in the
third, Thus we may first establish as in Art. 216, that

a=bcosC+ccosB, b=ccosAd+acosC, c=acos B+boos4d;

multiply the first of these equations by a, the second by 3, and the
third by ¢; then add the first two resulting equations and subtract
the third; thus we obtain ’

" '+ 8" —c"=2ab cos C.
Similarly the other two formule of Art. 215 may be deduced.
Then from these results we may proceed as in Arts. 217, 218,

and shew that Si%{-% Ne(s—a)(s—b)(s=c),

‘and that s_u;_B md43¥ are equal to the same expression.
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Thus smA=smB=smC"
a b c

Or we may begin by establishing the formule of Art. 214
directly from the figure, and then proceed as follows,

sin 4 = sin (180° — 4) =sin (B + C) =sin B cos '+ cos Bsin C';
sin B BsinC'

therefore 1=cos()’8in4+cos md’

b

=— oosC+£cosB;
T a a
therefore a=>bcosC+ccosB.

Similarly the other two formule of Art. 216 may be deduced ;
and then those of Art. 217 will follow in the manner shewn in the

beginning of the present article.

220. The reason why an ambiguity of sign occurs in the

formulse for ﬂm-‘zi and cos 7 4 of Art. 217 may be explained as on

former occasions. It will be observed that we have an expression

for cos 4, and we proceed to deduce expressions for smg and °°“§ 5

and in Art. 96 it has been shewn that in this case we may expect
two values differing only in sign for each of the required quantities.

221. Since the formulse in Art. 217 have been strictly demon-
strated, they must of course always furnish real values for sin 4 ,

cosg-, and tanA if the triangle really exist. That they do 8o
may be easily venﬁed from a known property of a triangle,

Take for example the formula

A _(@+b- c)(a+ec-b)
sin’ g == e i
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that this may give a possible value for sm%— the expression on the

right hand must be positive and less than unity. It ¢ positive,
because from the fact that two sides of a triangle are greater than
the third, we have a+b—c positive and a+ c—b positive. And
the numerator is a’—(¢—5)", and this is less than the denominator
provided a® be less than (c —b)'+ 4bc, that is provided a* be less
than (b + ¢)%, which is obviously the case.

MISCELLANEOUS EXAMPLES,
1. The sides of a triangle are z*+2+1, 2z +1,and 2" —1;
shew that the greatest angle is 120°
9. IfcosB= _io, shew that the triangle is isosceles.

3, Ina right-a.ngled triangle of which C is the right angle,

4 b+e
i Talaral
A+ B a cosd
4, IfatanA+btanB=(a+b)ta.nTsh that-b-=m.

5. The angles of a plane triangle form a geometrical pro-
gression of which the common mtio is 4 ; shew that the greatest

side is to the penmeter as 98in — to unity.

14

6. If 4', B',C’ are the external angles of a triangle, shew that
2bc vers A" + 2ca vers B’ + 2ab vers C'=(a + b+ ¢)".

7. From the angle 4 of any triangle 4BC a perpendicular

AD is drawn upon the base, and from D perpendiculars DF, DF
are drawn upon 4 B, AC respectively; shew that

AE.EB.cos*C=AF.FC. cos*B.
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8. 1Ifa, b, ¢, be the sides of a triangle and the opposite angles
be 20, 30, 40, shew that tan®§ = (:Tbc .- 1.

9. ABCisa triangle of which C is an obtuse angle; shew
that tan 4 tan B is less than unity.

10. If the sides a, b, c of a triangle be in arithmetical pro-
gression, shew that
4-0 B c A 3

em—2—_2mn2,andaoos‘ +e §=—2-.

11. T D be the middle point of the side BC of a triangle
cot BAD —cot B=2 cot 4.

12. If an angle of a triangle be divided into two parts such
that the sines are in the ratio of the sides adjacent to them
respectively, prove that the difference of their cotangents is equal
to the difference of the cotangents of the angles opposite to their
sides. o

13. If the cotangents of the angles of a triangle be in arith-
metical progression, the squares of the sides will also be in arith-
metical progression, 4

14. Given the vertical angle and the ratio between the base
and altitude of a triangle, find the tangents of the angles into
which the vertical angle is divided by the perpendicular drawn
from it upon the base.

15. If the base of a triangle be divided into three equal parts,
and ¢, ¢, t, be the tangents of the angles which they subtend at

" the vertex
1 I\l 1 1\
16. If the sines of the angles of a triangle be in arithmetical

progression, the product of the tangents of half the greateet. and
Talf the least is 3.
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17. 'If the side BC of a triangle be bisected in D and 4D be

drawn, shew that tan.4DB = 2—’;;&; .

18. If 4, B, C be the angles of a triangle and cot %, cot 3 ’

cot g in arithmetical progression, prove that cot% cot g =3,

19. Btraight lines are drawn from the angles 4 and B of a
triangle dividing the angles respectively into parts whose sines are
in the ratio of 1 to n; these lines intersect in D; shew that DC
either bisects the angle C' or divides it into parts whose sines are
in the ratio of 1 to n®,

20. If be the length of the line which bisects the angle 4 of
a triangle and is terminated by the base, § the angle which it
makes with the base, shew that the perimeter of the triangle
_ 2 cos% sin 6
sin @ — sin —2-
21. If 6 and ¢ be the greatest and least angles of a triangle
the sides of which are in arithmetical progression, prove that

4 (1 —cos 6) (1 — cos ¢) = cos § + cos ¢.

'22. From the angular points of a triangle 4 B( lines are drawn
amaking each the same angle a towards the same parts with the
sides of the triangle taken in order. Shew that these lines will
form another triangle similar to the former, and that the linear
‘dimensions of the two triangles are in the ratio of

cos a —sin a (cot 4 cot B cot '+ cosec 4 cosec B coseo(,'.) to 1.

Shew that in any triangle the relations given in the following
examples, from 23 to 40, hold.

- 23, a (boosC—ccosB)=b"-c"
24. a(cos B cos C +cos 4) = b(cos 4 cos C + cos B)
=c¢(cos 4 cos B +cos C).
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2. (b+o-o)tang=(c+a—b)tans=(a+b-tanS. .
26. b cosB+ccosC=acos(B-C).
27. (a+b)cosC+(b+c)cosd +(c+a)cos B=a+b+c.

28, (a*—b%) cot O+ (b*—c")cot 4 + (c* — a) cot B =0.
29. (a—-b)oot%+(c-—a) cot§+(b—c) eot-;-=0.

4, B P
30. l—t&n?t&n§=ma

31. (a+b+c)(cos 4 + cos B+ cosC)

=2aoos-‘%+2beos'§+2c oos'g.

39 sin'A_cosAcosB+cosAcosC’ cos B cos C
- ab ac + be ‘
33. acosd +bcosB+ec cosC =2asin B sinC.

2a sin B sin C
a+b+c

34. cosd +cosB+cosC=1+
35. a'—2ab cos (60°+ C') = c* — 2be cos (60° + 4).

A B C
-E : 00t-2- +00t§ b+ec—a : 2a.

37. oos%cosgoos'-g-'=42(2 —cos (E oosB>(E mb’)

y.|
36. cotl——oosec

4 B
where ‘ 23 = t)os2+0092+eos2
A B
38. Theperheterofanytl-iangleis%oos%oos-gsecAZ .

39. If ysin®4 +x sin®B =2 sin®B + y 6in*C = sin*C + 2 sin’4,
then x:y:2::8n24 :sin2B : sin 2C.

40. 8sin3 sin 3 sin ¥ is low than 1, exoept when 4 = B=C.



( 156 )

_XIV. SOLUTION OF TRIANGLES. -

229. Tn every triangle there are six elements, namely, the three
sides and the three angles. The solution of triangles is the process
by which when the values of a sufficient number of these elements
are given we calculate the values of the remaining elements: It
will appear as we proceed that when three of the elements are given,
the remaining three can be found except when the three angles are
given, and then we cannot determine the lengths of the sides but
only the ratio they bear to each other. We shall have occasion to
introduce logarithms into our formule, and we shall as before by
the word logarithm or the-abbreviation log denote a logarithm to
the base 10; and by the letter L placed before any Trigonometrical
Function, we shall denote the tabular logarithm of that function,
which is formed by adding 10 to the logarithm to the base 10.

We shall begin with a right-angled tna.ngle a.nd shall suppose
C the right angle.

223. To aoloe a right-angled iriangle having given the hypo-
thenwse and an acute angle.

Suppose the hypothenuse and the a.ngle A given; then
B=90°-4;

g=sin.d., therefore @ = ¢ sin 4,

therefore loga=1logec +log sin A =loge+ Lsin 4 ~10;

%:sinB, therefore b =¢ sin B,

therefore logd =logc+ logsin B=1loge + Lsin B-10;
" Thus B, a, and b are determined.

224. . To solve g right-angled triangle Iuwmg given the hypothe-
nuse and @ side,
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Suppose ¢ and a given ; then
sinA:Zj, logsin A =loga —1logec;
therefore Lsin4 =10 +loga —logc;
this determines 4 ; then B=90°-4.
And =a'+b", therefore ¥’'=c"—a'={c~a)(c+a),
therefore b=N(c—a)(c+a),
log b=} log (c~a) + § log (¢ + ).
Or we may find b from the formula b =¢ cos 4.
225. To solve a right-angled triangle having given a side and
an acute angle.
Suppose @ and 4 given ; then
B=90"-4;

a . a
;:81114, therefore ¢ = m,

logc=1loga —logsin A=loga~ Lsin 4+10;

a @
-6-=tanA, therefore b-—m,

logb=loga —logtan 4 =loga— L tan 4 + 10.
Thus B, ¢, b are determined.

If ¢ and B are given, then 4=90°~B; thus 4 is knows, and
we may find ¢ and b as before. '

226. To solve a right-angled triangle having given the two
stdes.
Here a and b are given; then

tand="2 f.heréfo;e_ log tan 4 = log & — log b,

bl
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therefore Ltan 4=10 +loga —logh;
B=90"-4;
%:sinA, therefore ¢ = si:A.’
therefore loge=loga~Lsind +10.
Or we may find ¢ from the formula ¢= ,/(a* + b), but this is not
adapted to logarithmic computation.

227. We may remark here that when an angle of a triangle
is determined from its cosine, versed sine, tangent, cotangent or
secant, no uncertainty can exist about the angle, because only one
angle exists less than 180° for which any of these functions has an
assigned value. But when an angle of a triangle is determined
from its sine or cosecant uncertainty may exist, since there are two
angles less than 180° which have a given sine or a given cosecant.
But no uncertainty will exist in the case of a right-angled triangle,
because each of the other angles of the triangle must be acute,

"We now proceed to the solution of oblique-angled triangles.

228. To solve a triangle having given two angles and a side,
Suppose 4 and ¢ the given angles, and b the given side;

then B=180-4-C;
a sind bsin A4
5= smp’ ‘thereforea= a::lnB ’

therefore loga =log b + log sin A—log sin B =log b + L sind—Lsin B;
similarly log c=logd + L gin C' — L sin B,
* Thus B, a, and ¢ are determined.
If A and B are the given angles then
C=180"-B- 4,
and we may proceed as before to find @ and ¢.
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229. To solve a triangle having given two sides and the in~
cluded amgle.

Suppose b and ¢ the given sides and 4 the included angle,

‘We have sin B b
sinC
sin B-sinC b-e¢
therefore sin BrsinC ~bre’
tan}(B-C) b-c
and tan (B + 0) =tan § (180° — 4) = oot 5,
therefore tan (B ~ 0)=—cotg,
therefore logtan}(B—C’)=log(b—c)—-log(b+c)+logeot£

2,
therefore Z tan § (B — 0)=log (b —c)—log (b +0) + L cot 4 ;

this formula determines } (B—C); and 4 (B +C) is known since
it is 90° —-4 ; thus B and C can be immediately found.

a sind

= 0" from which & can be found.

230. In finding a from the expression just quoted we should
require three logarithms, namely, those of ¢, sin 4, and sinC; in
the following method we shall only require two new logarithms,

a b ¢
Wehave o F~mmB~ g’
therefore ol bie

sin 4~ sin B+sin 0’
and sinB+sinC =2sin}(B+C)cos3(B~C) (Art. 83)
=2cos§cos§(B—C’),
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4
Grosind  Or9sing

therefore a= = 5
- 2 cos 5 cos} (B—C) c0s §(B—C

as the logarithm of b+ ¢ has been used in the former part of the
solution, we shall only require two new logarithms, namely those of

sinf% and cos (B - O).

931, 'We can also from the given quantities in the preeeding
article determine the third side without previously determining the
other two angles. For we have by Art. 215,

a*=b"+c'—2bc cosd ;
and we can transform this formula into another, which is adapted
. to logarithmic computation as follows;

a’=b'+c’—-2bc(2 cos*-‘;-- 1),
={b+ ¢)’ — 4bc cos g,

=0+ c)’{ (bibc), cos’ g}

Now find an angle 6 such that

.o 4dbe |

sin e—mcos -
thus @’ = (b +c)' (1 —sin’ 6) = (b +c)" cas’ 4,
therefore a=(b+c) cos b,

therefore loga=log (b +c)+ log cos 0 log (b + c) +ZLcosf-10;

thus a is determined.

It is usual to give the name of subsidiary angle to an angle
introduced into an expression for the purpose of putting it in the -
form of a product of factors. Thus @ in the preceding investiga-
tion is a subsidiary angle. 'We are certain that an angle exists
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which has the square of jts sine equal to the given expression ; for
that expression is positive, and it is less than unity because 4bc is

never greater than (b+¢)* and cos® % i8 less than unity. The
equation for determining 6 gives by taking logarithms
Zlogsin0=log4+logb+logc—2log(b+c)+2logoos’—4-,

therefore 2L sin 6 =21log2 + logh + logc - 2log(b+c)+2Lcos§.

232. The process of Arf. 229 is sometimes facilitated by the
use of a subsidiary angle when the logarithms of o and b are
kmown. '

We have tan&(B—C'):%ootA

g-
Now let %:ta.nO; therefore

b—c tané-~1

s
e (09

thus tan §(8-0)=tan (6~ ) oot g

Orthus, suppase ¢ less than &; let ¢=b cos ¢;
b~c_ 1—oos¢l>__tan,¢_

therefore bic l+omgp 03
thus m;(B-G):mn'%cot%.
283. To solve a triangle having given two sides and the
angle opposite to one of them. .
Let a and b be the given sides, and 4 the given angle ;
then M=é; therefore sinB=ésinA;
sind a a

now if bein

is less than unity, two different angles may be

T. T, 11
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found l;ss than 180° which have bsin 4 for sine, one of these

angles being less than a right angle, and the other greater. If a
be greater than b, then 4 must be greater than B, and therefore
B must be an acufe angle; thus only the smaller value is ad-
missible for B. If a be less than b, then either value may be
taken for B. When B is determined, C is known since it is
180°- 4 — B, and then ¢ can be found from

¢ s8in(C

a sind'

Thus if two values are admissible for B we obtain two correspond-
ing values for C and ¢, so that two triangles can be found from

the given parts.
bsin 4
a

If =1, then B is a right angle, so that only one tri-

bsind .
a .

angle can be found from the given parts; and if is greater

than unity, no triangle exists with the given parts.

Thus, when two sides are given and the angle opposite the
less we can generally find two triangles from the given parts, and
this case in the solution of triangles is therefore called the ambigu-
ous case. We say that two triangles can be generally found in
order to have regard to the exceptions; for the triangle may be
right angled, and then only one tna.ngle can be found, or the
triangle may be-tmpossible.

234. The ambiguous case may be illustrated by figures.
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(24

AN /B 2 |

e .

Let CAD be the given angle 4, and AC the given side b; sup-
pose a circle described from C as a centre with radius equa.l to
a. The perpendicular from C' on 4D is equal to b sin 4 ; there-
fore if @ be greater than b sin 4, the circle will meet the line
AD in two points, which we will denote by B and B. If a be
less than b, then B and B are on the same side of 4, as in the
first figure; thus two triangles, namely 4BC and 4ABC, can be
obtained, each having the given parts a, b, 4. " If a be greater
than b, then B” and B are on opposite sides of 4, as in the second
figure; thus only one triangle, namely C4B, can be obtained hav-
ing the given parts a, b, 4; the triangle CAS has an angle CAB
which is 180°— 4 instead of 4.

If a be equal to b sin 4, the circle touches the line 4D, and
the two points B and B in the first figure coincide; thus one
triangle is obtained which has a right angle at .B.

If a be less than b sin A the circle does not meet the line 4D,
and no triangle exists with the given parts a, b, 4.

235. In Art. 233 we first found the angle B, and afterwards
the side c; we may however adopt another mode of solution and
begin by’ finding ¢. For

@' =8+ — o oosd;
therefore .  ¢'—2bccosd +b*'—a*=0
by solving this quadratic equation in ¢ we obtain
c=bcosd = ,/(a"~b"sin’4),
and we shall now discuss the values thus found for ¢. '
' 11—2
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If @ is less than b sin 4, the values of ¢ are impossible, and no
triangle exists with the given parts.

If a is equal to b sin 4, we obtain c¢=bcos 4. If 4 be an
acute angle, ¢ is positive and one triangle exists with the given
perts. If A be an obtuse angle, ¢ is negative, and this indicates
that the triangle is impossible; and in fact a is less than b, since
it is equal to b sin 4, and so 4 cannot be an obtuse angle in
a real triangle.

If a is greafer than b sin 4, then two values ocour for ¢, and
these will both be positive if 4 be an acute angle and & cos 4
greater than ,/(a’-b'sin® 4); the latter leads to the condition
b*cos® 4 greater than a—3*sin® 4, that is, b* greater than a’
Hence we see as before that there are two triangles if 4 be an
acute angle, and @ be greater than b sin 4 and less than b.

836. o eolve u triangls having given the three sides.
Let s denote half the sum of the sides; then by Art. 217,

,,;,,%J“’"’”——ﬁi) m%=J{8(8b;a)},

(e (@=5)(—c) c)
3- T e(s-a) ’.
and similar formule are true for the other half angles.

The formulse for the tangents of half the angles will be the
best to use with logarithms, because then we only require the
logarithms of ¥, 8—u, #—b, and 8¢, in order to find all the
angles; whereas if we use the formule for the sine or cosine we
shall require in a:idition the logarithms of the sides.

237. When all the sides of a triangle are given, the angles
may also be found by dividing the triangle into two right-angled
triangles.

Thus, with the left-hand figure of Art. 214, we have

AD'=AB’ - BD*, and also = AC*—-(CD*;
therefore AB'~ AC*= BD - CDF,
therefore (4B + AC)(4B~AC)=(BD +CD)(BD-CD);
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from this we can find BD — CD, and then since BD + CD is known
we can find BD and CD; then

BD CD
cosB=75 *C=Zg
thus B and C are determined.

With the right-hand figure of Art. 214 we have as before
(4B + AC)(AB—-AC)=(BD + CD)(BD - CD);
from this we can find BD +CD, and then since BD-CD is
known we can find BD and CD; then

BD
mB:Z—B, (1800 c'):AC,

thus B and C are determined.

238. We have seen in Chap. xm. that the Tables of trigo.
nometrical functions cannot always be used with advantage; this
circumstance guides us in selecting the method of solution of &
triangle to be adopted when more than one method is theoretically
applicable, and leads us to modify the method of selution in spme
cases, For example, suppose we have to find 4 from the equation
sin 4 =n, where n is nearly equal to unity; this is an inconve-
nient equation for determining 4, because the difference of conse-
cutive gines is nearly insensible when the angles are mearly right
angles. 'We have however

sin(45°—%) ='~/{1_*°°‘+(;°11Q} '
-JER)-VE)

and this formula is free from the objection.

Similarly, if we have to find 4 from the eqﬁa.tion
cos 4 =m,

where n is nearly equal to unity, we may advantageously transform
‘the equation thus, -
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ke ) - /059

l-—cosd 1-m
" T+cosd 1+n

therefore A J (
. . 1+ n

EXAMPLES,

or thus,

1. Find the values of the angle 4 having given sin B= 25,
a="55=25.

2. One side of a triangle is half a.nother and the included
angle is 60°; find the other angles.

3. The sides of a triangle are in the ratioof 2:,/6 : 1 +,/3;
determine the angles.

4. If 4=30" =100, a=40, is there any ambiguity
5. Having given 4=18, a=4, b=4+,/(80), solve the
triangle.
6. Having given 4=15°, a= 4, b=4+,/(48), solve the
triangle.
7. Ifabd, Abeglven, and a be less than b, andlfc,c’bethe
two values found for the third side of the-triangle, then
¢*— 2¢/ cos 24 + " = 4a® cos’ 4.
8. Find the sum’ of the areas of the two triangles which
satisfy the conditions of the problem in the ambiguous case.
9. If B, C, and B, C, are the a.ngles of the two triangles
in the wmbzgwms case, then
sinC, sinC, )
wnB, @B, o4
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10. In the ambiguous case the area of one of the triangles is
n times that of the other; shew that if & be the greater of the

given sides and & the less, b is greater than 1 and less than I’il

" If log @ +10 =log b + L sin 4, can the triangle be ambi-
guous?

12. If @ be an angle determined from the equation

m0=a—b,
c

prove that in any triangle
A-B (a+b)sind ‘"4 +B ¢sinf

R R 2J(ab) T T T e

13. Iftan¢_2"/_(a:) thenc (a— ) sec ¢.

14, Ina triangle 4BC in which ¢=18, =20, c="2 find
L tan = 4 , having given
log 2="3010300, log 3 =-4771213.
15. The sides of a tmmgle are 32, 40, 66 ; find the greatest
angle, having given
-log 207 = 2-3159703, log 1073 =3- 0305997,
L cot 66° 18'=9-6424342, diff. for 1'= 0003433.
16. The sides of a triangle are 4, 5, 6 ; find B, having g1ven
log 2 = -3010300,
L cos 27° 53’= 9:9464040, diff. for I'= '0000669.

17. Apply the formala cos 7 = / {14~} o ind the

greatest angle in a triangle whose sides are 5, 6, 7 feet respect-
ively, having given

log 6 =-7781513,

I cos 39° 14 = 9-8890644, diff. for 60" =-0001032,
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18. Two sides of a triangle are 18 and 2 feet respectively,
and the included angle is 55°; find the remaining angles, having
given

log 2=-3010300, L cot 27* 30'=10-2835233,

L tdn 56°56'=10-1863769, diff. for 1’=-0002763.

19. Two sides of a triangle are in the ratio of 9 to 7, and the
included angle is 64° 12"; find the other angles, having given
log 2 =-3010300, L tan 57° 54’ = 102025255,
Ltan 11°16’ =9-2993216, Ltan 11°17’'=9-2999804.
20. If ¢a=70, =385, C=36°569"12", find the remaining
angles, having given '
log 3="4771213, L cot18°26’'6”=10-4771213.

21. The ratio of two sides of a triangle is 9 to 7, and the
included angle is 47° 25’ ; find the other angles, having given

log 2=13010300, L tan66°17’30”= 1035673942,
Ltan 16° 68’ = 94541479, diff. for 1’ =-0004797.

99. 1n a triangle AB( where ¢= 30, =20, and the con-
tained angle =22°; find the other angles, having given
L oot 11°=10-T113477, L tan45*48'=10-0121294,
L tan 45° 49’ =10-0123821, log 2 = -3010300.
23. Given b= 14, c=11, 4=60° shew that B="71°44"29",
having given L tan 11° 44’ 29” = 9-31774,
log 2 =30103, Iog3=-47712.
24. The sides of a triangle are 7, 8, 9; {letermihe all the
_ angles, having given
log 2 =-3010300,
L tan 24° 540" =9-6505069, L tan 24° 5 50”=9'6505634,
L tan 29° 1220”7 = 0+7474183, L tan 30° 12’ 30" = 9-7474677.
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25. In a right-angled triangle the hypothenuse ¢ = 6953 and
b=3; find B, having given
log 3-475 = 5409548, log 6-953 = 8421722,
L gin 44° 59’ 15” = 9-8493902, diff for 1” =-0000021.

