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LFrom the Proceedings oe the American Association for the Advance-
ment of science, Vol. xl, 1891.]

Principles op the algebra of physics. By Prof. A. Mactarlane,
University of Texas, Austin, Texas. ;

[This paper was read before a joint session of Sections A and B on August 21.]

La seule maniere de bien traiter les elemens d'une science exacte et rigoureuse, c'est

d'y mettre toute la rigueur et l'exactitude possible.

D'Alehbert.

The question as to the possibility of representing areas and solids by means of the

apparent multiplication of the symbols for lines has always appeared to me to be one

of great difficulty in the application of algebra to geometry; nor has the difficulty, I

think, been properly met in works on the subject.

D. F. Gregory.

Tant que l'algebre et la geometrie ont et^ separees, leur progres ont ete lents et leurs

usages bornes, mais lorsque ces deux sciences se sont reunies, elles se sont prfitees

des forces mntuelles, et ont marche ensemble d'un pas rapide vers la perfection.

Lagrange.

In the preface to the new edition ofthe Treatise on Quaternions Professor

Tait says, " It is disappointing to And how little progress has recently

been made with the development of Quaternions. One cause, which has been

specially active in France, is that workers at the subject have been more

intent on modifying the notation, or the mode of presentation of the fun-

damental principles, than on extending the applications of the Calculus."

At the end of the preface he quotes a few words from a letter which he re-

ceived long ago from Hamilton— " Could anything be simpler or more sat-

isfactory? Don't you feel, as well as think, that we are on the right track,

and shall be thanked hereafter? Never mind when." I had the high priv-

ilege of studying under Professor Tait, and know well his single-minded

devotion to exact science. I have always felt that Quaternions is on the

right track, and that Hamilton and Tait deserve and will receive more and

more as time goes on thanks of the highest order. But at the same time

I am convinced that the notation can be improved; that the principles re-

quire to be corrected and extended ; that there is a more complete algebra

which unifies Quaternions, Grassmann's method and Determinants, and

applies to physical quantities in space. The guiding idea in this paper is

generalization. What is sought for is an algebra which will apply directly

to physical quantities, will include and unify the several branches of anal-

ysis, and when specialized will become ordinary algebra. That the time

is opportune for a discussion of this problem is shown by the recent dis-

A. a. a. s., VOL. XL. (65)



66 SECTION A.

cussion between Professors Talt and Gibbs in the columns of Nature on

the merits of Quaternions, Vector Analysis, and Grassmnnn's method;

and also by the discussion in the same Journal of the meaning of algebraic

symbols in applied mathematics.

A student of physics finds a difficulty in the principle of Quaternions

which makes the square of a vector negative. Himilton says, Lectures,

page 53, " Every line in tri-dimensional space has its square equal to a neg-

ative number, which is one of the most novel but essential elements of

the whole quaternion theory." Now, a physicist is accustomed to con-

sider the square of a vector quantity as essentially positive, for example,

the expression Jimi2
. In that expression |m is positive, and as the

whole is positive, v" must be positive; but v denotes the velocity, which

is a directed quantity. If this is a matter of convention merely, then the

convention in quaternions ought to conform with the established conven-

tion of analysis; if it is a matter of truth, which is true?

The question is part of the wider question—Is it necessary to take, as

is done in quaternions, the scalar part of the product of two vectors neg-

atively? I find that not only can problems, involving products of vectors,

be worked out without the minus, but that the expressions so obtained

are more consistent with those of algebra. Let, for example (fig. 1), A
denote a vector of length a and direction a, and B another vector of

length 6 and direction ft, their sum is A + B, and the square of their sum
I take to be a* + 2o6 cos aft + V, where cos aft denotes the cosine of

the angle between the directions a and ft.

Suppose B to change until its direction is

the same as that of A, the above ex- A-t"f3

pression becomes as + lab + 6 2
, which

agrees with the expression in algebra.

But the quaternion method makes it

— (a2 + 2ab + 62). The sum of A and

the opposite of B is A— B; its square a_n^
is a2 — 2a6 cos aft + 6s which becomes

os—2 ab + 6 s
, when A and B have the

same direction, but according to quater- fig. 1.

nions it is — a? + 2a6— b".

In ordinary algebra there are two kinds of quantity, the arithmetical or

signless quantity, and what is called the algebraic quantity. The former

(fig. 2), can be adequately represented on a straight line produced indefi-

nitely in one direction from a fixed point.

jY > > —

y

All the additive quantities are laid offend
"~ ~" to end, and from the final point the sub-

Fig. 2. tractive quantities are laid offend to end,

•>

p > j but in the opposite direction. The final
**• - point must stop short of the origin, in

Fig. 3. order that the result may be possible,

under the supposition that the quantity is signless. But the algebraic
quantity requires for its representation (fig. 3), a straight line produced
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indefinitely in either direction from the fixed point. It is a directed quan-

tity, which may have one or other of two directions. But though this

quantity has a sign, its square is signless, or essentially positive. Hence
only a positive quantity has a square root, and that root is ambiguous, on
account of the two directions which the algebraic quantity may have. The
generalization of this for space is that the square of any directed quantity

is essentially positive, and that the square root of a signless quantity is

entirely ambiguous as regards direction.

There is a want of harmony between the notation of Quaternions and
that of Determinants. Let, as usual,

B = xi+yj + zk, p = x'i+ y'j+ ziJc, y = x" i +y"j+ z" k,

then

Sa/3 r = — X
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mental rules of quaternions. These we find in the rules for the combina-

tion of the symbols i, j, and k, namely

:

jk = i ki = j ij = k

kj = — i ik = — j ji = — k

i* = — 1 f = — 1 k* = — 1

In the preface to his Lectures Hamilton narrates how, in his search for

the extension to space of the imaginary algebra of the plane, he arrived at

these rules, and how having formu-

lated and partly tested them he felt

that the new instrument for apply-

ing calculation to geometry had been

attained. How are these rules es-

tablished, not as properties of sym-

bols, but as truths in geometry and

physics? Writers on quaternions -J
illustrate them by two different

things—the summing of angles in

space, and the rotation of a line

about an axis. Let (fig. 4) i, j, k,

denote three mutually perpendicular

axes which are usually designated

as the axes of x, y and s. In or-

der to distinguish clearly between an axis and a quadrant of rotation about

J J J
the axis, let i

, j , k denote quadrants of rotation in the positive direc-

tion about the respective axes. The directions of positive rotation are in-

2 2"

•dicated by the arrows. Now in quaternions by k j is meant (the J is

not expressed explicitly) a quadrant of the great circle round j followed

'by a quadrant of the great circle round k; the sum of these is the quadrant

a
from k to j, which is the negative of a quadrant round i or i ; or it may

be considered as a quadrant round — i, and therefore denoted by — i .

Hence, supposing the order of the summing to be from right to left,

7T TT

2" 2"

k j •=
TT IT TT

2 2" S
i k = —j ,

7T TT

2- 2"

j i = — k

Again (see fig. 4) by j k is meant a quadrant of the great circle round
k followed by a quadrant of the great circle round j; this is equivalent to

the quadrant from —jto—k, which is a quadrant of the great circle round

2" 3"

i and in the positive direction ; hence, j k
TT IT It

2" 2" 2"

>and i j = k .

2" 2 2" 2~

i and similarly k i = j



irl
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an angle J and a multiplier

l/ («»»'— nm'y + (nV — In') 1 + Qm 1 — ml') 1

These two terms together denote the arc of a great circle which is the

sum of the two given arcs, its axis being the axis specified and its angle

such that— (W + »»»»' + ran') is its cosine.

We have next to consider the other meaning which is given to the fun-

damental rules : that they express the effect of a rotation on a line. Let
TT

s
i j denote the turning by a quadrant round i of a line initially along j ;

and here I introduce the Z. to denote explicitly what is meant by the first

symbol. Hamilton obtains the same elementary rules as before, namely,

~2

k j=— i

i i =— 1

a
k i=j

i k=—j
TT

TS

i j = k
tr

j i=— k

k k=—l
or, to speak more correctly, the first six are obtained, while the remain-

ing three are assumed. A quadrant rotation round j (see flg. 4) changes

a line originally along k to a line along i; hence the direction denoted by
IT

a
j k is identical with the direction i. Similarly, for the other two equa-

tions of the first set. A quadrant rotation in the positive direction round

k turns a line originally along j to a line in the direction opposite to i;
TT

hence k j=— i. Similarly for the other two equations of the second set.
7T

2
If we keep to the same meaning of the symbols as before, i i ought to

mean the effect of a quadrant rotation round i upon a line in the direction
TT

of i; and as that produces no change, we ought to have i'i= i. Similarly

j j=j and k k = k. It follows that the true meaning of the rules lies in

the summing of versors or arcs of great

circles, and not in the rotation of aline. c

This will be seen more clearly when we
attempt to form the product of a quadran-

tal rotation round any axis and any line.

Let li-\-mj+ nk denote the axis a (fig. 5),

round which there is a quadrant of rota-

tion, and xi + yj -+- zk the line R which is

turned. If the distributive rule applies, we
get the result by decomposing the quad-

rant rotation round the given axis into the

sum of three component rotations

7T TT TT

a" 2"
a"

H + mj + nk

Fig. 5.
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and finding their several effects on the several components of the line

xi-\-yj-\-zk. According to the quaternion rules we obtain— (Ix+ my+ nz)

+ (mz— ny)i-{- (nx —lz)j + (ly— mx) k. Now this expression is not

the expression for the resulting line, or for any line, unless lx-\-my-\-nz =0.
What is the true expression? It is (Ix+ my -f- nz) (li+ mj+ nk) which
is the component along the axis, and (mz— ny) i -\-(nx— lz)j+ (ly—mx) k
is the expression for the other component, which is perpendicular to the

axis and the initial line. The argument here is, of course, not so much
about the proper expression for the result of the rotation, as about the

meaning of the fundamental rules.

To make the rules which are true for versors applicable to vectors, it is

necessary to identify a vector of unit length with a quadrantal versor

having the same axis. In the new edition of his Elements, p. 46, Prof.

Tait makes the transition from versors to vectors thus " One most im-

portant step remains to be made. "We have treated i, j, k simply as quad-

rantal versors, and i, j, k as unit-vectors at right angles to each other, and
coinciding with the axes of rotation of these versors. But if we collate

and compare the equations just proved, we have i
2 =— 1, i

2= — 1, § 9

;

ij= k and ij = k; j i = — k and j i =— k. Now the meanings we have

assigned to i, j, k are quite independent of, and not inconsistent with,

those assigned to i, j, k. And it is superfluous to use two sets of charac-

ters when one will suffice. Hence it appears that i, j, k may be substituted

for i, j, k; in other words, a unit-vector when employed as a factor may be

considered as a quadrantal versor whose plane is perpendicular to the vector.

Of course, it follows that every vector can be treated as the product of a

number and a quadrantal versor. This is one of the main elements of the

singular simplicity of the quaternion calculus."
TT

'Z

By i is here meant what we have designated by i and by i a unit-vector

along the axis of i. We have already seen one difficulty opposing the
7T

2
identification, namely, taking as a principle that i i = — 1. But waiving

that insuperable objection, there still remains for consideration the case

of the combination of two vectors. This kind of product, in which both

factors are vectors, has in recent times been generally neglected. This

is evident from what is said by Clifford (Mathematical papers, p. 386)

"In every equation we must regard the last symbol in every term as

either a vector or an operation; but all the others must be regarded as

operations." This view does not explain the product of physical quanti-

ties.

Let xi*. yj, zk denote line-vectors along the axes of i, j, k respectively

;

then according to the principles of quaternions

(.yj) (zk) = yzi (zk) (xi) = zxj (xi) (yj) = xyk

(zk) (yj) = — yzi (xi) {zk) = — zxj (yj) (xi) = — xyk

(xi) (xi) = — x2
(yj) (yj) = — y

2 (zk) (zk) = — z*.

As the distributive principle is to be applied, the meaning of these par-

tial products must be such that the product of any two vectors is obtained
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X.h

Fig. 6.

by taking the products of the several components of the one with the sev-

eral components of the other.

Let yjzk denote or be represented (fig. 6) by the rectangle included be-

tween yj and zk; its magnitude is yz and its orientation is defined by jk.

But in space of three dimensions the aspect or orientation jk may be rep-

resented so far as direction is con-

cerned by the complementary axis i.

Hence we may write yjzk = yzjk — yzi.

Similarly, zkxi = zxki = zxj and

xiyj = xyij= xyk. The expression zylcj

denotes the same area in magnitude

and plane as yzjk, but is taken the op-

posite way round; the complement-

ary axis is —i. In the same sense

ik = — j and ji = — k. So far, the

quaternion rules appear to hold good

but even here, a difficulty appears on

closer consideration. We have taken the vectors in the order of writing

and obtain jk = i; if, as was pointed out, we take the versors also in the
TT IT -n

2 2 ?
order of writing we obtain j k =— i.
The question remains : What consistent meaning must be attached to

xixi and yjyj and zkzk in order that when they are taken along with the

other partial products we may obtain a

complete distributive product? The view
which I have arrived at is that the ex-

pression xixi= xH'i means the area of the

square which is formed by the projection

of xi on its own direction; and that it is

essentially positive. Similarly j/Y and zV
are essentially positive, and tlie three

terms are to be combined by arithmetical

addition. Individually they have no di-

rection, whether their sum has or not.

Hence I take the rules to be ii = -f-,

jj= +, and kk= +.
Let B,= xi + yj+ zk and R'=k'i+ y'j+ z'k be any two line-vectors.

By applying the above rules distributively we obtain :

RR' = (xi+ yj+ zk) (x'i+ y'j+ z'k)

= xx' -f yy>+ zz' + (yz'— zy') i -f (zx'— xz>) j+ (xy' —yx<) k.

Let OP and OP' be the projections of R and R' on the plane of i and j.

Then from the figure (fig. 7) it is evident that the area of the triangle
OPP' =xy'— kxy— b x'y'— J (a;— x') (y< —y)=h (xy'— yx')

Thus (xy'— yx>) k denotes the magnitude and orientation of the parallel-
ogram formed by the projections of R and R' on the plane of i and j. Sim-
ilarly (yz'— zy') i denotes the oriented area formed by the projections of
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B and R' on the plane ofj and k, and (zx'-xz')j that for the plane of k
and i. The geometrical sum of these areas is equal in magnitude and
orientation to the area of the parallelogram formed in space by R and R',
or rather the area formed by R and the component of R' which is perpen-
dicular to R.
The expression xx'+ yy' + zz' is the area formed by R and the projec-

tion of R' upon R. For (flg. 8) the projection of R' is equal to ON,
which is equal to OL+LM+MN, the sum of the projections on R of x'i,

y'j and z'k respectively. Hence the product ofR and the projection of R'
is

f x' —+ y'^- + z'-\ = xx'+ yy>+ zz>
r r J

Fig. 8.

Hence by the complete product RR' we mean the product ofRand the com-
ponent of R' which is parallel to R, to-

gether with the product of R and the

component of R' which is perpendicular

to R. This product is distributive, that

is, we get the same result whether we
take the product directly, or take the sev-

eral products of the components ofR and
R' and add them together, the non-di-

rected products by ordinary addition, the

directed products by geometrical addition.

The expression xx1 + yy' + zz' is one of

the fundamental expressions of the Car-

tesian analysis ; the other term is ex-

pressed by the square root of the sum of the squares of its components,

namely,

-[/ (yz> ~ zy'f+ (zx<— xz>) *+ (xy 1— yx') %

because that analysis does not provide an explicit notation for direction.

What reason do writers on quaternions give for taking xx 1 + yy
1 + zz'

negatively in the case of the product of two vectors? In the passage

quoted above Professor Tait refers to section 9 of his Treatise for the proof

that the square of a unit vector is — 1. There we find : "It may be interest-

ing, at this stage, to anticipate so far as to remark that in the theory of qua-

ternions the analogue of cos d -\- -\/ — 1 sin is cos 8 + m sin 0, where

<o
s=— 1. Here, however, to is not the algebraic -j/— l, but is any di-

rected unit-line whatever in space."

In the above expression <o really means the versor o> . The algebraic

imaginary i/— 1 means, as is well known, a turning of J; what is indef-

inite about it is that the axis is not specified ; and it must be supposed

constant, if the rules about the manipulation of j/ — 1 are to hold good.
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The true reason for taking the expression negatively is to satisfy the

rule of association. In the preface to his Lectures, p. 53, Hamilton shows

that if the product

(xi+yj+ zk) (x'i+y'j + z'k) (x"i+ y"j+ z"k)

is to satisfy the associative rule, as well as the distributive, and if the

scalar part already obtained in the multiplication is to be treated as a mere

number, then we must have

xix'i=— xx' yj y'j=— yy' zhz'h=— zz'

"On this plan every line in tridimensional space has its square equal to

a negative number."

But what quantity in space possesses such associative and distributive

properties? It is proved to be true of the summing of versors, that is, of

arcs of great circles on a sphere, when the

portion of the arc designated by the versor

may be taken anywhere on the great circle

(fig. 9). As any two great circles have a

common line of intersection, the arcs may be

moved along until the second starts from the

end of the first, as AB and BC. The sum of

AB and BC, denoted by {AB) (BO) is equal

to AC, the arc of the great circle which joins
Fig. 9.

A and O. A third versor, as DE, will not in

general pass through A or C, but it will meet the great circle AC in some

point as D. Shift AC back to FD; then the versor FE is the sum of FD
and DE, and therefore the sum of AB, BC, DE. The associative prop-

erty means, that if .BO and DE are first summed and then AB with the

result, the arc of the great circle so obtained will be equal in magnitude

and on the same circle as the arc obtained by the former mode of pro-

cedure. The proof of the theorem is not simple ; in Tait's Elementary

Treatise it is accomplished by the help of the fundamental properties of

the curves known as Spherical Conies, discovered only in recent times by

Magnus and Chasles. Doubtless many a one has been discouraged from

the study of quaternions by the abstruse nature of the fundamental prin-

ciples.

It is clear from the figure that the summing of versors cannot be ade-

quately represented by a versor rotating a line at right angles to its axis.

The versor AB followed by the versor .BCmay rotate aline non-conically

from A to C, but the subsequent versor DE cannot in general operate in

the same way upon the line at C. To do so, the great circle of DE must
intersect the great circle of BC in the point C.

As the result of the investigation we conclude,

First, That the product of two vectors or directed magnitudes,

T =pi + <m
v+ rk and S = ui + vj -f- wk, is

TS = pu + qv+ rw + (qw— rv) i -f- (rv. —pw)j + {pv— qu) k.

Hence that there is a generalized product which includes the product of

real quantities, such geometric products as are sometimes used in proving
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the propositions of the second book of Euclid, the products of Grass-
tnann's Ausdehnungslehre, determinants, and generally the products of
physical magnitudes. By a physical magnitude I mean a symbol which
represents not only ratio and direction but these combined with the physi-

cal unit. The corresponding generalized algebra forms a large comple-
ment of the algebra of physics.

Second, That the product of two quadrantal versors or geometric ratios
TT IT

r= (xi+ yj+ **) and r 1 = (x'i + y'j + z'k) is

•a

rr' = — {xx 1 + yy' + zz') — J {yz'— zy')i+ (zx'—xz<) j+ (xy'— yx>) k \

Hence that there Is a generalized product which includes the product of
ratios, and the product of complexes, and which is the special subject of

analytical trigonometry, spherical trigonometry and the method of qua-
ternions.

7T

s
Third., The effect of a quadrantal rotation (li + mj + nk) upon a line

xi + yj + zk is

(Ix+ my + nz) (li + mj+ nk) + (mz — ny) i+ (nx — lz) j-\- (ly— mx) k.

The subject of rotation and the effect of rotation on a line may be con-

sidered as belonging to the versor part of the algebra of space. The effect

of a rotation of any angle upon a line is still more complex, and does not

answer to the definition of a product as a distributive function.

Before the time of DesCartes, an algebraic quantity was represented by

a line, the product of two quantities by the rectangle formed by the lines,

the product of a quantity by itself as the square formed by the line, the

product of three quantities by the right solid formed by the lines, which
when the lines were equal, became the cube. Each term of a cubic equa-

tion was interpreted as denoting a solid, and the equation was actually

solved by cutting up a cube. In order to explain higher powers than the

cube, space of four or any adequate number of dimensions was imagined.

This concrete view of a product corresponds to the vector part of gener-

alized algebra.

The doctrine of DesCartes was that the algebraic symbol did not repre-

sent a concrete magnitude, but a mere number or ratio, expressing the

relation of the magnitude to some unit. Hence that the product of two
quantities is the product of ratios, and instead of being represented by a

rectangle may be represented in the same way as either factor; that the

powers of a quantity are ratios like the quantity itself, and therefore there

is no need of imagining space of more than one dimension. This view of

a product corresponds to the versor part of the generalized algebra.

The theory here advanced will be elaborated and developed in the pages

which follow; but before proceeding to that development, I propose to

consider several other objections which have been or may be made against

the various methods of extending algebra to quantities in space, with the

view of discussing their validity ; and, if they appear to be valid, whether

they are removed by the theory advanced.
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Some mathematicians have objected to the negative character of the

scalar in the product of two vectors. In the recent discussion in the col-

umns of Nature (Vol. xliii, p. 511), Professor Gibbs says, " When we

come to functions having an analogy to multiplication, the product of the

lengths of two vectors and the cosine of the angle which they include,

from any point of view except that of the quaternionist, seems more sim-

ple than the same quantity taken negatively. Therefore we want a nota-

tion for what is expressed by —Safi rather than Safl in quaternions."

This agrees with the theory here advanced. But I do not look upon the

product of two vectors as merely having an analogy to muliplication, but

as multiplication itself generalized.

It has been objected that while the scalar product and the vector prod-

uct are each of primary Importance, the quaternion proper which is their

sum, is of very secondary importance. Thus, Professor Hyde, in a paper

on the "Calculus of Direction and Position" (Amer. Journ. of Math.,

Vol. vi, p. 3), says, "The combination of these different functions in the

vector renders the product of two vectors which are neither parallel nor

perpendicular to each other necessarily a complex quantity, having a sca-

lar and a vector part corresponding to the real and imaginary parts of the

ordinary complex a + 1\/—1, thus making a thing which should be sim-

ple just the opposite. It seems to me that quaternions proper, i. e., these

complex quantities, are practically of little use. In nearly all the appli-

cations to geometry and mechanics, scalars and vectors are used sepa-

rately. Por the special cases to which the complex a + o |/—1 is put, the

directed quantity is not needed."

In reply it may be said that the works of Hamilton and Tait make it

abundantly evident that the quaternion idea is essential to the algebraic

treatment of spherical trigonometry and of rotations. As regards the

use of the complex o+ &|/—1, it is indefinite, unless restricted to a

plane. It is shown in the development which follows that when the axis

is introduced, many of the known theorems in trigonometry can be greatly

extended, and that the entire meaning of the formula? becomes evident as

truths in geometry, not mere consequences from the conventional use of

symbols.

In the letter to Nature quoted above, Professor Gibbs urges the same
objection. "The question arises whether the quaternionic product can

claim a prominent and fundamental place in a system of vector analysis.

It certainly does not hold any such place among the fundamental geomet-
rical conceptions as the geometrical sum, the scalar product, or the vec-

tor product. The geometrical sum a-\- ft represents the third side of a

triangle as determined by the sides a and j3. Vaft represents in mag-

nitude the area of the parallelogram determined by the sides a and /5, and

in direction the normal to the plane of the parallelogram. S)-VajS repre-

sents the volume of the parallelopiped determined by the edges o, /J and y.

These conceptions are the very foundations of geometry. We may arrive
at the same conclusion from a somewhat narrower but very practical
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point of view. It will hardly be denied that sines and cosines play the

leading parts in trigonometry. Now, the notations Vo.fl and Soft rep-

resent the sine and cosine of the angle included between a and /9 com-

bined in each case with certain other simple notions. But the sine and

cosine combined with these auxiliary notions are incomparably more amen-
able to analytical transformation than the simple sine and cosine of trig-

onometry, exactly as numerical quantities combined (as in algebra) with

the notion of positive or negative quality are incomparably more amenable
to analytical transformation than the simple numerical quantities of arith-

metic. I do not know of anything which can be urged in favor of the

quaternionic product of two vectors as a, fundamental notion in vector anal-

ysis, which does not appear trivial or artificial in comparison with the

above considerations. The same is true of the quaternionic quotient and

of the quaternion in general."

It may be observed that Professor Gibbs does not give the geometrical

meaning of Soft but that of So Vfty. The geometrical meaning given to

the latter cannot be transferred to the former. They may have a common
meaning when a, /S, y denote quadrantal versors, but the common meaning

is not so evident when a, /?, y denote vectors. The meaning which I attach

to Vafi is not, strictly speaking, the area of the parallelogram determined

by the sides a and (3, for then from the symmetry of the idea there would

be nothing to determine the positive sign ; it rather is the area formed by

a and the component of ft which is perpendicular to a; and as a comple-

ment we have the area formed by a and the component of /S which is par-

allel to a. If a and /? are both of unit length or, rather, if we consider

their direction apart from their physical magnitude, Vaft expresses the

sine and Saft the cosine of the angle between the directions a and /9

;

and in this case the product a/9 denotes the angle between a and /?• But

it is of the greatest importance that the angle should be treated as a

whole, not merely the sine part separately and the cosine part separately.

Thus, the argument from trigonometry leads to the opposite conclusion

to that at which Professor Gibbs arrives.

It seems to me that the essence of a product is that it is a distributive

function of the factors. Thus'in ordinary algebra (a+ 6 + c) (a'+ b'+ c')

= aa' + bb' + cc' + be' + cb' -f- ca 1

-f- ac' + ab' + 6a'. We have nine

partial products, and in my view the product of two quantities, each con-

sisting of three parts, is not complete, unless it contains the nine partial

products ; otherwise, the product is not a generalization of the product of

ordinary algebra. As a consequence of not treating together the two

complementary parts of the product of two vectors, Grassmann and his

followers have restricted their attention to associative products and treat

of these only in a detached manner. In treating of the product of a num-

ber of vectors, that is a very arbitrary principle which holds that all the

terms into which two similar directions enter must vanish ; but that is

a principle of the Ausdehnungslehre and of determinants.