26. Two sides are 80 and 100 feet, and the included angle
60°; find the other angles, having given
log 3 = 47712, L tan 10°53’ 36" = 9-28432.

27. Two sides of a triangle are 3 and 5 feet, and the included
angle is 120°; find the other angles, having given

log 4-8 = ‘6812412,
L tan 8°12'=9-1586706, diff. for 60" = -0008940.

. 28. A side of a base of a square pyramid is 200 feet and each
edge is 150 feet; find the slope of each face, having given

log 2=-+30103, L tan 26°33'=9-69868,

L tan 26° 34’ = 9-69900.

29, Given g =13, 0=60°, log3=-4771213, L cot9° 49’
=10"7618797, diff. for 1= -0007514, find the other angles:

30. If a=32, ¢=3, Lsind=9-5228787, findC'; log 3 being
4771213,

31. S8hew how to solve a triangle having given the base, the
height, and the difference of the angles at the base.

82. Shew how to solve a triangle having given the three per-
pendiculars from the angles on the opposite sides.
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XV. ON THE MEASUREMENT OF HEIGHTS
' AND DISTANCES.

239. We shall now give a few examples which will shew a
practical application of some of the preceding formulee; we shall
assume that by means of suitable instruments an observer can
measure the angle subtended at his eye by the line joining two
visible obJects. For a description of the requisite instruments,
and the method of using them, we must refer the student to
treatises on the instruments used in surveying.

240. To find the he»ght and distance qf an inaccessible object
on a horizantal plane. .

4 = B [+

Let P be the top of an object, and let it be required to find its
height PC, and the distance of the object from a point 4 in the
horizontal plane through C. At 4 observe the angle PAC; then
measure any length AB directly towards the object, and at B
observe the angle PBC. Then in the triangle APB the side 4B
is known, and the angle PAB; also the angle PBA is known,
gince it is the supplement of PB(C; therefore AP can be found.
Then PC=AP sin PAC, and AC=AP cos PAC; thus the height
P( and the distance 4C are determined. )

If however it is not convenient to measure the length 4B
directly towards the object, we may proceed thus; measure the
length 4B in any direction from 4; at 4 observe the angles PAC
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Q

and PAB, and at B observe the angle PBA. Then in the triangle
APB the side AB and the angles PAB and PBA are known;

therefore AP can be found. Then, as before, PC = AP sin PAC,
and AC'= AP cos PAC.

241. To find the distance between two visible but inaccessible

Let P and @ be the objects, 4 and B two accessible points
from which both the objects are visible. At A observe the angles
PAQ and QAB, and if 4, B, Q, P are not all in the same plane
observe also the angle PAB. At B observe the angles PB4 and
QBA. Measure AB. Then in the triangle ABP the side 4B and
the angles PAB and PB4 are known; thus PA can be found.
Again, in the triangle 4B¢Q the side 4B and the angles Q4B and

Q

A — 3B .

@BA are known; thus 4@ can be found. iéstiy, in the t;'iangié
PAQ the sides AP, AQ, and the a.ngle PAQ are known; thus
PQ can be found. : .
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249, The lengths of the lines which join three points A, B, C,
are known; at any point P in the same plane as A, B, C, the
angles APC and BPC are observed: it is required to find the dis-
tance of P from each of the points A, B, C.

Let the angle 4PC be denoted by B, the angle BPC by a; the
angle PAC by =z, and the angle PBC by y; then a and 8 are

known, and when # and y are found the required distances PA,
PB, P(C can be found; for in each of the triangles PAC and PAB
two angles and a side will then be known. We will shew how &
and y may be found.

Since the four angles of the quadrilateral PACB are fogefher
equal to four right angles, we have

2+y=2x—a-B-0C;

thus the sum of z and y is known.

From the triangle ACP we have
AC sin PAC b sine
PC==30dPC ~ sna’

from the triangle BCP we have

PO_BC’ginPB(J_asiny.
" sinBPC  s&nf .
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therefore b_mﬂ= “_fi_ll!;
sina  sin 8

therefore B.if —f'_dn_a
siny bsing’

asina

Ssn B’ then the value of ¢ can be
found from the Trigonometrical Tables; thus

Now sssume tan ¢=

sin 2
siny

sinz —siny tan¢-1 7\
therefore sina:+ainy—tan¢+1—m(¢—1)’

tané;

, tand(z-y)_ AP
therefore (A.ﬁ. 88) m(—z.i—_-y*) =tan (¢ - Z) H
from the last equation we can determine z—y, since z+y is
known; thus z and y can be found.

243. It is sometimes important to know what amount of
error will be introduced into one of the calculated parts of a
triangle by reason of any error which may exist in the given parts;
such questions are best treated by the assistance of the Differential
Calculus, but we will give here two simple examples which will
shew how they may sometimes be treated without going beyond
the limits of the present subject.

244. Suppose that the height of a building is determined by
measuring a horizontal line from its base, and by observing at the
extremity of this line the angular elevation of the top of the build-
ing above the horizon; if a small error be made in observing the
angle, required the error in the estimated height of the building,

Let @ be the length of the measured line, & the obeerved
angle, « the estimated height of the building;
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, .

then z=atand, _
Let 6 +% be the true angle, and z + £ the true height,
then wff:batan(O-i-’h);

by subtraction, £ =a {tan (6 + ) — tan 6} = asin b

cos (0 +4) cos§°
. If b be small we may put % for sin% in the numerator, and
cos 6 for cos (6 + A) in the denominator; thus approximately

ah
, €= o5 0’
this gives the error in the height consequent upon an error in the

angle.
The ratio of the error to the estimated height
ah h 2k
= cos’QTam‘o_siDO cos @ sin 20’

thus this ratio is least for a given value of 2 when sin 26 is great-

est, that is, when 20 =’§'.
245. . A triangle is solved from the given parts 4, &, ¢; if

there be a small error in 4, find the consequent small error in B.

We have for connecting B with the given quantities the
formula
sin B=Ysin¢ =Yein(4 4 3)...cc.... 1).

Now suppose that 4 denotes the eircular measure of the error
made in estimating 4, and % the circular measure of the conse-
quent error in B; then instead of (1), the correct formula is

gin (B + k):;sin(d +B+h+k).cunn (2
. By subtraction,
sin (B + &) —sin B= —{sm(A+B+h+k) mn(A+B)},
from this equation we have approximately (Art. 181)
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B oosB=2(h+R)con(d + By=—2 (h+8) cos

thus k'(oosB+§cos0)=—%hcos0;

o sin B - hsin B cosC
therefore k(cosB+mcoso)=—To—,
therefore k=—}M,

sin 4"
thus the ratio of & to 4 is found.
EXAMPLES,

1. From a station B at the base of a mountain its saummit 4
is seen at an elevation of 60°; after walking one mile towards the
summit up a plane making an angle of 30° with the horizon to
another station C, the angle BCA is observed to be 135°. Find
the height of the mountain in yards.

9. The altitude of a tower is observed to be 30° at the end of
a horizontal base of 100 yards meuured from its foot. Find the
height of the tower,

3. The angular elevation of a tower at a place 4 due south of
it is 30°; and at a place B, due west of 4, and at the distance a
from it, the elevation is 18°; shew that the height of the tower is

a
VEZ+20)°
4. A person on a level plain, on which stands a tower sur-
mounted by a spire, observes that when he is a feet distant from
the foot of the tower its top is in a line with that of a mountain.

From a point b-feet farther from the tower he finds that the spire
subtends at his eye the same angle as before, and has its top in a



176 EXAMPLES. CHAPTER XYV.

line with that of the mountain. Shew that if the height of the
tower above the horizontal plane through the, observer’s eye be ¢
feet, the height of the mountain above that plane will be

—-— feet.
¢ —-a

5. A person wishing to ascertain his distance from an inac-
cessible object finds three points in the horizontal plane at which
the angular elevation of the summit of the object is the same.
Shew how the distance may be found.

6. A person wishing to ascertain the distances between three
inaccessible objects 4, B, C, places himself in a line with 4 and
B; he then measures the distances along which he must walk in a
direction at right angles to 4B until 4, C and B, C respectively
are in a line with him, and also observes in those positions their
angular bearings; shew how he can find the distances between
4, B, C.

7. Two posts 4B and CD are placed at the edge of a river at
a distance AC=AB, the height of CD being such that 4B and C.D
subtend equal angles at £, a point on the other bank exactly oppo-
site to 4 ; shew that the square of the breadth of the river is equal
. @gﬁ, and that 4D and BC subtend equal angles at E,

8. A flag-staff a feet high stands on the top of a tower b feet
high. At what point on a horizontal plane passing through the
base of the tower must an observer place himself so that the tower
and the flag-staff may subtend equal angles, the height of the eye
being A}

9. A tower situated on a horizontal plane leans towards the
north ; at two points due south and distant a, b, respectively from
the base, the angular altitudes of the tower are a and 8. Shew
that if 6 be the inclination of the tower, and 4 the perpendicular

height,

to

b—a b—a

ten 0= e et = cotB—ocota’
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10.- An object a feet high placed on the top of a tower sub-
tends an angle y at a place whose horizontal distance from the foot
of the tower is b feet; determine the height of the tower.

11. On the bank of a river there is a column 200 feet high
supporting a statue 30 feet high; the statue to an observer on the

" opposite bank subtends an equal angle with a man 6 feet high

standing at the base of the column; required the breadth of the

river.

12. The height of a house subtends a right angle at an oppo-
site window, the top being 60° above a horizontal line; find the
height, taking the breadth of the street 30 feet.

13. Two chimneys are of equal height. A person standing
between them in the line joining their bases observes the elevation
of the nearer one to him to be 60°. After walking 80 feet in a
direction at right angles to the line joining their bases he observes
the elevations of the two to be respectively 45° and 30°. Find
their height and the distance between them.

14, An object is observed at three points 4, B, C' lying in &
horizontal line which passes directly underneath the object; the
angular elevation at B is twice that at 4, and at C is three times
that at 4; AB=a, BC=b; shew that the height of the object is

o i@+ ) (36 - a)}.

If the tangent of the angle of elevation at 4 be §, shew that
5a = 13b.

15. A vertical tower whose base is in the same horizontal
plane with the observer, is observed from a station 4 to bear
directly North and to subtend an angle of 15°; the observer then
walks 100 yards so that the tower always subtends the same angle,
and then it beary North-east; find its height and distance from 4.

16. A person walking along a straight road observes that the
greatest angle which two objects subtend is a; ‘from the spot
where this is the case he walks a distance ¢, and the objects now

T T. 12
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appesr as one, their directions making an angle 8 with the road.
Prove that the distance between the objects is

2¢.sinp.gin B8

cosa+cosf

17. A forjress was observed by a ship at sea to bear E N.E,
and after sailing 4 miles to the East i} was observed to bear
N. N. E.; show that the distance of .the ship from the fortress at
the first and second observation was ,/(16+8 ,/2) and ,/(16-8 /2)
miles respectively.

18. A ship sailing towards the North observes two light-
houses in a line due West; and after an hour’s sailing the bearings
of the lighthouses are observed to be South-west and South-
south-west. The distance between the lighthouses being 8 miles,
find the rate at which the ship is sailing.

19. ‘From the top of the mast of a ship 64 foet above the level
of the,sea the light of a distant lighthouse is just seen in the
horizon ; and after the ship has sailed directly towards the light for
30 minutes it is seen.from the deek of the ship, which is 16 feet
ahove the sea. Find the rate at which the ship is sailing, con-
sidering the earth as a sphere of 4000 jmiles radius.

20. A man ascends a mountain by a path which is the shortest
distance between the base and the vertex. The inclination of the
path to the horizon at first is «, but afterwards suddenly increases
to B, apd then continues the same. On reaching the vertex he
finds by the barometer he has ascended n feet in altitude, and
observes the angle of depression y of the point from which he
started. Shew that the distance he travelled in the ascent is

()

008 —_Q

21. If from two points in a horizontal plane an object be
seen at angles of elevation a, o', and if from a third peint between
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the two points and in the straight line joining them and at.dis-
tances @, a’ from them respectively the object be seen at.an angle
of elevation 8, shew that the height of the object above the hori-
zontal plane is
sin a sin o’ sin B {aa’ (@ + o)}
{a sin’a (sin’ B — sin*a’) + a’ sina’ (8in’B — sin®a)}}

22. A person walking along a straight road observes the
angles of elevation o, o’ of the summits of two hills in front of him,
one behind and partially hid by the other. After walking ¢ miles
the farther hill becomes entirely hidden, and on observing the .
elevation of the lower hill at the next mile-stone he finds it to be
B- Find the heights of the two hills.

23. A tower is surrounded by a circular moat. At noon on
a certain day the shadow of the top of the tower is observed to
project 45 feet beyond the edge of the moat. When the sun is
due West on the same day the shadow projects 120 feet beyond the
moat. The distance between the extremities of the shadow is
375 feet. The angle of elevation of the top of the tower from any
point of the edge of the moat is 60°. Find the height of the tower
and the altitude of the sun at noon.

24. A tower stands upon an inclined plane, meeting it at a
point 4; at a point C in the plane the tower is observed to subtend
an angle a; on proceeding to a point D in .the line .4C such that
CD=AC(, the tower is observed to subtend an angle 3; if ¢ be the
angle between the tower and AC, shew that cot ¢=2 cot a—cot B.

_ Also if similar observations be made in another line 4C°D), it is
found that tan o'=2 tan 8'; the angle CAC'=1y; prove that if 6 be
the inclination of the plane to the horizon, &in 6 sin y=cos ¢.

25. In a triangle A BC having given 4 = 30°, 5=3,/3, a=3,
solve the triangle; and supposing that an error of 2” is made in
observing the angle 4, find approximately the corresponding error
in the angle B.

12—2
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26, The distance between two objects on the opposite bank of
a river is known to be ¢. An equal distance is taken anywhere
along the bank on this side and the angles subtended by ¢ at the
extremities of this distance are a and 8. Find the breadth of the
river, the sides being parallel.

27. A person wishing to obtain the breadth of a square fort on
a distant hill, observes that when he is due South of one corner,
the face towards him subtends an angle a. He then walks due
West, and at a distance of a feet from his first position, finds that
the face subtends the same angle as before. On walking b feet
" further, he is due South of the other corner of the face. Shew
that the breadth of the fort is
btana
(@ + b) sec ¢ feet, where tan ¢ = et

28. 4 and A4’ are the peaks of two mountains, and BC is a
straight horizontal road; shew that if the nearer of the two peaks
just conceals the more distant at some point of the road, then
gin a sin ' =sin o’ sin B, where a is the altitude of 4 as seen from
any point B of the road, 8 is the angle 4 BC, and o, 8 are similar
quantities for the peak 4’ as seen from any point B’ of the road.

29. A and B are two objects in the same horizontal plane,
P a point at which the angle a subtended by 4.B is observed ; from
P two persons walk in directions at right angles P4, PB respec-
tively, to points @, R, at each of which the angle subtended by 4B
is a; the distances PQ, PR are a, b; find the length of 4B,

30. 4, C, B are three objects in the same plane as an ob-
server ; AC'=CB, and AC, CB are at right angles to each other.
At the point 0, AC, CB subtend angles a, B respectively. The
observer moves from O in the direction 00’ at right angles to CO
through a space O0'=d ; here he finds that AC, CB subtend angles
o, @ respectively. Find the distance 4.B.

31. A person standing at the edge of a river observes that
the top of a tower on the edge of the opposite side subtends an
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angle of 55° with a horizontal line drawn from his eye; receding
backwards 30 feet he then finds it to subtend an angle of 48°
Determme the breadth of the river, having given

L sin 7 = 908589, Lsin35°=9 75859

L gin =9-87107, log 3 = -47712,

log 1'0493 = -02089. :

32. A tower 150 feet high throws a shadow 75 feet long
upon the horizontal plane upon which it stands. Find the Sun’s
altitude, having given

log 2 = -3010300, L tan 63° 26" =10-3009994,
L tan 63° 27’ =10-3013153.

33. A rope-dancer wishes to ascend a tower 100 feet high, by
means of a rope 196 feet long. If he can do so, find at what inoli-
nation he must be able to walk up the rope, having given

log2=:30103,  Lsin30° 40’ =9-70761,
log 7=-84510,  Lsin30° 41'=9-70782.

34. Two hills rise at the same point, with inclinations of 60°
and 40° to the horizon. At a distance of 64 feet from the base of
the lower hill the angles of elevation of the bottom and top of a
vertical object on the other hill are 40° and 70°. Find the height
of the object, having given

L tan 20°=9-5610659, L cos 40°=9-8842540, '
log 2= :3010300; 7-4303981 = log 29640031.

35. A vessel observed another o’ from the North sailing in a
direction parallel to its own. After an hour’s sailing its. bearing
was f°, and after another hour y° from the North. In what di-
rection were the vessels sailing? .

36. In the problem discussed in Art, 242, shew that if
a+f+C=m then ¢=%,'
and the solution cannot be obtained from the data.
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XVI. PROPERTIES OF TRIANGLES.

’

246. The present chapter will contain sormé miscellaneous
propositions relating chiefly to the properties of triangles.
247, To find expressions for the aréa of & triangle.

A triangle is half a rectangle on the same base and altitude;
thus if 4.BC be any triangle; and 4D the perpendicular from 4 on
the opposite side, we have (see the figures in Art. 214)

area of triangle = § BC'. 4 D,
and AD = 4B sin B,
therefore area of triangle=Jacsin B ................ 1);

thus the ared of a triangle is half the product of two sides into
the sine of the included angle.

By Art, 318, sin B=—2 ,/{a(s - a) (s~ })(e— o)}
substitute the value of sin B in (I) and we obtain
area of triangle = ,/{s(8 —a) (8 —=b) (8 — ¢)}..eeeerrrrnenne 2);
this furnishes a convenient expression for the area when all the

sides are known; the expression ,/{s(s - a) (s — b)(¢— c)} is often
for abbreviation denoted by S.

bsin 4 _bsinC
smB’ " smB’
substitute these values in (1); thus we obtain

b sin 4 sin C )
W --------------------- eetene (3) ]

By Art. 214, a=

area of triangle =

thus we can find the srea when a side and two angles are given,
for if two angles are given the third angle is also known.
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MU8:  Po finid the radius of the cirele instsibed ih 4 triangle.

Let ABC be a triangle, O the centre of the circle inscribed in
the triangle and touching the sides in the points D, E, F. Let
# dénote the radius of the circle; theh

|8

area of triangle BOC'= 4 BC.0D =

area of triangle CO4=}C4.0E =

’

o[ | e

area of triangle AOB=44B.0F =

therefore, by addition,
(a+8+c) 5 =ares of triangle 4ABC= 5, (Art. 247),

s

therefore r=-.
The radius of the inscribed circle is thus equal to the area of
thie trianigle divided by kslf the sur of the- sides; and thus dif-
férént formis ean be obtaimed for the radius by employing the
different expressions already given for the ares of the triangle.
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249. - We may also obtain the value of r in another form,
which will be often useful.

By Euclid 1v. 4, the lines 04, OB, OC bisect the angles
4, B, C respectively. Thus .

BD = reotg, CD= rcot-g,
therefore . r( cot = +cotg =a
2 2 ?
£href . " . B
ereiore , ¥ sin 2 —aBm—ésln §,
inZn ?
gRn gz Ay

therefore r=
) cos -§

250. To find the radius of a circle which touches one side of &
triangle and the other sides produced.

Let ABC be a triangle, and let O be the centre of the cirele
which touches the side BC, and the other sides produced. Let
r, denote the radius of this circle,
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The quadrilateral 0BAC may be divided into the two triangles
0AB,.0AC; therefore the area of this quadrilateral is %rl + l—’-rl.

Again, the same quadrilateral may be divided into the triangles
OBC and ABC; therefore the area of this quadrilateral is

grl +8. Thus

e b
ET|+§T,—- 2rl+S
r (c+b—a)
therefore —'—2——=S,
therefore rl=-—S—.
8—a

Similarly, if », be the radius of the circle which touches C4
and the other sides produced, and r, the radius of the circle which
touches 4B and the other sides produced,

N S
R MrETS
A circle which touches one side of a triangle and the other
sides produced is called an escribed circle. ‘

r,=

251. We may also obtain an expression for the radius of an
escribed circle similar to that in Art. 249 for the radius of the
inscribed circle.

For, in the figure of Art. 250, the line OB bisects the angle
which is the supplement of B, and the line OC bisects the angle
which is the supplement of C'; thus

Bp:neot(so"—g), op=r,cot<9o°—%);

therefore r (ta.n% + tan %):a;
acosl—gcosg aoosécos—

thorefore’ 7, = g = .
sin £

p) cos g
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252. To find the radius of the oircle described round a- tri-
angle.

Let ABC bé & triangle, and O the dentre of the circle deseribed
round it. Draw OD perpendicular to BC, then B is biseoted in
D by Euclid 1v. 5. Let R denote the radius of the circle.

The angle BOC is double the angle BAC; therefore

BOD=A;
and BD:R;inA:E;
a
therefore ) R=m,

thus R is expressed in terms of a'side and the opposite angle.
By Art. 218,8in4d = 28 , therefore

abe
R= 5

253. Many theorems have been demonstrated with respect to
the circles which have been noticed in Arts. 248—252; as an
example we will find an expression for the distance between the
centres of the inscribed and circumscribed circles.



PROPERTIES OF TRIANGLES. 187

Let O denote the centre of the circumscribed circle, and 0’
the centre of the inscribed circle; and suppose O and O joined-
with the angular point C of the triangle. Then

00" =0C"+0'C* - 20C. 0C cos OCO’;
now the angle O'CB = 4C, and the angle OCB=90°— 4 ; thus

cos OC( = cos (90“ g

A+B+C C B-4
(324 )

2 2 °
also 0C=R, 0C=—"%;
sin g
therefore 00" =R*+ s - ke cosB—A
sin’-g . C 2
2 "y
. B. C
o a sin 7 sin o
By Art. 249, r =——--‘A— ;
cos =
2
by Art. 252, m
) . sin C
therefore -1—3—4 781 E.
Therefore
. 2Rr B-4A
00" = R—_T ——-2sm7}Asm§B
sy
=R 2Rr cosécosé—sm’Brsm—'4
T 6 272 27 2
2.
=R’—2Rr.

Therefore 00 = J(R* - 2Rr).
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254. To find the area of & quadrilateral which can be in-
scribed in a circle.

Let ABCD be the quadrilateral ; let
AB:(I,, .BG:b, C’D—:c, DA =d.

The figure can be divided into the triangles 4BC, ADC; its area
therefore

=4 (ab sin B + cdsin D)= }(ab + cd) sin B,
for the angles B and D are supplemental.
Now from the triangle 4.BC,
AC*=a" + b*— 2ab cos B,
and from the triangle CD4, -
AC=¢"+d"' — 2cd cos D = c*+ d* + 2¢d cos B;
therefore  .¢* + d®+ 2cd cos B=a®+b* — 2ab cos‘B,

a'+ b —ct—d*

therefore ‘ cos B = W ;
2728 _ 8 g
therefore sin'B=1- (@ +¥ - a)

L(abredy
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_{2(ab+cd)+c*+d*~ 0"~ 1} {3 (ab + cd) — ¢ ~ d" + o’ + b}

4(ab+cd)
_e+a)—(a-b)"}{(a +b)' - (c—d)'}
4 (ab + cd)’
_(c+b+d-a)(@a+c+d-b)(a+b+d- c)(a+b+c—d)
4 (ab + cd)*

" Now let d(@+d+c+d)=s; thus

sin® B — 16 (s —a)(s—b) (s - c)(a—d)
4 (ab + ca)'

Hence the area of the quadrilateral
={(e-a)(s-0)(s—c) (e - a)}.
If we substitute the value of cos B in the expression for AC",
20d @+~ '~ )
2 (ab + cd)

cd(a’+b°—c*—d’)
ab +cd

(ac+bd)(ad+bc)
ab +cd

Similarly it may be shewn that
a+d'-b'— ¢

°°°A=_2(Tm'5;)—’

_ (ac +bd)(ab + cd)
ad + be
The radius of the circle described round the quadrilateral
may be easily expressed; for this circle passes round the triangle
ABC, hence by Art. 252 its radius

__4AC _1 (ad + cd) (ac + bd) (ad + be)
“2sinB 4\/ (' a)(s—b)(s— C)(s-d)}

we obtain ACP=c"+d'+

=c'+d'+
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255. To find the radit of the ingoribed amd circumscribed
circles of a regular polygon.

Let 4B be the side of a regular polygon of n sides; let O be
the centre of the circles, O.D the radius of the inscribed circle, 04
the radius of circumscribed circle.

Let AB=a, OA=R, .OD=r
The angle 4 0B is the n* part of 4 right angles, that is,

40B=2", 40D-T".
n N n

AD=2 —RsinZ=rtanT;

2 n n

therefore R= (f , = s .
9'sin = 2tan —
n n

256. The area of a regular polygon may be expressed by
means of the radius of the inscribed circle, or the radius of the
circumscribed circle. For with the figure of Art. 255, the area
of the triangle 40B
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therefore the area of the polygon
na' .«

='uR'sin'!cotI=ER’sin?I. '
n n 2 n
Also the area of the polygon
= nr’tan' = cot — = mr* tan —..
n n n

257.  To find the area of a circle.

The area of a regular polygon of n sides described about a
circle of .radius »
gin T
= n” tan E = -i " —Z-. .
n xw
n on
Now suppose n to increase without limit, then the area of
the polygon approximates continually to the area of the circle as
its limit, and therefore the area of the circle will be the limit of
the above expression. But when n is indefinitely great,
. T
« -
n

therefore area of circle of radius r=mr.

258. To find the area of a sector of a circle.
Let 0 be the circular measure of the angle of the sector; then

area.ofsector_l.
area of circle 2w’
0

therefore area of sector = xr* x L =—.
: ‘ r 2
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Since 6 is the circular measure of the angle of the sector, the
length of the arc of the sector is 78 ; hence the area of a sector is
equal to half the product of the length of the arc into the radius.

EXAMPLES.

1. The sides of a plane triangle are 24, 30, 18; find the
area.

2. Two angles of a triangle are 15° and 45°, and the included
side 10 feet; find the area.

3. The sides of a triangle are equal to 3 and 12 respectively,
and the contained angle is 30°; find the hypothenuse of an equal
right-angled isosceles triangle. )

4. The area of a triangle =1 (a"sin 2B + b"sin 24).

a'—b* sin Asin B

5. The area of a trm.ngle:—z— mEd-B)’

6. The area of a triangle
2abe 4 B C

“a+b+c RT3 *y

7. Shew that the triangle whose sides are proportional to
gh (B + ), k(5" +17), (hk+ gl) (k- gk)
has its area and the trigonometrical ratios of its angles rational.

8. The sides of a triangle are in arithmetical progression, and
its area is to that of an equilateral triangle of the same perimeter
a8 3 to b, Find the ratio of the sides and the value of the largest

angle.

9. If the alternate angles of a regular hexagon be joined so as
to form another regular hexagon, and again the alternate angles of
the latter hexagon be joined, and so on, shew that the sum of the
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areas of all theﬁguressoformed:‘—;-,wheredistheareaofthe

original figure. .And generally if the figure has n sides, the sum
Acos’z—r-
prali)

T 3w
sin — sin ~
om0
Explain the cases where n=3 or 4.

10. If an equilateral triangle be described with its angular
points on the sides of a given right-angled isosceles triangle, and
one side parallel to the hypothenuse, its area will be

24" sin 60° (sin 15°)",
where a is a side of the given triangle,

11. The distance between two points is a, and their distances
from a given line ared, o; of all the triangles which can be formed
having the same base a, and whose vertices lie on the given line,

the area of that which has the greatest-vertical angle is gJ(bc).

12. The straight lines which bisect the angles 4, C of a
triangle 4 BC meet the circumference of the circumscribing circle
in the points 4, C"; shew that 4'C” is divided by CB, B4 into
three parts, which are in the pmportion

A 4 . B 0’ . ,C

13. If « be the difference between the sides containing the
right angle of a right-angled triangle, and § its area, the diameter
of the circumscribing circle is equal to ,/(a* + 45).

14. The sides of a plane triangle are 8, 5, 6; compare the
radii of the inscribed and circumscribed circles,

15. O is the centre of the circle circumscribed round a trmngle,
and AO is produced to meet BC in D ; shew that

DO cos (B C)=A40cos 4, :
T, 13
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16. A circle is inscribed within a given triangle, and another
triangle formed by joining the points of contact ; within this latter
trisngle a circle is inscribed, and another triangle formed as before,
and so on continually; shew that the triangles thus formed ulti-
mately become equilateral.

17. The sum of the diameters of the inscribed and circum-
scribed circles of any plane triangle is equal to

aeotA +bcot B +ccotC.

18. Perpendwulars are drawn from the angles 4, B, C of
a triangle on the opposite sides, and produced to meet the circum-
seribing circle ; if those produced parts be a,’B, y respectively,
prove that

+£-—2(ts.n.d+ta.nB+th’)

o, b
2t B

19. A circle is inscribed in a triangle 4BC, and smaller
‘circles are described so as to touch this circle and the two sides of

the triangle ; find their radii.

20. In any triangle the area of the inscribed circle is to the
area of the triangle as = to cot‘i ootécotg
2772772
21. On each side of an acute-angled triangle as base an isos-
celes triangle is constructed, the sides of each being equal to the
radius of the circumscribed circle; if the vertices of these be
Joined a ‘triangle will be formed equal and similar to the original.

22, If R bethe radius of the circumscribed circle of a triangle,
G008 4d+bcosB+¢cosC=4Rsin 4 sin B sin C.
23. O is the centre of the circle circumscribed about a triangle

ABC; from O the perpendiculaxrs 0D, OF, OF are drawn to the
sides ; shew that

4(0D'+ OF’ + OF") = a® cot’4 + b* cot' B + ¢* oot’C’
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24. Ifr be the radius of the circle inscribed in a triangle,
and r,, 7, r, the radii of the circles inscribed between this circle
and the sides containing the angles 4, B, C respectively ; prove

that
N/ (1‘.1’,) + l\/ (r»"c) +/ (T.".) =7

25. Qiven the segments into which the base of a triangle is
divided by the point of contact of the inscribed circle; find the
greatest possible value of the radius of the inscribed circle.

26. If a triangle 4’B'C" be formed by joining the feet of the
perpendiculars let fall from 4, B, C upon the opposite sides, shew
that B'C"= Rsin 24, where R is the radius of the circle circum-
scribed about 4 BC.

27. Perpendiculars drawn from the angular points of a
triangle to the opposite sides meet those sides in the points 9,
E, F; prove that if B and R, be the radii of the circles described
about the triangles A BC and DEF respectively, and r, the radius
of the circle inscribed in the latter triangle,

R =4 R, and r =2R 00s 4 cos B cos (.

28, If r, r, 7, r, denote the radii of the inscribed and

escribed circles of a triangle, prove that
tantd -
ry

29. If A be the area of the circle inscribed in & triangle,

4, 4, A, the areas of the escribed circles, then
1 1., 1,1
INZINZ NN IR

30. If the sides of a triangle be in arithmetical progression
the perpendicular on'the mean side from the opposite angle, and
the radius of the circle which touches the mean side and the other
two sides produced, are each equal to three times the radius of the
inscribed circle,

13—2
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31 The distances of the centre of the circle inscribed in a
triangle from the centres of the three escribed circles are respec-
tively proportional to .

.4 . B and s %
stg, sy, sndARge
82. Two similar triangles have a common escribed circle
touohmg sides not homologous @, b,; shew that
- @, :a,=8inB+8inC—sin4 :sin 4 +sin € —sin B.

" 83. If 0, O, 0, are the centres of the escribed circles of a
triangle, then the area of the triangle 0,0,0,

. a b i
=“m°ft“”'ngl°ABO{I"'I,.H,_“"'a+~c_b+a+b—c}'

84, The centres of the three escribed circles of a triangle
are joined ; shew that the area of the triangle thus formed is
%, where » is the radius of the inscribed circle of the original
triangle, ’

85. Ad’, B, " are the centres of the escribed circles of a tri-
angle; 4, B, (" are joined 5o a8 to form a triangle; if r and + he
the radii of the circles inscribed in 4BC and A’'B'C” respectively,

' 4 B C
1'— oot 7 cot 3 oot§
R S
: FRg TRy TRy

36. If r be the radius of the circle inscribed in a triangle
ABC, 23 the sum of the sides, #, 24’ similar quantities for the
triangle which is foimed by joining the centres of the escribed
circles; shew that

8 _ound 4 sin B B gin C c

. 7 27279
. 37. Let q, a, be the distances of the angle 4 of a triangle from
the centres of the inscribed circle, and the circle touching the side




EXAMPLES. CHAPTER XVI. 197

a and the other two produced; B, B, similar quantities fot the
angle B; v, y, similar quantities for the angle C'; shew that :

nﬁy a‘xﬁ = (a'bc)”

be ca ab
— + ——§+—-§—l
a, 1

G-y} orG-D-e

b—c+c——a+a b_o
aa’ " BB T oyt T

38. There is only one point within a triangle, such that if
perpendiculars be drawn from it to the sides, circles can be in-
scribed in each of the three resulting quadrilaterals; prove this,
and if p, p, p; be the radii of these circles, and p that of the
inscribed circle of the triangle, then

-9G-D-6-DE-D- (-DG-D

39. A circle is inscribed in a plane triangle ABC. Another
circle is described so as to touch the two sides 4B, AC, and the
last ‘circle ; again, a third circle is inscribed so as to touch the
same two sides 4B, AC, and the second circle, and so on. Circles
are also inscribed in the same way so as to touch BC, BA and
C4, CB. Shew that the area of the inscribed circle is to the sum
of the areas of all the other circles as 1 is to

B+C 4 . ,C+4 B sin‘A+B ¢
1 % % 2 L g
40.- O and 0" are respectively the centres of the circles
described about and inscribed in a plane triangle 4BC. Join
04, 0B,0C, 04,0B, 0C, and let R, R, R, r, 7, 7, be reéspect-
ively the radii of the circles circumscribing the triangles BOC,
€04, A0B, BOC, CO4, AO'B. 1If R be the radius of the circle
circumseribing the given triangle ABO, shew that
P R _b_ ¢ _abe
“arire M™METER B
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41. From any point P within or without a triangle 4.BC,
perpendiculars PA’, PB’, PC" are dropped upon the sides BC, 4,
AB; and circles are described about the triangles PA'B, PB(',
P(’4’. Shew that the area of the triangle formed by joining the
centres of these circles is one-fourth of the area of the triangle
4BC.

42. Three circles touch each other externally; prove that the
square of the area of the triangle formed by joining their centres
is equal to the product of the sum and product of their radii.

43. If the sides of a triangle be in geometrical progression,
and thé perpendiculars from the angles upon the opposite sides be
taken as the sides of a new triangle, then the angles of this new
triangle will be equal to those of the original triangle.

44. 1If a, B, y be the ratios which the sides @, b, ¢ of a triangle
bear to the perpendiculars upon them from the opposxte angles
4, B, C, then o'+ B°+ ¥ ~2(af + By+ya)+4=0.

45, In any triangle shew that

C c
008— Sm—

0=(G—b) - B_(a.*-b)-T?
sin 3 —5

46. The sides of a triangle are 65 and 25, and the difference
of the opposite angles is 60°; find all the angles, having given
log 3=4771213, log2="-3010300, .
L tan 52° 24’ =10-1134508, L tan52° 25'=101137122.

47, If perpendiculars be drawn from the angles of a triangle
to the opposite sides, shew that the sides of the triangle formed by
joining the feet of those perpendiculars are a cos 4, b cos B, and
ccos C'; and thence shew that

a® cos’ 4 — b* cos® B — ¢* cos’C
2b¢ cos B cos C

=cos 24,
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48.. Bix circles are inscribed between the three escribed circles
of a triangle and the angular points, each touching a side and
a side produced; prove that the products of their radii taken
alternately are equal.

49. If R be the'radius of the circle circumseribing a triangle,
p the radius of an escribed circle, the distance of the centres of
these circles is \/(R'+ 2Rp).

50. Lines are drawn from the angles 4, B, C of a tﬁangle
through any point P meeting the opposite sides of the triangle in
the points 4, B, (" respectively; shew that

- AB'. B(".CA'=A(C'. BA'. OB,

51. Shew that the perpen&iculars from .the angles of a tri-,
_angle upon the opposite sides meet in a point.

52. Shew that the lines which bisect the internal angles of
a triangle meet in a point.

53. Shew that the lines which join the angles of a triangle
with the middle points of the opposite sides meet in a point.

54. Shew that the lines which join the angles of a triangle
with the points where the inscribed circle touches the opposite
sides respectively, meet in a point.

55. A quadrilateral figure is so taken that a circle can be
described about it and inscribed in it. If its sides be produced in
both directions, and #,, 7;, 7,, 75, be the radii of the cireles, in-
scribed in the triangles formed on two sides, and escribed on the
other two sides, then ,, 7y, 7,, 7, =1r*, where 7 is the radius of the
circle inscribed in the quadrilateral.
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XVII. ON THE USE OF SUBSIDIARY ANGLES IN
SOLVING EQUATIONS AND IN ADAPTING FOR-
MULZA TO LOGARITHMIC COMPUTATION.

259. Wae shall now shew how to obtain the numerical values

of the roots of a quadratic equation by the aid of Trigonometrical
Tables.

(1) Suppose the equation to be
o' —2px+¢=0,
where p and ¢ are both positive; from this equation we obtain

x:p*.f/(p'-q)#’{l*\/(l';%)}'

Now if g is less than p'a.ssnmel—z-,=sin’0; thus
0 . o0
z=p (1 +cos ) =2p cos 37 OF 2p sin’ 3
If ¢ is greater than p* the roots are impossible; we may then
assume L = sec’ 0; thus
2=p{l%,/(-1)tan 6},
(2) Suppose the equation to be
o'~ 2px—-gq=0,
where p and g are both positive; from this equation we obtain

S

Nowassumetan'G:I%; thus

cosf =1 008 § = 1
z=p(ll|l8600)=p 0080 =h/q nn o
0

0
=,chot-2- or -,/q tan 5.
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"'(3) If the equation is of the form o' + 2px + ¢ = 0, where
» and g are positive, we can solve the equation &*— 2pz+¢=0, and
then change the sign of the roots (Algebra, Art. 340).

(4) If the equation be of the form z*+ 2pz—q=0, where
» and g are positive, we can solve the equation 2*—2pz—q=0,
and then change the sign of the roots,

260. In like manner we may obtain the numerical value of
the roots of & cubic equation by the aid of Trigonometrical Tables ;
we will exemplify this by considering one case.

Let the equation be 2® — gzz—»=0, and suppose 277* less than
4¢". Put z=ny; thus

'y’ — qny—r=0,
therefore y'-%"f-£=0.

Now by Art. 91, cos’a—gcosa-msa=0;

4 4
3 r cosd
assume Yy =cosa, Zz;—{i; then;.:._ra;
I ]
thus n=(43—q) , cos3a=4r(4%);

the last equation determines 3a, and thus a is known, then
dg\d
y=cose and z=ncosa= (?) cos a,

The value of cos 3a is less than unity, since we have supposed
277° less than 44" .

It appears from Art. 105 that we might also suppose

s (),
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consistently with the value of cos 3a given above; thus finally the
three roots of the cubic equation are

(q) cosa and 2 (q) cos (g d:a)
.where cos Ja = 3 (§>‘
g

261. “If in mathematical researches equations like those that
have been given of the second and third degree, presented them-
selves to be solved, their solution would be conveniently effected
by the preceding methods, and by the aid of the Trigonometrical
Tables ; but the truth is, in the application of Mathematics to
Physics the solution of equations is an operation that very rarely
is requisite, and consequently the preceding application of Trigo-
nometrical Formule is to be considered as a matter rather of
curiosity than of utility.”—(Woodhouse's Z'rigonometry.)

262. To the examples which have already occurred of the
use of subsidiary angles we will add two more.

(1) Required to adapt a+b to logarithmic computation.
If @ and b are necessarily positiye we may proceed thus ; assume

ll:tan'o; then
a

a+b=a(1+§)=a(1+tan'o)=am'o;

If a and b are not necessarily both positive we may proceed
thus; assume %——j tan 6, then

a+b=a(1+§)=a(l+t¢n0)—aﬁ(‘ffs—o 5:72.
_an2 sin (0+§).

Y
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(2) Required to adapt acosa=bsina to logarithmic
computation. Let :—:: tan 0; thus

acosaxb sina:a(cosa-b-‘b; sina):a(cosa-l:tanO sin )

a @
=mcos(a—0) or mcos(a+0).

MISCELLANEOUS EXAMPLES.

1. Solve 2*+ 9ag’+ 212 +13=0.

2. Shew that the roots of the equation a’—3x—1=0 are
2 cos 20° —2sin10°% — 2 cos 40°.

3. Bhew that the roots of the equation «°®—pa®+ gr=r=0

LI P Sreqs  (5\*
are 2(25)-) cos = and 2(%) cos"—;—a, where 003'4:;—(;)

. 2 5

provided p*=5¢ and (%) be less than (g) :
4. Find the roots of the equation

2~ 102 + 20z~ 8 = 0.

5. A person wishes to ascertain the side BC of a triangular
field ABC, but is only able to make measurement of lines within
the boundary of a circle which passes through 4 and touches BC;
shew how after measuring four lines he may determine .BC.

6. Two men standing at the same point C observe the hori-
zontal angle subtended by two objects 4 and .B; they then both
move away, one in the direction 4C, the other in the direction BC,
until each observes the horizontal angle to be half what it was
before. The distance each walked being given and the horizontal
angle at C, determine the distance 45, :
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7. Thé altitude of a balloon at noon is observed at three
places 4, B, C simultaneously to be 45°, 45%, and 60° respectively ;
4 and B are respectively west and north of C; form an equation
for determining the height of the balloon:

8. The distances b and ¢ of a station 4 from two other
stations B and C are known, and the angle BAC is required. It
not being practicable to observe the angle BAC, the angle BOC
(a) and the angle A0C (B) are taken at a position O situated in
the lane ABC, at a small known distance » from 4. Shew that

be the circular measure of the angle (BAC'-BOC) then

appronmn.tely
0=n{sm(a. /3) : }

9. At a distance of 50 foet from the foot of a tower the eleva-
tion of its top ig 45°; if the elevation and the distance be correctly
measured within 1" and 1 inch respectively, find approxxmately
the greatest error in the height.

10. A person standing at a distance @ from a tower sur-
mounted by a spire, observes the tower and spire to subtend the
same angle; if b be the known height of the tower, express the
height of the spire (¢) in terms of b and a.

If y be the error in the height of the spire oorrespondmg toa
small error B in the height of the tower, shew that

Z-—E 46’0,’}
c b{1+a‘—b‘ :

11.. One side of a triangle and the opposite angle remain con-
stant; shew that the small variations of the other sides y and 8
are connected by the relation

vysecC + Bsec B=0.
12, The angular altitude and breadth of a cylindrical tower

on a level plane are observed to be a and B respectively; and at a
point & feet nearer the tower they are found to be o’ and §8’; find
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the height and radius of the tower, Kind also the relation exist-
ing between q, o, B, B.

13. 1In the preceding question if the observed angular breadth
be subject to an error 8, and if p be the greatest consequent error
in the caloulated radius (r), shew that p will be given by the
‘equation

?:eoti.(ﬁ’-ﬂ){oosecgoosec%—ootgoot%}&

If B=60°, B'=120° 8=6, find approximately the ratio of the
greatest error in the calculated radius to the radius.

14, P, @, R are three known positions in a straight line, and
PQ, QR are observed to subtend equal angles at a certain point S;
find the error in the calculated distance of § from @ in conse-
quence of a small error o in the observed angles.

XVIIL. INVERSE TRIGONOMETRICAL FUNCTIONS,

263. The equation sinz=a asserts that = is an angle of
which the sine is @; it is found convenient to have a notation for
expressing this relation in which « stands alone. The notation
used is this, #=sin""a. Similarly the equation #=cos™a ex-
presses that x is an angle of which the cosine is 4 ; and z=tan™"a
expresses that « is an angle of which the tangent is &; and so on.

264. Experience will prove that the notation here given is
often convenient; and we may shew that it is not altogether an
arbétrary notation, but one that naturally presents itself. For, let
any fanction of « be denoted by f(x); then the same function of
JS(), that is, f{f(x)}, may be briefly and conveniently denoted by
S*(@). Thus, for example, the logarithm of the logarithm of
may be denoted by log*z Similarly f[f{f(x)}] may be briefly
and conveniently denoted by f*(«); and so on. Thus with this
notation we have, when m and n are positive integers,

Fr@ =@
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Now we may examine what meaning it will be necessary to
ascribe to /°(z), in order that the relation just given may hold
when m or n is zero, Suppose n =0, then the relation becomes

| FL@) =, ‘
this leads us to settle that f°(x) shall be considered equal to a.

Again we may examine what meaning it will be necessary to
ascribe to /~'(x) in order that the relation /™ f*(z)=/"""(x) may
hold when m or n is— 1. Suppose m=1 and n=-1; thus the
relation becomes

‘ S @) =) =2,
80 that /' () must denote a quantity whose function f is .

Thus sin~'« should denote a quantity whose sine is z; and
this is the meaning which we have already assigned to ‘the symbol.

It will be observed that consistently with the remarks here
made, sin*s should stand for sin (sin #), and not for sinz x sin z.
But as sin (sin «) is a function which rarely occurs, it is custom-
aty to use sin*x for what should be denoted by (sin )",

265. Any relation which has been established among trigo-
nometrical functions may be expressed by means of the ‘nverse
notation. Thus, for example, we know that

2tan 0
b 20 = tan' g

this may be written

o L 2tanf
2=t (=)
let " tan f=a, so that H=tan"'a; thus

2a

—&

2 tan™' @ =tan™! i

Bimilarly the relation sin 36 = 3sin §—4 sin®d may be ex-
pressed thus,
3sin™’ g = gin~* (30— 44").
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EXAMPLES.

1. Prove that tan™ §=2tan™" }.
2. Find the value of sin (sin™ } + cos™ §).

. U ¢ G- 8
-1 = -192 S
3. Prove that sin i sin 5 +8in i

4. Find the value of tan (tan™ 2+ cot™ z).
5. Prove that tan™ §+tan™ § +tan™ § + tan™ }=7T.

_1a b _]b -C —l
6. Prove that tan™'a = tan 1+ab + tan 1+bc+tan
7. Find the tangent of
| o1 1 "w
3 tan Ti+m § + tan™?! '2—6—2.

8. Shew that \
tan™' {(\/2 + l) tana} —tan™' {(,/2 — 1) tan a} = tan™* (sm 2a).
9, If tan (0—q)tan (f—B)=tan’f; then
2 sin o sin B
gin(a+p) °
- ,/(41) T

- 10. Prove that cos™ 1—L+(mec -

- i T

N S I
S Provethatsm g rEn” gz +an

6= tan™

8l=
vl 3

) et LT e L
12. Prove that $ tan Z+ta.n %=1 tan 1985

12a-b a2b-a =
578 TR T 3T

“14. Prove that tan (2 tan™ a) =2 tan (tan™’ & + tan™’ o).