78 SECTION A.

Are the principles of the method of quaternions consistent with the the-

ory of dimensions which has played so important a part in mathemati-

cal physics since the time of Fourier? Do they remove Gregory's dif-

ficulty as to how areas and solids can be represented by the apparent mul-

tiplication of lines? Professor Hyde, in the preface to the Directional Cal-

culus, a valuable text-book on Grassmann's method, states that Grassmann's

system is founded on and absolutely consistent with the idea of geometric

dimensions, while Hamilton's is not. We find this objection amplified in

the paper referred to, Am. Jour. Math. ,"Vol. vi, p. 3. "From this assump-

tion it follows as above, that ij = k and also that i/j =—ij = —h, i. e.,

the ratio of two quantities is the same thing as their product except as to

sign. To be sure we may say that these are units, and we have the anal-

ogy that 1/1 = 1X1; but they, i. e., vectors, are geometric and directed

units, and such a relation appears to me to upset all one's preconceived

ideas of geometric quantities without any corresponding advantage. If,

in the equation 1/1 = 1X1, 1 be taken as the unit of length, then the

members of the equation have evidently not the same meaning, 1/1 being

merely a numerical quantity, while 1 X 1 is a unit of area, it being a fun-

damental geometrical conception that the product of a length by a length

is an area, that of a length by an area a volume, while the ratio of two
quantities of the same order as that of a length to a length is a mere num-

ber of the order zero. In quaternions, however, we have the remarkable

result that the product of a length by a length is not merely represented

by, but actually equal to a length perpendicular to the plane of the two."

This objection is not valid against the method of quaternions as the al-

gebra of versors or directed quotients, that is, geometric ratios; but it is

valid against it as claiming to be the algebra of vectors or physical mag-
nitudes. The primary definition of the quaternion is the quotient, not the

product, of two directed lines. "From the purely geometrical point of

view, a quaternion may be regarded as the quotient of two directed lines

in space, or what comes to the same thiug as the factor or operator which
changes one directed line into another," Ency. Brit., Art. Quaternions.

The latter definition, as we have seen, is not exactly the same thing as

the former ; the former is the primary and true definition. The product

of two vectors is derived analytically from the quotient of two vectors

;

no geometric meaning is attached to it as a whole, but it is interpreted

as a quaternion. Thus, Hamilton, Elements, p. 303: "We proceed to con-

sider, in the following section some of the general consequences of this

definition, or interpretation of a product of two vectors, as being equal to

a certain quotient or quaternion."

If the product of two vectors is a quaternion, then the definition of a
quaternion as the quotient of two lines is not correct. But this confusion
vanishes when the product of two vectors is perceived to be distinct from
and independent of that of two versors. The directed part of a versor,

or of any number of versors is not a line in the sense of involving the

unit of length; it is of zero dimensions like the ordinary sine of trigo-

nometry. A directed term in the product of vectors may be of one, two,
three or any number of dimensions in length. A quantity having three
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dimensions in length is not necessarily a scalar, nor is it true that a di-

rected quantity is necessarily of one dimension in length. The idea of an

axis is different from the idea of a directed line of unit length. I look

upon the symbols i, j, k as denoting not a unit-vector, but direction simply,

the idea contained in the word axis. In writing ij = k, we do not equate

a product of lines to a line, but the axis denoted by ij to the axis k. In

space of four dimensions this equation is not true ; it depends for its truth

on the tridimensional character of space. In such an expression as xi it

is more philosophical and correct to consider the x as embodying the unit,

while i denotes simply the axis. I look upon the magnitude as contain-

ing the physical unit, to be arithmetical ratio and unit combined; and

different vectors have different physical units. A line is a vector which

has length lor unit; a linear velocity involves length directly and time in-

versely; momentum involves mass and length directly and time inversely.

An axis is not a physical quantity, but merely a direction. It follows

from the theory of vector-algebra here advanced that the reciprocal of a

vector has the same axis as the vector but the reciprocal magnitude. As
the dimensions depend on the magnitude not on the axis, it follows that

1 111
ij = — j = i— = — — = k ,*

that is, the axis of the term which involves i and j, or of the term which

involves one directly and one reciprocally, or of the term which involves

both reciprocally is k.

It appears to me that this same principle of dimensions is not observed

strictly in Grassmann's method or in the "Directional Calculus." "We meet

such an equation as p 2 —p l + £ where p, andjo 2 denote points and e de-

notes a vector. Notwithstanding that a point is of zero dimensions and

e is used to denote a line-vactor, we have a point equated to the sum of a

point and a line. That £ is of one dimension in length is evident, for the

expression £
x
£2 denotes the area of a parallelogram, and c^s denotes

the volume of a solid, while £jf denotes the moment of a force. It ap-

pears that either the equation is heterogeneous, or elsep! and p2 must be

understood as denoting vectors from some common point; if the latter

view is correct, the point-analysis reduces to a vector-analysis. From

the physical point of view it is more correct to treat of a mass-vector than

of a point having weight; for the differential coefficient with respect to

time of a mass-vector is the momentum, which is itself a mass-vector.

If the latter is of one dimension in length, so is the former. The prod-

uct of a point and a mass is not a physical idea.

Professor Hyde indicates another element in which Grassmann's method

appears superior to Hamilton's. " Now quaternions deal only with the

vector or line direction and the scalar— for a quaternion is only the sum

of these two; it knows nothing of a vector having a definite position,

which is the complete representation of the space qualities of a force."

This is the distinction which Clifford emphasized between a vector which

may be anywhere and one which is restricted to a_deflnite line ; to dis-
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tinguish the latter from the former he introduced the word rotor, short

for rotator, the velocity of rotation being a typical localized vector. The

contrast between vector and rotor is of great importance, and it is con-

venient to have a notation which specifies a rotor completely as depend-

ing on two vectors. In the works of Hamilton and Tait a force is speci-

fied by two vectors, as a and p, the former denoting the magnitude and

direction of the force, the latter the vector from an origin to the point of

application. That which is denoted in quaternions by p is denoted in

Grassmann's method byp, and it appears thatp is equivalent to the vector

from an origin.

The method of Grassmann is applicable, so far as it goes, to space of n

dimensions, while the method of Hamilton appears to be restricted to

space of three dimensions. How is it possible to unify the two and

develop an algebra not only of three dimensional space but of four dimen-

sional space? Professor Hyde, in his preface, says, "As the great

generality of Grassmann's processes — all results being obtained for n-

dimensional space—has been one of the main hindrances to the general

cultivation of his system, it has been thought best to restrict the discus-

sion to space of two or three dimensions ... It seems scarcely possible

that any method can ever be devised, comparable with this, for investi-

gating n-dimensional space."

On this subject Professor Gibbs says, Nature, Vol. xliv, p. 82, " Such

a comparison (of Hamilton's and of Grassmann's systems) I have endeav-

ored to make, or rather to indicate the basis on which it may be made, so

far as systems of geometrical algebra are concerned. As a contribution

to analysis in general, I suppose that there is no question that Grass-

mann's system is of indefinitely greater extension, having no limitation

to any particular number of dimensions." Also in Nature, Vol. xliii, p.

512, "How much more deeply rooted in the nature of things are the func-

tions So.f3 and Vaft than any whicli depend on the definition of a quater-

nion, will appear in a strong light, if we try to extend our formulae to

space of four or more dimensions. It will not be claimed that the no-

tions of quaternions will apply to such a space, except indeed in such a

limited and artificial manner as to rob them of their value in a system of

geometrical algebra. But vectors exist in such a space, and there must be

a vector analysis for such a space." In reply Professor Tait said, " It is

singular that one of Professor Gibbs' objections to quaternions should be

precisely what I have always considered (after perfect inartificiality) their

chief merit, viz., that they are uniquely adapted to Euclidian space, and
therefore specially useful in some of the most important branches of

physical science. What have students of physics, as such, to do with

space of more than three dimensions?"

The view which I have arrived at, unifying Hamilton and Grassmann
and developing a more comprehensive algebra' is : That i

2 = + f =+
k* = + do not involve the condition of three dimensions,- being true for

space of any number of dimensions, while ij = k jk = i ki = j do in-

volve and indeed express the condition of three dimensions. The rules

ij = —ji jk = —kj ki = —ik are also true generally. In space of four
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dimensions we require four mutually rectangular axes ; let the fourth be
denoted by «. Then It is not true that ij = k; but it is true that ijk = u,
jku = — i, kui = j, uij = —k.

A difficulty has been felt in the apparent heterogeneity of a sum of sca-
lar and vector terms. Hamilton was never quite satisfied, and speculated
on an extraspatial unit. Now, the heterogeneity is not in dimensions, for
all the terms have the same number of dimensions with respect to each
unit involved in the units of the factor-vectors. The theory of axes here
advanced and the extension of algebra to space of four dimensions show
that all the terms are homogeneous in the sense of having an axis, but that
for some terms it may be any axis ; for others, the fourth axis in a space
of four dimensions.

DEFINITIONS AND NOTATION.

I propose to use a notation which shall conform as far as possible with
the notation of algebra, the Cartesian analysis, quaternions, etc., but shall

at the same time embody what I conceive to be the'principles of the alge-

bra of physics. The most logical procedure is to generalize as far as

possible the notation of algebra.

By an arithmetical quantity is meant an essentially positive or signless

quantity ; it has no direction or any direction. For example, the mass of
a body, or its kinetic energy.

By a scalar is meant a quantity which has magnitude, and may be posi-

tive or negative, but is destitute of a definite axis ; or it is the element of

a physical quantity which is independent of the axis. It is equivalent to

the ordinary algebraic quantity, and is denoted, as nsual, by an Italic letter

as a, 6, x, X, etc. The work done by or against a force, and the volume
of a geometric figure are examples. These quantities, though both scalar,

differ in dimensions, and they are scalars for different reasons.

By a vector is meant a quantity which has Magnitude and an axis. It

requires three numbers to specify it completely. The simplest example is

the displacement of a point, represented by a straight line drawn from its

original to its final position. Other examples are a linear velocity, an

area in a plane, and a current of fluid. These several quantities differ in

dimensions and in the nature of the physical unit ; and there are vectors

which have the same dimensions in length, yet have different kinds of

axes. What they have in common is a want of symmetry in space.

A vector is denoted by a black capital letter as A, its magnitude by

a and its axis by a. Thus A = aa, B = 6/9, R =rp. Sometimes it is

necessary to introduce a dot to separate the expression for the magnitude

from the expression for the direction; but when the two symbols are

single, as in aa, the dot may be omitted. The difference of type shows
that a denotes the algebraic magnitude and a merely its axis, not another

algebraic magnitude. In Clerk-Maxwell's Electricity and Magnetism, Ger-

man capitals are used to denote vectors, but these are difficult to make,

and plain black letters have alreaay been used for the purpose, as by Flem-

ing in his book on Alternate Current Transformers. The simple a and o

are more commodious than Ta and Ua as used in works on quaternions,

2
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and the notation is also more in harmony with the Cartesinn analysis.

What is done is merely to introduce a to specify the axis in space, leav-

ing the expression for the scalar part of the magnitude the same as before.

In the case of mutually rectangular components, i, j and k are used to

denote the axes.

Vector quantities may be classified according to the nature of the

axis. By a line-vector is meant one which has a simple axis of direction,

—

a vector in the primary meaning of the word as used by Hamilton. It is

of one dimension in length.

By the pole of two axes is meant the axis which is perpendicular to both.

The pole of a and /S is denoted by aft; the pole of a/3 and y is denoted

by ajSy ; that of a and fiy by aj3y and so on. An axis which is perpen-

dicular to a but otherwise indefinite, may be denoted by a. This nota-

tion enables us to express explicitly three mutually rectangular axes. Let

a and /J be any two independent axes ; then, a and a/? and a pa denote three

mutually rectangular axes. In the works on quaternions, there is no sys-

tematic notation for direction; consequently to specify the axis which is

perpendicular to two given axes, it is necessary to use a special non-syste-

matic symbol.

By & tensor is meant an arithmetical ratio or quantity destitute of di-

mensions and of axis. This is the primary meaning of the word as used
by Hamilton ; it is primarily used to denote the magnitude of the quater-
nion quotient defined as a ratio of two lines in space. To conceive a, 6,

x, X, etc., as tensors, is to suppose the unit thrown into the symbols i,j, Jc.

It is certainly not convenient to regard i,j, k as denoting directed physical
units; it is more philosophical, more practical, and more in harmony with
mathematical analysis to regard them as axes, and a, b, x, X, etc., as
magnitudes, not mere tensors.

By a vector-scalar is meant a scalar quantity which has position in space

;

for example, the physical quantity which Clerk Maxwell calls a mass-vector;
it is proportional to the mass and to the vector from an origin to the mass.
Such a quantity may be denoted by A • m , where the Italic letter denotes
the scalar or signless quantity, and A denotes the vector from an origin
to the position of the quantity. This idea corresponds to the weighted
point of the Ausdehnungslehre.

By a rotor is meant a localized vector, or a vector-vector ; it has magni-
tude, direction and position; for example, a force or a rotational velocity.
It may be denoted by such a symbol as A • F where A denotes the vector
from an origin to the point of application, and F denotes the vector
quantity.

By a versor is meant an amount of arc of a great circle on the sphere • it

has an axis andan amount of angle. A versor, as a whole, may be denoted'by
a small black letter as a, and analytically by aA , where a denotes its axis,

and A the amount of its angle in circular measure. Thus J? is the ima<*-
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inary \/— 1 for the axis a ; while a
n

is equivalent to the trigonometri-

cal +, provided that in this case a denote any axis. I consider that it is

more convenient, and more in harmony with trigonometry and the law of

indices to consider J, not 1, as the index of a quadrantal versor.

By a quaternion is meant a geometric ratio ; it is an ordinary arithmetical

ratio, or tensor, combined with a versor. It is denoted by aa , where a

denotes the ratio and aA the versor. The ratio and axis may be expressed

synthetically as a vector-ratio A, giving the expression AA
for the qua-

ternion.

By a dyad is meant a physical ratio, or the rate connecting two vector

quantities, and these may involve different physical units. Let S denote

the dependent vector, R the independ-

ent; if the former is directly propor-

tional to the latter, the dependence is

expressed by the rate R—1 S. Pro-

fessor Gibbs in his Vector Analysis

bases the treatment of vectors largely

on the conception of a dyad; and the

word, I believe, is due to him. The
dyad is in a certain sense a localizedJ

. . ... . ,
Fig. 10.

quaternion; it has an axis and an an-

gle, but the angle is localized, that is, it must start from a specific di-

rection. There is also this difference, that the dyad generally has dimen-

sions in its magnitude, while the quaternion quotient has not.

By a matrix is meant the sum of the rates connecting a vector quantity

with the three independent components of another vector quantity. In

its simplest ^orm it is equivalent to a homogeneous strain or linear-vector

operator. As it is a sum of dyads, Professor Gibbs calls it a dyadic. The
synthetic symbol used to denote a matrix is a Greek capital letter as 0,

ADDITION AND SUBTRACTION OF VKCTORS.

Addition.—By adding two quantities of the same kind of vector quantity

is meant finding their geometric resultant, or what is called in mechanics

compounding them. This process is called addition, because when the

vectors have a common axis, the process reduces to ordinary algebraic

addition. Suppose two quantities of a vector A and B to have a common
point of application (fig. 10), their resultant or sum is the diagonal of

the parallelogram of which A and B are the sides. The principle of the

parallelogram of forces is thus one of the fundamental principles of the-

algebra of physics.

Subtraction. — By subtracting one quantity of a vector from another

quantity is meant finding the quantity which added to the former produces

the latter. Let A (fig. 11) be the quantity to be subtracted, and B the

quantity to be subtracted from ; the remainder is the vector from the end

of A to the end of B, the cross-diagonal of the parallelogram formed by

A and B, and taken in the direction from A to B.
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To subtract a quantity of a vector is equivalent to reversing the axis and

then adding. In the figure (fig. 11) —A is the opposite ofA in direction
;

and the diagonal from the corner of the parallelogram formed by— A and

B is equal to the cross-diagonal of the

parallelogram formed by A and B. To
define subtraction as addition after

reversal seems to me less accurate \ # \ ___

»

than to recognize the two processes of

composition and resolution of vector

quantities. Let a small minus before

the A denote reversal of axis, while -* _

»

a large minus denotes subtraction,
Fig 11

then we have the theorem or principle " '

B — A = B + _A. Hence we have the rules
'— A = + _A and

+ A = — ~A, which mean respectively : to subtract a quantity is equiv-

alent to adding the opposite quantity ; and to add a quantity is equivalent

to subtracting the opposite quantity.

Commutative Rule.—When the point of application of a vector is indefi-

nite, the sum of two quantities of it as A and B is the same, whether they

are applied simultaneously, or A first and then B, or B first and then A.

Hence the commutative rule in^adding and subtracting quantities of a vector

A + B = B + A.

Associative Sule.—It follows from the commutative property that if a

vfchird quantity C is to be compounded, it is immaterial whether the sum of

.A and B be added to C, or A be added to the sum of B and C. Hence

the associative rule in adding and subtracting quantities of a vector

(A+B)+C=A + (B + C)

It follows that the rules for the transformation of equations between quan-

tities of a vector by adding or subtracting equal terms on the two sides

are the same as those in ordinary algebra, where the axis of all the terms

Sis constant.

Given the magnitude and axis of each of the components ; to find the mag-

nitude and axis of the sum.

Given A =aa, and B = 6/J;

then A+B = UO + &/9

tan a+bcosafi

= l/o8 + 6s + 2a& cos a/9 • a /S a

Here y a2 +&2 + 2a& cos a/S gives the magnitude of the sum, while the

rest of the expression denotes its axis in terms of the given quantities.

t 6 sin a8
In that expression a /9 denotes the axis, and tan.-1

a , b cota a the angle

of the versor which changes a into the direction of the sum.

For the generalized addition which applies to quantities of a scalar sit-

uated at different points or to quantities of a vector applied at different

points, see the>end of the paper.
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PRODUCT OF TWO VECTORS.

Different forms of the product.—Let

A = a-yi + a^j + a 3k
and

B = b^i + b 2j -f b 3k

be any two vector quantities, not necessarily of the same kind. Their

product, according to the rules (p. 72), is

AB = C«ii + a 2j + a 3 fc) (M + &ai + &a*)
= aibiii + a t b 2jj + a 3 b 3kk + a^bzjk + a 3 & 2 &j + a

3&iM + a-fi 3 ik

+ cdbzij + a 2bji;
= a^i + a 2 & 2 + a 3 & 3 + (a 2 & 3

— a 3& 2 ) i + (a 3 &! — 0,63) j

+ (ai&2 — «2&i) fc;

= «1&1 + «2&2 + «3&3 + fl
l «2 a 3

&1 62 63

i j k

Here the vector part is written in the form of a determinant. In the

Cartesian analysis this vector determinant is imperfectly expressed by

means of the composite determinant

B, a 2 a 3

&, 6 2 6 3

Let A and B be given in the form aa and 6/S respectively ; then it is ev-

vident( from p. 72) that

Gi&i ~f" a2 &2 + 8363 = abcos a/3;

and = ab sin aft • a/3ce 1 a 2
a3

61 62 63

i j k

where a/3 is used to denote the axis which is perpendicular to a and /3.

Hence

AB a?ab cos a/3 • aa+ a& sire a/3

= ab (cos a/3+ sin a/3 • a/3).

Notation for the two parts of the product.—In quaternions the negative of

«!&! + o 2 6 2 + a 3 b3 is called the scalar of AB and is denoted by SAB,
while the other term is called the vector of AB and is denoted by FAB.
The objection to this notation is the association of the negative sign with
the word scalar, and the want of a convenient notation for the magnitude

of tiie vector part. As they are not linked to anything in ordinary alge-

bra, they make the connection obscure and the transition difficult from or-

dinary algebra to the algebra of space.

I have found it convenient to use for this purpose the functional ex-

pressions cos and Sin. They possess all the advantage of a logical gener-

alization ; for when abstraction is made of the magnitude of the product

they then have their trigonometrical meaning. They make the formulae

much more self-interpreting. Thus, we write

AB = cosAB + Sin AB,

Sin with a capital denoting the complete vector quantity, while sin de-

notes its magnitude irrespective of axis.
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The product of two vectors is not, in general, commutative.—For

AB = a 1 b 1 + a2 b 2 + a 3 b 3 + a 1 a 2 a 3

&! & 2 63

i j k

and BA = b
x
a 1 + b 2a 2 +& 3a 3 + 6 : & 2 & 3

a x a 2 a 3

£ j £

= <*1&1 + «2&2 + « 3& 3 Oil a 2 a 3

&! & 2 63

< j *

Hence, it is commutative only if Sin AB = 0, that is if §= a. This

condition is satisfied by the quantities of ordinary algebra, but not by

quantities in a plane.

Square of a vector.—Let B = A,

then Aa = a, a + a 2
s + a 3

2 = a*.

The square of a vector has no axis, or, what is probably more correct

to say, it has any axis. To find a vector from its square is an entirely in-

determinate problem, when the vector is in space. If the vector is re-

stricted to one straight line, there still is an ambiguity of forwards or

backwards. Hence the doable sign for the square root. Again, since the

square of any vector is positive, a negative scalar cannot be the square

of a vector. In the algebra of vectors the square root of a negative sca-

lar is not only imaginary, it is impossible.

Beciprocal of a vector.—By the reciprocal of a vector is meant the vec-

tor which combined as a factor with the original vector produces the

product +1. Since

AB = ab (cos a/? -f- sin aj3 • a/3)

in order that the product may be 1, 6 must equal a-1 and /? be identical

with a. Thus, A-1 = a-1 a. It follows that

»_i = ^L = A. _ a i' + g2J+a 3 fe

a" A* - aS + a2
* + a 3

* i

b
and that A_1B = — (cos a/5 + sin aj3 • a/?).

The expression inside the parenthesis depending on the axes is the same
for AB, A-^B, AB-i, A~iB-i.

In quaternions the reciprocal of a vector has the opposite axis to that
of the vector, but this arises from treating a vector as a quadrantal versor.
The reciproca.1, as above defined, corresponds to the inverse of a line in

geometry, when the constant quantity is 1. Curvature, denoted bv—

'

is a directed quantity; its reciprocal, denoted by (^)
_1

, is the radius of

curvature ; they have the same axis, but reciprocal magnitudes.
The reciprocal, as above defined, is a true generalization of the recip-

rocal of algebra; the axis being no longer constant is expressed by a.
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It explains why the rule of signs for a quotient is the same as the rule of

signs for a product. For example,— =— , which means that it is im-—b b

material to the result whether the minus sign occurs in the numerator or

the denominator. This view of the generalized reciprocal also explains

the change of signs of the trigonometrical functions in the several quad-

rants.

Generalized trigonometrical functions.—The other trigonometrical func-

tions may be defined in terms of the generalized cosine and sine. Thus,

TanAB =

CotAB=

sec AB =

SinAS (a 2 b 3— a 3 b 2 )i +(a 3 b 1

— aib 3 *)j + (a^b 2
— CT 2 & t ) k

cosAB
~

0l 6i + a 2 b 2 -f a 3 6 3

ensAB cosAB Sin AB
SinAS

1

sin' AB
1

CosecAB =

cosAB
1

ai&! + « 2 &2 + a 3 b 3

Sin AB
SinAB sin" AB

"While Tan AB denotes both the magnitude and the axis, tan AB may be

used to denote the magnitude apart from the

axis. Whatever the dimensions of A and

of B, Tan AB has its simple trigonometri-

cal meaning, only it has an axis in space.

For

_ . _ lab Sin a/5 _
TareAB= -= Tan a8.

ab cos a§

Complementary vector.—By the complemen-
tary vector (flg. 12) of A with respect to B,
Grassmann means the vector which has the

same magnitude as A and is drawn perpendicular to A in the plane of

A and B.

Fio. 12.

Thus
|
A =a • afia

The product B |
A= cos B |

A+ Sin B
|
A

= sin AB + CosAB
where sin AB =j/(a2& a 3 &2)

2+ (a3&i— a 1 b 3y+{a 1 b 2

and Cos AB = (0,6! +a 2& 2 + a 3b 3 ) aft •

-Mi) 2

PRODUCT OF THREE VECTORS.

Different forms of the product.—Let A = a^+ Osj + a 3 k,

B = bj + buj + b 3 k, and C = <hi + cj + c 3k denote any three vectors,

not necessarily of the same kind ; by their product is meant the product
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of the product of A and B with C, according to the rules for vectors.

Thus

ABC = (a,&i +o 2 6 2 +a35 3 ) (c^+ cj+ cs*)

+ {(a 2 &3 — a 3 &2)*+ («3&i — a^s^'+Ca^a —

a

26 1 )ft|(c 1 i+ C2J+ c 3 J)

= (o 1 6 1 +a26 2 +o 3 & 3 ) fc l i+ c2j+ c3 7c) + a 2 a 3 1
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of four dimensions. If the vectors A, B, C are each of one dimension in

length, each of the terms of the product Is of three dimensions in length.

The third term involves the three axes of space symmetrically, hence has

no axes. It is a scalar, but not of the same kind as cos AB. This view

of the term becomes clearer, when the product of three line-vectors in

space of four dimensions is considered.

To express the second term as the difference of two terms similar to the first.

—The second term Sin (Sin AB) C expressed in terms of i, j, k is

j— (& 2c 2 + 63C3) a : + (fi^at + c3a 3 ) Oj j i

+ {— (63C3 + &i<a) 02 + (fi 3a 3 + c^O & 2 }j

+ {— (Mi + &2C2) a 3 + (c^j +Cza 2 ) 63 jfc

By adding the null term (ftjCiOj — Cia^o^i to the i term, we get

— cosBCaji + cos CA&,i.
By treating similarly the other two components and adding the results,

we obtain

Sin (Sin AB) C = — cos BC • A + cos CA • B.

Hence,

ABC = cosAB C — cosBC • A + cos CA B + cos (SinAB) C
The vector which is the sum of all the vector terms may be called the

total vector.

The product of three vectors is not indifferent as regards association.—The
expression ABC, without any parenthesis, means that the association of

the factors begins at the left, while A(BC) denotes that the association

begins at the right. By applying the rules of multiplication we get

A(BC) = AcosBC + SinA (SinBC) + cosA (SinBC).

On comparing these terms with those of ABC, it will be seen, by a

well-known property of the determinant, that the third terms are equal.

But
Sin A (Sin BC) = — Sin (Sin BC) A = cos CA B — cos AB C

;

Hence the total vector of A(BC) is

cosBC • A + cos CA • B — cosAB • C,

which is equal in magnitude to the total vector of ABC, but does not

have the same direction. The condition which must obtain for the rule of

association to be applied is

cosAB • C = cos BO " A,

that is, C and A must have the same direction.

When the three vectors are coplanar, the middle vector and the non-associ-

ated vector may be interchanged.—For then

(AB)C = cos AB • C — cosBC A + cosCA • B,

and (AC)B = cos AC B — cos CB • A + cos BA • C.

Hence,

A3 = asA = Aas
;

(AB)A = (AA)B = a8B

;

(AB)A-1 = (AA-')B = B.

But (BA)A-1 = (BA-')A and is not = B.
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It is evident (fig. 13) that BAA-1
is the vector which is the reflection

of B in A.
Cyclical products.—The three products of A, B, C obtained by taking

the factors in cyclical order, and so changing the mode of association are,

ABC = cosAB • C + {— cosBC • A + cos CA B 1 + cos (SinAS) C,

BCA = cosBCA-f- -f — cosCA -B+cosAB c\ + cos (SinBC) A,

CAB = cosCAB + {— cosAB C + cosBC • a| + cos (Sin CA) B.