13. Prove that tan™'
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15.

16.

17.
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Prove that
tan™ (4 tan 24) + tan™" (cot 4) + tan™" (cot® 4) = 0.

Prove that
2 _ ton (T4 geos® T_ -12)
7-‘”‘,(1"%"“ b>'+tm(4 4 cos 5)*
Prove that

22: cosec’ (; tan™ g) + %' sec’ ({ tan™ %) =(a+b)(a"+ ).

Solve the following seven equations in 2.

N 180

19,

20.
21.
92,
23.

24,

25.

26.

27.

sin~' 2 +sin~' 5 =7
2 4

gin! 2a +sin™ 26
Rl o

tan™ (z—1) + tan™" z + tan™" (z + 1) = tan™" 3.

=2tan"'a,

sin™' 22 —sin~' & \/3 =sin"" &,
1 =»
tan™' 1+ 2 tan™' } + tan™ } + tan =1

sin 2 cos™! cot 2 tan™? 2 =0.

tan“L=tan“}-+tan"-,—l—-—.
a-1 z a—-z+1

4 1. .3
Ifst—?och—g, shew that 0-§sm yg

If sin (r cos 6) = cos (w sin 0), shew that 6=} sin™ §.
Shew that if sin® + sin® ¢ = §, one of the values of ¥

which satisfy the equation

y =sin" (sin 0+ sin ¢) + gin™" (sin 0 - sin &)
(2n+1)§. |
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28. Find z from the following equation,

1 tm—llz ta,n_l -];

-1
3 tan 2+»,/3 s 3

29. Shew that one of the expressions

_,2b+a Bta—c g4 '\/a+b
a+c

is an odd multiple of 3 R

30. Find all the positive integral solutions of
tan™ +ta.n"‘.;1/-=ta.n" 3.

31. Shew that if ¢ be a positive integer, the equation
tan™' z +tan™' y = tan~' ¢
has no positive integral solutions ; while the equation
tan™ 1 + tan™ L =i‘.an"ll
z y c

has as many as there are different divisors of 1 +¢*,

32. Prove that f,a.n"';'E =tan ST~ Y Lot S5 T4

cy+ax ce +1
+tan= 2% 4 fan ——-" Gty gan 1
cc,+1 ¢y +1 c,’
where ¢, ¢, ...... c, are any quantities whatever,

33. The sum of any number of angles

%ab . ¥
Gl ore Ll

may be ;axpressed in the form

sin™

2mn
N §
. s~ ——s,
where m and n are rational functions of a, b, @, ¥, ......

T. T. _ 14
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34, Write down the general value of sin"(;zl—)— , where m

is an integer.

35. 'Write down the general value of cos™ (.—:—;I-', where m

is an integer,

XTX, DE MOIVRES THEOREM.

266. The student has already learned from Algebra that
although the square root of a negative quantity is the symbol of
an impossible operation, yet such roots are of use in mathematical
investigations, It is ysual to adopt the convention that

Vi-a)=a J(-1)

and that such expressions as a ,/(—1) shall be subject to all the
laws of algebraical transformations. In the remainder of the pre-
sent work it will be found that ,/(— 1) occurs very frequently in
our investigations; we shall for the present assume that this
expression may be freely used like any real algebraical expression,
and hereafter we shall give some remarks on the question of the
validity of demonstrations which are obtained by the use of the
symbol ,/(—1). (See slso 4lgebra, Chap. xxv.) ‘

267. De Moivre's Theorem. Whatever be the value of n posi-
tive or megative, integral or fractional, cosnf + ,/(—1)sinng is
one of the values of {cos 0 + ,/(—1)sin 6}~

Multiply cos a +,/(- 1) sina by cos 8+,/(-1) sin 8;
the product is

cosa cos B —sin a sin B+ ,/(— 1) {sin a cos B + cos a sin B},
that is, cos (a+B)+,/(~1)sin(a+pg);.
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multiply the last expression by
: : cosy +./(~1) siny;
the product is .
cos(a+fB+y)+ ./ (-1)sin(a+B+17)

By proceeding in this way we obtain the product of any num-
ber of factors of the form cosa +,/(—1)sina. Suppose there are
n of these factors, each factor being cos 6 +,/(—1)sind; we then
have

{cos 6 + ,/(— 1) sin 6}" = cos 76 + \/(— 1) sin nd.
This proves De Moivre’s theorem when n is & positive integer.

Next, let n» be a negasive infeger; suppose n =— m, then
{cos 60 + /(= 1) &in 6}" = {cos 6 + ,/(~ 1) sin 6}
1
= {cos 0+ /(- 1) sin "
: 1 .
~ cosmb + 3J(— 1) sinmd ’
multiply both numerator and denominator by
cos md — ,/(~ 1) ein mé),
cos mf — \f(— 1) sin mb _
cos’mf +sin*mb ’

thus we obtain

that is cosmf — /(- 1) sin m4;
that s 008 (~ 1) + o/(~ 1) sin (- mé),
or 008 20 + /(- 1) sin nb.

This proves De Moivre’s theorem when # is a negative integer.
Thus, gince when # is any integer,
{008 6 + \/(— 1) sin 6}" = cos n6 + ,/(~ 1) sin né,
it follows that cos 6 + ,/(— 1) sin 6 is one of the values of
1
{cos nf + /(- 1) sin nb}*,

when % is any integer.
14—2
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Lastly, then, let 7 be & fraction ; suppose n =§-, then

{008 6+ /(1) 8in 6}" = {oas 6+ /(1) sin )¢
= {oon p0-+ /(- 1)sin p6}1,

and one of the values of the last expression is
20 . pb
cos *— +,/(- 1) sin*—.
2+ (- sin?
Thus De Moivre’s theorem is completely established.

268, We have shewn that when = is fractional,
cos 76 + /(- 1) sin nf
is one of the values of -
foos 8.+ /(— 1) sin 6';
we shall now shew how all the values of the last expression may
be obtained. Suppose n=§. Now cos § and sin § remain un-

changed when 0 is increased by any multiple of 2, while by put-
ting 6 + 2rr instead of 6, and ascribing to = in succession different
integral values the expression cos 26 + ,/(— l)smn0 assumes ¢ dif-
ferent values and no more. For suppose  successively equal to
0,1,2,..... g¢—1; then we obtain the series of angles

P9 p(0+27) p(0+4n) P (0 + 2% — 27)
EXX] ’

q’ q ) q saee q

and we know that no two of these angles can have the same sine
and the same cosine, because no two of these angles are equal or
 differ by a multiple of 2. (See Art, 93.) Hence we obtain
g different values of the expression cosnd + \/(—1)sinnf, We
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shall not in this way obtain more than ¢ different values, for if
7 =8 + mq, where m is any inleger positive or negative,
cos n (6 2r7) and sinn (0 + 2rx)
are respectively equal to
cosn (0 + 2sw) and sinn (6 + 2s7).
‘We can thus find ¢ different values for the expression
{o08 0+ J/(—1) sin B¢ ;

that is, we can find ¢ different expressions, which by being raised
to the ¢® power, produce cospf+,/(—1)sinpf. And it is known
from the theory of equations that there are ¢ values of z, and no
more, which satisfy the equation 2= ¢, where ¢ is either real or of
the form a+b ,/(—1); thus we infer that we know all the values
of the expression

{oos 8 + /(~ 1) sin 6}s.

269. We proceed to deduce some important results from De
Moivre’s theorem. In the equation

008 76 + /(— 1) sin nd = {c08 0 + /(~ 1) sin 6",

suppose n a positive integer. Expand the right-hand member by
the Binomial Theorem, and equate the possible and impossible
parts of the two members; thus

t)) cos™* @ sin* 6

nn
1.2 ’

cos nd =cos" 0 —

+”(”-1)(7E' 2)(n-3) 008" 0 sin* 6 —

sin nf =n cos"' 0 ﬁnO—w cos*~ @ gin® §

E

cos"*0 sin® @~ ......

. n(n—1)(n—2) (n—3)(n—4)
8
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270. 'The preceding formulee hold whether = be odd or even,
but the last. terms of the expressions on the right-hand side are
different in the two cases, and it will be useful to distinguish the
cases. -

If n be even, the last term of the expansion of

{cos 6 + /(- 1) sin 6}
is possible, namely, (— 1)'?. sin" §; and the last term but one is
n—-1
impossible, namely, n(—1)% cos 8 gin*~* 6, which may be written
-2
NJ(E=1)n(=1)3 cosd sin*' . Thus when x is even
the last term of cos nf is (— 1)7 sin" 6,
n~8
and the last term of sinnf is n(— 1) cos 6 sin"™" 6.
If n be odd, the last term of the expansion of {cos6+,/(— 1) siné}"
is impossible, namely (—l)% sin® 6, which may be written
n-1
: NJED(-1) T sin 5 ~
and the last term but one is possible, namely
[}
n(—1)% cosd sin™' 6.
Thus, when % is odd,
n-1
“the last term of cos 76 is % (—1)3 cos @ sin"™’ 6,
1
and the last term of sin nd is (— 1) sin" 4.

271. From the formule for sin %) and cosnf we can deduce
an expression for tann6 in terms of the powers of tan 6.

sin %0
cos nf

For tan nf =

ncos™! @ sin § — cos" 2 @ sin®0 + ...

cos'a—ﬁgl"—_-z-l—)cos"’e gin® 0+ ...

n(n~1)(n-2)
3
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Now divide both numerator and denominator of this expres-
sion by cos"0; thus we find for tan nf the expression

tand 200D D)D)

[3
A, o, - DE-nh-3, .
1- 4.3 tan®6 + [ tan*f —

272. If n be even, the last term of the numerator of tan nd
is n(— l)g;lta.n"‘o and the last term of the denominator is
(- 1)’ tan 0. If n be odd, the last term of the numerator is
(- 1) 1 ta.n‘0 and the last term of the denominator is
n (- l) 3 ta.n"" 0.

These results follow from those established in Art. 270,
273. We may also obtain general formuls for the sine, cosine,

and tangent of the sum of any number of angles which are not
all equal. We have seen (Art. 267) that

{cosa +,/(=1) sin a} {cos B + ,/(— 1) sin B} {cosy + /(- 1)siny}......
=cos(a+B+y+...c. )+J(—1)sin(a+/3+y......).
Now cosa +,/(~1)sina=cosa {1 +,/(~1) tana},
o8B+ J(~1)sin B=cos B{L+/(~ 1)tan B},

.................................

thus we obtain
cosa cosf cosy...{1+./(-1)tan a}{1+,/(-1)tan B} {1+,/(-1) tany}...
=cos(e+B+y+.....)+ (-Dsin(@+B+y+......).
Let s, denote the sum tana + tan B+tany+...... ; let s,
denote the sum of the products of the tangents taken two at

a time; let s, denote the sum of the products of the tangents
taken three at a time; and o on,
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Then by multiplying together the factors 1+ ,/(—1)tana,
1+,/(-1)tanB, 1+,/(~1)tany, ...... and equating possible and
impossible parts we obtain

cos(a+B+y+...)=cosacosBcosy...{l—8,+8,—3,+...},
sin(a+B+y+...)=cosacosBcosy...{s, —8,+8,—8,+...}
By division,

tan(a+B+y+ ...)=811_3’+8‘_a7+

—8,+8,—8,+...

" If n be even, the last term in the numerator is (~1) * o,_,,

and the last term in the denominator is (- 1); 8 ; if n be odd, the
n-1
last term in the numerator is (—1)¥ s,, and the last term in the

n-1
2

denominator is (—~1)* s,_,. If the angles a, f3, ... are all equal,
the. formula will coincide with that given in Art. 271.

274. We shall now prove formule for the expansion of sina
and cos a in series of powers of a.

We have, when = is a positive integer,

n(n-1)
1.2

cos néd = cos™ 0 — cos"~* 4 sin® 6

nn-1)n-2)(n-3) . ., .,

+ [ cos*™* 0 sin*f—......
Let nf=a; and suppose n to increase without limit, and let
0 8o change that » may remain a positive integer and n6 be always
equal to a; thus § must diminish without limit. The preceding

equation may be written

a—0)

1.2
3 4
L 4(@=6)(—26)(a~ 30) om0 (sm__ﬂ)

L4 [

a
cosa = cos" § —

cos™*@ _su;

------
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Now when 7 increases without limit, and, therefore, § dimi-

nishes without limit, 2‘52 is equal to unity, and so is every power
sin 0

OfT upto(% ; also cos @ is unity and so is every power of

cos @ up to cos® 6 (Art. 150). Hence the above formula becomes

cos -1—‘i+a‘—a.+
a= 1.2 E E ......
Also
smn0=nmﬂosino-ﬂ1%@—"i)mﬂosin'o+ ......
. o o
thus sina.=acos""osu;0—a(a al),:é(a 20)008"'0(&—3—0)4- ..... .

Hence, by supposing n to increase without limit, we obtain

a* o

. a’
sina=a— g =t

The results of this article are of the greatest importance; we
shall make some remarks upon them in the next three articles.

275. It must be observed with respect to the formule esta-
blished for the expansion of sina and cosa, that a is the circular
measure of the angle considered; for it is only when an angle is
estimated in circular measure that m—Iolg is unity when @ is indefi-
~ nitely diminished. It is easy to obtain the requisite modification
of the formule when any other unit of angular measurement is
adopted. Thus, for example,

< o @ o
mnn:a—E+E5-......

where a is the circular measure of the angle of n°; thus a = l%:) ’

and we have
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sinn® = 1% ) )
180 hi 80/ " 5 (180 """
o . 1/nmw 1 /nr
o— — - —_— — —— —-—

Similarly cosn’=1 2(180 +Li 180)

976. The series for sina and cosa are convergent for aoll
values of a.

el _ Sn-1
The 2 term in the series for sina is g—l)_fl; hence the
|2n— 1

numerical value of the ratio of the (n+1)® term to the =* is

a’
2n(2n + 1)
large that for snch value of n and all greater values

; and whatever be the value of a we can take u so

I
2n(2n +1)
shall be less than any assigned quantity; hence the series is con-
vergent (4dlgebra, Art. 559).

Similarly it may be shewn tha.t ‘the series for cosa is always
convergent.

277. The proof given in Art. 274 involves one point that
may not at first appear quite satisfactory. The (r+1)* term of
cos e is strictly

1y n(n—1)(n— 2) (n—2r+1)

this we write in the form
- 1),0.(0.-— 0) (a — 20)...(a — 2r0 + o)m,_,o(sii%".
[2r 0
Now it is proved in Art. 150 that the limit of cos®™ @ is
3 r
unity, and also that the limit of (‘“‘-é_") is unity; the only ques-
tion is whether the limit of
a(a—0)(a—26)...(a—2r0 + 9)
[2r lﬁ

Jor all values of r. This is obviously true when r=1; that is,

cos™*@sin*"g; -
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the limit of a(a'2 0) ; is § ; and we can shew by induction that the

required result is always true. For assume tha.t
a(6—0)(a=20)...(a—2r0+6) _

| [2r I

where R djminishes without limit when 0 does 80, so that the

limit of the right-hand member is L21’ introduce a new factor

a- 20
Tre1 ) thus

a(a—0)...(a—2r8) _ R}{ o 9rf }
|2r +1 {l2r 2r+1 2r+1
o™ Ra 200 {i'__'_ }
|1r+ M7 Sl e |2

and when 6 diminishes mthout limit all the terms on the right-
+1
hand side vanish except ——— [2 T which is therefore the limit of the

left-hand member. Similarly we can shew that when another
2'.0 lr+.
factor 22190, mtroduoed the limit is ; and so on.
2 + 2 [ -+ 2

278. The following example will shew how the series for
cos @ may be practically useful. Suppose two sides a and b of a
triangle are known, and the included angle C; if C' be a very
obtuse angle we can give a convenient expression for the third side
of the triangle.

For suppose = —0 to be the circular measure of the angle C,
so that 0 is very small; thus

' =a*+b"—-2abcos C =a*+b*+ 2ab cos §
—a*+ 5+ 2ab (1 - ‘-92-') approximately,

= (a + b - abe®
=(a+b)’{1-(£%,}.

+R

N
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Hence, by extracting the square root,

abd® .
c=(a+b) { 1- 2_(a—+b—)'} approximately.

'mnpms. .

1. Extract the square root of cos 44 & ,/(— 1) sin 44.
2. Find the values of (- 1)%.

3. Obtain the six values of (- 1)2.

4. Find the three values of {1 +,/(- 1)}}.

gind 2165

5. Given T = ‘21—66- )

measure of 3°

shew that 6 is nearly the circular

6. Given sin (% + o) = 51, find approximately the value of
6, neglecting powers of 6 above the second.

w’ a,x“
7. If E e N
shew that
(2n +1) 2n 2n+1) 22 (2n — 1) (2n — 2)
w1 =7 g G T 1 Bgug t -
8. If Ocotf=a,+af +af+..
shew that
a =_n_n;s_ 1»—4 JR Ml =1 (— l)

- L L5 |..n+l [_2n

hence find 0 cot§ to four terms.

9 If secO=a,+af+ab'+...+a,6"+..
shew that .
Bon—s +. (— 1)‘- %,

T e
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10. If cos 2a + /(1) sin 2a be substituted for ¢ in the ex-
be .. e

W’ and similar quantities for b and ¢, and the

result reduced to the form 4 + B ,/(- 1), find the values of 4 and
B in terms of a, S, 7.

pression

11. Shew that
{cos 6+ cos ¢ + ,/(— 1)(sin § +sin ¢)}*
+ {cos 0 +cos ¢ — ,/(— 1) (sin 6 + sin ¢)}*
=2-+1 (008 0;¢). cosn(o; 4’)’

12. Shew that if 2=¢""", and /(1 - ) =nc -1,
l+ccoso=—2—7-‘(l+m)(l+;).

13. Prove the following rule for finding the length of a
small circular arc; from eight times the chord of half the arc sub-
tract the chord of the whole arc, and one-third of the remainder
will give the length of the arc nearly.

14, From the identical equation
(z-8)(z—¢) (a: —c)(z— a) (x-a) (x—b) -1
=)= E=)6-a) (e=a)e=8)

deduce the following by assuming
= cos 20 + /(- 1) sin 20,
and corresponding assumptions for @, b, and ¢;
R
e
sin (6 — ) sin (0 — B)
sin (y — a) sin (y - B)

gin 2 (0 —7) = 0.
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XX. EXPANSIONS OF SOME TRIGONOMETRICAL
FUNCTIONS,

279. Lat « denote cos § + ,/(-1) sin@; then

1 1
z cos0+(-1)sm

1 1 ' .
thus @+-=2cosf, and 2—-=2,/(-1)sind;

0=cosa—J(—l)ain0;

«* ={cos 0+ ,/(- 1) sin 6}" = cos nf + ,/(— 1) sin 6,

1 1 1

% {cos0+ /(- 1)sin O]  cosnd+ of(~ 1) sin nf
=cosnf— /(- 1)sinnf;

1 1 .
thys az'+?=2oosn0, and w'—?=2~/(—l)mnn0.
‘We shall find this notation useful in the following investi-
gations.

280. To express cos”6 in terms of cosines qf multiples of 0
when 1 8 a positive infeger.

» .0 __ 1 ._ —l_l_ ”'("'— 1) it _1_
2" cos' 0-(z+5)_w‘+nx' .z-h—l-—.—z—a.’ 'a:’+'"
WP n—-1 1 1 1
( )@. ,.__.+ z,_l'l'?.

Now rearrange the terms on the right-hand side, putting
together the first term and the last, the second and the last but
one, and so on; thus we obtain

z’+1+n(m""+ —_ +"(”_1)(z'“ z.l_.) -3

but z‘+l=2oosn0 m‘"+%=2m(ﬂ—2)0,mdsoon;
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therefore

- 2™ cos”0 = cos nb +n cos (n— 2)0+n(n 1)

cos(n—4)0+ ...
n(n 1)...(n~ r+1)

Lz

cos (n 2r) 0+ .
The last term of the series on the right-hand side will take
different forms according as # is even or odd. In the expansion

of (a: + l) by the binomial theorem there are n + 1 terms ; thus

when n is even, there will be a middle term, namely the (2 + 1)
which is
n(n-1)...(n—4in+1) 1;. . that is, n(n-1)...(dn + 1)
l_&"‘ 23 I_%n
Hence, when 7 is even, the last term of 2" cos* 0 is

n(n—=1).. (}n+1)
2|4n

When 7 is odd suppose it =3m+1; there are two middle

terms in the expansion of (ac + ) namely, the (m+1)* and
(m+2)‘ll their sum is
n(n—l)...(n—m+1) z-&-l)
m x
Hence when 7 is odd, the last term of 2" cos" 0 is

n(n-1)...4(n+3)
_I.{(”" ) cos 0.

281. We shall find that sin"0 can be expressed in terms of
cosines of multiples of 0 if n be an even positive integer, and in
terms of sines of multiples of 4 if n be an odd positive integer ;
this will appear in the following two articles,

<
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282. To express sinf in terms of cosines of multiples of 6,
when n 18 an even positive integer, '

. I 1 ll n(n 1) ..,
2(—-1)sm0(—— mofomat 1 B e T

n—-g a—1 L]
+n(n_ l)w'. (— 1) +nz -—-l-) + ——1-> .
1.2 x x @
Now rearrange the terms on the right-hand side, putting
together the first term and the last, the second and the last but
oue, and 80 on; thus we obtain
1 1 nn-1)/,, 1
x"+;, —“(xu*'zn-:) + 1.2 (x +z-—4) e

, (- 1)’4n(n 1).. (§n+1)'

[4»
Therefore _
(- l)% sin" @ =cosnf—n cos (n—2) 0 + ”{"_21) (cosn —4)6 —
+(—i)”n(n_1)"L'£(n_r+l)cos(n—2r)0+...
l,n(n 1).. (§n+l)
+( ) 2{4,,‘
283. To express sin"0 in terms of sines of multiples of 6
when 1 i8 an odd positive integer.
. 3 _ll n(n 1) .,
2" (- 1) sin" 0= (_-) T =
n(n-1) 1 1
g g e o

Now rearrange the terms on the right-hand side, putting
together the first term and the last, the second and the last but
one, and so on; thus we obtain
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z"-—%,—n(z“' .x__)+7—‘(n—l)(x"“ __4)-...
PR e . §m+3) 1)’

TICES)) s
but 2~ =3 /(~1)sinnb,
1

- 7= 2,/(-1)sin(n - 2) 4,
and 80 on; therefore

2" (< 1'% sin"0 = sin 0 - sin (n — 2) 6 + n(ﬂ—l)

sin (n—4)8

sin (n—6) 0 +...+ (- 1)7”(”li)m *f;‘*a)sino.

284. If n be not a positive integer, the expressions for cos"6
and sin"6 in terms of the cosiries and sines of multiples of @ are

very complicated. For these we may refer to Peacock’s Algebra,
Vol. . pp. 435—440

_n(n—l)(n—2)
13

285. In Art. 269 it is shewn that when n is a positive
integer,

008 1 = 0080 — ”1(“ "21) c0s™ 0 gin%
n(n 1)('l'|t;i 2) (n —3) c08"40 8in*6 —
since  sin'0=1-cos'd, sinf=(l—ocos'd),

and so on, it is obvious that cosn6 can be expressed in terms of
powers of cos8; we will now give a direct investigation of this
" expression. . .