The last term has the same value in the three products; itexpresses the

volume of the parallelopiped formed by the three vectors and may be de-

noted by vol ABC. The sum of the three products is

ABC + BCA + CAB = cosAB • C + cos BC • A + cos CA B
+ 3vo*ABC.

By abstracting the common magnitude abc of the total vectors, the fol-

lowing ratio-vectors are obtained

:

cos aft • y — cos fty
• a '+ cos ya •

ft (l)

cos fty
• a — cos ya •

ft -f- cos aft •
y (2)

cos ya •
ft
— cos aft • y-\- cos fly

• a (3)

9-

Fig. 13. FlG. u .

In quaternions these expressions are obtained from Par1

?, yft~
l
a,

"F
-1

/
5

) but here we are led to them directly by varying the product so as

to get the three modes of association. Let a, ft, y (flg. 14) be the ex-
tremities of the axes on the unit-sphere. As the vector (1) has a nega-
tive component along a, it will be on the opposite side of the arc fty from
a

; let a' be its axis. Similarly ft' denotes the axis of (2) and y' that of
(3).

Since (1) + (2) = 2 cos aft • y and (2) + (3) = 2 cos fty
• a and

(3) + (1) = 2 cosya •
ft ; the axes a',

ft', y< are such that the triangle a'ft'y

has its sides bisected by the triangle afiy.

Notation.—-The square of each of the vectors (1), (2), (3) is

cos* aft + cos* fty + cos* ya — 2cos aft cos fty cos ya,
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which is the complement to one of vol2
afiy. In spherical trigonometry

vol afiy is denoted by 2n, which is equal to

2 < sin s sin (s— a) sin (s — b) sin (s — c) I

and the need of a name for the function has been felt. It has been called

by some the " sine of the trihedral angle" formed by a, /3, y ; by others

the " Staudtian" (Casey, Spherical Trigonometry, p. 22). The notation

(afty) is used by Lagrange in the Mecanique Analytique; in quaternions it

is denoted by — Safiy and the total vector by Vafiy.

PRODUCT 01? FOUR VECTORS.

Different ways of association.—A product of four vectors may be formed

in five different ways, according to the nature of the association, namely,

((AB) C) D, (A (BC)) D, A ((BC) D), A (B (CD)), (AB) (CD),
of which the first and last are the most important. When no parenthesis

is used, the first form is understood.

The first form of the product.—Let A, B and C be expressed as before

in terms of i, j, k and let D = d x i -f- d sj + d3 k. Then

ABCD = (aA + a 2 6 2 + a 3 b 3 ) (Cid a + c 2 <22 + c 3d 3 ) (1)

+

+ («!&! +<z 2 &2 + a 3 b 3 )

a 2 a 3
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These five terms are equal in order to (1), (2), (3), (4), (5) respectively.

By expanding the second and fourth terms,

ABCD = abed ( cos aft cos yd— cos fty cos ad + cos ya cos ftd

+ cos aftsinyd •yd — cos fty sin aS ' a8 + cos Ya sin P* ' Ps

+ sin aft cos afty ' S > .

The product may be expressed more synthetically by

ABCD = cosAB cos CD + cos (Sin (SinAB) C) D + cosAB SinCV

+ Sin { Sin (SinAB) C }D + cos (SinAB) C D.

The symmetrical product. — By the symmetrical product is meant

(AB) (CD). _
Since AB = ab (cos aft + sin aft • aft)

and CD = cd (cos yd + sin yd • yd)

(.AB) (CD) = abed { cos aft cos yd + cos aft sin yd • yd + cos yd sin aft • aft

+ sin aft sin yd cos aft yd + sin aft sin yd sin aft yd • aft yd j

This differs essentially from the product of two quaternions, for in it

the last two terms are negative. How then can it satisfy the law of the

norms? By considering the five terms to be independent of one another.

COMPOUND AXES.

By an axis of the first degree is meant the direction of a line ; it is de-

noted by an elementary symbol such as a.

By an axis of the second degree is meant the product of two elementary

axes, denoted in general by aft.

Now,

a/3 = cos aft -f- sin a/3 • aft ;

hence, a2 = + and when ft Is perpendicular to a$ the axis reduces to aft.

Also /3a = — aft.

By an axis of the third degree is meant the product of three elementary

axes, denoted in general by afty. We have seen that

afty = cos a/3 • y — cos fty
' a + cos ya •

ft + sin a/3 cos afty • afty,

where afty denotes the axis of the third term.

Let y = a ; then the axis reduces to afta, that is /3.

Let y — ft ; then the axis reduces to aftft, which is equal to

2 cos aft 'ft— a.

Hence, if a and ft are at right angles, aftft reduces to — a.

If a, ft and y are mutually rectangular, the general axis afty reduces to

afty, which therefore is an axis in a space of four dimensions. In such a

space, Volume has an axis. It is such that

afty = ftya = yaft = — yfta = — ftay = — ayft.
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The rale of signs for a determinant of the third order is the rule for the
direction along this axis. In a space of three dimensions when a, ft, y
are mutually rectangular afty is the only extraspatial axis, and may be de-

noted in a certain sense by 1 ; and aft is equivalent to the complementary
axis y. Thus, ij = k introduces the condition of three dimensions.
By an axis of the fourth degree is meant the product of four elementary

axes ; it is denoted in general by aftyd, and we have shown that

aftyd = cos aft cos yd — cos fty cos ad + cos ya cos ftd

+ cos aft sin yd -yd — cos fty cos ad ad + cos ya sin fid ftd

+ sin aft cos afty • afiy d.

If a, ft and y are mutually rectangular, the axis reduces to afty d. If

S = a, the axis has the same direction as fty, but the sign remains to be

determined. As in space of three dimensions fty = a and afty = 1, the

sign is +. Hence, afty a = fty in general. Let d = ft ; then since

afty =— ftay, it follows that afty ft =— ay. Similarly, afty y — aft.

If, in addition d is at right angles to «, ft and y, we have a new axis

aftyd, which is transformed according to the rules for a determinant of

the fourth order, namely, aftdy =. — ftyda = ydaft — — dafty, etc.

The following table contains the different types of axes for the first four
degrees, with their reduced equivalents. It is supposed that i, j, k, u are

mutually rectangular.

DEGREE.
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DEGREE.
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Product of three vectors in space of four dimensions.—Let

A = a,i + a 2j + a 3k + a tu

B = b x i + b-tj + b 3k + b tu

C = M + c 2j + c
3 fc + C 4M.

Then ABC = It* + Ifj + J0i + lijj + 2ty*.

2i 3 = ai&^ji + o 2 6,,c2j + a 3 b 3 c3 k + a 46 4 c4w.

i"0" = (a 2 6 2 + a 3 6 3 + a 4 & 4 ) c^
- + (a 3 b 3 + a 4 & 4 + a x b x ) cj.

+ ("464 + ai&i + a 2 6i) c3 fc + (a^ + rc 2 & 2 + a 3 & 3 ) c4 ?i.

2yi = (a 2 c2 + a 3 c 3 + a 4c4 ) ftji + (a 3 c 3 + a 4 c4 + a^) 6 2j

+ (O4C4 + o&iC! + a 2 c 2 ) & 3 fc + (a^j + a 2 c2 + a 3 c3 ) 6 4 i«.

2ijy.

lip =

(6 2 c 2 + & 3 c 3 + 6 4 c4 )o 1i-

(& 4 c4 + &iC, + 6 2 c 2 ) a 3k

(63C3 +&4C4 +61CO0J
"(Ml +&iC 2 + & 3 c 3)a4 w.

a! a 2 a"

&1 &2 &3

c 1 c2 c 3

a x a 2 a 3

61 &2 63

jAu kui uij

ijk +

o 4

&4

C4

y'A;

a 2a 3 a 4

6 2 6 3 6 4

C;> C 3 C 4

jfcu +

61

Ci

— i

a 3 a t a,

63 6 4 6j

C3 C4 Cj

a 3 a,

&3 &.

c3 c,

Ami + a 4 a! a 2

& 4 61 b 2

C4 Ci. Co

UIJ

j — k u

Thus, in a space of three dimensions is a true imaginary ; itsa, a 2 a 3

b l b 2 & 3

C\ c2 c 3

axis being the fourth axis in a space of four dimensions.

Product of four vectors in space of four dimensions.—By means of the

types, given above, the complete product may be formed. In space of

three dimensions all the types exist excepting the last. It has commonly
been supposed that the product of four lines is impossible. For instance,

De Morgan (Double Algebra, p. 107) says that ABCD is unintelligible,

space not having four dimensions; and Gregory, in his paper on the "Ap-
plication of Algebraical Symbols to Geometry," says, " If we combine

more symbols than three, we find no geometrical interpretation for the re-

sult. In fact, it may be looked on as an impossible geometrical operation;

just as \'—1 is an impossible arithmetical one."

QUATERNIONS.

Definition.—By a quaternion proper is meant an arithmetical ratio com-

bined with an amount of turning. It con- _
tains three elements : a ratio, an axis and

an amount of angle. Let a denote a qua-

ternion, a its ratio, a its axis and A the

amount of angle; then a = aa. . It is called

a quaternion, because a requires two num-

bers to specify it, while a and A each re-

quires one; in all, four numbers. The
ratio of two vectors is a more determinate

quantity; it may involve a physical ratio,

and the angle is fixed (fig. 15). If A and B are line-vectors, they define

a quaternion, provided they are free to rotate round the axis afi.

Fig. 15.
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Components of a quaternion. — A quaternion may be expressed as the

sum of two components, one of which has an indefinite axis, and the other

the same axis as the quaternion. Consider the quaternion aaA. if j,
-

ls

less than a quadrant

aaA = a (cos A • a + sin A' a?)

If A is between one and two quadrants
w

aaA = a (cos A • a* + sin A ' a2
)

If A is between two and three quadrants
3jr

aaA = a (cos A' a? + sin A' a*)

If A is between three and four quadrants

z
A =i

and so on, for any amount of angle. Here cos A and sin A are looked

upon as signless ratios. If the number of half revolutions is thrown into

the ratios cos A and sin A, making them algebraic ratios, then, when A is

less than a revolution
IT

aaA = a (cos A + sin A m a")
IT

and generally aa
n+ = aa

n
(cos A -{- sin A ' a )

When the quaternions are all in one plane, a is constant, and need not

be expressed. The quaternion takes the form of the complex ratio

a • A = a (cos A -\- sin A • J)

the angle J being expressed by j/—1.

If further, the quaternions are restricted to one line, the angle A can

only be or n ; and a • = a, a • n = —a.

The above equations are homogeneous ; a quaternion is equated to the

sum of two quaternions, the only peculiarity being that the axis of one of

the components may be any axis.

SUM OF TWO QUATERNIONS.

Let a, = aaA and b =& [i
B be the two quaternions.

K

Since a = a (cos A + sin A • a^)

,

b = & (cosB + sinB- (3
s
) ,

7T_ It

a + b = (a cosA + 6 cos B) + (a sin A' a* +6 sinB ' /S
?
)

= (a cosA + 6 cosB) -f- (a sin A • a + b sinB • /J)*

9= )• <p

where

*" = V of + 6 s + 2ab (cosA cos B + sin A sin B cos a{3)

a sin A' a -\- b sinB • /5

<P
=

and 8 = cos

r

_! a cos ,4 + bcosB
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If a is given in the form a„ + A^ and b in the form 6 + B^ ; then

a + ta = a + o + (A + B)*
Here A and B denote vectors of zero dimensions.

IT

If a = a + (a : i + aj + a^') 2
'

b = &„ + (6 1< + M + MF
IT

then a-fb = a + & + j (a, + 0l >' + (a 2 + &0J + Os + bjkl*

This is the addition of complex numbers not confined to one plane.

PRODUCT Or TWO QUATERNIONS.

By the product of two quaternions is meant the product of the tensors

combined with the sum of the versors. The product is a quantity of the

same kind as either factor; it is the generalization for space of the prod-
uct of ratios.

Let the two quaternions be

a = a + (<M + arf + a-jk)?

b = 6„ + (6 1 i + 6 2j+& 3 X;)?,

then by the rules for versors (p. 75)

ab = a b — (fli&i + 0S2&21+ O363)

f a (&,i H
I - ( fl

f / a (6,1 + b 2j + b 3 k) + &„ (a^ + a 2j + a 3k)

Z2&3
V

(<z 2 & 3 — a 3 & 2 )i — (a 3 6i — ai& 3 )j — O1&2 — a 2&0* J

Let cos ab denote the cosine of the angle of the product multiplied by
the tensors of a and b, and Sin ab the directed sine of the same angle

multiplied in the same manner; then

cos ab = a b — (o^&i + «2&2 + ci 3 b 3 )

and Sin ab = a (bii + b^j + b 3k) + 6 (a^i + a 2j+ a 3k) —

If the factors are expressed more synthetically by

a = a +A2
, b = & +B2',

IT

then ab = a b — cos AB + (& A + a B — Sin AB) a
.

Trigonometrical form of the product.—Let

a = aa , b = bft ;

a.
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Let a = 6 = 1 ; then (fig. 16)

cos a ft
= cosA cos B — sin A sin B cos aft,

which is the fundamental proposition in spherical trigonometry; it is the

cosine of the sum of the angles. Also

Sin a ft
= cos BsinA'a-\- cos A sin B ft

— sin A sin B sin aft • aft

is the expression for the directed sine of the same sum.

Let ft coincide with a ; we get the fundamental propositions of plane

trigonometry, namely,

cos a

and

A+B

A+B
cos A cos B — sin A sin B,_

Sin a
l~r" = (cosB sin A + cos A sin B) • a.

When only one plane is considered, a may he omitted, and the expres-

sions become
cos (A-^-B) = cos A cos B — sinA sin B
sin (A-\- B) = cos B sin A -\- cos A sin B.

Here we have evidence that the consistent order of the factors in a

quaternion is from left to right; for, when particularized for a plane, we
get the established order in plane trigonometry.

Let A = B = s ;

ir it 7T

then aa bft = — ab (cos aft + sin a/3 •
aft )

This is the product of two quadrantal quaternions, which in works on
quaternions is identified with the product of two
vectors, only the sign of the second term is made
positive.

Second power of a quaternion.—By the second

power of a quaternion is meant the product of

the quaternion by itself. Erom the general prod.

net it follows that aaA aaA = ct?a
SA

. The
ratio is raised to the second power, the axis

remains the same, the angle is doubled. This
is not a square in the proper sense of the word.

Reciprocal of a quaternion.—The quaternion b
is the reciprocal of a, if ab = 1. Hence its ratio

must be the ^reciprocal of the ratio of a, its

axis opposite but its angle equal. Let it be de-

noted by a-1 ; then
Fig. 16.

a
1=

a {
cosA + sinA (—<0*

\

— ~ > cosA — sin A a? \

The reciprocal of the versor a
A

is the versor (— aY

and

„A j_ ~A
a + a =2 cos A,

A —Aa — a ,

or a

2 sinA' a2
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by taking the second power of the former

a + 2 + a =4 cosM
that is - cos 2A + 1 = 2 cos *A ;

and by taking the second power of the latter

x
2A — 2 + oT'

2A = — 4 ifti'A

that is cos 2A—

1

- 2 sin *A.

PRODUCT OF TFJRKE QUATERNIONS.

As the product of two quaternions is a quaternion, the product of that

product with a third quaternion is found by the same rules as before.

Let a = a + A?, b = o + B2\ C = c + C*.

7T

Now, ab = a„6 — cosAB + (6 A + «oB — (Sire AB) 3';

and by taking the several products of these terms with those of e, we ob-

tain

abe = a b e — a cos BC — b cos AC — c cosAB + cos {Sin AS) C
it

+ f

o

c A + c <z B + «o 6 o C — cosAB • C — a SinBC\?
I — 6 (SireAC — c £m AB + Sin (Sin AB) C J

As this Is itself a quaternion, the former term may be denoted by

cos abe, and the latter by Sin abe. The latter may be written in the more

symmetrical form

& c A + c a B + a o b C — cosBC • A + cos CA • B — cos AB -C
— a Sin BC + o Sin CA — c Sin AB.

Let a = aaA , b = &/JB , c = c^*7 .

the above expressions become

cos abe = a6c [ cos .4 cos BcosG— cos A sin B sin C cos j3y

— cos B sin CsinA cos ya— cosC'sin A sin C cos aP

+ sin A sin B sin Csin ajS cos aj3y

and

SinBtoo = abe ' cosB cos Csin A- a + cos C cos A sin B • § \

\- cos A cos B sin C y
|

— sinAsinBsin C (cos py . a — cosya • § + cosafi •

y)
j

— cosA sin B sin C sin fty
• (fy

+ cos B sin C sin A sin ya • ya

— cos C sin A sin B sin a/3 • a/3

As all the terms are evidently symmetrical with respect to /?, with the

exception of the fifth, it follows that (ab)c = a(bc) provided

sin a§ cos ajSy is equal to sin fly cos afiy
;

but this is a known truth. Hence in this species of multiplication the

mode of association of the factors is indifferent.



100 SECTION A.

When a, lb and c are coplanar, a = ft = Y'i and

cog a
A + B + ° = cos A cos BcosC— cos A sin B sin O— cos B sin G sin A

— cos C sin A sin, B,
and

sina
A + £ + C= cos B cos C sin A + cos C cos A sin B + cos A cosB sin C

— sin A sin B sin O,

which are identical with the formulae in plane trigonometry.

If further A = B = C,

aSA — cosz A— 3cosA sin" A + j 3cossA sinA— sin3 A\a?

Let A — B =C = J ; then

IT ff IT E.

a2pXjZ= sinap cos aPr+ I—cosjSy a + cosya- (i — cos aft • y\

Finite rotation.—The effect of a finite rotation on a line is in general not

an algebraic product. Let a be the axis and the amount of the rotation,

E a line of length r and axis p. Then (tig. 17)

aa y

Fig. 17.

a9R = r 1 cosap • a + sin ap sin • ap -f- sin ap cos 6 • apo

The effect of a subsequent rotation /S* is got by applying the same rule

to each of the components of R in its new position.

In the expression for the quaternion a.
A

(i
B
y , let aA = y—C; it will be

found on making the reductions that

y-^^y = cos B

+ sin B I cos* C /S — sin1 C sin y(3 . y(iy -\- sin1 C cos y/3 • y

(. 2sin C <

= cos B
' cos C sin yj3 •

yfi ,-

+ sinB
j C0S yj3-y-\- 2sin C cos Csin y/3 ;-/9

-f- (cos 2
C'— sins C) sin yfi

' yPy



MATHEMATICS AND ASTRONOMY. 101

Thus the effect of y~°
( ) T° upon the quaternion @

B
is to rotate its

axis by an angle of 20 round y. Hence the effect of a rotation aB upon

any line rp is

9 — ? ? B

ra p = ra ^p2 a2 .

The effect of a subsequent rotation /?* is

<t>
e _* _e * b $

fi a p = P 2 (a ~BpZa?)(F

_<f> _e 7t e <fi

= (/9
2 a a

)
,0* (aa /J

a
)

_* _ e

for the multiplication may be associated in any manner. Now fi *~a ^

is the reciprocal of u.~'
z
fi
2

; hence the axis of the rotation a /9 is the

same as that of the versor a2 ft
2 and its angle is double that of the ver-

sor.

DE MOIVRE'S THEOREM.

It has been shown that a a = a +
; it follows that n being any

number whole or fractional,

(a")" = <*""•

Hence by decomposing into component quaternions,

ir ij_ n
cos nO + sin nd • a? = (cos + sin • a")

cos?d -g?-" cos" -Qsin'O +

+ inc r\sine- n(
-
n-

1 T-r
%)

cos
n - Z

0sin
3
O+ }<?

The component cos n0 having an indefinite axis is equal to the sum of

the components which have an indefinite axis and stored which has a defi-

nite axis is equal to the sum of the components having the same definite

axis.

When the value of is not restricted to be less than a revolution, let

a — a r

where <p is less than a revolution. Then

,8.71 2rnir4-n<p 2rnir
,

. . 2\m(a) = a TT = a qcos <p + sin <p • a
)

The quaternion (aefi )

n
may be expanded in a similar manner. For

(aY)
n = (o + A*)">

where
a = cos cos <f

— sin sin <p cos aft

and

A = cos <p sin • a + cos sin <p '
ft
— sin sin <f sin aft • aft.

But it is not true that

for such law of indices assumes that the factors are commutative.
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Expansion ofcos
n

and sin
n

B in cosines or sines of multiples of 6.

Since

a
n9 = cos nd + sin nd " a

and

a~
ne = cos nd — sin nd • a ;

IT

a
ne + a

-ne = 2cog ng and a
«fl _ a

-»» = 2 gfe ^ . a
a

.

Now

(«• + a-*)* = a"
8 + a""

8 + » (a'"" 8" + aT^-^) + etc.,

therefore

2"-

1

cos
n
d = cos reff + n cos {n — 2)0 + etc.

When n is odd,

(«• _ a"")" = a
ne -a' n" - n (a

(n " 2) * - oT« ~ 2)
") + etc.

therefore
»-l

2
n ~ 1

sin
n

* a = sinnfl — rasi'n(re — 2)0 +
When n is even,

(o — « ) = a + a — to (,a + a )+

therefore

2™_1 sin"0 • a2^ cos n0 — n cos(n — 2)0 +

QUATERNION EXPONENTIALS.

Expression of a versor as an exponential.

7T

The versor a = cos 6 + sire 6 ' a
;

but cos 6 = 1 — "p"
i

| 4
—

IT 7T

— ! -r j_2 -r j_4 ;

and sin 8 = 6 pp -)- -yj
|S

therefore sin 6 • a? = 6 • o? < (e
' a )' 4- (9

' a
)
5

_i_ .

!_? I*
7T

therefore a" = 1 + 8 a
2 + <±L±1' +

Similarly a = e = E
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Let n be any even number; then

a™ = 1 = ."'
- J = 1 + nn «* _.<»£ +!"&.^ + etc.

;

(nir)»
, (mr)«

therefore 1 = 1 — -j-§- -+-
~pf~

—
(»w) s

,

and = wit nj—|- etc.

If n is an odd number

—
! = * — "IT + IT" — etc>

n (»") 8= mt —
Y^- + etc.

Logarithm of a quaternion.

IT IT

The general quaternion is ra = re
a = £

°^r a

Hence log (ra ) = log r -\- • a2 .

If the quaternion is given as a = a + 5 aa

IT

then log a = 4 Zo^ (a8 + 6s) +.«an
-1 — a

7T

Hence log 1 = but Zoj? (—1) = tt • as .

9 it

The more general form is a = a (a + 6 • a?)
,

.
*•

and log a = 4 Zojr (a2 + ft
2
) + (tan

-1
^- + 2r;r) • a?

Quaternion exponential.

Since

a = cos 5 + sin 8 • a?

n ir

„0 cos + sin 6 • a? cos 6 Jin 9 • a?,
sa = £ = e £

IT(„ , cos*e . \ / , . .
F

,
sJnJ9 a»

,
\

1 +cos + -jj- +1 I 1 +sin • a -(

pg
(- 1

(„ ,
cos*e , \ /„ stoi'9 . sitfe \

\ + cos0 +^ +
) ^-TT+TT-J

TT

+ il + cos0 + -jY + I lsi«0 —Tf+ l-«

7T

Let = J; then e
°J = a1

"

= 1 L + J__
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-M'-it+iV-S-
Let 6 = ; then ea°'= £

SCALAK DIFFEKKNTIATION.

By scalar differentiation is meant differentiation with respect to a vari-

able which has no axis, or the only axis considered; for instance, time,

or length along a curve, or distance along an axis if one axis only is con-

sidered.

Differentiation of a vector.—Consider the radius-vector of a point, R = rp,

where r denotes the length and p the axis.

The velocity-vector —^- is obtained by differ-

entiating rp in the same manner as an ordi-

nary product

;

«L = dJL p + r ~^-
dt dt

r ~ dt
'

Here a small Roman d is used to denote

a directed differential. The whole velocity

may be denoted in accordance with the Fig. 18.

fluxional notation by R, the component along the radius vector by rp and

the component transverse to the radius-vector by rp (fig. 18). By dif-

ferentiating each component of the velocity according to the same rule,

we obtain the acceleration-vector

dp dP y ~ dt dt ' dP

or R = rp -f- Irp + rp

The angular velocity ~4r may be analyzed into —£-j»> where --jjr denotes

its ratio magnitude and p its direction, which is perpendicular to p.

tt dR dr , dp . — .Hence ^ = -g- p + r -^ p ;

, dJR d-r i fa dr dp , dtp \ . — . dp dp =—
and

-dp- = dP--p + {
2 nr-dT + r id) p + r i^^--f

The direction of the third component p is perpendicular to the perpen-

dicular to p ; in a plane it is = — p, and then

dP \dP r \dt ) / P ^ Y dt dt dt2
J

P '

The expression for the magnitude of -^ is~ and for its axis —r- ; thus

~dl
~

~dl ~ds'
ancJ by applying tne ru le for differentiating a vector,

d'R _ j(Ps dR , /ds_\2 d'R
rfi2
—

dP ds <~ {di ) ds*
'

the former component expressing the acceleration along the tangent, and

the latter that along the radius of curvature.
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LetC
then

u-Z + v-tj+wZ where each of the six elements may vary,

dO
dt
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Hence -^ = 2& -§- =, :: em, P,

SECTION A.

dB

Let

then

and

ai + 6j + ck, C = Mi + uj + wk

;

HC = au + bv + cw + a
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which agrees with the formula. The simplicity of this process may be
compared with that given in Tait's Treatise on Quaternions, p. 97, where a
vector is treated as a quadrantal versor.

Differentiation of a quaternion.—Xet r = r<p be any quaternion ; then

dr dr ,„
s

. d r „
9\ .

dt = It* + r dt^ ) '

we have to find how to differentiate the versor y
9

, supposing <p to vary

perpendicular to an initial line.

Since

<P = cos + sin • </?

9 n M _L / a dB
i • n d<f> 1

"'

- de 9 -L. «.5*— dl
Y +sin0 at

Hence

dr dr J . de J + J . . „ 6<t>
s -

By applying the rule found to each of the components of -£ we obtain

** = l d2L- r (
d>Y\<p 4. f 2

drde
-L. ,.^\</

+ *
dt' \dt>

r
\-diJ \

Y + Y didi + ' <w) v

f <fr d9 l d*2" d!*3-

-t-2 {atsmO + r mCos j-% +rsm0~Sp

S'nce
dT ~ dt V w^ere 9 denotes an axis perpendicular to <p ;

d'* dy> — ifydj
—

W df 9 + dt dt V m

In the case of polar coordinates <p is always perpendicular to a constant

axis a ; then

- — —
dj _ d±.

<p = ya and y> = — 55 and ^ — <«

Hence the components for the acceleration in terms of polar coordinates

{t-rCy-rsin>0Qy}?°

,
cdrd»

,
cP0 • ) J + J+

\
2 di di + rW— r sin cos g 9z '[V

tr

C dr „ d<f> . „ dB d$ , . <Pty 1 —?.
+

(
2 d?S^ ^ dt + %r cos ° dt dt + >'

'*<» <? Sp) Va

MATRICES.

Dyad.—In order to specify a homogeneous strain the conception of the

dyad is required. It specifies the manner in which all lines originally
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parallel to a given direction are changed in magnitude and direction. If

a line A (fig. 19) is changed into B, and all lines having the axis a are

changed homogeneously, such change is expressed by the dyad Arm,

that is, —a/9. Thus, a dyad expresses an arithmetical ratio combined

with a change of axis. If such strain is followed by another specified by

the result of the two is found by taking the product of the dyads which

means multiplying the ratios and adding the angles. Thus,

(A-'B) (B-iC) = 1 T («« (M = V «T-

In ordinary algebra it Is indifferent whether a ratio is written o-ift or

6a-1
, because no angle is Involved. But in specifying a physical ratio,

Fig. 19. Fig. 20.

where an angle is involved, it is convenient to choose an order; and the

proper order appears to be that which specifies the order of the change in

the order of writing.

The conjugate dyad is

and the reciprocal dyad is

for

BA_1
=

B-!A:

a ' '

a a

(B->A) (A-*) = $ i (M («/?) = 1.

If a third change follows specified by

C^D = § rd,

then the result of the three is

bed
(A-iB) (B-iC) (C-iD) = ^TT (^) (fr) ^)

The difference between the multiplication of dyads and of quaternions

is that in the former the angles are localized and each succeeding one

starts from the end of the preceding (fig. 20). The multiplication of qua-

ternions is indifferent with respect to association, it follows a fortiori that
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s
ki

- J

<z.

tig. 21.

the multiplication of dyads is also indifferent. This means that we get

the same angle ad whether we first take the sum of a/3 and fiy which is

ay and then the sum of ay and yd ; or whether we first take the sum of

§y and yd which is /3<S and then the sum of a/9 and fid. In a product of

three vectors, the two non-associated vec-

tors form a dyad; that is, in (AB)C, the

relation ofB to C is bcpy.

Notation for a matrix.— A. homogeneous
strain may be considered as a physical

quantity, and as such denoted by a single

symbol (P. It is equal to the sum of three

dyads, one for each independent axis of

space; and is expressed quite generally

by the sum of the dyads for each of three

mutually rectangular axes. In the figure

(fig. 21) the dyad for the axis k is repre-

sented. An axis k receives an increment

in its own direction, in the direction of J

and in the direction of k.

Such sum of three dyads is equivalent to the linear-vector operator of

Hamilton, or the matrix of algebra. The notation used by Cayley in his

Memoir on Matrices is

(X, 7, Z) = (a, 6 lCl ) (x, y, z) ;

I a 2 bi c 2

I
«3 & 3 c 3

which represents the coefficients of a linear transformation separated from

the variables, but does not express explicitly the ratios.

As a sum of three mutually rectangular dyads

= (1.0-1 A + (Ij)-1 B + (lfc)-1 C;

= (li)-1 (<M + a.zj + a 3k)

+ (V)-1 CM + b 2j + 6 3*)

+ (U)-1 (M) +c 2j + c 3 A;);

= OjU + a.2 ij + a 3 ik

+ bji + b.2jj + b 3jk

+ c-^ki + c2 kj + c3 kk.

In the last expression, where the ratios are expressed, not merely indi-

cated, «! means the former a 1
divided by 1, and therefore is a ratio not

a length ; and ii denotes the angle between the axis i and i, which is

nought, while ij denotes that between i and j. Hence, in such an expres-

sion as

<P=iA+jB + lcC

A, B and C are ratio-vectors.
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Conjugate matrix.—The conjugate of #, denoted by &' is formed by tak-

ing the conjugate of each of the elementary ratios ; thus,

#' = a^ii + &i?)' -\-c r ik

+ aS + h-zjj + c2jlc

+ a 3ki + b 3kj + c3kk;

= i (a t i + b xj + c,k)

+ i (<M + b 2j + c2k)

+ k (a 3 i + &3J + c3k).

Batio for any axis.—The ratio for any axis p maybe denoted by prp'

where r denotes the ratio and p' the new axis. It is deduced from the

three rectangular ratios in the following manner:

prp 1 = pi cos pi (<&ii + a.J + a 3k) + cos pj (bj + bj + b 3 k)

+ cos pk (c^ + e2j + c 3 k) |

.

Hence any line Rp becomes

rBp 1 = Jl (cos pi-A+ cos /y'-B+cos pk • C).

Product of line and matrix.—Let

K = xi + yj + zk

denote any line; then

R* = P. (iA + jB + kC)

= (xi + t!/ + «*) (<A + jB + JfcC)

The complete product is the sum of nine partial products of three vec-

tors ; the sum of the cos a/? • y terms gives the ordinary product, while

the sum of the (Sin aj3) y terms forms a complementary product. Thus,

R</> = xA + yB + zC + x y z

i j k

ABC.
Here we have a product consisting of two parts analogous to the two

parts of the product of two vectors, the former may be denoted by
cos Rj-p the latter by Sin B#.

Product of two matrices.

Let = i ( aj + a.2j + a3k)

+i(bj + b.2j+b3k)
+ k ( cj + c 2j + c 3k )

and V— i ( d
x
i + d 2j + o33 A; )

+ j (e x i + e.2J + e 3k)

+ *(/i»+A;+/3*)

The strain which is the resultant of <P and W applied in the order named
is found by compounding the elementary ratios; for example

( aji ) (diii ) = o^ii
;

(aji ) (d.Jj ) = «!<*„#.
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Hence

§ ¥= i | (Mi + a i e l + asM* + (M2 + « 2 e 2 + a-iU)i

+{a ld i + «2 e 3 + aJi,k
J

+ j {(M1+M1 +J>)fi)i+ ( M2 + 62 e2 + 6 3/2 )j

+ ( b,d3 + 6^3 + &.,/3 ) *
}

+ k
J

( c^ + c2 e x + Ca/! )i + (c t o32 + c2 e 2 + c^ ) j

+ (Ms + c2 e 3 +C3/3 ) k
j

Hence if = i&+jB+kC,
and V = iA'+jB'+*C

;

# !F= i j cos AA' i + cos AB'j + cosAC A;

|

+ j j cos BA' i + cos BB'j + cosBC k I

+ klcosGA 1 i + cosCB'j + cosCC'k
j

Here the product of the two strains is formed from the nature of a strain

apart from the eifect upon a given line. As the product of three dyads is

associative, this product of three strains is also associative.

Complete product of two matrices.—The ordinary product of # '/''contains

only twenty-seven terms, the complete product ought to contain eighty-

one. The other fifty-four terms form another term, which is expressed

by

i j Sin AA' i + Sin AB'; + SinAC k \

+ j( Sin BA' i + Sin BB'j + SinBC *
J-

+ k { Sin CA' i + Sin CB'j + Sin CC'kj

Here we have a product of four axes in which the association begins in

the middle.

Product of a matrix and its conjugate.—For the conjugate matrix A' = A,

B' = B, C = C.

Hence $' = i{ A2
i + cos ABj + cosAC k

j

+ j{ cos AB i + B 2
j + cosBC k

j

+ &{ cosACi + cosBCj + C k
}

and the complementary product is

it 0i + Sin ABj + Sin AC &
|

+ j j Sin BA f + j + Sin BC *
j

+ fc£ flf» CAt + £m CBj + Ok}
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Reciprocal of a matrix.—The reciprocal of § is denoted by #
_1

; it is such

that

§ 0"1 = 1 a + ljj + 1 kk.

By solving the equations cosAA' = 1, cos BA' = 0, cos CA' = 0;

we find

Sin BOA / .

vol ABC
Hence

^_± _ i Sin BC + j Sin C A. + ft SinAB
rofABC

Second power of a matrix.—If !T= (P
; then the second power of the or-

dinary product is

#2 = j j (Kl
2 +a2 &! + a 3 c t )i + Oi« 2 + a2 b.2 + aaC2 )/

+(0^3 + <Z*&3 + «:jC 3 ) &}

+ j{ (Mi + Mi + 6jCji + (&i0 2 +& 2
Z + & 3 c2 ) j

+ (Ms +6 2 6 3 + 63C3)*
}

+ *| (Ci«i + ei b l + c3d)i + (c,« 2 + c 2 6 2 + c3 c 2)j

+ (cia 3 +c 2 & 3 + c 3
2
) fcj-

Components of a matrix.— A matrix may be resolved into the sum of

three components, as

$ = a x ii + b t jj + c 3 A*

+ 4 { (63 — c2 ) j* + Oi — a3)W + (0* — &0 0'|

+ 4 { (63 + «2 ) jfc + (Ci + a 3 ) ki + (a2 + 6 t ) ij\
;

of which the first component expresses elongation, the second rotation,

and the third shear.

Invariant functions of a matrix.—
Let § = i (oji + ad -\- a 3 k) (1)

+ 3{b 1
i+b }j+b 3 k-) (2)

+ k (cji + CsJ + c,fc) (3)

By combining the terms of the three ratios according to the rules of

vector multiplication we obtain *

a, + a 2 k — a 3 j

—M + 6 2 + b t i

CiJ C 2 % -j- c 3

and by addition we obtain the scalar and vector invariants

<*i + & 2 + c 3 + (b 3 — c2)i + (Ci — o 3>
-

-f- (o 2 — &0*
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By combining (1) and (2) we form the ratio for the change of a rectangle

having the axes i and j;

(y) {aA + Mi + a 3 bt + (<Ji'>2 — aibi)ij + a t ba — a3 & 2 )j*

+ (ajfi, — a,& 3 ) ki \

and by combining (2) with (3) and (3) with (1) and adding we obtain a

scalar and two vectors

0,65, — a 2 &! + & 2 c ;)
— & 3 c 2 + Cidy — c,a 3 ;

(6,c, +b 2 c 2 + b 3 c 3 )i + (c
i
a

l + c2 a 2 + c 3a 3 )j +(0,6, + a 2 b 2 + a 3 b 3 )k;

{(c,a 2 — Cjaj — (.a 3 6!
— Oi& 3)|i+|(a 2 6 3 — a 3 & 2 ) — (& l(; 2 — & 2Ci) j .

+ {
(63C1 — &ic 3 )

— {0^3 — c3 a 3 ) |fc;

By combining (1), (2) and (3) together we get the ratio for the change

of a rectangular parallelopiped having the axes i, j, k. The scalar which
is the same for the three modes of association is the determinant

a, a 2 a 3

&i 6 2 b 3

C
l

c 2 c3

In this way the physical meaning is evident of the three scalars which

occur in the cubic equation.

VECTOR DIFFKRBNTIATION.

Of a scalar quantity.—Let u denote any scalar quantity, a function of

x, y, z ; then (dxi)—l dux denotes its growth per unit of distance in the

direction i and (dyj)
-1 duv the same for the direction j, and (dzk)—1 duz the

same for the direction k. The reduced expressions for these rates are

. du . du 7 du m , .

'r.Jr.ij-' Their sum
dx dy dz

. du , . du . , du
1
di

"•" }
dl,

"•" *S
expresses the rate of growth of u in the direction of the most rapid growth.

Let v denote that direction and n a distance along i(, then

. du
,

. du , . du du
1

dlc'T~ 1 lLJ)^~
li

dz~
— v

dlC

The rate of growth of this quantity per unit of distance in the direction

i is expressed by

, -. .n 1 , ( du . . du . , du , )
(to)-**,

{ Tx
l + dy-l + dz-

k
\

which, when reduced becomes

(<Pu _d>u_
,
jPu_ \

_

1 W l ^ dxdy J ^'dxdz V '

and similarly

J1 \dUdx~
l ~t"dV* J ~*~ dudz */

and k (didi
l +dzT„> + d* k )-
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As

dxdy dydx

we obtain on multiplying and adding the scalar

d?u . <Pu , <Pu

d& ' dyi
~*~

dz*'

Thus,
. d . . d . , d

dx J dy ' dz

and u, combine the same as if the former were a simple vector, the latter

being a scalar. The single symbol used to denote it is p. By treating p

as a quadrantal versor, Hamilton and Tait obtain

As p cannot be the axis of a quadrantal version, it is not evident where

the rotation comes in. By the ordinary rules of multiplication we get

v dx* ~ dy''
~ dz»

precisely equal to Laplace's operator.

The change of u for any other direction p is obtained by
d dx d

|
dy d . dz d

dp dp dx' dp dy dp dz
'

Of a vector quantity.—Let

C = ui + vj + wk

denote any vector quantity ; then

|7C= (dxi)~l dxC + (djy)-i dyC + (dafc)-1 dtO
(du . . dv . . dw ,\

+ 3 ydy
1 ^^ 3 ^ dy

K)

+ *(£*+£*+£*)
from which scalars and vectors may be formed as on p. 112. By combin-

ing them simply we obtain

_, du . dv . (I iv , [dw dv\ . . (du dw\ . , /dv du\ ,

PC = te + dj+d7+\W-Tz) l+ Kdz-dx-)l + \Tz-d]i)
k-

The scalar

du . dv , dw
dx dy' dz

may be denoted by cos pC, and the vector by Sin pC. If

cos pC = 0,

then C is said to be a solenoidal vector quantity ; and if

SinyC =0,
then C is said to be an irrotational vector quantity.

Successive differentiation.—T?rom the principle that

„/„„\ rfHf
, d>u , d>u



MATHEMATICS AND ASTRONOMY. 115

it follows that p (pC) Is not equal to p
2C. For

/ ~\ / . d . . d
i , d\ /du , dv , dw\

r(rc ) = \ lm+ii% + k te) Km+n + s)
I

d /dw do \ I d_ /<?« d«A . d /do d«\
da; V dy dz '

' dy\dz doc' ' dz \dx dy'
. . f d /do du\ d /du dw\ "| .

\dy vda: dj// da V dz dx'
J

. J d / dw dv\ d /dv du\ 1 .

• \dz \~dy
~ dz' dx \dx dyJ )

}

[ _d_ /du djo\ d /dw dv\ 1

' \ dx \dz dx' ~dy \dy dz' j
*•

The scalar term vanishes and the term for i is

d /du
i

d«_
I
dw\ . , j dzv , <Pw /d^t . d*u\ "|

dx \dx ' dy~*~ dz' l
' \ dxdy ' dxdz \dyz ~*~

dz'' }
*'

o _d_ / du idv . dw\ . /d?u , d^u , d>tc\ .—
dx \dx 'dy' dz' l ~ \dx*

"*"
dy*' Wz'

Hence
,' ~\ n / d . , d . . d , \ /dtt , dv , dw\

P

^

C)
= 2

\Tx l +-dyl + lTz
k) (dx+dj + lfz)

f <P , tP , <P\ , . , . . ,

.

- Kd^ + dyi + d*) (.1» + V} + Wk)

The condition for p (pC) being equal to jr'C is p'C = p cos pC. It is

equal to —

p

!C if p cqspC = 0.

The following is another investigation. As the rules for p are the same

as those for a vector; we form the product

(=«+£'+**) (=*+£>+=*) ("+«+«*)
by finding

#» + Xi (y) + Si Qi) + Si ($) + Sijk.

Now
v., d2« . , d2v .

i
dHo 1Zl

=±c-*
t +

dT>> + H* k
>

f
/iP» . d%\ . , f tPw . d*w \ , . / dfu . ^u\ ,• I

Si (ij) = —
| ^-gp t ^r^ j> + {-ayT -r -^r) K 1- \ dz*

~*~ dy* J f

v / • j\ / d*« , d%; \ . . / d% , <P« \ j. / dHo . _*o_\
.

i * W ») = Vd^l T" ds% 7 * "•"
V d^i "t" 5557 j """"l d»dx

"*"
dj,(to;

l

/ e^p , _*w_N . , / d%> . _*«_\ . / d^a , d% \ .

Si Qj) = \dxdy
"*"

(teda / l + K.'dydz
""

dyda;^ J "'"
Ldada:

"•"
dadj//

K

Hence if we combine all the vectors

Krc) = -(^ +^ + |-) (* + * + «*)

/d.. d., d , v / dtt ,
d» .

dw \

Examples of vector differentiation.

Let B = r p = xi + yf + zk ;

then

(1) p r = p j/*2 + !/
s + z!i = P

(2) pB2 = p r» = 2R

(3) p r» = nrn_1 p »• «= nr"
-1

/>
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This is also true when n is negative, the most important case being

?i = —1 ; then p — = — -r2 p

(4) pR = 3.

(5) pR3 = p (r«B) = (pr*) B + r a
|7 R = 5r«

(6) Wlien n is odd, pR™ = p*
-"- R

= („_i) r
»-2

^ R + 3/-1 = („ + 2) r"-
1

(7) p («C) is not in general = p (Cm)

For p («C) = (p«) C + « (pC)

and p (Cm) = (pC) « + C (pit)
;

but (pu) C is not equal to C (pw), uuless C and pa have the same axis

p, = F (5) = (pR)| + R(F^)=|-i=|
(7(SiiiAE) = p(AR) — pcosAR = 2A.

(8)

(9)

(10) To prove that p (p— ) = 0. Since py =
l

P(^)= 2^^~
(11)

(12)

(13)

p (pR!
) = p2R = 3-2 = 6

p (p (pR3
) ) = 5 • 2 3 = 30

p« R« = 4 • 5 2 3 = 120.

GKNBRA1.IZED ADDITION.

Signless quantities at different points.— Given a mass m, at Ai and m, at

A 2 ; by adding them is meant add-

ing the masses, and finding such a

position that the mass-vector of the

sum of the masses will be equal to

the sum of the mass-vectors. Let

to times the vector A 1; be P, and

m 2 times the vector A 2 be Q ; the

resultant R is the sum of the mass-

vectors ; take S equal to R divided

bym, + m 2 (flg. 22).

Hence A, • m, + A 2 .», -
TOi + OTg

This is generalized addition ; for if we put A 2
= Aj , we get ordinary

addition.

Scalar quantities at different points. — The same principle applies to a

quantity which maybe positive or negative; but there is a special case

when the quantities are equal and of opposite sign. Then

A! • m — A2 m = ^ _ m
' (m — n»)

= m (A! — A,)

Their sum is then a moment, as in the case of a magnet.

> FIG. 22.

. T ... ' (mj +to 2 ).
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», = 6A +^ -(6l+ 6 2 )i9

ParaZZeZ flecto?
1 guarafMies at (Jj^ierejiJ poinis.—If the vector quantities have

the same axis, they are added in the same manner as signless quantities;

hence (fig. 23).

A, B,+A 2 ** 2 —
bi + ba

If they have opposite axes, they are added like scalar quantities. Sup-

pose B! = fej/S and B 2 = 6 2 (—/J) ; then

A, • B, + A2 • B 2 = ^ly* • (&a - 6.) /»'

If further b, = 6 2 , then their sum is

= A,B — A 2B = (Aj — A8)Bj= cos (Ai-As)B + iKn (A, —A 2)B.
The latter term is the moment of a couple.

Vector quantities at different points.—The following is the most general

form of the principle that a quantity is not changed by the simultaneous

addition and subtraction of the same quantity (fig. 24).

A, • Bi = • B x
— B, + A, • B,

= 0-B! + A,B,
Hence

A,

And generally SA '

B, + As • B 2 = (B! + B 8 ) + A,B! + A 2B 2

= • (B! + B 2 ) + cos AiB! + cos A2B 2

+ Sin AjB, + Sin A ,B ,

B = 0'2B + SSinAB + Icos&B.
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PAPERS READ.

On the imaginary of algebra. By Prof. A. Macfarlane, University
of Texas, Austin, Texas.

The student, if he should hereafter inquire into the assertions of different writers,
who contend for what each of them considers as the explanation of y^f" will do well
to substitute the indefinite article."— De Morgan, Doable Algebra, p. 94.'

"With respect to the theory and use of i/^T analysts may be divided
into three classes : first, those who have considered it as undefined and
uninterpreted, and consequently make use of it only in a tentative manner

;

second, those who have considered it as undefinable and uninterpretable,

and build upon this supposed fact a special theory of reasoning ; third,

those who, viewing it as capable of definition, have sought for the defi-

nition in the ideas of geometry.

Of the first class we have an example in the view laid down by the

astronomer Airy {Cambridge Philosophical Transactions, vol. x, p. 327).

"I have not the smallest confidence in any result which is essentially ob-

tained by the use of imaginary symbols. I am very glad to use them as

conveniently indicating a conclusion which it may afterwards be possible

to obtain by strictly logical methods; but until these logical methods
shall have been discovered, I regard the result as requiring further dem-
onstration." This view admits that conclusions are indicated by methods
which are not strictly logical ; that a method which is not strictly logical

can indicate and always can indicate a conclusion is a paradox which it is

very desirable to explain.

Of the second class we have an example in the mathematician and logic-

ian, Boole. Instead of conforming analysis to ordinary reasoning, he

endeavors to conform reasoning to analysis by introducing a transcend-

ental species of logic. In his Laws of Thought, p. 68, he lays down the

following as an axiomatic principle in reasoning : The process of solu-

tion or demonstration maybe conducted throughout in obedience to cer-

tain formal laws of combination of the symbols, without regard to the

question of the interpretability of the intermediate results, provided the

final result be interpretable. Our knowledge of the foregoing.principle is

based upon the actual occurrence of an instance, that instance being the

imaginary of algebra. In support of this view he says : "A single example

of reasoning in which symbols are employed in obedience to laws founded

upon their interpretation, but without any sustained reference to that in-

terpretation, the chain of demonstration conducting us through intermedi-

ns)
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ate steps which are not interpretable to a final result which is interpretable,

seems not only to establish the validity of the particular application, but

to make known to us the general law manifested therein. No accumulation

of instances can properly add weight to such evidence. The employment of

the uninterpretable symbol \/—1, in the intermediate processes of trigo-

nometry, furnishes an illustration of what has been said. I apprehend

that there is no mode of explaining that application which does not cov-

ertly assume the very principle in question. But that principle, though

not, as I conceive, warranted by formal reasoning based upon other

grounds, seems to deserve a place among those axiomatic truths, which

constitute, in some sense, the foundation of the possibility of general

knowledge, and which may properly be regarded as expressions of the

mind's own laws and constitution."
(

Inasmuch as the successful use of the undefinedsymbol \/—1 by analysts

is thus made the basis of a sort of transcendental logic, it is a matter of

interest to investigate whether the intermediate steps in such demonstra-

tions are not uninterpretable but merely uninterpreted. If it can be shown

that some at least of the expressions in which \/— 1 occurs have a real

geometrical meaning, the argument for a transcendental logic will fail.

The "principle of the permanence of equivalent forms," which was

by Peacock made the foundation of the operations and results of algebra,

is scarcely so transcendental, but is certainly a very vague and unsound

principle of generalization. He states it as follows (Symbolical- Algebra,

p. 631) :
" Whatever algebraical forms are equivalent, when the symbols are

general in form but specific in value, will be equivalent likewise whenthe sym-

bols are general in value as well as in form. It will follow from this

principle that all the results of arithmetical algebra will be results like-

wise of symbolical algebra, and the discovery of equivalent forms in the

former science possessing the requisite conditions will be not only their

discovery in the latter, but the only authority for their existence; for

there are no definitions of the operations in symbolical algebra by which

such equivalent forms can be detected."

The principle is applied to indices in the following manner : "Observing

that the indices m and n in the expressions which constitute the equation

am X an = am+ ", though specific in value, are general in form we are

authorized to conclude by the principle of the permanence of equivalent

forms that in symbolical algebra the same expressions continue to be

•equivalent to each other for all values of those indices ; or, in other words,

that a™ X an = a
m+ " whatever be the values of m and n."

The question is : How general may the symbols be made, yet the equa-

tion still retain the same form? This is not a question of nominal defi-

nition and merely symbolical truth, but 8f real definition and of real

truth; as may be shown by considering the above principle of indices.

For a certain generalized meaning of m and n, Hamilton (Elements of

Quaternions, p. 388) investigates whether or not a™ X a™ = am+ n
, and

concludes that it is not true. With him the question is one of material

truth, not of symbolical definition.
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The above principle of generalization may be tested in another way.
If r denote the ordinary algebraic quantity which may be positive or neg-

ative, r may represent that quantity when generalized so as to have any
angle with an initial line in a given plane. For this generalized magni-

tude

r-6 X r>- 0' =rr< -0 + 0';

in words, the length of the product is the product of the lengths, and
the angle of the product is the sum of the angles. Now the principle of
the permanence of equivalent forms does not help us to generalize this

proposition for space. A plausible hypothesis likely to present itself at

first is : Let <p denote the angle between the given plane and a fixed plane, is

(r • p) X (r> • 0i
<p') = rr< + 0< <p + <p'1

This is a question not of symbolism, but of truth.

At the time of De Morgan there was no adequate theory of i/— F, as is

evident from the quotation prefixed ; nor is there at the present time.

The view at present held about i = |/— 1 by analysts is thus stated by
Cayley in a paper "On Multiple Algebra," printed in the Quarterly Journal

of Mathematics, vol. xxn.

"We have come to regard a + hi as an ordinary analytical magnitude,

viz. ; in every case an ordinary symbol represents or may represent such

a magnitude, and the magnitude (and as a particular case thereof the

symbol i) is commutable with the extraordinaries of any system of mul-

tiple algebra; and similarly in analytical geometry without seeking for

any real representation we deal with imaginary points, lines, etc., that is,

with points, lines, etc., depending on parameters of the form a -f- bi."

I propose to review critically the different explanations or elements of
explanation which have been contributed, with the hope of finding a theory

which will tend to unify them, and to diminish still further that region of

analysis where we have mere symbolism without real definition.

The investigation of this subject arose with the celebrated controversy

about the nature of the logarithms of negative numbers ; whether they are

real or impossible. Leibnitz maintained that the logarithm of a negative

number is impossible, because if log (—2) is real, so is J log (—2), that

is log i/^2> which would lead to the supposed absurdity of the logarithm

of an impossible quantity being real. John Bernoulli held that the log-

arithm of a negative number is as real as the logarithm of a positive

number ; for the ratio — m : — n does not differ from that of -f- »> '

-f- n. The former view was afterwards maintained by Euler, the latter

by D'Alembert. Euler claimed to demonstrate that every positive number

has an infinite number of logarithms, of which only one is possible; fur-

ther, that every negative as well as every impossible number has an infi-

nite number of logarithms, which are all impossible. He reasoned from

the Values of the nth root of + 1 and of — 1, viewing + as denoting an

even number, and — as denoting an odd number, of half revolutions.