286. Toewpress cosnamacmcsqfdescamhfng powers of
cos 6 when n 8 o positive integer.
Let w=cos§ +,/(— 1) sin 6,
T. T 16
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so that :c+l=20080, andz'+l=2oosn0;

] . «
now (l—zz)(l—g =1-z(z+-:-:)+z’=1—z(c—z),
where ¢=2cosf.

Take the logarithms of both members; thus
log (1 — 2x) + log (1 - 2) =log{l—-z2(c—2)};
z 2 2
the?efore m+‘§z'z’+§z'm’+...+;+1}—£,+&w—,+...
=z(c—2)+32 (c—-2) ' +32’(c—2)+... +;‘z‘(c—z)'+

In this identity we may equate the coefficients of 2"
the left-hand side the coefficient” of 2" is ;bl- " += ! ; that is,

gcosna; the coefficient of 2* on the right-hand side must be

obtained by picking out the coefficient of 2* from the expansion of

}-}z" (¢ —2)" and of the terms which precede it.
. . 1 .
The coefficient of 2" in " 2(c—2)is s

2 e~ z)"‘
n-—1

- l(n 1)¢

the coefficient of 2* in

ot i =TT o 1 (=D @-8)
the coefficient of 2" in n_2 BaT3 1.3 ¢

ir 2 (c—-2)""is

(—l)"(n r—-r-1)...(n- 2r+1)c._,,
n—r L
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Thus 2 cos nd = (2 cos 6)"—n (2 cosO)"'+~1—&—%?:T3)(2 cos 6)** —

nln—-r-1)(n—r—2)...(6 —

i

v+ (=1y

The series on the right hand is to continue so long as the
powers of 2 cos § are not negative.

2r+1) (2 cos ) +

987. Tt is obvious either from the above series or from that
in Art. 269, that when n is an even positive integer cosnf can be
arranged in a series of powers of sin®f, Thus we may assume in
this case

cosnf=1+4,sin"0+ 4, sin*0+ 4,800+ ... +4 sin*4.

It is clear that the first term must be unity, because when
60 =0 we have sin6=0 and cosnf=1. Now we shall adopt an
indirect method of determining the values of the coefficients
4, 4,,...... Change § into 6+4; thus cosnf becomes

cos nf cos nk — sin nf sin nk;

now put for cosnh and sinnk their values in terms of nmh by
Art, 274 ; thus the above expression becomes

278
cosno—nhsinnO—"—zh cosnf + &e.

Again in the term 4, s1n"0cha.nge0mt00+h weﬂnuget
A, (sin 6 cosk + cos § sin 2)™, that is,

4, (n0+hoond— 2 sind— )",
If this be expanded in powers of A the term involving A" is
A,,{”#Z;lsin“o e0e* 0 -'rsin“‘G}h’.
Equate the coefficients of 4*; thus

~ - cos = A, {oos" 0 — sin® 0} + 4, {2. 3 sin' § cos’ § - 2 sin*6}

+ .. +A,,{“Z-l(2r2———~l—) gin**0 cos* @ — r sin"0}+

156—2
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Now put 1 - sin® 6 for cos*6 on the right-hand side; then the
term containing sin* @ will be

”{2r§2r2 D, }+A ’(2r+f)(§r+l)

and this coefficient must be eﬁual to that of sin”@ in the series
' 2
for —-g—cosnﬂ, that is, to — < A,,, thus

2
5 An=24, =4, (r+1)@r+1)
n* — (2r)*

theret_'ore Alr+2=_m >

By means of this law we may form the coefficients in succes-
sion ; we may consider 4 ,=1; then

n
4=-1 2‘4‘ 2
. 4 =_n’—2’ n® (n* — 2°)
‘ 3.4 “1.2.3.¢
and so on.
Hence, finally,
IO o s R et I
oosn&_-l—l.zsm 6+ 4 sin‘g — 6 8in®6 + ...

In the above process by equatmg the coefficients of 4 we shall
obtain

—nsinnd= 4,28in6cos 0 +4,45i0°0 cos 0 +..+4 2'rsm"“0<>osﬂ+
Substitute the values of 4,, 4,... ; thus
_ -2 sin® (n*-2)(n*—4") . -,
sinnd = ncosO{smo T 0+ 5 sm0—...}
When # is odd, we may start by assuming
smnO—Aism0+A,sm 0+ 4,sin*0 +...+ 4 sin";
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then, by proceeding as before, we shall find

sinn0=nsi.n0—n(n._1)sin'0+ n(n' - 1) (" - 3Y) sin® @

[3 Lo
eosnG:cosO{l—%lsin'0+ Wm‘o—...}

288. In the four formule obtained in the preceding article
ehange § into g- 0; thus we have, if n be an even integer,

(- 1)%cosn0=1 - ’-;—.cos’O +Mms‘0—

P
- l)gﬂsinwﬂ:n sind {ooso - n’lz.’»g. cos’0+(nf— 2’)'2;‘"_ 4')czos‘a—. } ;
and if n be an odd integer,
- 1):;1008%0 =ncosf—— (T;; D s+ ("j._ ll?—ﬁ(n'_ 3') cos*f—
(- 1) 3 smno mn0{1 —%21- ’0+—(1"——-1)%—ﬂ }

MISCELLANEOUS EXAMPLES.

1. Expand (sin §)**** in terms of cosines of multiples of 4.
2. Expand (sin 6)*"*' in terms of sines of multiples of 6.
Expand (cos 6)™ in terms of cosines of multiples of 6.

Prove that in any triangle
a’cos } (B— C’) b cos § (C - 4) . c*cos § (4 - B)
oos§(3+0) cos (C+4) ° cosd(4+B)
=2(ab + bc + ca).
5. From the angles of a triangle ABC, perpendiculars AD,
BE, CF are let fall upon the opposite sides; prove that
a sin (BAD — CAD) + bsin (CBE — ABE) + ¢ sin (ACF — BCF)=0.
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6. From 4, B draw AD, BD perpendiculars respectively
to AC, BC. If p be the radius of the circle inscribed in 4BD, then
AB=p(sec 4 +sec B + tan 4 + tan B).

7. Three equal circles of radius a touch each other; shew
that the area of the space between them is

(,j3 - g) a’.

8. The area of a regular polygon inscribed in a circle is a geo-
metric mean between the areas of an inscribed and of a circum-
scribed regular polygon of half the number of sides.

9. The area of a regular polygon circumscribed about a circle
is an harmonic mean between the areas of an inscribed regular
polygon of the same number of sides, and of a circumscribed
regular polygon of half that number.

10. If the side of a pentagon inscribed in a circle be ¢, the

.. e J(B+./5)
radius is Jan

11. Three circles whose radii are a, b, ¢ touch each other
externally; prove that the tangents at the points of contact meet
in a point whose distance from any one of them is

abe \} ’
(a +b+¢/”

12. The sides taken in order of a quadrilateral whose opposite
angles are supplementary are 3, 3, 4, 4; find the area and the
radii of the inscribed and circumseribed circles.

13. The area of a regular polygon inscribed in a circle is to
that of the circumscribed polygon of the same number of sides as
3 to 4; find the number of sides.

14. If the diameters of three circles which touch each other
be a, b, ¢, and a, B, y be the chords of the arcs between the points
of contact in each, shew that

#6166
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. .
15. Shew that the limit of (t“‘; 9)*, when 0 is- indefinitely
diminished, is e.

16. The two diago.na.ls of a quadrilateral figure whose oppo-
site angles are supplementary cannot be equal unless some one of
the sides be equal to the opposite one.

17. Two circles whose radii are a and b cut one another at
an angle y; shew that the length of the common chord is

2ab sin y
(@ + 2ab cos y + %)

18. The radius of the circle inscribed in a triangle can never
be greater than half the radius of the circle described about the
triangle.

XXI. EXPONENTIAL VALUES OF THE COSINE
AND SINE.

289. If we expand ¢ and ¢ by the exponential theorem
we obtain

_ k’xl kl 4 k' (]
(e”+e ) = 1+ If
k’z’ kx® k
&) = ——
L L

If it were possible to make 4¥*=—1, so that =1, F*'=-1,
and so on, then the right-hand member of the first equation
would be the expansion of cos, and the right-hand member of
the second equation would be the expansion of sinx (see Art.
274). Hence we are led to these results,

G“J(-l, + e—:v(—l) . G'V(—l,— e—:V(—l)

CoOST = 7 ) sma::-—2—~—/(Tl—)———.
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The meaning of these equations is simply this; if we expand
V" and ¢"VI™*, by the exponential theorem, in the same way

as if ,/(— 1) were a real quantity, we shall by the above formulse
obtain the known series for cos « and sin «,

These expressions for cosz and sinz are called the exponen-
‘ttal values of the cosine and sine.

290. From the exponential values of the cosine and sine we
may deduce similar values for the other trigonometrical functions.
Thus, for example,

VI _ ==Y

W = ) [V eV} ¢

‘We shall now use the exponential valwes in establishing certain
results.

291. To expand 0 in powers of tan 0.

VY _ g=04/(=1)

By Art. 290, ,/(-1)tanf= AV oy 5

1+./(-1)tan e~y

therefore T= /(1) tend = oD = eWVi-N),

Take the logarithms of both members; thus
20 /(- 1) =1log {1 +,/(—1) tan 6} — log {1 — ,/(— 1) tan 6}

=2~/(—1){ta.n0—-:1§ta.n'0+%tan‘0—...};
therefore 0=tan0—%—tan'0+%tan’0—...
This is called Gregory’s Series.
Let ‘ tan @ =z, so that 0 = tan™'x;

1 1
thus o tan"'v = 3% +5ac"
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292. The preceding investigation is unsatisfactory, because it
gives no indication of the extent to which the result may be relied
upon as arithmetically intelligible and true. The n* term of the
(_l)o—lxb—l
T2 -1

the (n+ 1) term to the n™is

last series is ; hence the numerical value of the ratio of

21:-]:1!' ; therefore the series is
In+1

convergent if  be less than unity (4lgebra, Art. 559). The series
is also convergent when x is equal to unity (4lgebra, Art. 558).
For values'of x greater than unity the series is mot convergent,

and is therefore not arithmetically intelligible.

293. Moreover tan™ x has an infinite number of values corre-
sponding to the same value of «, so that one member of what
appears as an equation admits of more values than the other;
this point is left unexplained in the investigation which has been
given.

The subject of series cannot be adequately treated without
using the Differential Calculus. The student must therefore be
referred to treatises on that subject for a satisfactory demonstra-
tion of Gregory’s Series. ~ It is there shewn that so long as 0 lies
between — 7 and 7, the result 6= tan 0 — 3 tan® 0+ < tan®6— ..

is absolutely true. (See Differential Calculus, Chapter VIL.)
If, however, 0 = nr + ¢, where ¢ lies between ——;; and 1—;, then

¢=tan¢—%tan’¢+%tan“¢— .
. 1, ., 1, ,
that is, 0-mr=ta.n0—§tan 0+5ta.n 0—....

T; then since tan 7 = 1,

294. In Gregory’s Series put 0= i

i
T_1 1.+l 1+1
T 37T

s
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This series might be used for calculating the value of =; but
it is very slowly convergent, so that a large number of terms
would have to be taken to calculate = to a close approximation.

" 295. Euler's Sertes.

1.1
gty
tan"-1-+t.a.n"’ —ta.n"3 3=1:4m"1=£;
2 11 1
6
r 1 1 1 1
thus g=5-5 gt Tt

3

o1 1 1

3 33t Ty
296. Machin's Series. We shall first shew that

" ganet] g L
=4tan™'_ —tan 939"

T 144

Hence 4 tan™ % is a little greater than 7—;—; ; suppose

4 tan™!

U -

=T -1
—4+tan x,

120 - 1+
then llg—tan<4+tan )“—l—x

. 1
fromthmweﬁnda:=~2—39.
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R ST S §
ATherefore 4_4tan 5 tan 339

_ 11 1 1 }

= {5‘3.5'+5.5°"7.5’

_{L_ 1 1 1 }
239 ~ 3(239) * 5289y " T(239y " §°

297. It may be shewn that

a1 1 1

tan™ ggg = tan” g5~ tan" g

™ ptaa) et L st L

thus 4—4ta.n> 5 —tan 70+t41.n 99"
The series for ta.n"il(—) d tan™* 91—9 are convenient for pur-

poses of numerical calculation.

The value of 7 has been calculated by two computers inde-
pendently to 440 places of decimals (see Lady's and Gentleman’s
Diary for 1854, page 70, and for 1855, page 86).

298. @iven sinx=nsin(x +a), required to expamd x n
powers of n.
Here NN — g VY = gV — gtV
therefore SNV N_1=n {3("""“)\/(‘1) - 3'««/(“)}’
therefore VN ] — pe™VITI} =1 — pemev(TY),
1 —ne~aV=)
1 —neavi-h)?
therefore 2z \J(— 1) =log {1 — ne™*V(~})} —log {1 — neav™"}

therefore eV =

2 8
=n{e®Vi)—g VD) + ’.;_ {e:«/(-l) — o) +%. {EV VN

therefore z:nsina+% sin2a.+% gin3a+......
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As an example, suppose a=m—2z, then n=1; thus

. 1. 1. 1.
x—s1n2w—§sm4z+§sm6m—zsm8z+...
299. Given tan x =n tany, required to find a series for x.

V) _ gV NN _ gl

Here gy gD =™ g g gowel s

eVl 1 W]
NI R TV i

(1+n)V+1—n
(1-n)e®Vt+1l+n

Limewed' . 1-n
T+ meoven » Ve M=)

therefore

therefore Vi) =

S

= BW\/ 1) x

S

therefore
2z N/(_ l) = 93/ ;J(—‘ 1) + log {1 + m‘ﬁ«ﬂ‘l)} — 108 {1 + m‘!\/(‘l)}

=2y /(- 1)—m{eV _gwv-m T {e«v«—x) — e

therefore 2=y—m sin2y+— sm4y—-'—n3—-sm6y+

300. Toﬁndthc coefficient of x" in the expamsion of €**cos bx
n powers of x.
Here ¢* cos bz = 4 6™ {1 4 gV} = Jgle*owi-Nle 4. 4 glotat-Dle,

Expand these two exponential expressions by the exponential
theorem; then the coefficient of «* is

sglle+ /- D +{a—B /(-]

-3 [+ v )+ {2 2 v ]

Now suppose & =cosf, o=sinf, so that r*=a’ +3"
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Thus the coefficient of 2* becomes

@ "L’") [{o08 6+ /(1) sin 6} + {008 8 — /(~ 1) sin 6}"]

G *L”') [008 70+ /(= 1) sin 78 + 008 nd— /(~ 1) sin 6]
ga E‘b')% b

301. The series in Art. 298 may sometimes be of assistance
in the solution of triangles.

‘We have sinB:%sinA:%sin(B+0);‘
hence, by the formula,

B=Ssinc+ Y sin20+ L sin 30
_;Sm 24 10 4 +Wsm + eee

If b be less than & the series is convergent, and if f—z be a small

fraction a few terms of this series may give B to a sufficient degree
of approximation ; the series gives the circular measure of B, and
the measure in degrees or minutes or seconds may be deduced by
Art. 22.

302. Gwen two sides of a triangle and the included amgle, to
find a series for the logarithm of the third side.

Suppose a and b the given sides and C the circular measure of
the given angle; suppose b less than a, we have

=a'+b"—2ab cos C=a' + b*— ab {°V™) + ¢~}
. _ {a _ bogv(_l)} {G - bc—O’V(—l)} .

T o= a’{I 2 e;V‘“)}{l _b e-oni=n | ;
e - a J
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thus 2 logc= 2loga +log {1 - ge"\/‘"’} + log{l - %e“\/‘“’}

=2loga- 5 {M-w e‘”\l‘"’} - E—{ ’”«/"‘)+e"°'~/‘“’}
a 24’
therefore log ¢ = log @ — > 008 €' — 0 cos 20 —-og cos 3C —
01‘?01'0 og e = oga-—ac 8 —20' 08 W 08 ven

This series is convergent since b is supposed less than a, and
if :I:- be small a few terms may give loge to a sufficient degree

of approximation.

EXAMPLES.

1. Apply the exponential values of the sine and cosine to
shew that A

sind _ .4
I—cosd  2°

2. If the sides of a right-angled triangle be 49 and 51, shew
that the angles opposite to them are 43° 51’ 15” and 46° 8’ 45”
nearly.

3. If the angle C of a triangle be given, and the other two
adjacent sides a, b be nearly equal, shew that the other angles are
nearly equal to

C_180°(a-b .C 1/a-b s
0 = 2o (= ot 2
- {a+b wt3 3(a+b°°tg)}'
4, Inanytrianéle,ifA—Bbesma]lcomparedwithC’,

B\
A= B+22—_” B+(“T”) sin 23 nearly.

5. If @ and b be the sides of a plane triangle, 4 and B the
opposite angles, then will logb—loga

= 008 24 — 008 2B+ 1 (c08 44 — co8 45) + 3 (008 64 — 08 63) ..
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1 + ! +——-1 +
1.375.779.117

7. If A+B,/(-1) =log {m+n \/(— 1)}, shew that
mB:%, and 24 = log (n* + m").

6. Shew that 'g'=

.8 Reduce cos{f+¢ ,/(—1)} to the form a+8 /(- 1).
9. Reduce sin {§+ ¢ /(- 1)} to the form a+ g8 ,/(-1).

1 . )
10. Reduce {a +b \/(~1)l* WD to the form a + 8 ,/(-1).
11 Reduce {a+5,/(~1)+eW MMV to the form a+B,/(-1).

.

12. Prove that

{sin (a — 6) + e*ev*"V5in 6} = sin* a {sin (a — n6) + *V¢" sin nf}.

XXII. SUMMATION OF TRIGONOMETRICAL
SERIES.

303. 7o find the sum of the sines of a series of amgles which
are n arithmetical progression.

Let the proposed series consist of the following 7 terms,
sin e + sin (a + B) +sin (a + 28) + ... +sin {a + (n — 1) B}.
‘We have ‘

cos(a-’-%ﬁ)-cos a+%ﬂ)=2sin%ﬂsina,
'ooe(a+%,3)—cos(a+g-ﬁ>=2sin%ﬂsin(a+ﬁ),

oo a+gﬂ)— 008 (a.+gﬂ) - 2 sin  Bsin (a + 26),

............ Seccenspecscscrssrrecen
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cos( 2n— 3'3) oos(

Let S denote the sum of the proposed series; then, by addition,

in 3 Brinfa+(n—1)8}

cos(a——éﬂ)-—cos a+2n;?3)=258in:‘1§ﬂi
cos(a—-%ﬂ)—oos a.+?m2—lﬂ)

2sin%ﬁ

therefore S

304. To find the sum of the cosines of & series qf angles
which are in arithmetical progression.

Let the proposed series consist of the following n terms,

cos a+ cos (a + B) + cos (a + 2B) + ... +cos {a + (n— 1) B}.

‘We have .
ain (a+-%—ﬁ>—sin(a—%ﬂ>=2sin%ﬁoosa,
sin (a + gﬁ)—sin a+ %p):zsin;pcoa(a;é),

sin a.+—gB)—sin(a+§,B)=2sin%ﬂcds(a+’2ﬁ),

seecreven

sin(a+2n; i p)_—si; (u-l- 2"2‘3/3) =2\sin—12—,Bco; {a+(n_1)p}.
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Let S denote the proposed series ; then, by addition,

sin(a+2—".;—lﬁ)—sin(a-§ﬁ)=2ssin§p;

Bin(a+ 2n2—1ﬂ)—sin<a—%ﬁ)
2;511%3

therefore 8=

=cos(a+ "5 8)sin 2

I3

sin%.ﬁ

305. The series in Art. 304 may be deduced from that in
Art. 303 by writing a + g for a; the sums of these series are re-
quired so often in the solution of problems, that the student
should be able to quote them from memory. As we have just
intimated, if the first result be known it is sufficient, since the
second can be obtained from the first by chariging sire into eosine
in the first factor of the numerator. It will be seen that the
results are obviously correct whén n=1, and when n=2; thus
there is a test of the accuracy with which the formule are quoted.
The cases in which 8=a may be specially noticed ; we have then

. %+l . na
) i BlnTamn—z—
sin a + sin 2a + sin 3o+ ... + sin na = ,
. @
sin =
2
oos“+1asin—-
2 2
cos a+ ¢o8 2a + co8 3a + ... + cosna = .
« @
sin —
2

306. We may now deduce the sum of the following n terms:
gina—sin (a+ B) +sin(a+28)=... +(~1y"sin{a + (n-1) B}.
T T 16



242 SUMMATION OF TRIGONOMETRICAL SERIES.
This series may be written s
8in o + 8in (a.+ B + ) +sin (a + 28 + 27) + ... + sin {a + (n-1)(B+m)}.

We have then only to change 8 into B8+ in the result of
- Art, 303.

sin {a s (L—l)éﬂﬂ)}sinn(ﬁ;r)

Hence the required sum is
. ﬂ +T
sin = —

Similarly
008 @ — 05 (a + B) + 08 (a + 2B) — ... + (= 1)"" cos {a + (n — 1) B}
cos{a+ (n—1)2(ﬁ+1r)} sinn(ﬁ; w)
sin'B;'r .

307. To find the sum of the following n terms.
cosec & + cosec 2% + cosec 4z + cosec 8z + ... + cosec 2™z,
‘We have cosec & = cot g —cot z,

cosec 2x = cot & — cot 2,

' cosec 21 = cot 2z — cot 2™ 2.
Let S denote the proposed series; then, by addition,

8= c,otg— cot 2.

308. 70 find the sum of the following n terms.

1 1 1 z 7
ta,nx+2tan2+2,ta.n2,+ 2,,_,ta.n2 :
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‘We have tanx = cot z — 2 cot 2z,

1 ®
-étan-2-=2cot2—cotx,
1 z 1 z 1 x
gingE= g o0t g~ 5 o0ty
1 x 1 1

X
g1 0 g = gy oot 5 — oo cob o,

Let S denote the proposed series; then, by addition,
1

243

S= o=t cot2 -2cot2z.
1 z 1 B x L
The term F"O"'F=50053m, where 8= . ; if we
suppose 7 to increase indefinitely, cos 8 =1, and ;£ﬂ=l.

Thus the limit of the proposed series, when n is indefinitely

increased, is ;’ —2cot 2x.

309. To find the sum of the following n terms.

sin o + ¢ sin (a + B) + c*sin (a + 2B) + ... +¢

Let § denote the proposed series;

*~sin {a + (n —1) B}.

substitute for the sines

their exponential values, and let & stand for /(- 1); thus

S = ok + cela+PIE 4. clelat 2Bk 4. .