D'Alembert pointed out that the logarithm of a negative number may be
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real. Thus e* = +"|/e or —j/e; but the logarithm of e^ is i; therefore

the logarithm of —]/« as 'well as of -t-j/e is 4-

These opposing views arise from different conceptions of the negative

symbol and of the magnitude treated by algebra. The magnitudes con-

sidered in elementary algebra are, first, a mere number or ratio; second,

a magnitude which may have a given direction, or the opposite, and third,

a geometric ratio which combines a number with a certain amount of

change of direction. The logarithm of a ratio is itself a ratio, and is

unique. If a directed magnitude has a logarithm, it is difficult to see how
the direction of the logarithm, if it 'has any direction, can be different

from that of the magnitude. It is of number in the sense of a geometric

ratio that Euler's proposition is true. This conception of number imme-

diately transcends representation by a single straight line ; consequently a

part of the ratio generally appears as impossible.

In his Geometrie de Position, Carnot asks the following among other

questions : "If two quantities, of which the one is positive and the other

negative, are both real, and do not differ excepting in position, why
should the root of the one be an imaginary quantity, while that of the

other is real? Why should \/— a not be as real as i/+ a?" In this ques-

tion it is assumed that — a and + a denote directed magnitudes, the one

being opposite to the other ; and if such a quantity has a square root, it is

difficult to understand why the one direction should differ from the other.

But the — a which has the imaginary square roots, while + a has real, do
not differ in direction ; they differ in the amount of change of direction.

In 1806, M. Buee published in the Philosophical Transactions a memoir on

Imaginary Quantities, and in it he endeavors to answer some of the ques-

tions raised by Carnot. His main idea is that +, — , and \/—i are purely

descriptive signs; that is, signs which indi-

cate direction. Suppose three equal lines

AB, AC, AD, drawn from a point A (fig. 1),

of which AC is opposite to AB, and AD
perpendicular to BAG; then if the line AB
is designated by +1, the line AC~wW be —1,

and the line AD will be }/—\. Thus \/—i
is the sign of perpendicularity. It follows

from this view of \/—1 that it does not in-

dicate a unique direction, the opposite line

AD 1
, or any line in the plane as AD" is also

indicated by -|/—1" Buee admits the conse-
'"

' quence. But it may be asked: If every

perpendicular is represented by -|/— 1, what meaning is left for —\/—I?

Buee applies his theory to the interpretation of the solution of a quad-

ratic equation which had been considered by Carnot, namely : To divide a

line AB into two parts such that the product of the segments Shall be equal

to half the square of the line.
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Let A B (flg. 2) be the given linev and suppose K to be the required
point; let AB be denoted by a, and AK by *; then by the given condition

x(a- K)=f
and by the ordinary process of solution

x - T=*= V ~ T
_
T =*= Y _1 r

According to Carnot, the appearance of the imaginary indicates that there
is no such point as is required between A and B, but that it is outside AB

a

Fig. 2.

on the line prolonged. If it is supposed to he beyond B on the line pro-

duced, the equation takes the modified form a; (a;— a) = 4 a2
,
giving

'
• * = 4«±l/?

Of these two roots he considers

only to be a true solution of the question ; while

•?
is the solution on the hypothesis that the point is on the line produced, but

on the side of A. Buee views these answers as the solutions of connected

equations, not of the given equation. His solution is represented (fig. 3)

by drawing two mutual perpendiculars KG and KE to represent \/^—i —

and their opposites KD and KG to represent— j/— 1 ^ ; C and D orE and

G are the points required. But Buee does not show how the square of

|r + l/—1 ^ is to be represented? If the one component of the line is

perpendicular to the other, ought not the square of the sum to be equal to

the sum of the squares? But this does not agree with the principles of
algebra, for

(a 4- Y—i yf = »8 — y* + 2j/:-I xy.
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This is a difficulty which a theory of mere direction cannot get over.

Led by his theory of perpendicularity, Buee considers the question : What

doss a conic section becoms, when its ordinates become imaginary? Con-

sider a circle ; when x has any value between — a and + a, then

j/ = ±l/as— tf

But when x is greater than a, or less than — a, let it be denoted by x', and

the analogue of y by y', then

y' = zbi/^T lA' ! — a8
.

Buee advances theview that the circle in the plane of thepaper changes into

an equilateralhyperbola in the plane perpendicular to the plane of the paper

;

but he does not prove the suggestion, or test it by application to calculation.

A similar view has been developed by Phillips and Beebe in their "Graphic

Algebra." It appears to me that here we have a fundamental question in

the theory of ]/—i. The expression |/os—xl denotes the ordinate of the

circle, what is represented by \/— 1 V*n—a
'2

' x' being greater than a?

The former is constructed by drawing from the extremity of a; a straight

line at right angles to it in

the given plane, and de-

scribing with centre a

circle of radius a the point

of intersection P determin-

ing the length of the ordi-

nate , and—i/ a*—x1
i s equal

and opposite. Now (fig. 4)

j/x12—

a

a
is equal in length

to the tangent from the ex-

tremity of a;' to the circle,

and j/—1 appears to indi-

cate the direction of the

tangent, which varies in inclination to the axis of x, but is determined by

always being perpendicular to the radius at the point of contact. Hence

if x' be considered a directed magnitude, the expression

• «,' +V—i lA'a—a*

denotes the radius from O to the one point of contact T, while

x<—v7— 1 ]A2—a3

denotes the radius to the other point of contact 27 . This construction

does not necessitate going out of the given plane ; and if space be consid-

ered we have a whole complex of ordinates to the sphere, as well as a

complex of tangents to the sphere. The ordinary theory of minus gives

no explanation of the double sign in the case of the tangent. It is true in

the case of the two ordinates, that the one is opposite to the other in direc-

tion, but it is not true of the two tangents. In the case of the sphere the

ordinate may have any direction in a plane perpendicular to x, while the

tangent may have any direction in a cone of which x is the axis. This

other and hitherto unnoticed meaning of \/— 1 will be developed more

fully in the investigation which follows (p. 52).
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The same year, Argand published his "Essai sur une maniere de repre-

senter les qnantitks imaginaires dans Us constructions geometriques." His

method is restricted to a plane (fig. 5). According to his view + is a

sign of direction, — of the opposite direction, -[/—1 of the upward per-

pendicular direction and —i/—1 of the downward perpendicular direc-

tion. The general quantity'a + b\/—1 is represented by a line OP (fig. 5)

having a and b\/— 1 for rectangular components. The product of two

lines a -+- b\/— 1 and a' + 6'j/—1 is

(o + 6 l/^T) (a' + 6' l/^D = aa' — 66' + i/=l(a6' + a'6)

and it too is represented by a line, namely, the line which has aa'—66' and

\/—l(a6' + 6a') for rectangular components.

A very important advance was made by Francais, who perceived

that +, — , \/—1 and —\/—1 did

not denote directions, but rather

amounts of angle. He introduced

the notation aa to denote the gen-

eral line where a denotes its mag-

nitude and a the angle between it

and a fixed initial line. Thus+ a

is (to, —a is a*.

—l/—la i

|/—la is av , and
2"

So long as a is

supposed to denote the angle speci- ;

fying the position of a line, it is

difficult to perceive what is the

meaning of the multiplication or division of two lines. It was cus-

tomary to look upon the product line as forming a fourth proportional to

the initial line and the two given lines. But when it is perceived 1 that the

angle does not refer to a fixed initial line, but to any line in the plane, it

becomes evident that the product of two quantities r
e
and rV is rr'e + e',

the ratio of the product being the product of the ratios, and the angle of

the product being the sum, or what appears to be the sum, of the angles.

In the investigation of Francais, the symbol \/— 1, though replaced by

J in the primary quantity, reappears again in the exponential expression

for a line ; he writes

ae "^ = aa .

He does not appear to have considered the question : Can the y — 1 in

this index be replaced by
J? It is evident that £ cannot be substituted

for it as a simple multiplier; does the index really mean a„, a quantity

similar to a*? This question is, I believe, correctly answered by an affirm-

ative. The view which has been commonly taken by analysts is that every-

thing is explained provided a + 6 l/^I is explained, and provided every

Wole on Plane Algebra, by the author. Proc. E. S. E., 1883, p. 184.
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other function involving \/—1 can be reduced to the form P -f- Q -j/—T-

But it cannot be proved that this reduction is always possible, unless on

the assumption that all the imaginaries refer to one plane. For example,

De Morgan, in his Double Algebra, does not interpret directly e
ay~1

or the

more general expression (a+ 6]/— 1 )
p "*" q ^~\

, but the expression is reduced

to significance by being reduced to the form P + Q y — 1. And this is the

current mode in modern analysis of explainingfunctions ofthe imaginary.

In a subsequent paper Argand adopted the notation of Francais for a

line in a plane; but used £ instead of ~ to denote the quadrant, Which, as

Francais pointed out, is not an improvement. So imbued was he with the

direction theory of \'—1 that he sought to express any direction in' space

by means of an imaginary function. He arrived at the view that the third

mutual perpendicular KP (fig. 6) is expressed by ]/'

—

i^~\ the opposite

line KQ by y
/

—i^~1
' an(* any ^ne KM *n tne perpendicular plane by

-i/~—\ cos c + V—* si" M where ft denotes the angle between KB and KM.

He remarks that if the above be the cor-

rect meaning of -[/—L^1
, then it is not

true that every function can be reduced to

the formp + q \/—l and he doubts the

validity of the current demonstration

which aims at proving that the function

(o + 6 y=l)m + n »
/-1 can always be re-

duced to the form p + q j/— 1. Accord-

ing to that reduction, as was shown by

Euler, j/—1^—1 = e ~?, and this mean-
ing of the expression was maintained by
Francais and Servois. The latter, fol-

lowing the analogy of a + 6 i/— 1 for a line in one plane, suggested that

the expression for a line in space had the form

p cos a + q cos jii -f- r cos y,

where p, q, r are imaginaries of some sort, but he questioned whether they

are each reducible to the form A + B V^-i. In reply to the criticisms

of Francais and Servois, Argand maintained that Euler had not demon-
strated that

e^V—l = cosx + \/—i sin x

but had defined the meaning of e^-1 by extending the theorem

ea-l + B-T-^ + etc.

It will be shown afterwards that in the equation of Euler, namely
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there is an assumption that the axes of the two angles are coincident

;

and that Argand's meaning is incorrect.

The ideas Of Warren in his Treatise on the geometrical representation of

the square roots of negative quantities, 1828, are essentially the same as

those of Francais, but they receive a more complete development.

It is curious to find, considering the intensely geometrical character of

quaternions, that Hamilton was led by the Kantian ideas of space and time

to start out with the theory that algebra is the science of time, as geometry

is the science of space, and that he strove hard to find on that basis a

meaning for the square root of minus one. But having observed the suc-

cess, so far as the plane is concerned, of the geometrical theory of Argand,

Frangais and Warren, he adopted a geometrical basis and took up the

problem of extending their method to space. What he sought for was
the product of two directed lines in space, in the sense of a fourth pro-

portional to two given lines and an initial line. He perceived that one

root of the difficulty which had been experienced lay in regarding the

initial line as real, and the two perpendiculars as expressed by imagina-

ries ; and, looking at the symmetry of space, adopted the view that each of

the three axes should be treated as an imaginary. He was thus led to the

principle that if i, j, k denote three mutually rectangular axes, then

<• = —1,J*= —1, ** = —1,

and if Ua denote any vector of unit length ( i/a) s = —1. Hence follows

the paradoxical conclusion that the square of a directed magnitude is

negative, which is contrary to the principles of analysis. An after devel-

opment of Hamilton's was to give to i, j, k a double meaning, namely : to

signify not only unit vectors, but to signify the axes of quadrantal ver-

sors. But in the quaternion we have for the first time the clear distinc-

tion between a line and a geometric ratio. In a paper read before this

Association last year 1 have given reasons for believing that the identifi-

cation of a directed line with a quadrantal quaternion is the principal

cause of the obscurity in the method, and of its want of perfect harmony
with the other methods of analysis.

The imaginary symbol, notwithstanding its apparent banishment from
space, reappears in Hamilton's works as the coefficient of an unreal qua-

ternion. He appears to hold that there is a scalar ]/—1 distinct from

that vector |/—1 which can be replaced by i, j, k. In the recent edition

of Tait's Treatise on Quaternions, Prof. Cayley contributes an analytical

theory of quaternions, in which the components w, x, y, z oia, quaternion

are considered in the most general case to have the form a + &]/—

i

where j/— 1 is the imaginary of ordinary algebra. Thus it appears as

if we were landed in an analytic theory of quaternions instead of a qua-

ternionic theory of analysis.

In a work recently published on quaternions (Theorie der Quaternionen,

by Dr. Molenbroek), the principal novelty is the introduction of the sym-

bol |/^1 with the meaning attached to it by BueS, namely : to denote
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perpendicularity. Thus (flg. 7) \/—I « denotes any vector such as OP or

OQ, which is equal in length to a, and perpendicular to a, and ]/—1 is

thus made to mean a quadrantal versor with an indefinite axis ; hut the

axis is not entirely indefinite, for it must be perpendicular to a. Doubtless

it is convenient to have a notation for any direction from which is

perpendicular to o ; but it does not follow that V~^ denotes it properly.

I have found the following notation convenient

:

Let a, j3 denote two independent axes, then the

axis perpendicular to both may be denoted by

a/J. In harmony with this notation a denotes

any of the perpendiculars to a ; but a may also

be used to denote a definite perpendicular, when
the conditions make the perpendicular definite.

In a paper read before this Association last

year 1 I showed that the products of directed

magnitudes may be considered in complete inde-

pendence of the idea of rotation ; consequently
FlGi 7 "

that the method of dealing with such quantities

forms a special branch of the algebra of space, of great importance to

the physicist. The method of dealing with versors forms another distinct

branch; and in the idea of a versor, or more generally of a geometric

ratio or quaternion we find a true explanation of \/—1, and I believe that

the following development will show that it has at least one other geo-

metric meaning.

SPHEKICAL TRIGONOMETRY.

Notation for a quaternion.

A quaternion, or geometric ratio, will be denoted synthetically by a,

and analytically by aaA where a denotes the arithmetical ratio, a the

axis, and A the angle in circular measure. The factor aA forms the ver-

sor or circular sector. Let A become J, then a? is an imaginary made
IT

definite; ffi is another differing from the former as regards its axis.

According to the notation of Hamilton, «' denotes a qnadrantal versor,

whereas, according to the above definition, it denotes a circular sector of

which the arc is unity the radius also being unity. Viewed merely as a

matter of convenience in writing and printing, the notation aA is prefer-

2A

able toa». For the sake of the extension to hyperbolic sectors, it is found

necessary to consider A as denoting not the circular arc but double the

iProc. A. A. A. S., Vol. XL, p. 65.



MATHEMATICS AND ASTRONOMY. 43

area of the sector included by the arc. This notation is capable of gener-

alization, while the other is not.

A z
Meaning of the equation a = cos A+ sinA-a2

Let OP (fig. 8) be any line of unit length in the plane of a, and let OQ

be the line from to the extremity of the circular sector of area 4 en-

closed between OP and the circular arc : then

0§ = OM+MQ
= cosA- 0P + sin A a* OP

IT

= (cos A + sin A • a'd
) OP

= aA OP

therefore aA = cos A + sin A • a?.

Fig 8.

This equation is true so far as the amount of angle is concerned but not

it may be as regards the whole amount of turning. In this sense cos A
IT

and sin A • a? are the components of aA .

•ir

To prove that a A = e
Aa

IT

We have aA =s= cos A + S!n A-a?,

A 1
A *

I
Ai

and cos A = 1 — -jj + -yy —

,

A* A6

and sin A = A— 37+57—

•

it

By restoring the powers of a2 in the expression for cos A we obtain

atr .it

A"a ? A'a^
cos A = 1 -\

21
1

4] r '

and by a similar restoration in the series for Sin A
3

sin A' a = Aa + 31
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and by adding the two series together we get

A , , I tffi
,
A3* 2

, ^A —A A<T~Z —A-a~Z
Also (—a) = a = e =e

IT

%t—A Aa 2
and a = e

So far as angle is concerned, irrespective of the whole amount of turn-

ing, we have
a~A = a2"-A .

ir ir

It follows that Aa2 is the logarithm of aA and a2 the logarithm of* a1
.

As the most general expression for minus is a(
2"+i)™',

it

log (—1) = (2h+1)ot • a2 .

The general expression for y'—i is a3"*" *> therefore

tog' j/^I = (2nt+J)- a2 ; and for + it is a2"*, therefore iogr += 2mt a2 .

IT

Hence generally log (aaA} = loga-\-A- a2 .

In his Qeometrie de Position Carnot says, in reference to the celebrated

discussion about the logarithms of negative quantities "Quoique cette

discussion soit aujourd'hui terming, il reste ce paradoxe savoir que quoiqu'

on ait log (—zf = log (z) 1
, on n'a cependant pas 2 log (

—

z) — 2 log z."

The paradox may be explained as follows : Suppose the complete ex-

pression for z to be za^n", then that for — z is zaC2^!)"; tnen
It IT

log z l —'blogz-\- 4nx • a2 and log (

—

z) 2= 2logz+ (4»i+2);r • a2.

As the latter is twice the logarithm of sa(2"+i)*
,

1 the supposed paradox
vanishes.

To prove that

oA ft
B = cos A cos B— sin A sin B cos aft

f ir ir

+ cos A sin B •
ft
2+ cos BsinA- a2 — sin A sin B sin aft • aft

2 -

IT

Since aA = cos A+ sinA • a2,

ir

and
ft
B = cos B + sin B ft

2
,

by multiplying the two equations together we obtain

7T IT IT IT

aA ftB = cosA cosB+ cosA sin B *

ft
2+ cos B sin A • az~+ sin A sin B • a2ft

2
.

Now, as was shown in the previous paper (p. 98)

a- ft
2 = — cos aft — sin aft • aft

2
•
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hence
cos aA ft

B = cos A cos B— sin A sin B cos aft (1),

and

Sin a ft = \cosAsinB-ft+ cosBsinA- a—sinAsinBsinaft a~ft \ (2).

Equation (1) expresses .what is held to be the fundamental theorem of
spherical trigonometry; but the complementary theorem expressed by

(2) is never considered. So far as magnitude is concerned, it may be de-

rived from (1) by the relation cos1
B+ sin2 = 1; but it is not so as regards

the axis. Equation (1) is the generalization of the theorem of plane trig-

onometry

cos {A + B) = cos A cos B— sin A sin B
;

while equation (2) is the true generalization of the complementary theorem

sin (A. + B) = cos A sin B + cos B sin A.

The one theorem may perhaps be derived logically from the other, when
restricted to the plane, but it is not so in space. The two equations form

together what is called the addition theorem in plane trigonometry. Why
do we have addition on the one side of the equation, while we have mul-

tiplication on the other? Because A+ B is the sum of two indices of an

axis which is not expressed, the complete expression being
A4-B

cos a ' = cos A cos B — sin A sin B
IT

Sin a + = (cos A sin B + cos B sin A) a •

Prostliaphaeresis in spherical trigonometry.

The formula for a ft~ is obtained from that for a
A

ft

B
by putting a

minus before the sin B factor. Hence

cos a ft~ = cos A cos B + sin A sin B cos aft, and
77 JT 7T

Sina ft~ =— cosA sin B- ft + cos BsinA- a
2 + sinAsinBsin aft- aft

•

Hence the generalizations for space of

cos (A—jB) + cos (A+B) =2 cos A cos B,

cos {A—-jB) — cos (A+B) = 2 sin A sin B,

sin (A+B) + sin (A—B) — 2 cos B sin A,
sin (.A+B) — sin (A—B) = 2 cos A sin B,

are respectively
a a—B

,
a aB _

cos a P + cos a ft =2 cos A cos B,

cos a P — cos a ft =2 sin A sin B cos aft,

Sin a ft + Sin a ft~ = 2 cos B sin A • a"

,

Sin a
A

ft

B— Sin a
A

ft~
B — 2 { cos A sinB •

ft
— sin A sin B sin aft ' ^ |

a

Let

aA ft

8 = r° and *
A
f
rB = S" (flg- 9)
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*-£> O
r_- = R

B

46

then

therefore

Also

, s
D
r
c

*
but this does not reduce to —_ = «

d s~D r
c

Hence D c

cos 8D + cos r° = 2cos
1
8D __2_ }

cos !_»-

,

—d a .-J> o

cos d
D -cos r

°= 2sin | d
D 8

2

T
- j siti —^ cos a/5

;

etc.

, , A aB Ao-Z + Bp2

To prove that a p = e

l"o * A3*
£

Since aA =* 1 + Aa + -jtj h -3T
- **"'

and /

3S-l+-B/S7 + -^r- + -TT-+'

„y-:l+l« +~T\ f" 31
+

+ 2j2? + ,4-Ba*,3* + "IT a P +

+ 5/»
¥ +
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= i

+

(a.? + V)

+

<Jxf* +...+ <^%^-"

+

The general term is

^ {/^ + n^"-1
2>«

(" - X)*/ + 5^ A* ~ 2 W" - 2)* /?+ }
which is formed according to the binomial theorem, only the order of a,

ft

must be preserved in 'each term.

The binomial here is the sum of two logarithms, not a sum of two qua-

ternions. It is not true that

ft IT IT^ + BfP = g
(Jo + B«*

for .<* + *>* _ 1 + (4« + 2*)* + l^+^'l +

_ A* + B* + 2 A B cos aft (A* + B* + 2AB cos afty

+{l-^ + g+3^^i^+}(l +W
In a similar manner it may be shown that

a
A

ft

By° = 1 + .4a* + JSp* + Cr%

+ ^ | .dV + J3«/S'
r + C" r" + 2.d£a* £* + 24cJy%+ 2BCp%r% I

+ 1 { A3a?^ + 53
/5
3* + CV* + ZA*Ba (F + SA'Ca'r* + S.B'C/SV*'

+ 3 AB*a? ft" + 3.4Cs »V + 3.BC8
/5V' + 6ABC a*^*

|

+ etc.

where the terms are formed according to the rule of the trinomial theo-

rem, but the order a, ft, y, must be preserved in each term. And the

multinomial theorem is true, provided the above condition is observed.

Circtjlak 'Spirals.

Meaning ofaA -

_4» A3

The series e=l+-4 + ^y + -jj + may be viewed as having a loga-

rithmic angle or period or more generally 2niz, so that it is expressed
2lW

more fully by e or e
a

. Similarly the logarithmic angle or period of

a
A

, that is of

E. A*o.tAa

is \ or more generally 2nff + £•

By aA is meant t>

Aa-

W
where the logarithmic angle is w, so that
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a A*a?
W

A*r?
W

A Aato . . io ,
A "

.
A a

What is the geometrical meaning of aA ? It is a sector of the logarith-

mic spiral which has a for axis, w for the angle between the tangent and

the radius vector and A sin w for the angle at the apex.

On account of the new element w the quantity may he named a guinter-

nion, for when a multiplier is prefixed we have five elements.

m j A cos w + A sin w • or
To prove that a* = e

,„ 2to ,„ 3w

Fora^=e^a = 1 + Aaw + -jy- + -jy-.+ ,

= l+^c s«, + ^ cos2M,
'
^ ooe3M

' '

21 ' 31

if.. , J'linSit , J>«'nS» , 1 ^+ | ^smw-(
2i

1

3l
1" }

- a

"
jr

n j. . ^ cos w+ A sin to -a ^ _
fi

.4 cos to .4 sin to • a?

IT

= 1 1 + A cos w H 2l r||lti«»wa -^ p v

,

= 1 + .4 cos w + — (cos* w — sin* io) -f-

i f . . i
Ai

1 ^+ < A sin w+ Y\ 2 sin w cos w -r > • a >

= 1 + 4 COS W + gj cos 2to +
+ .4 sin w+ -5| sin 2to -|-

TT

therefore e
j4a"' = e

A cos w + ^ sin w ' "?•

1 To prove that a£/3* = e ^aW+^w.

Since aA = e^oos ro+ A sin w ' «*

ir

and /?
B = e ^ "o« io + B «tn to /3^

ff tr

a
A

(2
B = e

A ""'w
e
A d" w ' "?

e
Bcosie

g
B sinwpp

it n

a e
A oos w {• B oos to

e
A sin w • ^+ B sin w • p%

T IT

_ e
(A + B) cosw

e
sinu)

j
A • <? -|- B • fF

J

But t
A* + B& _, e (^ co« to + A tin w • a T) + (B cos w + Bsinw 0)
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IT IT

__ A cos w + B cos w A sin w • a? + B sin w • p%-

Because e
A oos w and e

B cos w
are independent of axis, they can be changed

from the order in which they occur in the sum of indices.

The meaning of ccjj
pB

is the sector of the spiral which joins the begin-

ning of the former with the end of the latter.

Hence when ,3 = «,

„A „B .(A + B) cosw . (A + B) sinw •<>?
"w aw — 6 6

w
which is the addition theorem for the logarithmic spiral, the two compo-
nent sector* being in the same plane.

Exponent of a compound angle.

We have

fty> _ x +a . a^+J (aV)H-if («Y)> +;

where a /3 is expanded as shown above, and (a p )* is double of the

compound angle, (a'
4
/?
5

)
3 is three times the compound angle and so on.

It is to be observed that (a
1^)' is not in general equal to a p1

•

Let x = A.

= B = % and let /? be identical with a, then we have

e" =1 — -g- + V^-; af—
, IT

7T 7T IT 7T "S"

But e^
a = e

—* and it is also = a?" ;

T! IT ~%

and thus e
~~^ = o?

a
.

which is a rational expression for the celebrated equation of Euler

By taking logs we obtain

o? log {a?) = -!
that is

To differentiate a^.
ir

Ac?
W

Since a = e = cos .4+sfo A- a?

'
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therefore

d(a
A
) = *

A**
d (Aa?) = (<—sinA + cosA- a2 ) dA + sin Ada- a2

therefore

a
Ad(Ao?) = (— sin A + cosJl- a?)dA+sinAda a2

But since

~A\ -a . A, ,-A-.

A —A ,

a a = 1,

d(a^)« +« d(« )=0;
therefore

a^Ua2)*-"* + «^a~^ d(-^a^) =0;

therefore aAd (AaF) a~A = d (Ao? )

.

Hence d (Aa?) = </+ 2 oU aTA -f sin Ada-a?a~A

= dA • a2 + da {sin A cos A • a2 — sin* 4 a? a2
)

= d4 • a2 + da (sin A cos A- a 2 + sin* .4. • aa2

IT

it ir

= | dA a + da {sin A cos A-a + sin1A • aaV

To differentiate a /? .

d{a
A
p
B)=(daA)p

B + a
Ad(§B),

= a
A
d (Aa?) f + a

A
p
B
d (£/S2 ),

which is not = a
Af { d (Aa?) + d (Bfi2 ) } unless fi= a.

~ . A „B An. + B?
But a /J = e

IT 1T

and i(ay) =/ + ^i(4«Hsft
provided it be understood that in the final terms the order of a, ft be ob-

served.
IT

To differentiate e ( '4a + 'Bp) '!

is more simple, because then we have but

one index, not a binomial, and

d | an. + iw
2
1 = e

.A« +^ |
(4a + Sj8); j .

Hyperbolic Trigonometry.

Meaning of the equation

TT

ha" = cosh A + sink A a2 .
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The expression a , when no period is expressed, is understood to have

the period £; in other words the area""- is hounded by a circular arc.

Let ha denote the same when the hounding arc is the equilateral hyper-

bola (fig. 10). Then the rectangular components OM and MQ of the hy-

perbolic versor which has the axis a and the area j- are commonly de-

noted by cosh A and sink A,so that
IT

ha = cosh A + sinh A • a?

The hyperbolic versor ha is equivalent to the multiplier cosh A to-

ff

gether with the circular versor sinh A • a?.

w

A Aa?
To prove that ha = he

ir

We have ha = cosh A + sinh A • a?,

A 3 A1

This is an essentially different expansion from the circular. It may be

w *

denoted by h e
A°~

, and it differs from that for e
Aa in having a? a? = l.

Similarly ha = cosh A — sinh A • a2',

,=he~^.
_ , ^ ... An'
To compare ha with e

e
d"1T = cosh A + s™h -4 • a

1

,

ir ir

= cosh A -+- o? sinh A- a?
;

ir ir

that is e^°
7)B* = cosh A + a% sinh A a?

;
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IT

therefore cosh A = cos {Aa1),

and a? sinh A = sin (Aa?).

Also ha~A = cosh A — sink A • a
,

ir ir t it

— cos {Aa?) — a? sin (Ao?) • a?-

To find the value ofhaA hftB, the analogue ofaA ft
B

-

We have haA = cosh A + sink A a?,

7T

and hft
3 = cosh B + sinh B ft

'

ir

therefore ha
A
hp = cosh A cosh B + cosh A sinh B ft*

W IT IT

+ cosh B sinh A • a? + sinh A sinh B • a?ft%.

n ir

The problem Is reduced to finding the value of a? ft^. Now for a plane,

in which case a = ft, we have

ha ha = cosh A cosh B + sinh A sinh B

-f-
-J

cosh A sinh B • a -f- cosh B sinh A • a > ~s

from which it appears that the second term of the cosh for space is

sinh A sinh B cos aft. The term in Sinh must be of the form

x sinh A sinh B sin aft aft, >

the value of x to be determined by the condition that cosh" — sinh' = 1.

Now
cosh' = cosh' A cosh1 B + sinh' A sinh' B cos' aft

+ 2 cosh A cosh B sinh A sinh B cos aft-

and sinh' = cosh' A sinh' B + cosh' B sinh' A
+ 2 cosh A cosh B sinh A sinh B cos aft

+ x' sinh' A sinh' B sin' aft.

and cosh' — sinh' = cosh' A {cosh' B — sinh' B)

— sinh' A | cosh' B — sinh' B (cos' aft — x' sin' aft) j

,

which is equal to 1, if x' = — 1, or x = \/—l.

Hence cosh a ft = cosh A cosh B + sinh A sinh B cos aft (1)

and Sinh aft = < cosh A sinh B •

ft + cosh B sinh A • a

— -1 (2)

+|/— 1 sinh A sinh B sin aft • aft V .

Equation (1) is the fundamental theorem in hyperbolic non-Euclidian

geometry. Equation (2) gives the complementary theorem, and we pro-

pose to investigate its geometrical meaning. Guided by the analogy to

the circular sectors we conclude that equation (1) suffices to determine the
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amount of hyperbolic sector of the product, while equation (2) serves to

determine the plane of the sector. How can the expression in (2) deter-

mine a plane? Compound (flg. 11) cosh A sinh B • /3 with cosh B sinh A • a

and from the extremity P describe a circle with radius sinh A sinh B sin a/3

in the plane of OP and the perpendicular a/3. The positive tangent OT,

drawn from to the circle has the direction of the perpendicular to the

plane.

This may be readily verified in the case of the product of equal sectors.

A £
Let a = x + y • a 2

then according to the rule for the product in space

a
A
j3
A = x2 + y* cos a/3

+
{ xy( a + ,3) + -/—l „« sin a/3 • a/j|

'

Fig. 11. Fig. 12.

Suppose that the straight line PR (flg. 12) joining the extremities of

the arcs is the chord of the product ; it is symmetrical with respect to the

axis afi. Then

sinh ?-£- = 4-j/V -f 2y* cos a/3 = -^ j/l + cos a/3

;

aV
2

I '-:.':. ±—= \/l + \ (1 + COS a(l)
;therefore

therefore by the rule for the plane, which is known to be true,

cosh a
A
fi

A = £ (1 + cos a/3) + 1+ j (1+ co' «P),

= y* (1+ cos a/3) + 1,

= y' + 1 + y* cos aft,

— x* + y* cos a/3.

But this last is the value given above by the rule found for space.



54 SECTION A.

Prosthaphaeresis in hyperbolic trigonometry.

We hare cosh a
A

ft

B = cosh A cosh B + sinh A sinh B cos aft;

and Sinh aAft
B = { cosh A sinh B ft + cosh B sinh A • a

* -. -j

\-\f-i sinh A sinh B sin aft • aft
>

'

By putting in — sinh B instead of sinh B we get

cosh a
A
ft~

B = cosh A cosh B— sinh A sinh B cos aft;

and Sinh a
A
ft~

B = — cosh A sinh B •
ft + cosh B sinh A • a

—-[/—1 sinh A sinh B sin aft • a/9.

Therefore cosh a
A

ft

B + cosh a
A
ft~

B = 2 cosh A cosh B;

cosh a
A

ft

B — cosh a ft~ = 2 sinh A sinh B cos aft

;

Sinh a
A

ft

B + Sinh a
A
ft~

B = 2 cosh B sinhA • a;

Sinh a
A

ft

B— Sinh a
A
ft~

B = 2 cosh A sinh B •

ft

+ 2 i/—l **"^ -^ **n^ B *"* aft ' aft'

IT IT

To prove that ha
A
hft
B = h e

A^ + B^

. " A'a% A3a%
Since ha = 1 + Aa -\ §[

'

W~ "t"»

„ Z B'f1^
, B3^^

and hft
B = l+Bft

1!

+ ——+-—-+;
.»*

+ Bft^ + ABaift^+^aY +
, W , AB* \ „„

The expansion is the same as for the product of circular sectors, ex-

cepting that we have

T IT 7T

aV = cos a/9 -f \/~1 gf» a/9 . a/P

and (as a Bpecial case) a" = j5" = 1.
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Hyperbolic Spirals.

To investigate the meaning of ha
A

the analogue of a^.

We must have h at = he Aco*n w he A «™A w ' "T
.

A2 A3

" -4s A3 \
X ( 1 +AsinhWas+ -^sinh'w+ jj sinh3w • a? +)

jp A3
r 1= 1 +Acoshw-\--^ (cos^a io+sinA'w)+-jT { cosh3 w-\-3 cosh w sinh*w v+

IT

+ < A sinh w + —- 2 cosA w st'nA te+— j 3cosAa w stnA w-\-sinh3 w
J-

+ i-

= 1 + .4 (cosAw+ sinh w • a') + -gj (cosA w+ sfnA to • aJy+ '37 (.cosh w +

sinA w a^) 3+
= \ -\- A cosh •" + -oi- "osA 2te+ -jy cosA 3w +

IT{A* A3
1 '

.4 si'nAw+ -jj- sinA 2to+ -gr sinh 3 10+ f
• a

= l + 4a +"27" +37« +
It follows as in the case of the circular spirals, that

A^A^ = A«^+^M

A cosh w + B cosh w . A sinh w iaB sinh w
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The fundamental theorem of plane trigonometry expresses the

cosine and the sine of the sum of two angles in terms of the

cosines and sines of the component angles ; namely,

cos {A + B) = cos A cos B — sin A sin B, (1)

and sin {A + B) = sin A cos B + cos A sin B. (2)

The complementary theorem gives the cosine and the sine of

the difference of two angles ; namely,

cos (A — B) = cos A cos B + sin A sin B, (3)

and sin (A — B) = sin A cos B — cos A sin B. (4)

Now the fundamental theorem of spherical trigonometry is,

c denoting the angle between the arcs A and B, and G denoting

the opposite side.

cos C= cos A cos B + sin A sin B cos c.

A + B

Fig. 1.
Fig. 2.

But suppose that the angle B of Fig. 1 is tilted up, and let c

denote the angle by which it has been tilted (Fig. 2), then in a

certain sense the arc of the great circle from the beginning of A
1
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to the end of B is the sum of the arcs A and B. We obtain for

this more general sum the formula

cos (A + B) = cos A cos B — sin A sinB cos c,

which is the generalization of (1) ;
and

cos (A — B) = cos A cos B + sin A sin B cos c,

which is the generalization of (3). But in treatises on spherical

trigonometry there is no formula corresponding to (2) ; the only-

place where I have observed such a formula is Hamilton's

Lectures on Quaternions, p. 537. The supposition appears to be

that (2) is not essentially different from (1), and therefore that

no generalization of it is necessary. No doubt the magnitude of

the sine may be deduced from the cosine by the relation

sin2 {A + B) = 1 - cos 2 (A + B);

but this is riot the generalization of (2).

In order to investigate this question we require a notation for

an angle in space.

Such an angle is fully specified by the axis and the amount of

arc at unit radius ; the axis will be denoted by a Greek letter,

such as a, and the amount of arc at unit radius, that is, the

a circular measure, by an italic capital,

such as A. The arc (Fig. 3) may be

rotated round a to any position in the

circle; it does not suppose a fixed

initial line; it is symmetrical with

respect to a. The angle itself is

properly denoted by aA ; for let a" be

another angle, then aAaB = aA+B, so

that a and A are truly related as base

to index. According to this view

the above theorem in plane trigonom-

etry relates to the addition of arcs,

but to the product of angles. Let a denote the axis of the con-

stant plane, then (1) takes the form

Fig. 3.

cos aAaB = cos aA+B = cos A cos B — sin A sin B,
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and (2) takes the form

sin aAaB = sin aA+B = cos A sin B + cos B sin A.

We may also view A as denoting twice the area of the circular

sector, the radius being unity ; and this view of the notation is

important, for it applies to the equilateral hyperbola, while the

former view does not.

An angle which is the negative of a given angle has an equal

arc, but the opposite axis; (— a) A
is the negative of aA . The

minus may be removed from the base and attached to the index

;

thus (— a) A =u~A
, and aA (— a) B = aA

~B
. So long as the axis

remains the same or the opposite, the arcs are combined like

ordinary indices. But suppose that a different axis /? is intro-

duced, it is evident that then the rule for indices must be general-

ized. The V— 1 in the ordinary complex quantity denotes an

angle whose arc is a quadrant, but it leaves the axis of the plane

unspecified.

The angle aA is a quaternion with unity for ratio ; that is, a

versor. The general quaternion may be denoted by a single

symbol such as a ; and if a denote the ratio, a the axis, and A
the arc at unit distance, then

a = aaA .

Any versor can be expressed as the sum of two quaternions which

have arcs differing by a quadrant.

Let the arc A be less than a quadrant. Then

IT

uA = cos A • v? + sin A • «T

is a complete equivalence. The versor aA applied to any line in

its plane leaves the magnitude of the line unchanged, but turns

it round a by an amount A. This is equivalent, both as regards

final position and the whole amount of turning, to multiplying the

line by cos A and turning it round a by no amount, together with

the effect of multiplying the line by sin A, and turning it round

a by a quadrant.

But the above form of equation provides a complete equiva-

lence for an angle however large, and also distinguishes between

a positive and negative angle. Thus we have for the quadrants

indicated

:
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Quadrant.
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Suppose thatp is the number of times which mA contains 2ir,

then amA = f<pW
j cog mA + gin mA .J^

The root of an incomplete equivalence is ambiguous, while that

of a complete equivalence is unique. Thus, as either p or p — 1

or p — 2 is exactly divisible by 3, the cube root of aA is some one

of the three following :

a 3
-; cos

^-p2x
3 }•

(y-lJW
f

V. 3 J
i cos ^ '-

h sin ^ <! « J-

1

I 3 3 j
'

« 3
•) cos ^ i h sin ^t- '- • a ]-

.

(3^3 i

But the cube root of the incomplete equivalence

IT

cos A + sin A a?

is any one of the three following

:

A — »2tt
,

. A — »2tt 5cos ±- hsm £ aS
3 3

^t — (» — 1)2«-
,

• A-(p-1)2tt 5cos *£- ' h sm ^ i a >

3 3

A — (p-2)2ir, A-(p-2)2tt 5cos ^ i hsin ^ ' «•
3 3

In the treatment of angles in space, we commonly take only

the incomplete equivalence, as in most questions a whole turn

counts for nothing.

GENERALIZATION OP THE TRIGONOMETRIC THEOEEM.

Product of two angles in

space.

Let wl and /J-
8 denote any

two angles in space, having a

common apex O (Fig. 4).

jSTow uA=cosA+smA-a*,

and /3
J?=cos.B+sin.B-

/
8? '

-«a?

Fis. 4.
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«;9

therefore

aA/3
B = (cosA + sinA «f )

(cosJ3 + sin B (S*

)

= cos^4cos£+cos^4sinS-/3J+ cos£sin^i- a? +$,n\AsmB a?/3
1
,

if the distributive rule holds. We propose to investigate the

meaning of these terms on the supposition that the product aA/3
B

means the angle from the beginning of aA to the end of (3
B when

these two angles are brought to a common intersection, or any

angle in the same plane having an equal arc.

The meaning of the first three terms is evident, but not that
TT IT

of the fourth. To investigate and express the value of a fF, we,

require a notation for the axis which is per-

pendicular to a and /8.

Suppose (Kg. 5) a and /3 to be in a

horizontal plane, and that we look down
from above; then the arrow indicates the

direction of positive turning, and the corre-

sponding axis is the perpendicular to a and /3

drawn upwards. Let this axis be denoted

by a/3, then /3a denotes the axis of negative

rotation; and as it is opposite to aft, we
have /3a = — a/3. This is the right-handed

system. Place the thumb of the right hand
perpendicular to the outstretched palm, and consider the base of

the thumb as the centre of rotation ; then the axis of the rotation

from the forefinger to the small finger is given by the thumb
however the hand be placed.

TT TT

The axis of a?/3^ is evidently a/3
;

let then
a 3

a?/3* = a cos a/3 + b sin «/? • a/3^,

where a and b are coefficients to be

determined. First, let a and j3 coin-

(
TT TT

cide ; then a^a*= a" = — 1 ; therefore
- a is — 1.

Next let a and [3 be at right angles.

The three axes a, j3, a/3 are now

mutually rectangular, and the dia-

gram (Fig. 6) shows the directions

of positive rotation round the three axes. For if the thumb
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be successively held along the directions of a,
ft,

and aft, the

successive directions of rotation from the forefinger to the

small finger will be given by the respective arrows. But a?ft^

means a quadrant round a followed by a quadrant round
ft,

and in the particular case considered (where a and ft are at right

angles) it is evident that the result is a quadrant round the oppo-

site of aft ; therefore b is — 1.

Hence

aAft
B = cos A cos B — sin A sin B cos aft

it ir it

+cos A sin B • /3^+cos B sin A a 1— sin .4 sin B sin aft • «/3
2

= cos A cos 5 — sinA sin B cos aft

+ I
cosA sin J3 • /3+ cos B sin ^1 • a— sin ^4 sin 23 sin aft •«/?}

Now a4
/?* denoting the angle of the great circle between

the extreme points cos (aAfi
B)= cos A cos B — sin»^4 sin 2? cos aft

expresses the fundamental theorem of spherical trigonometry

(p. 1) ; while

Sin aAft
B = cos A sin B ft + cos B sinA a— sin A sin B sin aft • aft

expresses the generalization for the sine. For the square of the

above quantity is

cos2A sin2B + cos2B sin2A + sin2A sin2B sin2 aft

+ 2 cos A cos B sin A sin .B cos a/?,

and the square of the cosine is

cos2A cos2 B

+

sin2A sin2B cos2
«/? — 2 cos A cos B sinA sin .B cos a/3,

and the sum of these is 1. Also that the direction of this

directed sine is that of the axis to the great circle passing

through the extreme points may be tested by actual construc-

tion, or by trial of special cases.

By supposing ft identical with a we get the theorem for the

plane, namely,

aA+B = cos A cos B — sin A sin B
IT

+ {cos A sin B + cos B sin A }
• a*

.
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The generalization of the theorem for the difference of two

angles is

aA(3~a = cos A cos B + sin A sin B cos a/3

+ {— cos AsuiB- /3+cosBsinA oc+sin^l sin .B sin a/3- aj3j',

which is obtained from the former by changing the sign of each

term in which sin B occurs.

GENERALIZATION OP DE MOIVEE'S THEOREM.

Product of three angles in space.

Let aA
, /3

B
, y

c be any three angles in space, having a common

^ apex (Fig. 7) ; it is required to find

their product when taken in the order of

enumeration. We first find the product

it of aA and /3
B

, which is represented by the

arc PQ; and as PQ and RT will not

Q in general intersect in Q, PQ must be

shifted along to SR; the ST, which is

^
the product of SR and RT, represents

the product of the three angles in the

specified order. By assuming the distrib-

utive law, we get

aA/3
B
y
c = (cos^+sin A a*) (cos S+sin B • /3

5
) (cos C+sin C- y

f
)

= cos A cos B cos C

+ cos A cos B sin C • y
2 + cos A cos C sin A • a?

+ cos .B cos CsinB- /3
f + cos ^L sin 5 sin C- /3

f
y
f

+ cos B sin A sin C • «4
y
5 + cos C sinA sin B «5/3

5

+ sin A sin B sin C a^0*y*.

The sixth and seventh space coefficients are not formed from

the fifth by cyclical permutation ; the order of the factors in the
tt ir

product must be retained in each of the terms ; thus it is ay*,
IT IT

not y*a*. These double coefficients are expanded by the rule

already obtained ; namely,

7r 7r

a*(3* cos aft — sin a/3 - a/3*
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The last coefficient is of a new kind, and is expanded as

follows

:

TT TT TT

Since a.0s = —cos a/3 — sin a/3 • a/8
,

«f/3V = - (cos a/3 + sin a/3 • ^S1)/

= — cos a/3 • y + sin a/3 cos aj3y + sin a/3 sin a/3y • a/3y
,

where cos a/3y denotes the cosine between the axes a/3 and y, and

a/3y denotes the axis which is perpendicular to a/3 and y.

Now it may be shown * that

sin a/3 sin a/3y • a/3y = cos «y • /3 — COS /3y «
;

hence the last term of the product when expanded is

TT IT IT

sin A sin B sin C \
—cos afi y-+cos«y •

1— cos /3y • a*-f cos a/3y|.

Hence we obtain for the cosine

cos aA/3
B
y
c = cos .4 cos B cos C— cos A sin B sin C cos /3y

— cos B sin ^4 sin C cos ay — cos C sin ^4 sin B cos a/3

+ sin A sin B sin O sin a/? cos a/3y

;

and for the directed sine

Sin aA/3
B
y
c = cosA cosB sin • y + cos ^4 cos C sin B /3

+ cos 5 cos G sin A- a — cos ^4 sinB sin O sin /3y • /3y

— cos B sinA sin C sin ay • ay— cos C sinA sinB sin a/3 • a/?

— sin^4sinBsinCJcosa/3 y— cos ay -/3 + cos/3y -a}.

By Sin with a capital S is meant the directed sine.

Let a=/3=y, the above formulae then become identical with

the formulae in plane trigonometry for the cosine and sine of the

sum of three arcs'.

As the above theorem is true for any three angles in space, it

is also true in the special case when the arcs form the sides of a

spherical polygon. It has its most general meaning in the compo-

sition of the finite rotations of a rigid body.

* Principles of the Algebra of Physics, Proceedings A. A. A. S., Vol. XL., p. 89.



10 THE FUNDAMENTAL THEOREMS OF ANALYSIS

Product of any number of angles in space.— Let a denote the

cosine component, and a the sine component of an angle in space,

and let ar denote the product formed from any r cosine components,

a8
the product formed from any s sine components ; then by the

distributive rule,

. aAt3
B
y
av" = an + 2a„_ia + 2a„_2a2 H h 2a1an_1 + a„.

77 77

We have already found the value of a?/3'
z the kind of space-

coefficient which occurs in the third term, and by the rule obtained
TT IT TT

we have deduced the value of a*/}
Ty* the kind of space-coefficient

which occurs in the fourth term. The value of the kind of co-

efficient which occurs in the fifth term is deduced from that of

the fourth by another application of the same rule. Thus

afj3
5
7
5
S
5 = |

- cos a/3 y* + cos ay • /?
5 — cos/3y • of + cos a/JyJS

1

= cos a/3 cos y8 — COS «y cos /38 + COS /3y cos a8

TT TT TT

+ cos a/3 sin yS • yS
2 — cos ay sin /JS • /JS

¥ + cos /?y sin ah • aB
1

7T

+ cos apy 8
2

.

In a similar manner the space-coefficients for any subsequent

terms may be developed. De Moivre's theorem is obtained from

the above, by making the n axes coincident, and the n arcs equal.

Then it becomes

anA = cos nA + sin nA a^

=V + »a»-'a + n
(
n ~ 1)

a"~2 a2 + • + nag,
- 1 +a",

— I

where a = cosA and a = sin^4-«lr
.

PEODUCT OP TWO ANGLES IN SPACE, WHEN EXPEESSED

IN TEEMS OP OBLIQUE COMPONENTS.

We may equate the angle aA to the sum of two components, the

arcs of which differ by any amount greater than and less than

it. Let A contain r whole turns, and let A 1 denote the remainder

;

then the complete equivalence is expressed by

aA = a'
2* {cos A' «° + sin A' • «%
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where the components differ by an arc f
w, and cos A' and sin A' are the oblique

cosine and sine for the difference of arc

w (Fig. 8). In the figure these are de-

noted for shortness by x and y; and
they are connected by the relation

®* + V
2 + 2 xy cos tv = 1.

The incomplete equivalence is Fie. 8.

or = x + y • «"".

To prove that the distributive ride still applies, namely that

(x + y- a") (x' + y' /3") = xx + xy'
f3
w + x'y «* + yy' • a"p"-

Since aA = x + y «"' =jg + y cos w + y sin w • a}

and /3
s = x' + y' p« = x' + y' cos iu + y' sin w (F,

aA[3
B— \(x + ycosw) + y siniw o?

j {
(»' + y' cos w) + y' sin w • /T };

therefore, by applying the rule for rectangular components,

aAf3
B = (x + y cos w) (x' + y' cos w) — yy' sin2 w cos «/?

+ \
(x+y cos w)y' sin w -f3+ (x'+y

1 cos w)y siniu a— yy' sin2w sin a/3 a/3\

= axe' + xy' cos w + x'y cos to + 2/.V' (cos
2 w— sin2 w cos «/?)

+ [#3/' sinw • f3+x'y siniu • a+yy' \cos w simv(a+/3) — sin2w sin a/3- a/3 j]
z

= axe' + xy' p° + x'y a'" + yy' • aw/3
w

.

To express the product angle in terms of oblique components of

the same kind loith that of the factor-angles.

From the above we see that

aA/3B = xx' + (xy' + yx') cos iv + yy' (cos
2 w — sin2 w cos a/3)

IT

+ sin w [xy' f3+x'y u+yy'\cos w(u + /3) — sin w sin a/3 •«/?}]

.

The axis is the same whether the components are rectangular or

oblique ; the magnitude of the w sine is obtained by dividing the

rectangular sine by sin to ; and the w cosine is obtained from the
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rectangular cosine by subtracting the magnitude of the w sine

multiplied by cos w. Hence

aAft
B=xx' + (xy'+ yx') cos w + yy' (cos 2w — sin2w cos aft) — Ycosw

+ \xy' ft + x'y-u + yy' \cosw(a + ft)
— sinw sin aft • aft]',

where Y denotes the square root of the square of the vector

(xy'+ yy' cos w) ft + (x'y + yy' cos w ) a— yy' sin w sin aft aft.

Suppose that ft is identical with a. Then

aA+B = xx' + (xy'+ yx') cos w + yy' (cos^w — sin2
w>)

+ sin w\xy' -\- x'y + 2yy' cos w] a'

= xx'-\- xy' a" + x'y • a" + yy' • a2"

= xx' — y>/+ {xy'+ x'y+ 2yy' cosw\ aw

This last result for the plane agrees with the oblique trigonom-

etry of Biehringer and Unverzagt.*

To find the product when the obliquity is different for the two

factor-angles.

Let aA = x + y-aw and
ft
B = x'+ y'

ft
w

'

;

then it may be shown in the same way as before that

aAft
B= xx'+ xy'cos w'+ x'y cosiu

+

yy'(cos w cos w'

—

sinw sin w'cos aft)

+ \ xy' sin w' •
ft + x'y sin iv • a

IT

+2/2/'(cosM.'sin«/ • ft+cosw' siutu • a— sin w sin w' sin aft • aft\*

from which the components for either kind of oblique axes may

be deduced as before.

We have also

aA
ft
B = xx'+ xy' ft™'+ x'y a"+ yy' aw

ft

w'.

For the plane this becomes

aAaB= aA+B= xx'+ xy' aw'+ x'y • aw+ yy' aw+w'.

Let a = auA
, b = baB

;

then ab = abaAaB=abaA+B -

* Die Lehre von den gewohnlichen und verallgemeinerten Hyperbelfunctionen

;

von Dr. Siegm. Giinther, p. 359.
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The product of ab is obtained by taking the product of the

ratios, leaving the axis the same, and taking the sum of the arcs.

This is the product of Plane Algebra,* and the above result shows

that the distributive rule holds for such product.

GENEKALIZATION OF THE EXPONENTIAL THEOEEM.

We have seen that

cos aA
fi
B = cos A cos B — sinA sin B cos a/3

IT 7T JT

and (Sin aA(SB) = cos B sin A • cr + cos A sin B /3*

— sinA sinB sin a/3- a/51 .

/I 2 /l 4 4 e

Now C0s.4=l-^- +^-— +,
2! 4! 6!

A3 I ,15

and sin^l=^-— +— -•
3! 5!

Substitute these series for cos A, sin A, cos B, and sin B in the

above expressions, multiply out, and group the homogeneous

terms together. It will be found that

cos aAp
B = 1 - 1- 1A2 + 2 AB cos a/3 + B2

\

+ i- |^« + 4^B cos a/3 + 6 -42E2 + 4 .4B3 cos a/3 + Bi

\

_ 1_ \Ae + 6 ^.5
J3 cos a/3 + 15A4B* + 20 .43.B3 cos a/3 + 15 .41B4

6! + 6 AB° cos up + 6

\

+ etc.,

where the coefficients are those of the binomial theorem, the only

difference being that cos a/3 occurs in all the odd terms as a

factor.