—e—ak__ ce—(a+Pk - c?e-(¢+2ﬁ)k —

4 ¢n—1gla+np—plk

.. — =1 gl nBBk;

‘We have now two geometrical progressions; thus
1 enenbk 1 cne—nbk

2kS = exk deb‘e 1= ook

cﬂ-"—g - d‘v‘—c{ ela—Bk_g—(a—Bk }—-cﬂ{ ela+ ﬂﬁ)k_e ~(a+nBk } +cn+t l{e(ﬂﬂ +a—pBk_g—(np+a~ ﬁ)l'}

1- c(eﬁ"+e‘ﬁ") +c
16—2

H
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therefore

S sin a — ¢ sin (@ — 8) — ¢*sin (a + nB) + ¢**' sin {a + (v — l)ﬁ}
1-2ccosfB+c*

If ¢ be less than unity, then when « is indefinitely increased
¢* and ¢**' diminish without limit ; hence if ¢ be less than unity,
the limit of the proposed series when » is indefinitely increased is

gin a — ¢ sin (@ — )
1-2ccosB+¢*

Similarly we can shew that
cosa +¢cos(a+ B) +.¢'cos(a+ 2B) + ... + ¢ 008 {a + (n 1) B}

_cosa—ccos(a—fB)—c"cos(a+nB)+c™* cosfa+(n—1)B}
- 1-2ccosfB+¢c* :

This result may also -be obtained from the. preceding by chang-

ing a into a + %. If ¢ be less than unity the limit of the proposed

series, when 7 is indefinitely increased, is

cos a— ¢ cos (a — fB)
1-2ccosB+c °

310. To sam the infinite series

csin(a+ﬂ)+1.i28in(a+2ﬂ)+L38m(a+3ﬁ)+ v

Let S denote the proposed series; subsﬁtute for the sines
their exponential values, and let % stand for ,/(~ 1); thus

= egle Bk a-+28)k at 88)k.
kS8 = cele+ +1 elat +E6( 8Bk,
'y '
- @Bk . g—la+280k _ __ g—(a+38)k _
R e L

=k {oF 1} _g-ar{ee P _1y



SUMMATION OF TRIGONOMETRICAL BERIES. 245
Now ek =cosfB +%sinB, e-Pk=cosB—%sinf;
thus 2kS = eccosp+ka+csing) _ goosp—kia+esinf) _ (pok _ g—ak)
=.g0c08B {ghla+esing) _ g~blatosinf)} 2% sina;
therefore § = e°c0%8 gin (a + ¢ sin §) — sin a.

Similarly i$ may be shewn that the sum of the infinite series

ccos(a+ﬁ)+%’Ecos(a+2,3)+c—;cos(a+3,8)+...

13

is €°c088 cos (. + ¢ 8in 8) — cos a.

This result may also be obtained from the preceding by chang-
ing « into a + %

311. We shall not solve any more examples of the summa-
tion of Trigonometrical Series; the student will find more exercise
of this kind in the collection of examples for practicee In
many cases the summation is effected by the artifice which is
employed in Arts. 307, 308, by which each term of the pro-
posed series is resolved into the difference of two terms. Practice
alone will give the student readiness in effecting such transforma-
tions. If he cannot discover the necessary mode of resolution in
any example, he will find no difficulty in recognising it when
he sees the result of the summation given in the collection of
answers. Thus, for example, required the sum of the following
n terms: '

sec a sec 2a + sec 2a sec 3a + sec 3a sec 4a + ... +secna sec (n +1) @
The result is coseca {tan(n +1)a—tana}; and by putling
n =1 this suggests the necessary transformation, namely,
sec a sec 2a = cosec a {tan 2a — tana} ;
then, sec 2a. sec 3a = cosec  {tan 3a — tan 2a},

and so on.
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312. The student who is acquainted with the Differential
and Integral Calculus, will be able to deduce numerous series
from known series by differentiation or integration; and when the
results are obtained they can frequently be established by more
elementary methods. Thus, for example, differentiate both mem-
bers of the equality established in Art. 308; then

sec’z + —; 1 sec’ = sec’ : 2 G+ . 1 sec’
2’ 2 2‘ 2 A.“J

——2% cosec® 2" z + 4 cosec® 2.

Again in Art. 309 put a:p; thus
1—%%1%3—1?=8ina+08in2a+c'8in3a+c‘sin4o.+...
— a .

Integrate with respect to a; thus
: t] 3
—‘%clog(l—2ccosa+c’)=cosa+%cos2a+% cos3a+i—oos4a+...

No constant is required; for when a is zero both sides are
equal.

EXAMPLES.

1. Find the sum of » terms of the series
sin® o + sin® (a + B) + sin® (a + 2B) + ...

2. Find the sum of n terms of the series
sin® e + sin® (@ + B) + sin® (a + 28) + ...

- 3, Find the sum of n terms of the series
cos* a + cos* (a + B) + cos* (a + 2B) + ...

4. Shew that

ta,nnO—Sin9+8in30+ sin 50 + ... to n terms
" cosd + cos 30 + cos bl + ... to n terms’
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5. Sum to n terms the series
cosOcos(0+a)+cos(o+a)cos(0+2a)+cos(0+2a)cos(0+3a)+ .
6. Shew that

. sina—ain20+sin30—...tonterms_tann+l( +0)
cos @ — cos 20 + cos 36 — ... to n terms g \7

7. Sum to » terms the series
-sin (n + 1) 0 cos 8 + sin (2 + 2) 0 cos 20 + ...

8. Sum to n terms the series
8in a sin 2a + gin 2a sin 3a + sin 3a sin 4a + ...
. and thence deduce the sum to 7 terms of the series
| - 1.242.3+8.44...
\

9. Sum to n terms the series
| sin 30 sin @ + sin 66 sin 20 + sin 120 sin 46 + ..
| Sum to infinity the following series contained in the examples
from 10 to 16 inclusive:
cos 6 cos’ 0
10. ooe0+ T cos 20 + 2 15 °8 30+F cos 40 + ..
sin 20 sin26 sin 36
1 2 —|—3__‘ ece
0820 cosdd
T.2 T[4

11. &inf-

12. 1-

13 2ooso+3cos’0+§cos’~0+§cos‘0+
: 2 3 4 ”

em20008’0+8m300030
1.2 B

_ sin 6 sin® @
15. 0+T00820+ 1.2

14. sin @ cosf+

cos 30 +...

16. ..Shew that oosO—%zcos20+%cos30—...=log (2003—3)
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17. Shew that cos20+%00866+%cos 100+...=§log(éot0).
18. Shew that | |
zsino?x’ai;%_,_z'si; 30—-...=oot“ coseco*ooté).
19. Shew that

logcos0+logcos§+logoos2o, .=log —8%62—» .

. Sum the following series to n terms contained in the éxam-
ples from 20 to 33 inclusive :

20.

21.

22.

23.
24,
25.
26.

27.

28,

29,

/. 0N , .6/, 6\
Slno( 2)+2m2( Z) +481nz sm§)+...:

0 6 6 é 9
tanﬁsec0+tafxzsec§ +tan§secz+...

cot @ cosec 0 + 2 cot 20 cosec 20 + 2* cot 2*0 cosec 270 + ...
1 + 1 + 1 +

sin @ sin 20  sin 260 sin 8¢ ' sin 36 sin 46
1 + 1 + : 1 +

sin @ cos 20 ' cos 20 sin 30  sin 36 cos 46

1 a 1 a 1
,+tan ,+ta.n st—,‘l.‘....

-1
tan™ 7T 17259

x

-1 -1 fod -1
tan™'z+ tan™ ————— + tan _——1+2,3.m'+

1+1.2.4°

3 s 3+ in — sin o
gin a sin a.+nn2sm2 8i 3 sng

1 1 1
oosO+cos$0+oo30+cos50 *om0+coa70

+ .

+ ...

sin 8 . sin 20 . sin 36
008 20 +cos @~ cos 40 +cosO  cos 60 +cos b

+ e
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$nd  3sin30  3'en3¥
T+2c0s0 1+2c0s30 " T+%0083% "

30.

3. cot™ (267 +a) + cot™* (22" + 3a) + cot™! (22" + 6a)
+cot™ (27" + 10a) +...
1

32. 2sec0+;,sec0wc20+2l sec 0 sec 20 sec 2°0 + ...

33. 3 logtan 26+ 7, log tan 29+ %, log tan 0+ ...

34. An equilateral pc;lygon is inscribed in a circle and from
any point in the circumference chords are drawn to the angular
points; find the sum of the squares of the chords and the sum of
the fourth powers of the chords.

35. Circles are inscribed in triangles, whose bases are the
sides of a regular polygon of # sides, and whose vertices lie in one
of the angular points; shew that the sum of the radii is

‘ . g T
2r(l—nsm 2—n>’

where 7 is the radius of the circle circumsecribing the polygon.

36. Circles are described in triangles whose bases are the
sides of a regular polygon of n sides and whose vertices lie in one
of the angular points; shew that the sum of the areas of the
circles is

T n—4 ,
16mr" sin 2n{4”“‘ 2n+"8_}’

where 7 is the radius of the circle circumscribing the polygon.
37. Shew that if » be a positive integer
(n+1)nsin 6+ n (n—1)sin 20 +(n — 1)(n — 2) sin 36+...+2.1 sin nd
=n(n+3)cot0 1 0{ 30 2n+30}.

) 9‘—1008002 005—2—'—008—_2
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XXIII. RESOLUTION OF TRIGONOMETRICAL
EXPRESSIONS INTO FACTORS.

313. It is known from treatises on the Theory of Equations
that the expression #"—1, where = is a positive integer, can be
resolved into n factors, each of the form 2 —a, where & is either
a real quantity or an expression of the form a+ 8 ,/(—1), where
a and B are real; and there is only one such set of factors. 'We
proceed now to resolve the expression z*—1; and some similar
expressions, into component factors. The factors of the expression
«"—1 are found by solving the equation 2"—1=0; every root of
the equation @ determines one factor of the expression, namely
T—a. :

314. To resolve x"—1 into factors.

The expression cos -2;—". =,/(-1) sin%:l, where r is any in-

teger, is a root of the equation z"=1; for the n'* power of this
expression i8 by Demoivre’s Theorem cos 2rr = ,/(— 1)sin 2rr,
that is 1. First suppose n even. If we put r=0 we obtain a

real root 1, and the corresponding factor is z—1; if we put r.=72l

we obtain a real root — 1, and the corresponding factor is =+ 1.

If we put for » in succession the values 1, 2, 3, ... %-—- 1 we

obtain n—2 additional roots, since each value of » gives rise to
two roots. These roots are all different, for the angles are less

than 7 and all different, and thus cos g;_w cannot have two co-

incident values,

Therefore o —1= (x—1)=z+1) P,
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where P is the product of n — 2 factors obtained by ascribing to r
in succession the values 1, 2, 3, ... g’-— 1 in the expression

2rr . 2rr
@ —cos — = *,,/(—1)81!17.

" The two factors

z—oosg—hrf—J(—l)sin%”, and z— cosg-—+J(—l)mn2£r

produce by multiplication the possible quadratic factor
s 8
(x—cos2L1r> + gin’ ?—rf, that is, &' — 2z cos2L"+ 1.
- n n n
Hence when 7 is even

#-1=(- e+ 1) —2zoos—+l>(x’ 2xcos4:-+1)...

{a:’ 2w cos "= AT, }{x’—.2zeosg%z+l}....(l).

Secondly, suppose n odd. The only real root of =*=1 is
now 1; the other-n —1 roots are obtained by giving to » in suc-
n—

2

1. .
‘in the expression

cession the values 1, 2, 3, ..

0os 2" s /- 1) sin 27,

Hence when n is odd
-1=(z-1) (x’—%cosg”f-i-1)<z’—2xcos4—1r+l)...
...{w’—2mcosg%r }{w’ 22 cos "= 1) 1)”4-11 -(2).
315. To resolve x* + 1 into factors.

Lra (1) sin

any integer, is a root of the equation &*=-1; for the »*™ power

2r+1

N 2r + -
The expression cos w, where r is
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of this expression is cos(2r+1)7=,/(—1)sin(% +1)w, by De
Moivre’s Theorem, that is, —1. First, suppose n even; there is no
real root of the equation z"=-—1; the n roots are all imaginary,
and are found by giving to 7 in succession the values 0, 1, 2, 3,...

g—l, in the expression cos( r+1):- %, /(—1) sin 2+l .
The two factors, a:-cos2 =~ J(-1)&n 2r+l A
2r+1 . 2r+1

and & —cos

=+ /(- 1) sin el
produce by multiplication the possible quadratic factor
2r+1 \* . 2r+1 S 2r+1
(:c—cos 1r) + sin’ o, -2 n+ L
n n
Hence when n is even

2+ 1= (z'-2xcos 3+1)(:’—2wm-3:+1)(w'—2zcm§lr+l)...
n n n

...(z'-zxcos”—;f r+ 1) (a:’-2a: P P 1) (1).

Secondly, suppose n odd. The only real root of 2"=—1 is
—1; the other »—1 roots are obtained by giving to r in succes-

sion the values 0, 1, 2, 3, . —~2—3 in the expression

(2r+ r (2r+ NS

& /(1) sin
Hence when % is odd

+1=(@+1) (o~ 2000 T41) (-2 o0s 24 D).

...(w'-—2xcoan_

316. The four formule established in the two preceding
articles are tdentically true; we may deduce many particular
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results by supposing particular values assigned to 2. Thus in (1)
of Art. 314, divide both sides by #—1; the quotient on the left-
hand side will be "' +2**+...+2+1. Now put =1 ; thus.
when 1 18 even

n= 2'(1 cos 2T )(1 cos__) (} mn—4 )(1 cos”"2

and by extracting the square root

An= 2'sm mn—i: sin’%rsin’-‘z;—zw ...... (1).

The positive sign of the radical must be taken on the left-
hand side, heeause the right-hand side is obviously positive.

Again, in (2) of Art. 314, divide both sides by =-1, and
afterwards put @ =1; thus when n s odd

(=3 ) n— _—
n=21 (1 cos2">(1 —cos‘i—")"... (l—cos —:—"r)(l cos”—lr)
n n n n

and by extracting the square root,

=1 -— —
Wn=37 sin Tain 27 gin "8 pgin =1

27L —2—7—‘-—1...-..(2).

Again, in (1) of Art. 315, put z=1; thus when n s even

) O B )

and by extracting the square root,

-1 — —
1=27sin Cain T Y pain? L ().

Again, in (2) of Art. 315, put 2 =1; thus when n ie odd

15 1) o) ()
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and by extracting the square root,

=1 T . 37w . n—4 . n-2
1=27 sm2nsm2n - 8in ——— sin —— Toeeeeen(4).

Four other results may apparently be deduced from the four
formul® of the two preceding articles by putting x=—1; but it
will be found on trial that these results do not differ really from
those already deduced. Thus, for example, in (1) of Art. 314,
divide both sides by x + 1, afterwards put x=—1, and extract
the square root; thus when n is even .

n—4 cos ™ 2
2n 2n

this however is the same result as that in (1) of the present arti-
cle, the factors on the right-hand side being merely differently

arranged; for

G S
Jn=2% cos — cos — ... cos w;
n n

T . n—-2 27 n—4
cos —=8in~_—m, cos — =sin
n n 2n

2n

317. To resolve x™—2x"cos@ + 1 into factors.

If cos@=1 the expression becomes (z*—1)*, and if cosf=—1
it becomes (" +1)*; in these cases the resolution into factors is
effected by what has already been given in Arts. 314 and 315, and
we will therefore suppose these cases excluded from what follows.
If we put

™ —2z"cos 0 +1=0,
we obtain 2" =cosf -l=',/(— 1) sinf; hence z is an «® root of
cos § + ,/(—1)sing; t'he 7™ roots are found from the expression

2r1r +6 *J(— 1) sm
for it is obvmus from De Moxvre 8 Theorem that the n'® power of
the last expression is cos (27w + ) = \/(~ 1) sin (27w + §), and if
be an integer this reduces to cos@ = ,/(—1)sin 6. If we aseribe

% 7 in successxon the va.lues 0 1, 2, ...n -1 in the expression

21'1r+0 « J(=1)sin

+6 by ascribing integral values to 7,

ifferent values for
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the expression. For if »=p and »=¢ could glve the same value
to the expression we should have

2p1r+0*~/( 1) sin 2p:+0=c082q2+0*J( 1) sin 2q1r+0
now by Art. 93 we cannot have cos 2p"+9=cos2q1;+o and

sin 2270 _ 27’;* . it is also impossible that

n
2p1r+0=_sin2q1r“+0’

and sin

cos2p1r+0=cos2q1r+0
n n

for that, by Art. 94, would require ~2=+° 2’”’ +9 29”* 9 46 be a multi-

ple of 2, so that 6 would be a multxple of m, and this value of 6
has been expressly excluded above. Thus we obtain 2n different
values of z. Also the two factors

21'1r+0
—/(-1)sin
give by their product the real quadratic factor

8
(w—oos2"+a>+sm 2rm + 6 , that is, z*— 2z cos m+0+1.
n n n :

Thus 2™ — 22" cos 0 + 1

2r1r+0 o 2nr+0 2nr+0

+a/(=1)sin

& —Co8

= (a:’—- 2z oosg+ l)(x’-—‘.’xcos

8, 1)(4,:'- cos 2720, 1) |

Caes {ac’—2zcosen—'_%)’r—+o+ l} {a:'—-2mcos(2n_i—)w—w+ l}.

318. We shall now deduce some important results from the
preceding general theorem. Suppose .=1; then

. 2 + 4w +
2(1—cos6)=2 (l—cosg)(l—cos A ”)(1-cos n ”)
' 27m—-21r+0>
...(l,—-co_s—_———— .
.. “
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Let 0=2n¢ and 2{—;:«:; extract the square root; thus
# gin ng = 2" sin ¢ sin (2a + $) sin (4a + @)......sin (2na — 2a + ).

‘We shall now prove that the upper sign must always be taken
on the left-hand side. First, suppose ¢ to lie between 0 and 2a;
then every factor on the right-hand side is positive, and so is
sin np. Next suppose ¢ to lie between 2a and 4e; then every
factor on the right-hand side is positive except the last, and
sin n¢ is negative. Next suppose ¢ to lie between 4a and 6a,
then every factor on the right-hand side- is positive ewcept the last
two, and sin n¢ is positive. By proceeding in this way we see
that for every value of ¢ between 0 and 2na, the upper sign must
be taken, so that we have for all values of ¢ between 0 and =

sin ng = 2" sin ¢ sin (2a + P) sin (4a + ¢)......sin (2ne — 20 + ).
‘We shall next shew that this formula is true for all values

of ¢; for suppose ¢p=mm+¢ where m is any integer, positive
or negative, and y is between 0 and ; then we know that

sin ny = 2" sin ¢ sin (2o + ¢) sin (4a + ¢)......sin (2na — 22 + ¢);
but sin 7y = sin (mp — nmr) = sin ne cos nmar = (— 1)™sin nigh,
sin'y = sin (¢ — mar) = sin ¢ cos mm = (— 1)"sin ¢,
sin (2a-+y) = sin (2a+¢—m=)=sin (2a+ ¢) cosmar = (—1)"sin (2a+ ),
and so on.

. Substitute these values of sinny, siny, sin (2a+y), ...... in
the formula which expresses sin ny in factors; then divide both
sides by (—1)™ and we obtain the required formula for sinnd,
whatever may be the value of ¢.

In the expression for sin n¢ change ¢ into ¢ +a; then n¢ is
changed into ne + ; ; hence

cosng = 2* sin (¢ + a) sin (¢ + 3a) sin (¢ + 5a)...sin (2na—a + ¢).
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In the last result put ¢ =0; thus ‘

1=2""'gin e sin 3a sin ba ...... sin (2na — a),
where \ a=§%.
Again we have i
sinng ., . .. .
dng =2"""gin (2a + ¢) sin (4a + @) ...... sin (2na — 2e + ¢);

now let ¢ diminish without limit; then since the limit of " ':”
is » we obtain
n = 2" gin 2a sin 4a sin 6a ...... gin (2na — 2a).
These two formulse are sometimes useful.

\
319. The expression for sinng in Art. 318 may be put into
a different form; for
sin (2na — 2a + ¢) = sin (7 — 2a + ¢) =sin (26 — ¢),
sin (2na — 4a + $) = 8in (v — 4a + ¢) =sin (4a — ¢),
and so on.
Then by multiplying together the second factor and the last, the
third and the last but one, and so on, we have .
sin n¢ = 2" sin ¢ (sin’ 2a — sin’ $)(sin’ 4a — sin* @) ...
Tt will be necessary to examine separately the cases when 7 is
even and when % is odd.

First suppose n even; then the factor sin (ra+ ¢), that is,
cos ¢, will occur without any factor to multiply it ; hence if n be
even, we have

8in n = 2** sin ¢ cos ¢ (sin® 2a — sin® ¢) (sin® 4a — sin® qS)...
... {sin’ (n — 4) « — sin® ¢} {sin® (n — 2) a —8in’ $}.
Next suppose » odd; then we have -
sin ng = 2"~ sin ¢ (sin’ 2a — sin’ $) (sin’ 4a — sin’ @)...
... {sin’ (n — 3) @ — sin’ ¢} {sin’ (n — 1) a —sin"$}.
Similarly from the formula
008 nep = 3"~ sin (b + a) sin (¢ + 3a) sin (¢ + ba) ... sin (2na — a + ¢)
T. T, 17
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we obtain if n be even
cos nep = 2"~ (sin” a — gin® @) (gin® 3a — sin’ ¢). ..

.. {sin’ (n — 3) @ — sin’ ¢} {sin* (n — 1) a — sin® ¢} ;
and if » be odd,
cos n = 2" cos ¢ (sin’ a — sin’ ¢) (sin’ 3a — sin® )...

... {8in® (n — 4) a — sin® ¢} {sin’ (v — 2) a — sin® ¢}.

320. We can now resolve sin # and cos 6 into their factors.
Suppose n¢ =0 and that x is odd; then by the preceding article
sin 6= 21 sin (sm 20— sin® f) (sin’ 4o —sin’ ‘L’)
n n n,

divide both sides by sin%, and then diminish @ indefinitely ; since

the limit of sin@-:-singis n we obtain

n = 2"""sin* 2a sin’ 4a...;

therefore by division,

. o0 . o0
: . 9 o _
lm.0=nnn;b l—m l—m vecn

Now suppose n to increase without limit; then since a=2_’;

.0 .0
e e s 0

the Nmit of wm—m is % the limit of ——= is ,—, and s0 on;
gin 2a = =’ 2=

thus finally,
sin@=40 (l —_) (1 n) (l 3!"1
We shall obtain the same result if we begin by supposing n even.
. Bimilarly we may shew that

w1 -%)(1-%) (1- 5‘-?)
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321. In the same way a3 &"—22"cosf+1 was decomposed
in Art. 317 we may decompose z**— 2x"a"cosf +a™, and each
quadratic factor of the last expression will be of the form

w’—2xacoszﬁr+o

+ a, where r is an integer; and all the factors

are found by giving to 7 in succession the values Q, 1, 2, ... n—1.
Andws2(n—71‘)1r+0=cos21r—0 c082(71,—-2)1r+0_____¢m4:'ir--0

) )

n n n
and so on; thus all the factors will be found if we take
z'— 2za.cos 2rm 6 +a*, and use both signs and give to 7 in suc-
cession the values 0, 1, 9, ... upto’%l if n be odd, and up to
g if » be even; in the latter case when r=% we must take only
one factor z’-—2mcosn”+o+a’.
z 2
Now suppose a:=1+-2—n, and a=1—§’—t; thus

2z s . z’ L] 2z m
‘ (1 +%) -2 (IA-Tn") cosf + (1 —51’)
is the expression to be decomposed into factors; and the general
form of the factors is

z\* 2 Qrmr 6 z\*
(1+§;-b)—2(1—47z;)cos—-—n +(1-2—n),

that is, 2(1+Z"z—'—,)—2(1—4i”,)cos2ﬂ;*o,
Qrr=0

that is, 4 sin®

P ,2r1r*0)
on (1 +'4—n. cot on .

Suppose % to inerease indefinitely ; then : -

N -
(1+%> =, (1"2—9@ = ¢, (digabra, At 552),
17—2
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also 2 2rr 9 _ 2

and by putting 2=0 we obtain

(/] 0 2mr &0 4r+0
c00 _y a0, G 2wl L Al
4sm2 4sm2n4sm o 4 sin' o

thus finally

¢'—2coso+o"=4sin’—g-{l+%:}{l+(21ri0),}{1+(4ﬂ_i6),}....

Other examples of a similar kind may be seen in the sixth
chapter of the third volume of the treatise on the Differential and
Integral Calculus by Lacroix.