Similarly, by expanding the terms of the sine, we obtain

(Sin aAp
By = A-a? + B-0* -ABsmaP-affi

--*- {A3 J + 3A2B • /3
5 + 3 AW c? + JB

3
• /3

f
j

o I

t

*Note on Plane Algebra by the author. See Appendix, p. 28.
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+ A-
IAB3 + A3B] sin a/3 • ^8

f

s+ k s^ . J + 5A'B P' + 10 A3B2 o? + 10 A'B3

+ 5ABi -o? + S3 -^f
|

-—
J ^IB

5 + ^A^LIB3 + ^5-B } sin «£ ^8
f

5 ! 1 2-3 J

— etc.

By adding the two together we get the expansion for aAfi
B

;

namely,

aAp
B = 1 + -4«

f + B-P1

\A2 + 2 .423 (cos a/3 + sin a/3 o/3
f
) + 232— M 2

-I- 2 y4 73CCOS aP, -I- sin a/3 aP^
2!

J4
8

- a5 + 3A-B P
l + 3 AB2 c? + B3

p
3!

+i^4 + 443Z3(cos a/3 + sin a/3 -~a/3
5
) + 642

23
2

+ 4.4233 (cos a£ + sin a^-a^1 ) + 23*}

4- etc.

Now by restoring the minus, we find that the terms on the

second line can be thrown into the form

L\A%
. a- + 2AB a

5
/3
5 + 23

2
p"\,

and this is equal to

provided that in forming the two cross-terms the order of the

terms in the binomial is followed, not any supposed order of a

first and second factor.

In a similar manner the terms on the third line can be restored

to

^{A.J + B.p-l*,

on the understanding that the cube is formed by preserving in

each term the order of the axes as given in the binomial ; that is,

As -a
Sl + ZAiB-oL-pl + SABt-ofP" + 23s - £

3l
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Hence

a*ps =1 + (A- J + B- (?) + ±- {A- J+ B- j3%\
2

— !

+ ±
]

{A.J + B.f'i

s+±
]
{A.cfi+B.Fl i +

— eA.<3+B.p%_

Hence, also, log aA(lB = A-(fi + B- /2
f

.

Let B = 0;

then aA = l+A-al +-^(A-a*) 2+
Li 1

and log aA = A a .

The quaternion is the complex quantity in space, and is ex-

piessed by aa*. Hence
IT

log(aa^) = loga + A- a?

,

which is the generalization for space of a well-known result for

the plane.

We also see that aA/3
B

is a true generalization of the product of

algebra, for the logarithm of aA/3
B

is the sum of the logarithms of

uA and of /3
B

.

This result is different from that which is taught in Quater-

nions. At page 386 of his Elements of Quaternions Hamilton

says :
" In the present theory of diplanar quaternions we cannot

expect to find that the sum of the logarithms of any two proposed

factors shall be generally equal to the logarithm of the product

;

but for the simpler and earlier case of complanar quaternions,

that algebraic property may be considered to exist, with due

modification for multiplicity of value."

Hamilton was led to the above view by erroneously identifying

a vector with a quadrantal quaternion, and both with a quadrantal

index, or logarithm. We have three essentially different bino-

mials to consider. Let aa and b/3 be any two vectors having a

common point of application ; their sum is aa + b[3, and it means

the geometrical or physical resultant, a vector of the same kind

as either component. Then

(aa + b/3)
2 = a? + b2 + 2ab cos a/3,
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for the square of any vector is the square of its magnitude. The
TT 7T

sum of two quadrantal quaternions a a* and b • j3 is

a «5 + 6 £
5= («« + &/?)

f
;

the square of which is

-(a2 + &2 + 2a&cosa
/
8).

IT

But the sum of two quadrantal indices or logarithms a a? and

b /3
f

is not (act, + 6,8)
f

;
and (cu? + 5/3

5
)
2
is not

— (a2 + b2 + 2 ab cos a/3),

but — (a2 + b'
2 + 2 ab cos a/3) — 2 ab sin a/3 • a/?

5
.

The sum of two simultaneous vectors is independent of order

;

hence the square does not involve the sine term, for it supposes

an order. The sum of two quadrantal indices is a successive

sum ; hence the square involves the sine term.

FTTETHEE GENEEALIZATION 01 THE EXPONENTIAL

THEOEEM.

We have found that for an angle in space

w
aA — 6A-o?

The occurrence of the constant f suggests that by generalizing it

we shall get a more general idea of which aA is the f case. Let

the more general idea be denoted by a*, which means that

A 2 A s

1 + A «™ + — • «2"' +— a*°+
2! 3!

A? A3

= 1 + ^1 cos w H cos 2 iv ^ cos 3 w +
2! 3!

? A2 5 ^4^ 5+ .4sinw • cc H sin2 w • «* -\ sin3« • a +.
2! 3!
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To prove that at = e
Acosw+As 'mw -^.

For

pAcosw+4 sin 10 • a 2 -jAcoswj ^Asinw.a^

A2 A 3

= \l-\- A cos w -\ cos2w -| cossw + I

2! 3!

% A2 A3 w
X {1 + A sinw • « — -— sin2w sin3

w; • a +}
^1 o

!

-A2 .43

= l+-4coswH (cos2w— sin 2w)H (cossio— 3 cos w sin2w)4-
'

2! 3!

+Asimv-a +—2sinwcosw-a2+^—(3eos2wsinw— sin3w)-cr +
2!

/4
2

/I 3

= 1 +J.- a™ +— •«*" +— «3," +
2! 3!

_ PA aw

Meaning ofa*.

Since

therefore it is

A COS W A Bin w . a 2

A cob jp^A Bin w

It involves a versor of axis a and arc A sin w, and an ex-

ponential multiplier eAcoaw . Let

the arc A sin w be denoted by #,

then

Now this is the equation to

a logarithmic spiral OMP (Fig.

9) in the plane of a, OM be-

ing of unit length, and w being

the constant angle between the

radius-vector and the tangent.

In the case of the circle w = \

Fig. 9.

and

= aA.

As aaA involves one element more than the quaternion aaA, it

may be called a quinternion.
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To find the product of two spiral versors a* and /Jf.

Since aA_ eA C<>BweA Bmw.^

and
j

gj_. e
i>ooa«.eB.m».pi

j

IT IT

therefore cc
ABB = Q(A+s ^coswQAB

'

iaw tt^+j™« .pa

f
,(4+-B)cos«'pSinw;(4.a'2'+B.p2')

= eW+s)C0S *"{l+sin w(^l • a5 +B-fll
) + ^!^ (^ . „*+ J3 -/?

f )" + J.—
!

Thus the ratio of the product is the product of the ratios, and

the angle of the product is the product of the angles.

Suppose /? to be identical with a, then. (Fig. 9)

IT

nA r/B = ft(A+B) COS Wg(A+B) sin w. 0.1. =_ „A+B

This is the addition theorem for the logarithmic spiral.

To find the product oftivo quinternions of the most general kind.

Let a = aai and b = &/3£ be any two quinternions. Then

q Vj __ npA. COS w
l
„A biyiw^qB cosw^QB Binw

2

TT TT

sthpA cos if, + B cosv)
z
pA sinw^.a'Z+B sin«;

2 .|3^

The ratio of the product is

and the angle of the product is

~A Bvaw^OB sinw
2

Also ab = aS«i ""' +s-^

The square term is expanded as follows

{A-a^ + B- /3">*y = A2
• «2

'"i + 2AB- «"i/3». + B2 $>"*,

and the cube term as follows

{A a^+B-(r^Y=A3
• aSwi+3A2B a2wip°*+3AB2 «"i^!"«+ JB

8
• /J

8
"*,

and so on.
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GENERALIZATION OF THE BINOMIAL THEOEEM,

By the preceding investigation (p 14) we arrived at the con-

clusion that for the sum of any two quadrantal logarithms the

nth power is given by the formula

IA a1 + B y3
5
}" = An

• a"
5 + nA"~ lB «<»-»f

/3
f

n(n-l) An_2B2 _ M!o, + t
1-2 P

Doubtless this theorem is true also when n is negative or

fractional.

But we obtain a still more general form, by taking the sum of

two logarithms of the most general kind Auwi and Bf$
w

*. Let a
denote Aaw

i and b denote Bf}
w

'-, then

(a + b)» = a" + na-'b + w(''~ 1)
a"-2b2+

,

A. * u

the general term being

n I

?•!(« — r) !

a'-'b'-;

-that is, — an
-r

bra(n
-r)wiBrai.

r ! (n - r) !

^

The binomial theorem of algebra applies to the sum of two

algebraic terms, that is, terms of the nature of a cosine compo-

nent ; the binomial theorem of trigonometry applies to the case

where one term is a cosine, the other a sine component ; the for-

mer of the two theorems above applies to the case where both

-terms are of the nature of the sine ; while the latter theorem

includes all the others as particular cases.

GENERALIZATION OF THE MULTINOMIAL THEOEEM.

In the expressions obtained (p. 9) for cos aAj3
B
y
c and (sinai/3

J
'y c')*

insert the series for cos A, sin A, etc., and multiply out, collect-

ing the homogeneous terms. The sum of the terms of the first

order is

A -a1 + B-P1 + C-yl
.
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The sum of the terms of the second order becomes, when the

minus is restored,

^\A2 a"+B2 -/3"+C2-y'+2(AB cfi/3
l+AC- c?yl+BC- £

5
7
f
) J

= ~ {2A2 a" + 22AB «Vl-— !

The order of the axes in the products is the order of the axes

in the trinomial ; that is, a is before /? and before y, and /J is

before y. Hence the terms form

l-(A.al + B.^ + C-yl
y.

The sum of the terms of the third order is — of
3!

As a;

T + W ^ + C 3

y
3 *

+ 3 \A2B ccp* + A2C a*yl + B°-C /3'y
1

}

+ 3 {AB- a1jS- + AC2
• «V + BC2

• $*y*]

+ 6 ABCcPpSy*.

= %AB «3f + 3 S,A2B a"fF + 3 %AB? ulfS° + 6 ABC • «l
/
8
l
r
f

;

therefore the sum of these terms is

l^lA-J + B.^+O-y^lK

As the same is true for the wth term, we have

TT 7T 7T

Thus the multinomial theorem of algebra may be applied to the

sum of a number of quadrantal indices, provided that in all the

terms the order of the axes is preserved ; that is, is made to follow

the order of the indices in the multinomial.

The most general form is where we have a multinomial in

which the indices may have any angle. Let a, b, C be three such

indices, then

(a + b + c)" =w!S^X where r + s+t = n.
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An application of the multinomial theorem.

We may apply the multinomial theorem to develop the product

By the exponential theorem

TT 5 ify-COB c _ e
-c . y* + B .

p* + a . y*

+ | !

J-C-yl +£-/3l + G\y5
f

+ etc.

Now the first power of the trinomial reduces to B /?,

the square of the trinomial to— ]
— B2+ ABC sin y/3 • y/3 j,

the cube to i- { -5s
• /? - 12 .BC- • y8 + 12 C 2£cos /3y •

y},

etc.

Hence y
- cBBy

c= 1 -— JB
2 + —B4-

2! 4!

I
+2BCsmy/3.'y~p-2BC 2

-(3 + 2BC2 cosPyy+ j

It is shown in Professor Tait's Treatise on Quaternions that

y~ c
ft
B
y
c turns the axis /? round y by an amount 2 C. The above

development shows that the , amount of the angle is unchanged,

for the cosine is unchanged ; while the sine term gives the devel-

opment for the new axis in terms of B, C, ft, and y.

GENEKALIZATKW OF THE LOGAKITHMIC THEOEEM.

It follows from the above principles that the logarithmic

theorem

log (1 + x) = x - -

Q
- + - - - +, etc.,

x being less than 1, is true when instead of x we insert the gen-

eral quaternion x = x £*. Thus,
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log(l + x) = x-|^ + |-

3

-^ +

= a! .^_|.^+ |
3

.p_ etc.,

= acos X- |-cos 2 X + ^cos 3 X-

+ [a!siriX-^sin2X+^sin3X-Mf

= a;(cosX + sinX-^)-^(cosX+sinX^5
)

2 +,etc.

It is true even more generally, namely, when we insert the

quinternion x = x • £*, provided a;e
Zcos *° is less than unity.

Application to prove Gregory's series.

We have log (aA) = log (cos A + sin A • «z ).

Suppose that sin A is not greater than cos A, then

log aA = log cos A + log (1 + tan A • az )

= log cos A + tan A- c? - ^BL4 . «*• +ir tan2
J. „.„. ,

tan3 ^4 _3!

i„ „ „ a ,
tan2 vl tan2 .4

,= log cos A -\ \-

2 4

.
(

, , tan3A . tan5A
,+ tan^l 1 • o

But log (aA ) =A-c?,

therefore - log cos ^1 = t^}LA_^A +)

-, . , A tan3A . tan6A
and A = tan A 1

Thus we obtain not only Gregory's series for the arc in terms

of the tangent of the arc, but also a complementary series for the

logarithm of the cosine of the arc.
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Application to find log (log (aA/3
B
)).

Suppose that B is not greater than A.

Since log (aAp
B
) = A-J + B-^

therefore log log (a*/?*) = log (a a**\+ log j 1 + — • a~ f
/3
5 I

.

Now log(^-«l
) = logJ. + --a5

Mii.i i,,.,(i+|.«-W =s ^. a
-*

/
8>_±j;. (

„- /rj^Mr,,

where a
- J

/3
J = — cos a/3 + sin a/3 • a/3*.

Let this angle be denoted by y°,

then log log (aAfi
B
) = logA + *

• c?

A r
2A2 y

3 A* 7

It is to be observedthat (aA/3
B
)
n

is not equal to anA/3
nS unless

/3 is identical with a. Twice the angle aA/2
B

is not equal to the

angle «2J/3
22'

GENERALIZATION OF HYPERBOLIC TRIGONOMETRY.

The fundamental theorem of hyperbolic trigonometry is

. cosh (A + B) = cosh A cosh B + sinh A sinh B

and sinh (A + B) = sinh A cosh B + cosh A sinh 5,

where A now denotes twice the area of the hyperbolic- sector,

not the length of the bounding arc.
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Let OM (Fig. 10) be of unit length, and OX and XP the pro-

jections of OP on the principal diameter OM and perpendicular

to that diameter. Then OX repre-

sents cosh A and XP represents

sinh A. But cosh A is a ratio,

namely, the ratio of the line OX to

the line OM; and sinhA is a ratio,

namely, that of the line XP to the

line OM. In the case of the sec-

tor B starting from the diameter

OP, draw QV parallel to the tan-

gent at P; then OV/OP and

VQ/OP have the same magnitude

as the rectangular projections of

the radius-vector, obtained when
the sector is shifted without change of area to start from the

principal diameter.

Let hyp aA denote the hyperbolic sector or versor determined

by a, the axis of the plane, and A twice the area enclosed. Then
as in the case of the circular versor we have the equivalence,

which in this case is complete,

hyp uA = cosh A + sinh A • a^.

Here we equate the hyperbolic versor to the sum of two quater-

nions differing by a right angle.

Tofind the product of two hyperbolic versors.

Let one hyperbolic-versor be
It

hyp aA = cosh A + sinh A a?,

and the other

hyp /3
B = cosh B + sinh B- /3

5
;

then since the distributive rule holds good,

hyp aA hyp (3
B = coshA cosh B + coshA sinh B • 0*

n TV ir *

+ coshB sinh A • «T + sinh A sinh B a^fi^.

The meaning of the first three terms is known ; it remains to

find the meaning of a 1^. As the fundamental theorem in plane

hyperbolic trigonometry differs from that for plane circular trigo-
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nometry in the sign of the plane component of the fourth term,

we form the hypothesis that for the equilateral hyperbola

IT 77 V
a*/3* = cos a/3 + sin a/3 a[3

J
.

This would give

cosh aA/3
B = coshA cosh B + sinh A sinh B cos a/3,

and sinh aA/3
B = coshA sinh B /3 + coshB sinh A • a

+ sinh A sinh B sin a/3 • a/3.

If we test this expression for sinh aAj3
B by the relation

sinh 2 aA/3
B = 1 + cosh2

a^/3*

we find that the relation is not satisfied. But when V— 1 is

introduced as a coefficient of sin a/3, the relation is satisfied.

Hence the fundamental principle in extending hyperbolic trigo-

nometry to space is

a? ft
1 = cos a/3 +V^l sin a/3 • a/3

5
.

As a special case we see a* = 1.

Hyperbolic exponentials.

hyp aA = hyp eAa
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We deduce that for hyperbolic versors

a?/3V = (cos a/3 + V^T sin a/3 • ^/3
5
)y

5

= cos a/? • y* + V— 1 sin a/3 cos a/3y — sin a/3 sin a/3y • a/3y*

= V— 1 sina/3cosa/3y+[cosa/3-y+cos/3y- a— cosya-jS} 1
.

Hence we have the three fundamental principles :

first, for vectors, a/3 = cos a/3 + sin a/3 a/3

;

second, for circular versors, a /3 = —cos a/3 — sin a/3 • a/3
,

third, for hyperbolic versors, a? (3? = cos a/3 +V— 1 sin a/3 • a/3 .

GENEKALIZATION OP DIITEKENTIATION..

To differentiate, a circular versor icith respect to a scalar variable

such as time.

If we take the incomplete equivalence

aA = cos ^1 + sin .4 • a
,

Tr it

then d (aA) = dA{ — sinA + cos A a 2
) + sinA daJ

i it IT

= dAa * + sin Ada a*,

where « denotes an axis perpendicular to a.

It is worthy of remark that the cosine term is differentiated

with respect to A only; and is treated as independent of a.

When aA denotes an angular velocity, A is infinitely small, and

from the above we get the angular acceleration

daA
( dA. . , da - > .§= -{ — • a + A a >

;

dt { dt dt )

that is, an angle whose cosine is 1, and whose directed sine is the

infinitely small quantity

dA , .da -— a + A— a.
dt dt

The former term expresses the change of speed, the latter the

change of axis.

The differential of a quaternion involves the additional term

da • a*
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To find the differential of a product of angles in space.

Since

aA
fi
B = cos A cos B + cos A sin B /3

f + cos jBsin ^4 • o?

+ sin J. sin B • a /3 ,

d(a^*) = dA\ — sin ^4 cos B — sin ^ sinB y3
5 + cos B cos ^ • a5

TT IT

+ cos.4 sinB -0*^1,

+ dB\ — cos AsmB + cos J. cos 5 • /}* — sin .B sin ^4 • a*

+ sin^4cosB-a5
/
85

J

+ daf cos B sin ^4 • a5 + sin ^4 sin .B • a5/?
5

},

+ cfySJcos .4 sin .B /3
1 + sin ^4 sin .B • «5^

f
}

,

= dAa +
*pB + dBattf"*,

+ dajcosB sin A a? -f sin A sin jB • aV j,

+ dySJcos ^4 sin.B-/35 + sin^ sin 5- a1/^
5

},

= — (sin A cos 5 + cos A sinB cos a/3) cLl

— (cos A sin 5 + sin J. cos J3 cos a/3) dB

— sin _1 sin_B{cos(da)/3 + cos «(d/3)

}

+ (— sinA sin B dA + cos ^4 cos B dB) • /?

+ (— sin B sin A dB + cos B cos ^4 cL4) • a

— (cos J. sin B dA + sin ^4 cos B dB) sin a/? «/?

+ cos J. sin B d/? + cos B sin ^4 • da '

— sin A sin B\ sin (da) /J + sin a.(d/3)
j

We obtain successive approximations by differentiating the

terms of the series

1+ (A-J + B- /?
5
) + ^(A-al + B-^y+.

Thus the first approximation is :

&(aA
P*) = \dA a + dB /? + A dot, + B d/?j

5
.

The second approximation adds to the above

—AdA - BdB + (AdB + BdA) J/3* + AB d(af^).
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To find the differential of a power of a quaternion.

Let a" = ananA
,

then d (a") = nan-lanA + anndA anA+^

+ a" sin nA (da)
¥

.

Let A be infinitely small, then

d(a") = ma" |
- anA + dA • a"4+f + Ada • a

f I

.

To find the differential of a spiral versor.

d(ai) = d(eAcoswaA
°'mw

)

= e
A"^a4 sin "' (dA cos w - .4 sin tc dw)

+ e
Acoswa

AlLW+
*(dA sinw + A cos tv div)

+ e*"*""" sin (A sin w) da • a5 .

_ e
.i co.waArin»^cos M + sin M . a5^ dA

+ eAcosw a.
A *iT""(-sinw + cosic • c?)Adw

+ e
A C0BW sin (A sin w) da • a 5

_-. pA. cos k> „j1 sin w-\-w AJ A

+ e
A^a'inw+w+§

Adw

+ e
Acosw sin(Asmiv) da -a*.

APPENDIX.

NOTE ON PLANE ALGEBKA.

From the Proceedings of the Royal Society of Edinburgh, 1883, p. 184.

By Plane Algebra I mean what De Morgan called Double

Algebra. While ordinary algebra deals with quantities which are

represented on a straight line, and Quaternions with quantities

which are represented in space, Double Algebra deals with those
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which are represented on a plane. The object of this paper is to

show some applications of this intermediate method.

The quantities considered are conveniently denoted by small

Roman letters, leaving their Tensor component to be denoted by
the corresponding Italic letter, and the Versor component by the

corresponding Greek letter. Thus a denotes a line of length a

and angle « ; b a line of length b, and angle /?. Quantities of this

kind are related to those of ordinary algebra as genus and species,

and the laws of operation for the former are very easily general-

ized from those for the latter.

Expansions can be obtained by altering the order of the opera-

tions performed; for example, first by applying the Binomial

Theorem, and then resolving ; and second, by resolving and then

applying the Binomial Theorem.

For example—
1 = i

ri
_br = l + b b=

£L V £t / 3i £t £L

^cos (-a) + -^cos (/3-2a) + -*cos (2 /3 - 3 a) +

+ ijisin(-a)+^sin08-2a) + ^sin(2/3-3«) + }.

Again,

1 1

a — b a cos a — b cos /3 + i (a sin « — b sin /J)

_ 1 Ji _ - a s^n a ~~ ^ siD /3

a cos a — b cos /3 I a cos a — b cos /?

?fa sin a — b sin /3V _ sfa sin « — & sin /3\
3

)

\a cos a — & cos /?/ \a cos a — 6 cos /3/ )

Hence, by equating the components along the initial axis,

(
1

fa since— b sin /3V /a sin «— & cos /3Y )

'( \acosa— &COS/3/ \acos a— 6 cos /?/ )a cos a — 6 cos /J

= -cos« + - cos(2a-
j8) + -,cos(3«-2/3)+.

a a2 a"
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Another identity is obtained by equating the components along

the perpendicular axis.

By treating (1 -f a)* in a similar manner we get

1 1 1-3
1 + -a cos a — a2 cos 2 a. -\ a3 cos 3 a —

2 2-4 2-4-6

= (l+ acos«)* |l+ ±-( asin " Y 1 ' 3 ' 5
(

aSin " Y+ iv
' \ 2-4Vl + cos«^ 2-4-6-8^1 + cosay i'

and

-a sin a a2 sin 2 a A — a3 sin 3 a —
2 2-4 2-4-6

= (1+/i.p.ns«)* f*
ffsin " 1-3 / asin« V }

(21 + a cos a 2 - 4 • 6\1 + a cos a/ j

An expansion for log {a 2 + 62 + 2ab cos 0}* is derived as

follows

:

log (a + b) = log a + log/l + ^Y

Now log a = log a + i log a,

- K'+IK-KaH®'-
= -cos (/? - a) - if-Ycos 2 (/3 - a) +

+ i|^sin(^-a)-|gYsin2(
i3-«)+|-

Also,

log [a+b}=log (a2+y+2a&cos(^-«))^-tan-lCTsino!+5sin^
acosa+&cos/3

= I log(a2 + ft
2 + 2 ab cos (0 - a) ) + i tan-

l(xsin a + 5 sin/?
-

-s a cos a + & cos /3

Equate the components along the initial axis, and put (3 — a=$.

The direct logical power of the method is illustrated by the

mode in which it deduces the expressions for the accleration along
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and perpendicular to the radius vector for a point moving in any

plane curve from the expression for the velocity.

Given r = r •

then — = dr-$ + irdO 0.

dt

Apply that principle again

;

t*- = d-r + idrde 6 + idrdO • 6 + ird?6 • 6 + Pr(dOf
dt2

= (d2r - r(d$)'2) 9 + i{2 drdO + rd!
0) 6.
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ON THE DEFINITIONS OP THE TRIGONO-
METRIC FUNCTIONS.

[Read befork the Mathematical Congress at Chicago, August 22, 1893.]

In -a paper on " The Principles of the Algebra of Physics" I

introduced a trigonometric notation for the partial products of

two vectors, writing

AB = cos AB + SinAB,

where cos AB denotes the positive scalar product, and Sin AB the

directed vector product. To denote the magnitude of the vector

product I used the notation sin A B without a capital : it is not

the exact equivalent of the tensor, because the magnitude may be

positive or negative. With the additional device of using the

Greek letters a, /J, y, etc., to denote axes, it is possible to dis-

pense with the peculiar symbols introduced into analysis by
Hamilton, namely, S, V, T, U, K, I; and the space-analysis

then assumes to a large extent the more familiar features of

the ordinary analysis. The notation raises the question of the

relation of space-analysis to trigonometry. If cos and sin are

correct appellations of the products mentioned, are there prod-

ucts of two vectors which are correctly designated by tan, sec,

cotan, cosec ? At p. 87 of the Principles I give a brief answer to

this question ; but a complete answer called for a more thorough

investigation than I had then time to make.

This trigonometrical notation has been briefly discussed by Mr.

Heaviside {The Electrician, Dec. 9, 1892). He takes the position

that vector algebra is far more simple and fundamental than

trigonometry, and that it is a mistake to base vectorial notation

upon that of a special application thereof of a more complicated

nature. I believe that this paper, will show that trigonometry

is not an application of space-analysis, but an element of it ; and

that the ideas of this element are of the greatest importance in

developing the higher elements of the analysis.

1
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The notation has also been discussed by Professor Alfred Lodge

{Nature, JS
r
ov. 3, 1892). He takes the following view: "The

particular symbol used to denote a scalar or a vector product is

a matter of secondary importance, but is a matter which must

sooner or later be settled if vector algebra is to come into general

use. Lord Kelvin is of opinion that a function-symbol should be

written with not less than three letters, and Professor Macfar-

lane's notation obeys that law, and is, moreover, easy to work

with ; but is incomplete, being applicable to products of two vec-

tors only."

I consider that the notation is a matter not of secondary, but

of paramount importance. If the notation is arbitrary, it gives

us no help in the further development of analysis; if on the

other hand it is systematic and logically connected with the

existing notation of analysis, it points the way to more general

principles and results. I believe that this paper will show that

my notation is systematic and logical.

It is not true that the notation is applicable to products of

only two vectors. In the Principles I have shown that the com-

plete product of three vectors consists of three partial products,

and that of four consists of five partial products : these several

products are specified by means of the cos and Sin notation.