322. De Moivre's property of the Circle. Let O be the centre
of a circle, £ any point within it or without it ; divide the whole

circumference into 7 equal arcs BC, CD, DE, ..., beginning at
any point B, and join- O and P with the points of division
B, 0, D,.. Let POB=0; then will

OP* - 20P", 0B cos nf + O0B™ = PB", PC*, PD'... to n factors.

’
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For PB*=0P*~20P. 0B cos§ + OB*,
PG*~0P*-20P.0C oos (9+ 27) + 001,

PD*=0P*~20P.0D oos (8.+°F) + 0D,
and the radii 0B, OC, OD are all equal.

Thus, by Arts. 317 and 321, the product of all the terms on

the right-hand side of these equations is
OP*—20P, 0B" cosnl + OB™;

this proves the proposition.

The particular case when P is on the circumference may be
noticed ; then

nf

20Fsm?=PB.P0.PD...hnﬁchm. )

Cotes’s propertwa of the Circle. These are particular cases of
De Moivre’s property of the circle.
Let OP produced if necessary meet the circle in 4, and sup-

pose A.B:BC'=%’£; then nd=2x. Thus we obtain

(OP*- 0B*)'=PB'. PC". PD’... to n factors;
therefore OP*~0B*=PB.PC.PD...to n factors.
Again, let the arcs AB, BC, ... be bisected in a, b, ...; then
by the theorem just proved,
OP™~ 0B™ =Pa.PB,Pb.PC ... to In factors;
therefore by division,
OP*+ 0B* = Pa.Pb. Pc ... to n factors.

323. It is usual in works on Trigonometry to give a brief
though unsatisfactory demonstration of the results of Article 320
in the following manner.

Since sin § vanishes when §=0, or =, or = 2m, ... follows
that sin 0- must be divisible by 6, 0 +m, 0 —m, 0+2x, §—2m,...;
therefore we may assume that
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sin 6= 40 (0 — m) (9 + 7) (0 — 3x) (0 + 2r) (8 — 3x) (8 + 37)...
where A {8 some gquantity independent of 0; thus we may

suppose A -
aino=ao(1—§) (1 "E%’r‘) (1_?;,)

where @ is also some quantity independent of §, Divide both
sides by 6 and then suppose 6 = 0; thus a=1, and consequently

ma:o(l-g,) (1—5,—,) (1 g ,)..

Again, since cos § vanishes when 0==|=§, or -hi}, e 8
Jollows that cos 0 must be divisible by 0-7, 0+7, 93,
0+%~, ... therefore we may assume that

en=4 (-390 )0+ 6o+ F

where A 48 some quantity independent of 6; thus we may

sup,
01 1 46 1 4 1 407
_CO8{ —G( —? ( —'3—2;:' ( —671‘_-,)...
where a is also some quantity independent of §; and by putting
0=0 we find a=1; thus

0= (1-40) (1- ) (1- 24 .

The portions of the preceding investigations which are printed
in italics involve assumptions which cannot be considered legitimate.

324 It has been stated in Art. 169, that the-tables of the
. logarithms of Trigonometrical functions can be calculated without
the use of the tables of the Natural functions; we will here briefly
indicate how this may be effected. We have

sin0=0(l—?)(l )(1 gs) o3
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put — ‘-;; for 6 and take logarithms; thus
m m L m*
logam; -2;=log;+log-§ +log(1 -,-4—“,)

m* m'
+lf)g(l - m) + log(l —3_*47{’)4'
The terms in the last line may be expanded by Art. 145 in
series which will converge with sufficient rapidity; thus we shall
have if x denote the modulus

~

log sin %‘ 2=log1r+‘logm+log(2n +ﬂ5)+log(2n—m);3(log2+log n)
1 1 1 m*
— P (Z; +—6—, +§,+ ....)’7?
r/l 11 m'
_E(P +€l +-8-a +....) -1?

prl +l 1 m’
_E(Io 6°+§i+"") 7‘0'

..................

Similarly we may find log cos % 1_21- . (Airy’s Trigonomeiry.)

325. We will now make a few remarks on the symbol /(- 1),
which has been used very often throughout the latter portion of
this book. We may consider that the symbol has been used in an
experimental manner, and many results have been obtained by
means of it; the point now to be considered is how far these
results can be received as true.

In the first place, some of the results obtained by using the
symbol /(- 1) may be shewn to be true by other methods ; thus,
for example, the values obtained for sin n6 and cos 76 in Art. 269
may be verified by induction.

Again, the following example will shew how in some cases
a strict demonstration may be obtained even with the use of
the symbol ,/(—~1). Let n be a positive integer, and suppose it
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required to expand cos®§ in terms of cosines of multiples of 6;
we may proceed as we did in Art. 280, supposing = to stand
-~ for V17, Now we know that

(¢ +e?) =eV+e™ +n {6+ W] +g(Tn%D {1 + g} 4L

thus 2--‘{1+1-"'2 ﬁ ”E°+ ¥
'y. ‘ ‘ 6,8
LI
sn {1 20V, (”'LZ)"" L ‘Lsz)"” b}
F e

Now this is true for all values of g, that is, if all the opera-
tions indicated be performed, the two members of the equation
are identically equal. We may therefore put —6* instead of 37,
and the result will still be true. Thus

afy @ 6 Y. % e
2‘ {l—m"-E-—»}——m-!-E_
2" (n— 20"
+n{1 (n— —}
1.2 =
+.eee .

Thus 2*~'cos*f=cosnf+ncos(n—2)0 + ......
(Airy’s T'rigonomeiry.)

Finally, the student may be informed that a theory has been
eonstructed which offers a complete explanation of the symbol
»/(= 1), and thus enables us to obtain rigid demoustrations by the
use of this symbol. It is mot consistent with the plan of the
present work to give any account of this theory; the student,
however, is recommended hereafter to read the ZT'rigonometry and
Double Algebra of Professor De Morgan,
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EXAMPLES.

1. Find the sums of the following infinite series :

1 1 1 1
(1) T,H-?"'B—;‘ +-4—-+...

11 1 1
(2) F+§l+5—-+?+..

when % =2 and when n=4.

’

2. If a=£;, shew that

sin a sin 5o gin 9a ...... sin (4n — 3) a=27"*4,

3. A polygon of n sides inscribed in a circle is such that its
sides subtend angles a, 2a, 3a, ... na at the centre; shew that the
ratio of the area of this polygon to the area of the regular
inscribed polygon of n sides is equal to that of sin ”—; to m sin %.

4. The product of all the lines that can be drawn from one
of the angles of & regular polygon of 7 sides inscribed in a circle
whose radius is a to all the other angular points is na"~"

5. Ifp, py---Pypy» P, be the perpendiculars drawn from
any point in the circumference of a circle of radius a on the sides
of & regular circumscribing polygon of 2n sides, shew that

a
P PPy Pouey T Py Dy o P = 2T‘—: .

6. A polygon is described about a circle touching it at the
angular points of an inscribed polygon; the product of the perpen-
diculars drawn to the several sides of the inscribed polygon from
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any point in the circumference of the circle is equal to the pro-
duct of the perpendiculars drawn from the same point to the
-several sides of the circumscribed polygon.

0 6 s7—0 0 . ,m+6
7. Provethatsm0cos2.—88m)‘sm < mT.

8. Prove; that
(cosec’ g — sec’ g) ta.ng = (tan gcosec q — sec 2) cot 20

9. Prove that
tan 30 — tan 20 — tan 6 = tan 36 tan 20 tan 6.

10. Find « from the equation

tan’z + cot’z = m® — 3m.

11. The circumference of a circle is divided into 2n equal
parts in the points 4, P, @,.... Tangents are drawn at the points
4, P, @, ... and perpendiculars 04, OB, OC, ... are let fall upon
them from O the extremity of the diameter O4. Shew that

04% + OB + 0C" + ....... = 3n (radius)".

12. ACB is a quadrant; AP, AQ, AR are three arcs in
ascending order of magnitude, each being less than 4B, and
their sum equal to twice 4B; radii CP, 0@, CR are produced
to meet the tangent at 4 in p, ¢, », and a triangle is formed
with dp, 4q, Ar. Find the condition that this may be possible,
and the inferior limit of A¢ and the superior limit of 4p. Prove
also that in all such triangles the radii of the inscribed and
circumscribed circles are inversely proportional.

13. ABC is a right-angled triangle, ¢ being the right angle,
E is the point in which the inscribed circle touches BC, and F' the
point in which the circle drawn to touch 4B and the sides C4, CB
produced meets C4; shew that if ZF be joined the triangle FEC
is half the triangle 4 BC.



t EXAMPLES. CHAPTER XXIII 267

14. Through the angular points of a triangle lines are drawn
bisecting the exterior angles. If .S be the area of the original tri-
angle and S’ that of the new triangle, shew that

1 4 B c
S’=§ Soosec§cosec—2-cosec§.

15. ABCD is a horizontal straight line. From a point imme-
diately above D the known distances 4B and BC are observed to
subtend the same angle a. If AB=a and BC =25, shew that the
height of the observer’s position above D is

2ab(a + b) tana
(a—0)"+ (a + d)’ tan"a”

16. If in any arc not greater than a quadrant a point be
taken, and from this point two lines be drawn, one to the ex-
tremity of the arc, the other perpendicular to its chord and
terminated by it, prove that the sum of these two lines is less
than the chord of the arc.

17. Suppose a the angle of eleva,tlon of a cloud, B the angle
of depression of the image of the cloud seen by reflection from
a lake, A the height of the observer’s eye above the lake, then
the height of the cloud is

k sin (B + a)
gin (B—a) °

18. At noon a person standing on a cliff A feet above the
level of the sea, observes the altitude of a cloud in the plane
of the meridian to be a and the angle of depression of its shadow
on the surface of the water to be B; shew that, if y be the sun’s
altitude at the time of observation, the height of the cloud above
the surface of the water will be

b sin vy sin (a + B)
: gin Bsin (y+a) 7 . :
the sun bemg behind the observer when he is lookmg at the
cloud. . . , . .
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ANSWERS.
I II, III. IV, V.
'L page 6. 1. 18, 27°. 2. 15°% 45" 3. 30% 15°
] 50n°  2Tn® \
4. 00945, 5. Sy T 6. 2} 7. 3

8. One polygon has 8 sides, and the other 12 sides; so that an
angle of the first is § of a right angle, and an angle of the second

§ of a right angle. 10. The ratio is that of 5 to 162.
IL. pages 13, 14. 2. f—;) x —1:8}). 3. #x00505. 4. 27°,9°18"

5. 32 , 28°:125, 31525, 6. 40° 60°, 80". 7. 30° 60° 90°.

w w k. ™
-3—. 7.0-’;001‘—2. 8.0=—6-01' E.

9. 0=§. 10. o=%' or;_’. 11. A=45°; B=15"

IV. page 41. 1. The same as for an angle of 225°.

2. The same as for an angle of 330° 3. The same as for an
angle of 210°. 4. The same as for an angle of 300°.

III. pages 22,23. 6. =

5. 45° 225° 405°, 585°, 765"
6. 45° 135° 225°, 315°, 405% 495°, 585° 675°, 765°, 855°.
1 1 /3 1 /3

7. 0, l_ﬁ, l 1+J2, o 8. '2', '2_, —§’ —?.

9. We have sin § = — cos 0; therefore 6 =135° &c.
10. cos@=—4; therefore 6 =135° &c. 14. No.

V. pege 49. 1. nx +§1’-. 2. (2n+ ) 3. 2nr.

4 - 2mr=h§g—r. 5 mwra 6. pr*%. 7. nr+a
8. mr-l-;. 9. nra, 10. nrs . 12, 2mr+7—1r

" 6 6
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VL pago6l. 3L f=nral. 32 Fenmor B=(nim
33. 30=nm or 40=2nmu . 34, 6-7=2nm3.
35. 6=0 or m*%. 36. 20=(h+§)1r or 0=2ﬂ1ruh2%-r.
37. 20=nm or 6=Inw 27, 38. 20=nm+(1)F
39. O=(n+7 or 40=nm+ (-1 5. 40, 0+) =nmal.

VIL pages 68—70. 2. 2cos i;- = /(1 +8ind)— /(1 -sin 4
3. 2sing=— /(1 +sin4)~ /(1 -sin4).

3r 5r bnr ‘ T
4 2mr+-4— and 2n1r+—4—. 5. 2mr+r and 2M+T'

™ ™ 1 J3-1
6. 2"/’1’—2 and 277:11‘4-;. 10. '2'. 11. —W.
12. smA -h%, cosA:*?—’; or sin 4 = "‘g’ cosA:;%,

13, J3-2. 2. «1. 274 - 28 -}

VIIL pages 77—79. Example 20 may be deduced from ex- '
ample 16 by changing 4 into 4 (v —4) and making similar
changes for B and C; example 21 may be deduced from ex-
ample 17 in the same way.

coss—cosa_sin'acos B

38. cosz —cos B sin’ Boosa’

gin® B cos® a — sin® a cos B oosa+oosﬁ

sin’ B cos a —sin®a cos 8 1+cosaoosﬂ’
1—cosx tan’0 tan‘a
1 +cosz’ 89. tn'0 " tan'a that is,
cosB—cosa cosB—cosa’ tan'a

fosa N fosa' “ten'a therefore

therefore cosx =

then find
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cos B—cosa _ sin"acosa’ cosB_sin'a.'cos’a—sin"a.cos;" o
cosB—cosd  sin*a’cosa’ "~ sin* o cos a—sin®acosa’
_ cos’ a — cos’ a’ _cosa+cosa |
_cOSa cos o’ —cosacos’a +cosa cos'a l+cosacosa’’
—cos B 2tan 1 ¢
thenﬁd . 48. Pt——,—-—fortan ; then
T+oos B tan’ 3 ¢
solve the qua.dra.tic, thus we shall find
(0080+sml9’)=l-(1 + 8in ¢ coso)
tan 14 = gin 6 cos ¢
the lower sign gives the required result. The upper sign gives
0 v
—cot 3 cot Z - 'E) .

52. By Example 23, page 77, we get cos A cos Bcos('=0, so
that one of the three angles is a right angle.

IX. pages 90, 91.

1)tané _ n—-1
5. P G
tan (0-¢)= I+ntan'¢ {/(nteng)— Jcot¢}'+2Jn
the greatest value of this is when the first term of the de-
- nominator vanishes. - 0+ d>
6. 2sgin @ sin®

, 1760x
8. The height in yards = 1760 x tan 1’ = * 180, 60 nearly.
9. Let « be the dmtance, 3_ tan S I’ thus S_ nearly
i’ 180 4 )
10. We get smA=-k§,J(3—n). 12. 6. 16. 8.
3

17. 0-—:;—:27&1:'-. 18 6+3=2mm+T. 19, 3 —20=2nx<0.
20. f=nm+3T or 20 mnr+(- 1y, 21 ¥ or

’2_'_%_2,.,,*32" 22. 0=nm+ 37 or sin 20=2(/2-1).

23. 0=(2n+1)3 or w7 2. 0=(2n+1)7.
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25. 0= mr:hl—o-ormr*:;o 26. g="‘" or 2mr-h§.
. 0=’%r. 28. 0=mrd=7zr or mr*%. 29. 0=mr=l=1-:.

4

30. 0=na-orwu-+-3£—'. 31. sin%q=0, orcose=0,oroosg=0.

32. cos-f +sin 30 =0, that is, cos 6 =cos (30+ g) .

(33, 2=mesT. 34 snf=—1orsng=0, or tand-2.

35. 20:(2“1)?5', or 7a=mr+(—1)-’-'

It should be remarked that answers may be given under
apparently different forms ; thus, for example, suppose we have to
solve the equation sin 26=cos §, or 2 sin @ cos 6 = cos 6,

this gives  §=2nm3 and f=nm+ (- 1) %;
but we may write the equation cos (;— 20) =cosf;

therefore g —-20=2n% - 6.

X. pages 100—104. 1. 321. 2. 2433/9=(/3) .

3. 7; —4; -4

10 l——1-+l——1—+ =e”!

12. 2z—a=2m-=hg. 13. z=a cos(a—p) or —acos (a + B).

4. 106. 6. 3; -1

T 3w : T a
14. a:=2nr-b—5— or 2n7r=k—5—.' 15.Aeos(w+1)a.=cos(-§—§).

16. ac=sec(a—§) or-—2cos§seca. 17. We can get

.8in2%e=gin3a 18 Bln—*——("‘)iﬂln— thisgivesta.gg.
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19. é:m-;r+§- or (n—1)0=2m*%.
. 0 56 k.
20. cos6=0, or smﬁ-O, or co8 5-=0. 22, 16"
23, n=2, 24, im0 n 302,
2 2
31. Write for & successively g—-z and 7§r+z.

34. By Art. 114, tan’4 + tan’B + tan’C = 1 + } (tan 4 - tan By’
+ 3 (tan B — tan C)* + 4 (tan C — tan 4)".
36. cot B + cot C' — cosec 4
_sn(B+0) 1 _sin*4-sinBanC
sinBsinC sind sindsinBsinC ’
37. If A+ B+(C=180° we have
cos® 4 +cos’ B+cos’C=1—2cos 4 cos Beos C............(1).

Thus, if 4, B, C are all acute, the sum of the squares of the
cosines is less than unity. Hence if we require the sum of the
squares of the cosines to be equal to unity, one or more of the
acute angles must be diminished, so that their sum will then be
less than 180°

38. From the value of sin (4 + B+C), given in Art. 113, it
will follow that

sin 4 +sin B +sin C —sin (4 + B + 0)
=gin 4 (1—cos.BcosC)+ sin B(1—cos 4 cos ') + sinC(1 - cos 4 cos.B)
+sin4dsin Bsin C;

and every term of this expression is’ positive.

39. 67,  40. zero. 4L Tt depends on (1 — cos 6)*(1+ 2 cos §)
being greater than zero,

. —sina<sing
XII. pa.ges 141—145. 3. ma—m.
6 ., 1
4, 1, -}. é. cotﬁ—cotO—-siTo.
6. -1 7. a'=b" 8 at+ b4 =1

c+1° sin* @ .
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11. & +5—2=2. 12. x*+y'=a=<1+-'_;_,').
1 1 z 'y' . s .
13. cotc=‘-'--— 3 14, a-1+-5;=1. 15. b=a—2accos2¢+c.
;]
19. (mny} {md+ nd} = 1. 20. Z+¥-1,

.29, sin 0 sin ¢ =sina sin B,

. 40 . .0 sin'asin’g
4 —_—
therefore 4 gin 3~ 4 sin 3 et
. .0 . .0 sin® @ sin®
therefore 4 sm‘-z- — 4 gin® 3 +1=1- ~~-m—~ﬁ$
cot® g
and sin’ ¢ = ; therefore

0ot.’:2E + cos® B

2sin’g—l=*~/{l—4sin“—2l (cot"—;-+ 008'13) sin',B};
this reduces to 2sin'g-—l=*(l—2sin'%sin'ﬁ).

30. n must lie between — 2 and — 1 or between 1 and 2.

31. By Art. 114 we may suppose z=tan 4, y=tan B, z=tanC,
where 4 +B + C=180°. Therefore 24 + 2B + 20 = 360°;
and  tan 24 + tan 2B + tan 2C = tan 24 tan 2B tan 2C.
This gives the required result.

32. vsinc=sinz=—sinxcosy—coszsiny
=—vsinacosy—wvsinbcosz, or sinacosy=—sin ¢— sin b cos x;
" and sinasiﬂy:sinbsinw; square and add, thus
sin*@=sin b +sin’c + 2 sin bsin ¢ cos z; therefore
sin*@ — sin® b —sin’ ¢
2sinbdsine
Similarly cos y and cos z may be found.

CO8 2 =

33. ¢ %,

T, T. 18
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37. We have universally
sin(4 + B) =sin' 4 +sin" B + 2sin A sin B cos (4 + B)...... @);
also in the present case sin®4 +sin® B=cos'(C......(2).
If A + B is greater than 90°, then a fortiori 4 + B+ C is so also.
If A+Bis less than 90°, then sin’ (4 + B) is greater than

sin’ 4 +sin’ B by (1), that is, greater than cos’ C' by (2);
therefore A+Bis greater than 90°-C.

XIIL pages 152—156.

5. Let ﬁ_ a 80 that the angles of the triangle are 2a, 4a and 8a.
Then the ratio of the greatest side to the perimeter

_ sin 8a _ sin 8a
~ gin2a +sin4a + sin8a. sin 2a + sin 4a + sin 6a
2 sin 4a cos 4a sin 4a

~ 98in 3a cosa + 2 sin 3a cos 3a _ cos a + cos 3a
2 sin 2a cos 2a

~2cos 2a cos a. =2sina.
sin20+6indf a+ec a+e
- 8. N B , therefore 20050-_T.
21, sin @ +sin¢ =2sin (0 + ¢); therefore coso’;¢=2oosa—;-¢;

0 ¢ 0. ¢
therefore cos2cos-2——3sm2sm-§,

therefore (1 sm2)(l sm’¢) 931n2sm%

therefore 8 sin’ 5 sm’ i =1- sm’g - sm’ 4’

2 2

therefore 16sm 3 '—-2—2sin’g—2sin’§=oosa+cos¢.

a’+b'—¢ and5<2FC.

Or thus, ms0=———2-ab—- 5



37.
40.

o N &

12.

13.
14,
17,
19.
21.
2.

25.

26.
28.
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a—c b ba-3c
therefore cos 6 = -—a—‘ + % = T H

bc—3a

4

This will follow from examples 20 and 21 of Chapter viir.
We have to shew that (b +c—a)(c+a—8)(a+b—c) is less
than abc except when a=b=ec. By squaring, this amounts
-to shewing that {a®— (c — b)"} {0* — (& —¢)'}H{c" — (& —b)"} is less:
than a®h’¢*; and each factor on the left-hand side is less than
the corresponding factor on the right side except when a=b=c.

similarly cosp=

XIV. pages 166—169. 1. 4=30° or 150°, 2. 30°% 90°
45°, 60°, 75°. 4. The triangle is impossible.
B=90°, C=72, c=4,/(5+2,/5). 6. B=45or 135°.
From Art. 235 we have ¢ + ¢’ = 2b cos 4 and ¢c’ = b*— a®.
Bsind cosA.  11. No; the triangle is right angled.
We get sin 0 = J(ab) gin 4 C;

a+b_ smA +8in B cos%(A B)

c sin C sind C

c'=a’+b'— 2ab cos O = (a - b)* + 4ab sin’ § C; &e.

9-6733937. 15, 132° 34’ 32". 16. 55° 45’ 447,

78° 27 47", 18. 119° 26’ 51”7; 5° 33" 9",

69° 10° 10”; 46° 37’ 50", 20. 116° 33’ 54”; 26° 33’ 54"

82° 10’ 50”; 50° 24’ 10”. 22. 124° 48 59”; 33° 11’ 1”.

48° 11’ 23”; 58° 24’ 43”; 73° 23’ 54",

44 3475

6:53’ therefore sin’ 5 = zozg; B=1"320"

70° 53’ 36”; 49° 6’ 24", 27. 38°12' 47"; 21° 47’ 13".
26°33'54”. 29. 69°49’35”; 50°10'25".  30. 30° or 150°.

also

cos A =
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XYV. pages 175—181. " In order to solve some of these ex-
amples the student must be acquainted with the Mariner’s Com-
pass. In the Mariner's Compass the circumference of a circle is
divided into thirty-two equal parts, so that each part subtends at

the centre of the circle an angle of — 360 degrees, that 1s, an

angle of 111" The following names are a§81gned to the points of
division of the circumference, North, North by East, North
‘North East, North East by North, North East, North East by
East, Bast North East, East by North, East, East by South, East
South East, South East by East, South East, South East by South,
South South East, South by East, South, South by West, South
South West, South West by South, South West, South West by
West, West South West, West by South, West, West by North,
‘West North West, North West by West, North West, North
‘West by North, North North West, North by West.

1 880(3+43). 2 1;’;) yards. 8 The distance of the

a + b—2k\}
a-b ) ‘
denote the required height; then eliminate 6 between
a=>btan 6, a+x=>btan (0 + 7).
11. 10,/(115) feet; neglecting the height of the observer’s eye
from the ground. 12, 40,/3 feet.
13. Height 40 ,/6 feet; distance 40 {,/(14) +,/2} feet.
18. 8 +4,/2 miles per hour.
22. Let & be the height of the higher hill, 4 of the lower ; then
_{e+1)sinesinf and W _Wcota'—ec
) T sin(B—a) ' k hootB+1°
23. 180,/3 feet.  25. B=60° or 120°; approximate error 6.
28 ¢ sin a sin 8 sin (a + B) '
" sin*a+sin'8—2sinasin Bcos(a+pB)’
29. J(a®+2ab cosa+b°). 30. Suppose both lines OC
- and O'C to fall within the angle ACB. Let AC=a, ACO=¢;
then from the triangles ACO and BCO we get

point from the tower =b 10. Let =




31.
34.

3.

51,

4.
7.
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4

OC=asin(¢+a)_ a cos(p ~ B)
sina =~ snfB
Hence tan ¢ is known and then sin¢ and cos¢. Thus we
.  a*cos’ (a + B)
shall get  OC " sin’a +sin”B — 2 sin a sin B sin (a + B)
A similar expression can be found for O’C* in terms of o’
and 8. Then 0'C*=0C*+d* This finds @ and then 4B=a,/2.
. ' __tana (1 —tanp)
Or thus ; find as above tan ¢ = fanB(l—tena)’
tana’ (1 — tan B)
tan 8’ (1 —tana’)’
Then 0CO'=7 - ¢~ ¢’ and OC'=doot 000 =d tan ¢+ §).

‘Similarly tan BCOQ' =

Thus OC is found ; and then @ can be determined.

104-93 feet. 32. 63° 26’ 6. 33. 30° 40’ 37"
296-40031 feet.

XVI. pages 192—199. 1. 216. 2. g(if%,’——l)
6. 8. Tto3; 1200 25. \/(pq); where p and ¢ are
the given segments. 47. 82° 24’ 39”; 22° 24’ 39”;
75° 10’ 42, 50. Conversely, if this relation holds it may
be shewn that the lines meet in a point.

52, 53, 54 follow from the converse of 50. -

XVIL pages 203—205. 1. -1, /34, —,/3-4.
-2, 2,/2c089° 2,/2cos 63 2,/2cos81°% 2./2cos 153"
Let  be the height of the balloon, and a, b, ¢ the sides of
the triangle ABC; then 4c®x*— 36a'b’z" + 9a’b’c* = 0.
Less than 2 inches. 12. Suppose % the height of the
tower, r the radius, « the distance of the first place of
observation from the centre ; then ; = cosec -g , a%z
=oosecg—', h=xtana, h=(z—a)tana. From these four
equations we may eliminate x, and find 4 and r, and also the
required relation between a, o', 8, 8’ 13. From the pre.
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g

ceding question ; = cosec g — cosec 5. If we suppose that

an error § of the same sign is made in 8 and B’ these errors
tend to compensate each other; the greatest possible error in
r will be determined by supposing that errors of opposite
signs are made in B and B’. Suppose then that instead of
B we ought to have 8 — 8, and instead of 8’ we ought to have
B +8. Then by Art. 194 we shall find

<cosﬁ+ cosE cosﬁ +cosg) (l—cosé cos%)

2 §_ 2 2

'B 2 'nﬁ°aﬁl

sin” 5 81]1— sm-ésm—

apS

rﬂ

Divide by the value of % and the required result is obtained.

14, If PQ=a and QR—b it may be shewn that
_(a-0) N (a + b)*
SQ' 4" T 4a®
then the change in SQ arising from a small change in 8 can
be calculated.

tan’B;

XVIIL pages 207—210. 2.1. 7. 18. o= 127(5—2,,/2).

2057
19. x—{hLZb. 20. =0 or =3. 21. =0 or =3
22, 5=~ 231, 93, w==1or(1+,/2).
24, z=aora’—a+1. 28. x=2 30. z=2; y=1

34, nw+ (- 1)""" or(m+n)1r+(-1)
35. (2'n+m)1r=kg.

XXTI. pages 246—249.
1. Usesin®a=34(1—cos2q). 2. Use sin®a=}(3sin a —sin 3a).

n cos (26 + na) sin na
. b Scosa+ :
2 2sina

9. 4 (cos 26 — eos 2*** 6).
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10. ¢0%*¢ cos (0 + cos @ sin 6). 12. }(e*in9 + ¢78in¢) cog (cos 6).
18, 1229 _1og(1- con ). 14, M"sin(sinza :
1—cos 2
15. sin 6 — cos @ + ¢sin 080 cog (§ 4 sin? §).
20, 2--'m2%-iﬁnzo. : 21. tanf— tang,
1 gr-1
22, - . 23, cosecB{cot 6~ cot(n+1)6).

2540 sn20

24, oosec(o+’-2'){tan(n+1)(o+’§')-m (o+’2-')}

2. T-tan? 2. 26 tanmm 7. %(cosz—:lq—cos'ia).

28. 4 cosec 6 {tan (n + 1) 6 — tan 6}.
29. lcosecg{mec2""—+10—sec-oi}. 30. l{ootg—3"<>oi;3“0}

4 2 2 2 4 2
31, cot“; t“”T-Fla. 32. cos @ — sin 4 cot 2"4.
33 log2sin20—l—OM

- log o .

XXIII page 265—267. 1. When n =2 the sum of the first

series is ?5" and the sum of the second series is — 3 . Whenn=4

the sum of the first series is 9—0 , and the sum of the second series
4

is ;_6 These results are obtained by expanding the values of
log =5~ ) 29 and log cos 6, which are given in Arts. 274 and 320, in

powers of 6, and equating the coefficients of like powers,
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MASSON.—Essays, Biographical and Critical; chiefly on the
English Poets. By DAVID MASSON, M.A. Professor of English
Literature in University College, London. 8vo. cloth, 12s. 6d.

MASSON.—British Novelists and their Styles; being a
Critical Sketch of the History of British Prose Piction. By DAV1ID MASSON,
M.A. Crown 8vo, cloth, 7s. 6d.

MASSON.—Life of John Milton, narrated in Connexion
with the Political, Ecclesiastical, and Li y History of his Time. Vol. I.
with Portraits. 18s.

MAURICE.—Expository Works on the Hely Scriptures.
By FREDERICK DENISON MAURICE, M.A., Chaplain of Lincoln’s Inn,

I.—The Patriarchs and Lawgivers of the 0ld Testament.
Second Edition. Crown 8vo. cloth, 6s.

This volume contains Discourses on the Pentateuch, Joshua, Judges,
and the beginning of the First Book of Samuel.
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MAURICE.—Expository Works on the Holy Scriptures.
By FREDERICK DENISON MAURICE, M. A., Chaplain of Lincoln’s Inn.

I1.—The Pro‘Phets and Kings of the 0ld Testament.
Second Edition. Crown 8vo. cloth, 10s. 64d.

This vol ins Di ses on Samuel I.and IT., Kings I.and II.,
Amos, Joel, Hossa, Isaiah, Micah, Nahum, Habakkuk, Jeremiah,
and Ezekiel.

II1.—The Gospel of St.John; a Series of Discourses.

Second Edition. Crown 8vo cloth, 10s. 6d.

IV.—The Epistles of St.John; a Series of Lectures on
Christian Ethics. Crown 8vo. cloth, 7s. 6d.

MAURICE.—Expository Works on the Prayer-Book.
I.—The Ordinary Services.

Second Edition. Fcap. 8vo. cloth, 5s. 6d.

I1.—The Chureh a Family. Twelve Sermons on the
Occasional Services. Fcap. 8vo, cloth, 4s. 6d.

MAURICE.—What is Revelation? A Series of Sermons
on the Epiphany ; to which are added Letters to a Theological 8tudent on the
Bampton Lectures of Mr. MANsEL, Crown 8vo. cloth, 10s. 6d.

MAURICE.—Sequel to the Inquiry, “ What is Revelation ?”
Letters in Reply to Mr. Mansel's Examination of ¢ Btm:tunu on the
Bampton Lectures.” Crown 8vo. cloth, 6s.

MAURICE.—Lectures on Ecclena.stwal History.

8vo. cloth, 10s. 6d.

MAURICE.—Theological Essays.
Second Edition, with a new Preface and other additions. Crown 8vo.
cloth, 10s. 6d.

MAURICE.—The Doctrine of Sacrifice deduced from the
Scriptures. With a Dedicatory Letter to the Young Men’s Christian Associa-
tion. Crown 8vo. cloth, 7s. 6d.

MAURICE.—The Religions of the World, and their Relations
to Christianity. Third Edition. Fcap. 8vo.cloth, 5s.

MAURICE.—On the Lord’s Prayer.
Third Edition. Fcap. 8vo. cloth, 2s. 64.

MAURICE.—On the Babbath Day: the Character of the

Warrior; and on the Interpretation of History. Fecap. 8vo. cloth, 2s.64d.

MAURICE.—Learning and Working.—Six Lectures on the

Foundation of Colleges for Working Men, Uelivered in Willis’s Rooms,
London, in June and July, 1854. Crown 8vo. cloth, 5s,
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MAURICE.—The Indian Crisis. Five Sermons.

Crown 8vo, cloth, 2s. 6d.

MAURICE.—Law’s Remarks on the Fable of the Bees.
Edited, with an Introduction of Eighty Pages, by FREDERICK DENISON
MAURICE, M. A, Chaplain of Lincoln’s Inn. Pcp. 8vo. cloth, 4s. 64d.

MAURICE.—Miscellaneous Pamphlets:—
I—Eternal Life and Eternal Death.

Crown 8vo. sewed, 1s. 6d.

II.—Death and Life. A Sermon. 3Sn Memotiam €. 8. M,

8vo. sewed, ls.

III.—Plan of a Female College for the Help of the Rich

and of the Poor. 8vo, 6d.

IV.—Administrative Reform.
Crown 8vo. 3d.
V.—The Word “Eternal,” and the Punishment of the
Wicked. FPifth Thousand. 8vo. ls.

VI.—The Name “Protestant:” and the English Bishopric

at Jerusalem. Second Edition. 8vo. 3s.

VII.—Thoughts on the Oxford Election of 1847.
VIIL.—The Case of Queen’s College, London.

- 8vo. ls. 64

IX.—The Worshlp of the Church a Witness for the

Redemption of the World. 8vo. sewed, 1s.

MAYOR.—Cambridge in the Seventeenth Century.
2 vols. fcap. 8vo. cloth, 13s.
Vol. I. Lives of Nicholas Perrar.
Vol. II. Autobiography of Matthew Robinson.
By JOHN E. B. MAYOR, M. A, Fellow and Assistant Tutor of 8t. John's
College, Cambridge.
*,% The Autobiography of Matthew Robinson may be had separately, price 5s. 6.

MAYOR.—Early Statutes of 8t. John’s College, Cambridge.
Now first edited with Notes. Royal 8vo. 18s.
#,* The First Part is now ready for delivery.

MAXWELL.—The Stability of the Motion of Saturn’s Rings.
By J. C. MAXWELL, M.A. Professor of Natural Philosophy in the Uni-
versity of Aberdeen. 4to, sewed, 6s.

MOORE.—A New Proof of the Method of Algebra commonly
called * Greatest " By B. T. MOORE, B.A., Fellow of
Pembroke College, Cambtidge Crown 8vo. 6d.
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MORGAN.—A Collection of Mathematical Problems and

Examples. Arranged in the Different S8ubjects progressively, with Answers
to all the Questions. By H. A, MORGAN, M.A., Fellow of Jesus Col-
lege. Crown 8vo. cloth, 6s. 6d.

MORSE.—Working for God, and other Practical Sermons.
By FRANCIS MORSE, M.A. Incumbent of 8t. John's, Ladywood, Bir-
mingham. Second Editiom. Fcap. 8vo. cloth, 5s.

NAPIER.—Lord Bacon and Sir Walter Raleigh.
Critical and Biographical Essays. By MACVEY NAPIER, late Editor
of the Edindurgh Review and of the Encyclopedia Britanni, Post 8vo.
cloth, 7s. 6d.

NORWAY AND SWEDEN.—A Long Vacation Ramble in

1856. By X and Y. Crown 8vo. cloth, 6. 6d.

OCCASIONAL PAPERS on UNIVERSITY a.nd SCHOOL

MATTERS; containing an Account of all recent University Subjects and
Changes. Three Parts are now ready, price 1s. each.

PARKINSON.—A Treatise on Elementary Mechanics.
For the Use of the Junior Classes at the University, and the Higher Classes in
Schools. With a Collection of Examples. By S. PARKINSON, B.D. Fellow
and AssistantTutor of 8t.John’s College, Cambridge. Crown 8vo. cloth, 9s. 6d.

PARKINSON.—A Treatise on Optics.

Crown 8vo. cloth, 10s. 6d.

PARMINTER.—Materials for a Grammar of the Modern
English Language. Designed as a Text-book of Classical Grammar for the
use of Training Colleges, and the Higher Classes of English Schools. By
GEORGE HENRY PARMINTER, of Trinity College, Cambridge; Rector
of the United Parishes of $8.John and George, Exeter. Fcap. 8vo.cloth, 8s. 6d.

PEROWNE.—" Al-Adjrumiieh.”
An El tary Arabic G By J.J.8. PEROWNE, B.D. Lecturer
in Divinity in King’s College, London, and Examining Chaplain to the
Lord Bishop of Norwich. 8vo. cloth, 5s.

PHEAR.—Elementary Hydrostatics.
By J. B. Phear, M.A. Fellow of Clare College, Cambridge. Second
Edition. Accompanied by numerous Examples, with the Solutions.
Crown 8vo. cloth, 5s. 6d.

PHILOLOGY.—The Journal of Sacred and Classical Philology.

Vols, Ito IV. 8vo. cloth, 12s. 6d. each.

PLAIN RULES ON REGISTRATION OF BIRTHS AND

DEATHS. Crown 8vo. sewed, 1d.; 9d. per dozen; 5s. per 100.

PLATO0.—The Republic of Plato.

Translated into English, with Notes. By Two Fellows of Trinity College,
Cambridge, (J. L1. Davies M.A., and D. J. Vaughan, M.A.) Second
Edition. 8vo. cloth, 10s. 6d.
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PRAYERS FOR WORKING MEN OF ALL RANKS:

Earnestly designed for Family Devotion and Private Meditation and Prayer
Fcap. 8vo. cloth, red leaves, 2s. 6d. Common Edition, 1s. 9d.

PRINCIPLES of ETHICS according to the NEW TESTA-

MENT. Crown 8vo. sewed, 2s.

PROCTER.—A History of the Book of Common Prayer: with
a Rationale of its Offices. By FRANCIS PROCTER, M.A., Vicar of Witton,
Norfolk, and late Fellow of St. Catherine’s College. Fourth Editiom,
revised and enlarged. Crown 8vo, cloth, 10s. 6d.

*,* This forms part of the Series of Theological Manuals.

PUCKLE.—An Elementary Treatise on Conic Sections and
Algebraic Geometry. With a numerous collection of Easy Examples pro-
gressively arranged, especially designed for the use of Schools and Beginners.
By G. HALE PUCKLE, M.A., Principal of Windermere College. Second
Edition, enlarged and improved. Crown 8vo. cloth, 7s. 6d.

RAMSAY.—The Catechiser's Manual; or, the Church Cate-
chism illustrated and explained, for the use of Clergymen, Schoolmasters,
and Teachers. By ARTHUR RAMSAY, M.A. of Trinity College,
Cambridge. 18mo. cloth, 8s.64d.

REICHEL.—The Lord’s Prayer and other Sermons.
By C. P. REICHEL, B.D., Professor of Latin in the Queen’s University;
Chaplain to his Excellency the Lord-Lieutenant of Ireland; and late Don-
nellan Lecturerin the University of Dublin. Crown 8vo. cloth, 7s. 6d.

ROBINSON.—Missions urged upon the State, on Grounds
both of Duty and Policy. By C. K. ROBINSON, M.A. Fellow and Assistant
Tutor of 8t. Catherine's College. Fcap. 8vo. cloth, 8s.

ROWSELL.—THE ENGLISH UNIVERSITIES AND THE
ENGLISH POOR. Sermons Preached before the University of Cambridge.
By T.J. ROWSELL, M.A. Incumbent of S8t Peter's, Stepney. Fcap. 8vo.
cloth limp, red leaves, 2s.

RUTH AND HER FRIENDS. A Story for Girls.
With a Frontispiece. Third Edition. Royal 16mo. extra cloth, giltleaves, 5s.

SALLUST.—Sallust for Schools.
With English Notes. Second Edition. By CHARLES MERIVALE,
B.D.; late Fellow and Tutor of St. John’s College, Cambridge, &c., Author
of the ¢ History of Rome,” &c. Fcap. 8vo. cloth, 4s. 6d.

““TERJUGURTHA"” AXD “ TRE CATILINA” 4AY BE HAD SEPARATELY, price 2s. 6d.
EACH IN CLOTH.

SANDARS.—BY THE SEA, AND OTHER POEMS,
By EDMUND SANDARS, of Trinity Hall, Cambridge. Fcap. 8vo.
cloth, 4s. 6d.

SCOURING OF THE WHITE HORSE; or, The Long
Vacation Ramble of a London Clerk. By the Author of * Tom Brown's
8chool Days.” Ill d by Doyre. Eighth Thousgnd. Imp. 16me.
cloth, elegant, 8s. 6d.
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TODHUNTER.—Examples of Analytical Geometry of Three

Dimensions. Crown 8vo. cloth, 4.

TOM BROWN’S SCHOOL DAYS.
By AN OLD BOY. Seventh Edition. Fcap. 8vo. cloth, 5s.

TRENCH.—Synonyms of the New Testament.
By The Very Rev. RICHARD CHENEVIX TRENCH, D.D. Dean of West-
minster. Fourth Edition. Fcap, 8vo. cloth, 5s.
TRENCH.—Hulsean Lectures for 1845—46.
CoxtENTS. 1.—The Fitness of Holy Scripture for unfolding the Spiritual Life
of Man. 2.—Christ the Desire of all Nations; or the Unconscious Pro-
phecies of Heathendom. FPourth Edition. Foolscap 8vo. cloth, 5s.

TRENCH.—Sermons Preached before the University of Cam-

bridge. Fcap. 8vo. cloth, 2s. 6d.

VAUGHAN.—Notes for Lectures on Confirmation. With
suitable Prayers. By C. J. VAUGHAN, D.D., Head Master of Harrow
School. Third Edition. Limp cloth, red edges, 1s. 6d.

VAUGHAN.—St. Paul's Epistle to the Romans,
The Greek Text, with English Notes. By C. J. VAUGHAN, D.D. 8vo.
cloth, 7s. 6d.

VAUGHAN.—MEMORIALS OF HARROW SUNDAYS.
A Selection of Sermons preached in Harrow School Chapel. By C. J.
VAUGHAN, D.D. With a View of the Interior of the Chapel. Crown 8vo.
cloth, red leaves, 13s. 6d.

VAUGHAN.—S8ermons preached in §t. John’s Church,
Leicester, during the years 1855 and 1856. By DAVID J. VAUGHAN, M.A.
Fellow of Trinity College, Cambridge, and Incumbent of St. Mark's, White-
chapel. Crown 8vo. cloth, 5s. 6d.

VAUGHAN.—Three Sermons on The Atonement. With a
Preface. By D. J. Vaughan, M.A. Limp cloth, red edges, ls. 6d.

WAGNER.—Memoir of the Rev. George Wagner, late of St.
Stephen’s, Brighton. By J. N. SIMPKINSON, M.A. Rector of Brington,
Northampton. Second Edition. Crown 8vo. cloth, 9s.

WATSON AND ROUTH.—CAMBRIDGE SENATE HOUSE -
PROBLEMS AND RIDERS. For the Year 1860. With Solutions by H.
‘W. WATSON, M.A. and E. J. ROUTH, M.A. Crown 8vo. cloth, 7s.6d.

WESTCOTT.—History of the Canon of the New Testament
during the First Four Centuries., By BROOKE FOSS WESTCOTT, M.A.,
Assistant Master of Harrow School; late Fellow of Trinity College, Cam-
bridge. Crown 8vo. cloth, 12s. 6d.

#4% This forms part of the Series of Theological Manuals.

WESTCOTT. — Characteristics of the Gospel Miracles.
Sermons preached before the University of Cambridge. th Notes. By
B. F. WESTCOTT, M.A., Author of *History of the New Testament
Canon.” Crown 8vo. cloth, 4s. 64.

WHEWELL—THE PLATONIC DIALOGUES FOR
ENGLISH READERS. By W. WHEWELL, DD. Vol. I. Fcap. 8vo.
cloth, 7s, 6d.
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WHITMORE.—Gilbert Marlowe and Other Poems.

With a Preface by the Author of ‘‘ Tom Brown’s Schooldays.” Fcap, 8vo.
cloth, 3s. 6d.

WILSON.—The Five Gateways of Knowledge.
By GEORGE WILSON, M.D., F.R.S.E., Regius Professor of Technology in
the University of Edinburgh. Secomnd Edition, Fcap.8vo. cloth, 2s. 6d.
or in Paper Covers, ls.

WILSON.—The Progress of the Telegraph.

Fcap. 8vo. ls.

WILSON.—A Treatise on Dynamics.
By W. P. WILSON, M. A., Fellow of St. John’s, Cambridge,and Professor of
Mathematics in the University of Melbourne. 8vo.bds. 9s. 6d.

WOLFE—ONE HUNDRED AND FIFTY ORIGINAL

- PSALM AND HYMN TUNES. For Four Voices. By ARTHUR

WOLFF, M.A,, Fellow and Tutor of Clare College, Cambridge. Oblong
royal 8vo. extra cloth, gilt leaves, 10s. 6d.

WORSHIP OF GOD AND FELLOWSHIP AMONG MEN,
A Series of Sermons on Public Worship. Fcap. 8vo, cloth, 3s. 6d.
By F. D. Maurice, M.A. T. J. RowseLr, M.A. J. Lr. DaviEs, M.A.
and D. J. Vavarax, M.A.

WRIGHT.—The Iliad of Homer.
Translated into English Verse by J. C. WRIGHT, M. A. Translator of Dante.
Crown 8vo. Books I.—VI. 5s.

WRIGHT.—Hellenica; or, a History of Greece in Greek,
as related by Diodorus and Thucydidea, being a First Greek Reading
Book, with Explanatory Notes, Critical and Historical. By J. WRIGHT,
M.A., of Trinity College, Cambridge, and Head-Master of Sutton Coldfield
Grammar School. Second Edition, wita a Vocasvrary. 12mo.
cloth, 8

WRIGHT.—David, King of Israel,

Readings for the Young. With 8ix Illustrations after SCHNORR. Royal
16mo. extra cloth, gilt leaves, 5a.

WRIGHT.—A Help to Latin Grammar;
or, the Form and Use of Words in Latin, With Progressive Exercises.
Crown 8vo. cloth, 4s. 6d.

WRIGHT.—The Seven Kings of Rome:

An easy Narrative, abridged from the First Book of Livy by the omission of
difficult passages, being a First Latin Reading Book, with Grammatical
Notes. Fcap. 8vo. cloth, 3s.

WRIGHT.—A Vocabulary and Exercises on the “ Seven
Kings of Rome.” Fcap. 8vo. cloth, 2s. 6d.

*+* The Vocabulary and E ises may also be had bound up with ¢ The Seven

Kings of Rome.” Price 5s. cloth.
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