The additional principle introduced is that in space of three

dimensions the aspect of an area can be specified by the axis

which it wants ; hence that the complete product of an area-

vector and a line-vector consists of two partial products which

may be denominated the cos of the area and line, and the Sin

of the area and line.

In this paper I propose first to review critically the historical

definitions of the trigonometric terms, and the definitions, trian-

gular, circular, or hyperbolic, given in the best modern treatises

at my command ; then to devise a logical system of definitions

which will apply to space-analysis and that modern trigonometry

which, as Professor Greenhill* shows, includes the properties

both of circular and hyperbolic functions, and will be able to

bring within the same domain the properties of the elliptic, gen-

eral hyperbolic, and other functions. In this paper attention is

mostly given to trigonometry in a plane ; in a paper on The Prin-

* Differential and Integral Calculus, p. 61.
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ciples of Elliptic and Hyperbolic Analysis I consider trigonometry

in space.

The ancient method of defining the trigonometric terms is

described by De Morgan at p. 18 of his " Trigonometry and Double

Algebra." A straight line OP of constant length (Fig. 1) revolves

round from a starting position OA ; the arc AP traced out by

the extremity of the revolving radius represents the angle AOP.
From P draw a line PM perpendicular to OA ; from A draw a

line ATat right angles to OA, and terminating in OP produced;

draw OB at right angles to OA and equal to OA, and from B
draw BV&t right angles to OB and terminating in the line of

Fig. l.

OP. The line PM is called the sine of the arc AP, the line OM
is called the cosine, the line AM the versed-sine, the line AT the

tangent, the line OTthe secant, the line BVthe cotangent, and the

line OF the cosecant.

Here the terms sine, cosine, versed-sine, etc., are applied to

certain lines drawn in and about a sector of a circle. These

lines are commonly called the trigonometric lines ; but inasmuch

as they have reference to a circular sector and not to a triangle in

general, they are more properly denominated circular lines. The

trigonometric lines proper may be defined independently of the

circle or any other curve.

We also remark that for the purposes of the higher analysis

the circular lines must be defined with the utmost exactness

;
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difference of sense is not immaterial, still less is difference of

direction. The sine-line is MP not PM, still less AS drawn

from A perpendicular to OP. According to the account given

by Dr. Hobson* of the ancient method, the tangent-line is not

AT, but PD drawn a tangent to the circle at P, and terminated

in the line of OA. Thus there are four logically distinct ways

of defining the tangent line : first, it may mean the line drawn
from A 'at right angles to OA; second, the line drawn from A
a tangent to the circle at A; third, the line drawn from P at

right angles to OP; fourth, the line drawn from P so as to touch

the circle at P. The first definition agrees with the most ancient

conceptions of the tangent ; namely, the umbra versa of AbfL'l

Wafi,,f and the /ca&ros of Copernicus ; $ the fourth view is taken

by Professor G-reenhill. § These four lines may be all unequal

and differently directed when another curve such as the logarith-

mic spiral is substituted for the circle. It is necessary then to

devise a separate notation for each.

In the same way there are four logically distinct definitions of

the secant-line. It may mean, first, OT cut off by the perpendic-

ular from A; second, OT cut off by the tangent at A; third, OD
cut off by the perpendicular from P; fourth, OD cut off by the

tangent at P. The first conception agrees with the viroravovvo. of

Copernicus,
||
while the fourth answers to the etymological con-

ception of the tangent.

It is instructive to remember that the primary conception of

the sine was the half of the chord of the double arc, and that

it was long before the conception of the cosine was developed

beyond that of the sine of the complementary arc.

The circular ratios are thus defined by De Morgan.^ Let

denote the angle AOP (Fig. 1) ; then

• a MP a OM a AM . a AT
sin 6 =——, cos 6 = ——, vers 6 — , tan 6 = ,

OP' OP' OP' OA

„ OT , , a BV a OV
sec 6 = ——, cotant 6 = , cosec =

OA' OB' OB

* Treatise on Plane Trigonometry, p. 16.

t Cantor's Vorlesungen iiber Gesehichte der Mathematik, Vol. I., p. 642.

| Ibid., Vol. II., p. 433. § Differential and Integral Calculus, p. 29.

|| Cantor's Gesehichte, Vol. II., p. 433. IT Double Algebra, p. 19.
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Here three different radii OA, OP, OB are introduced, but no

reason is given why in a particular case one should be preferred

to either of the others. Why should the secant be defined with

respect to OA while the cosine is defined with respect to OP?
Is it a matter of indifference which radius is taken ? It may be

as regards mere numerical ratios, but it is not so as regards geo-

metric ratios. Accuracy of definition is essential to the higher

development of trigonometry.

In consequence of defining some of the ratios with respect to

the revolving line OP (Fig. 1) instead of the initial line OA, a

difficulty in the signs is introduced; to wit, OP is always posi-

tive, even when coincident with OA' or OB', which are held to be

negative. This view in my judgment partakes of the nature of a

paradox. De Morgan attempts to dissolve it by the following

explanation (Double Algebra, p. 8) :
—

"When the revolving line comes into the position OA', is it

negative ? I answer, no : OA' as a projection is considered as

part of a line which makes an angle 0° with the starting-line

;

and on a line so described is negative. But OA' as a position of

the line of revolution is part of a line which makes 180° with the

starting-line ; and thus considered it is positive. The same con-

siderations apply to the other axis. A line may be considered as

making with itself an angle of 0° or an angle of 180° ; whatever

signs its parts have in the first case they have the opposite ones

in the second."

Now the terms positive and negative, symbolized by + and —
respectively, are essentially relative; they in their simplest

application compare one line with another. If the line com-

pared has the same direction as the line of reference, it is posi-

tive with respect to that line ; if it has the opposite direction,

it is negative with respect to that line. The line OA' is negative

with respect to OA, and it is equally true that OP when coin-

cident with OA' is negative with respect to OA. The line OB'

is negative with respect to OB, and OP when coincident with

OB' is negative with respect to OB. There is no meaning in

saying that OP is always positive. The fact is that we cannot

dispense with the idea of an initial line as a basis of reference,

and I propose to show in the development which follows that

the ratios are properly defined with respect to this initial line.

The radius which should appear in each of the definitions is the

radius OA.
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The modern method seeks to define the trigonometric ratios

independently of the circle merely by means of two intersecting

lines. In elementary works this is

first done under the limitation that

the lines intersect at an acute angle.

For instance, Todhunter proceeds

thus (Plane Trigonometry, p. 14) :
—

"Let BOO (Fig. 2) be any apgle;

take any point in either of the con-

taining straight lines, and from it

draw a perpendicular to the other

straight line ; let P be the point in

the straight line OC, and PM per-

pendicular to OB. We shall use the

letter A to denote the angle BOO. Then

-ttt:, that is ,
—

;
, is called the sine of the angle A:

OP hypotenuse

^= , that is = , is called the cosine of the angle A
;OP hypotenuse °

jyjrf, that is -—
Kot!Q

, is called the tangent of the angle A
;

OH& t)£lS6
-^r^-r , that is t-.—=— , is called the cotanqent of the angle A

;PM perpendicular
™ °

-=r=>, that is —^ , is called the secant of the angle A ;OM/ base °

—-, that is ———^—=— , is called the cosecant of the angle A.PM perpendicular' °

If the cosine of A be subtracted from unity, the remainder is

called the versed-sine of A. If the sine of A be subtracted from

unity, the remainder is called the coversed-sine of A." Equiva-

lent definitions are given by Levett and Davison * and by Hobson.t

The definitions quoted are accurate only so far as arithmetical

magnitude is concerned ; they take no account of sense or direc-

tion. For exact purposes it is not indifferent whether the per-

* Plane Trigonometry, p. 4. t Plane Trigonometry, p. 16.
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pendicular be drawn from OB or from OC, and whether the sine

PM MP
be defined as —— or -p-^- In consequence of dropping out the

idea of an initial line it is necessary to compare OM and MP
with OP, which does not coincide with the axis on which the

projection is made. The cotangent so defined answers to the old

conception of the umbra, the tangent to that of the umbra versa,

and the secant to that of the hypotenuse of Copernicus. A diffi-

culty is encountered with the versed-sine; for it is not defined

geometrically like the others, as the ratio of two lines; it is

defined analytically. Why this breakdown in the scheme of

definitions ? But the above definitions are not comprehensive

enough even for the simple case where the lines meet at an

obtuse angle, because then the triangle POM encloses not the

angle BOG, but its supplement.

The definitions are extended by dropping the idea of a right-

angled triangle, and substituting the idea of projection. Thus
Levett and Davison, following De Morgan, say (p. 93) :

—

Y

N
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of the angle a." The following is added in small print :
" Two

other ratios are occasionally used, and are defined as follows : If

the length OP be equal in magnitude to OX, and positive in

sense, and if 07= OX, the ratio MX: OP is called the versine

of a, and NY: OP the coversine of a."

The above mode of defining assumes that a line may be posi-

tive in itself, whereas there are reasons for believing that posi-

tive and negative have their primary meaning in the comparison

of two lines. Again, in order to define the versine, the two inter-

secting lines are given up, and conditions are imposed equivalent

to introducing the circle ; for OP is made of constant length, and

is supposed to be always positive.

Mr. Carr in his Synopsis of Pure Mathematics defines the sine,

cosine, and tangent geometrically ; but the secant, cosecant, and

cotangent as the respective reciprocals of these. It is surely

more logical to define each function geometrically and indepen-

dently, and afterwards prove what relations exist between them.

From the definitions examined we may conclude that under the

one name of trigonometric ratios are comprised two species : the

geometric, or rather triangular, and the circular proper. The

triangular ratios are defined independently of the circle, and

they include some of the circular ratios as special cases.

Further light on this subject may be obtained by considering

those functions analogous to the circular which depend on the

equilateral hyperbola, or ex-circle. The convenient terms "ex-cir-

cle " and " ex-circular " have been introduced by Mr. Hayward for

the phrases "equilateral hyperbola" and "equilateral hyperbolic,"

commonly called "hyperbolic"
( Vector Algebra and Trigonometry,

p. 128). The following method of defining these ratios is adopted
by Messrs. Levett and Davison (Plane Trigonometry, p. 258) :—

"Let a point move along the curve (Fig. 5) from the vertex A
of one branch of a rectangular hyperbola, whose centre is and
semi-axis equal to a, to the position P- let A be the area of the

hyperbolic sector AOP, and let u =~; that is, let u be the

measure of the sector AOP, the unit of measurement being the

square whose diagonal is the semi-axis.

"Take OF, a line making an angle of 90° in the positive sense

with the transverse axis OAX, and let OM, ON be the projec-

tions of OP on OX, OY respectively; then the ratio
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OM: OA is called the hyperbolic cosine of u,

ON : OA the hyperbolic sine of u,

ON : OM the hyperbolic tangent of u,

OA : OM the hyperbolic secant of w,

OA : ON the hyperbolic cosecant of u,

OM: ON the hyperbolic cotangent of u."

We observe that here the ratios are not defined with respect to

the radius-vector OP, but with respect to OA the initial line ; to

Fig 5.

define them with respect to OP would be an error. Wherefore,

we conclude that it is the analogue of OA, not the analogue of

OP, which should be introduced into the definitions of the circu-

lar ratios. We also observe that the hyperbolic argument is not

the ratio of the arc to the initial radius, but the ratio of twice the

area of the sector to the square on the initial radius; hence

the true analytical argument for the circular ratios is not the

ratio of the arc to the radius, but the ratios of twice the area of

the sector to the square on the radius. This leads us to the idea

that the trigonometric ratios may be ratios of areas as well as

ratios of lines.
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Dr. Gunther,* following M. Laisant,f gives the definitions of

the circular lines which appear to furnish most readily the defini-

tions of the analogous ex-circular lines. Let APB (Fig. 1) be a

circle of unit radius, and let u denote double the area of the sec-

tor AOP; draw PM perpendicular to OA, and PJVto OB; draw

AT a tangent to the circle from A terminating in OP produced,

and BV a tangent to the circle at B also terminating in OP pro-

duced ; draw a tangent to the circle at P cutting the axis of OA
in D, and that of OB in E. Then the line PM or ON represents

sin u, the line OM or NP cos u; AT represents tan u, and B

V

cotanw; while OD, not OT, represents sec u, and OE, not OV,
cosec u. The six ratios are represented by lines along the axes of

projection,— three along the axis of abscissae, and three along the

axis of ordinates ; none have the direction of the radius-vector.

The definition of the tangent takes the second view, while that of

the secant takes the fourth view of it mentioned at page 4 above.

The analogous lines are defined in the following manner : Let

APB (Fig. 5) be an equilateral hyperbola of unit semi-diameter,

and let u denote double the area of the sector AOP; draw PM
perpendicular to OA, and PN to OB ; draw AT a, tangent to the

hyperbola at A terminating in OP, and BV a tangent to the con-

jugate hyperbola at B also terminating in OP; draw a tangent

to the hyperbola at P cutting the axis of OA in D, and that of

OB in E. Then the line MP represents sinhw, OM cosh u, AT
tanhw, BV cothtt, OD sechw,'and OE cosechw. The analogous

ratios are represented by the analogous lines. We observe that

AT and BV might have been defined as drawn at right angles to

OA and OB respectively, that is, according to the first view of

the tangent ; but that OD corresponds to the fourth view of the

secant, and to it only. Why is it that analysts find it easier to

deal with lines which have the directions of the axes than with

lines having any other direction such as that of the radius-vector,

or of the true tangent ? Because the former involve scalar prod-

ucts only, while the latter involve vector products.

M. Laisant, in his admirable Essai, extends his definitions of

the trigonometric lines to the ellipse and general hyperbola. %

* Die Lehre von den gewohnlichen und verallgemeinerten Hyperbelfunc-

tionen, p. 92. t Essai sur les fMictions hyperboliques.

t Essai sur les fonctions hyperboliques, p. 269.
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Let APB! (Fig. 13) be an ellipse of such size that the product

of its two semi-axes OA and OB' is unity. By u is meant twice'

the area of the sector AOP; elliptic cosw is represented by OM,
elliptic sinw by MP, elliptic secw by OD, elliptic tanw by AT,
elliptic cotanw by B'V, and elliptic cosecw by OE. Here the

denominator of the ratio u is the product of the two semi-axes.

Many analysts hold that the circular functions might be

defined by purely algebraic ideas. For instance, De Morgan

(Double Algebra, p. 34) :
" I said that we should soon make it

very evident that a purely algebraical basis might have been made

for trigonometry. If we had chosen to call the preceding func-

tions of z, namely,

1— —•+, z — — +, z + ^+,
2! 3! 3

by the names of cosine, sine, and tangent of z (and their recipro-

cals secant, cosecant, and cotangent), we might have investigated

the properties of these series, and we should at last have arrived

at all our preceding formulas of connection ; but with much more

difficulty."

Again, Dr. Hobson (Plane Trigonometry, p. 279) : "It is possi-

ble to give purely analytical definitions of the circular functions,

and to deduce from these definitions their fundamental analyti-

cal properties, so that the calculus of circular functions can be

placed upon a basis independent of all geometrical considerations

;

these definitions will include the circular functions of a complex

quantity. We can define the cosine and sine of z by means of

the equations

cosz= \\e" + e~"\,

sva.z=~\e"-e-iz

\,

where e* denotes the series 1 + z +—+, etc. In other words, we
z* z

i

define cos 2 as the sum of the series 1 1 , and sin z as
3 5 2! 4!

the sum of the series 2— — A . We may regard this then
3! 5!

as the generalized definition of the cosine and sine functions,

and it includes the case of a complex argument, which was not

included in the earlier geometric definitions."
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A definition which has only an algebraic basis is, in my
opinion, of the species which logicians call nominal; while one

which has a geometrical basis is of the species called real. It

may be doubted whether nominal definitions are of much scien-

tific value. The primary geometric idea which is the basis of the

primary trigonometric function can also be generalized, and in

more ways than one ; how can the analyst secure a correspond-

ence between his arbitrarily generalized definition and the more

general ideas which develop from the primary geometrical idea?

In the present paper and in a paper on " The Principles of Ellip-

tic and Hyperbolic Analysis " I show that there are several geo-

metrically real generalizations of the circular functions, and that

the algebraic series for the simple functions generalize in ways

that would never be deduced by taking the elementary series as

the general definitions.

I now proceed to consider how the several species of trigono-

metric functions— the triangular, the circular, and the ex-circu-

lar,—may be defined in harmony with one another. The method

adopted is afterwards shown to be applicable to the logarithmic

spiral, ellipse and general hyperbola, and to a mixed curve com-

posed partly of a circle, partly of an ex-circle ; further, in the

paper on " Tlie Principles of Elliptic and Hyperbolic Analysis" it

is applied to ellipsoidal and hyperboloidal trigonometry.

THE TRIANGULAR FUNCTIONS.

Let OA and OP represent (Fig. 6) any two finite straight

lines, or vectors, meeting at the point 0. A triangle is formed
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by joining A and P. From P draw PM at right angles to OA,

and PQ at right angles to OP; from A draw AT at right angles

to OA, and ,4$ at right angles to OP.

First: we consider OM and JfP the orthogonal projections of

OP on OA. In a certain sense

OP=OM+MP;

to wit, in the ordinary sense of a vector equation. By prefixing

OA to each term, we derive an area equation

( OA) ( OP) = ( CM) (
OM) + ( (M) (JlfP)

.

What is the meaning of this area equation ? It is that the par-

allelogram (OA)(OP) is equivalent to the product (OA) (OM)
together with the rectangle formed by OA and MP. This, in my
opinion, is the fundamental principle of vector analysis (Princi-

ples of the Algebra of Physics, p. 72)

.

Let the vector OA be denoted by the black letter A, and the

vector OP by the black letter R ; let the rectangular co-ordinates

of A be a,* b, c, and those of R be x, y, z, so that

A = ai + bj + ck and R = xi + yj + zk.

Then the analytical product of the two vectors is

AR = (ai + bj + ck) (xi + yj + zk)

= ax+ by + cz + (bz — cy)jk + (ex — az) ki + (ay — bx) ij,

and of the two partial products into which the complete product

breaks up, the former, ax + by + cz, expresses (OA)(OM), while

the latter,

(bz — cy)jk + (ex — az)ki + (ay — bx)ij,

expresses ( OA) (MP)

.

It appears to me that the former partial product is correctly

denoted by the expression cos AR
;
and the latter by the comple-

mentary expression Sin AR. The latter function is written' with

* The letter a is in some places used to denote the magnitude of OA
according to the usage of analysis; the context shows clearly' whether it is

the whole magnitude or the magnitude of the tf-eomponent which is meant.
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a capital because it has an aspect or axis ; it is not a simple area,

but a directed area. The equation

( OA) {OP) = {OA){OM) + {OA) {MP)

is then written

AR = cos AR + Sin AR.

The notation sin AR serves for the magnitude of the sine prod-

uct apart from its aspect or axis ; it is the equivalent of the

unwieldy Cartesian expression

V(&z — c?/)
2 + {ex — az) 2 + {ay — bx)--

While (0.4) {MP) will be used to denote SinAR; the notation

OA x MP will be used to denote sin AR.

The function Sin AR cannot be expressed in rectangular co-

ordinates without introducing symbols for the axes ; hence it

cannot be treated by the Cartesian analysis except indirectly.

Corresponding to the line equation

0P= 0M+ MP
there is the scalar equation

{OPy2 = {OM) 2 + {MP)-;

and corresponding to the area equation

AR = cos AR + SinAR

there is the scalar equation

A2R2 = (cos AR) 2 + (SinAR) 2

,

which, expanded in Cartesians, becomes

(a2 + 62 + c
2

) (a
2+ f + z2) = {ax + by + cz)

2 + {bz - cy) 2

+ {ex — az) 2 + {ay — bx) 2
.

If we take the vector which is the reciprocal of A, we get

\R = -^0M+-k-;MP
A OA OA

~ 0A + 0A
MR
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When the order of the factors in a quotient is immaterial as in

the cosine term, the quotient may be written in the ordinary way

;

when the order of the factors is essential as in the Sine term, the

order will be indicated by introducing the reciprocal before or

after according to the manner in which it enters. Hence by
introducing OA in both numerator and denominator,

l
R = (OA)(OM ) (OA)(MP)

A (OA) 2
"*"

(OA) 2

= AR
A2

"

Hence cos I R =M= (MUMl = ^±by + cz = cos_AR

A OA {OA)* a2 + 62 + c
2 A2

'

and Sini R = J-3fP=(°^P)

A OA (OA) 2

_ (bz — cy)jk + (ex — az)ki + (ay — 6a) ij

a2 + &2 + c
2

SinAR

Here no relation is imposed connecting A and R ; their extremi-

ties are not restricted to lying on a circle or any other curve.

Thus the functions are triangular or trigonometric in the primary

sense of the word. We are introduced to the consideration of

trigonometric areas as well as trigonometric lines and trigono-

metric ratios.

Second: we consider the lines OT and TA obtained by draw-

ing AT at right angles to OA. As a line-vector equation we have

0A= OT+ TA,

and from it we derive the area-vector equation

(OA)(OA) = (OA)(OT) + (OA)(TA),

or (OAY=(OA)(OT)-(OA)(AT).

The latter equation means that the square of OA is in a certain

sense equal to the difference between the parallelogram formed
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by OA and OT and the rectangle formed by OA and. AT. In

form it is merely a transformation of the area equation con-

sidered above (p. 13).

Let (OA)(OT) be denoted by SecAR and (OA) (AT) by

Tan A R, then the above equation is written

A2 = SecAR- Tan AR.

Both functions are written with a capital, because each involves

an aspect or axis.

After dividing by A2 we obtain

1==
SecAR TanAR

A2 A2

= SeciR-TaniR.
A A

Corresponding to the line equation we have the scalar equation

(OA) 2 = (OT) 2 -(AT) 2
,

and corresponding to the area equation we have the scalar

equations
A4 = (SecAR) 2 -(TanAR) 2

,

and l=/seciRY-fTaniR

To find the expressions for these trigonometrical functions in

terms of rectangular co-ordinates, we proceed as follows. Since

OTz= OA 0p
OM

and AT=^MP;OM
therefore

(OAy=^(OA)(OP)-^(OA)(MP)

=m^)^OA^op>-ioMW^^OA^M^
that is, A 2 = A'

AR ^—SinAR.
cos AR cosAR
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Hence SecAR =—^— AR
cos AR

a? + tf + c
-

ax + by + cz
(ai + bj + ck) (xi + yj + zk) ,

and TanAR=—— Sin AR
cos AR

=
ax +

b

by

+
+J {hZ ~ Cy)jk + (Ca! ~ aZ)M + {ay ~ te)y| '

Hence Sec -
1
R = AR = (™ + bj + ck) (xi + yj + ck)

A cos AR aa;+&?/ + c2

and Tan - R - Sin AR _ (6z-cy)jfe+ (ex - az)ki+(ay-bx)ij
A cosAR ax + by + cz

The function sec AR is obtained from Sec AR by substituting

the appropriate square roots of (ai + bj + cfc)
2 and (xi + yj + zk)*-

Similarly, the function tan AR is obtained from Tan AR by sub-

stituting the appropriate square root of (Sin AR) 2
. By sec AR is

meant the magnitude of Sec AR, and by tan AR the magnitude of

TanAR.

Third : we consider the lines OQ and QP obtained by drawing
PQ at right angles to OP. We have the line-vector equation

OP=OQ+QP
with the corresponding scalar equation

(Opy = (OQy--(Qpy.

From the former we derive the area-vector equation

(OA)(OP)=(OA)(OQ) + (OA)(QP),

which means that the parallelogram OA, OP is in a certain sense

equivalent to the product of the two codirectional lines OA and

OQ together with the parallelogram OA, QP. The two parallelo-

grams are on the same base and between the same parallels, but

the angle of the latter exceeds the angle of the former by a quad-

rant. For the sake of clearness it is absolutely necessary to

devise a distinctive notation for the products in question. As
the line PQ is drawn from OP in the same manner as AT from
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OA, the line OQ partakes of the nature of the Sec line OT, and

the line QP partakes of the nature of the Tan line AT. By-

changing the initial consonants from light to heavy, we obtain a

notation which is suggestive and easily remembered, and will

serve at least for the purpose of this investigation.

Let, then, (0.4) (GQ) be denoted by zecAR, and (OA) (QP)
by Dan AR ; the above equation is then written

AR = zec AR + Dan AR.
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Similarly zee 4 R = ct? + V' + ,i\
A ax + by + cz

while Dan — R is obtained by dividing DanAR by a2 + 62 + c
2

,

and dan AR =

V(fai — cy)'+ (ex — az)-+ (ay — bx)War + b'
1 + cWa;2 + f +?

ax + by + cz

Thus zecAR is the reciprocal of cos AR, not with respect to

unity, but with respect to A2R2
; while zec—R is the reciprocal of

1 R2

cos— R with respect to —•

A A3

Fourth : we consider the lines OS and SA obtained by drawing

AS perpendicular to OP.

We have the line-vector equation

OA=OS+SA,

and from it we derive the area-vector equation

(OAf = (OA) (OS) + ( OA) (SA)

= (OA)(OS)-(OA)(AS).

This equation means that the square of OA is equal to the

difference between the'parallelograms OA, OS and OA, AS. As
the lines OS and AS have a certain analogy to the -lines OM and

MP, let the products be denominated by Gos and Zin, the initial

consonants of the functions being changed from light to heavy.

The above equation is then written

^2 = GosAR-ZinAR.

Since OS =^OP= (°^
2

°^ OP= c-^OP,
OQ OP K"

and AS=OAqPJOMMPl^ZlOP=^^^10P,
Oty {(J-r) r\

the above equation becomes

is A

R 2
A2 = cosAR AR _s_inAR AV3lRj
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Hence Gos A R= ax + i9 + ^ (ai + bj + <*) {xi + yj + zk)

,

a? + y
2 + z-

i a r-> / , 7 , \ Va2 + 62 + c
2

and gos A R = {ax + by + cz)

V*2 + y- + z-

The versed-sine product is obtained by considering AP the

third side of the triangle. Because

AP=AO+OP,

therefore (OA) {AP) = { OA) {AO) + { OA) { OP)

= -{OA) 2 + {OA){OP).

Hence cos (0.4) {AP) = - {OA) 2 + cos{OA) {OP),

and Sin

(

OA) {AP) = Sin
(
OA) { OP)

.

It is the new product cos (0.4) {AP) which is properly called

vers A R ; so that

vers AR = — A2 +cosAR

= {0A) {AM).

a- -i i In 1 ,
cos AR

Similarly vers — R = — 1 -\ —

—

=AM~ OA

According to this definition the versine is negative when the

point M falls to the left of A ; for OA and AM then have oppo-

site directions. In circular trigonometry it is commonly stated

that the versine is always positive ; it is more correct to say

that in the case of the circular functions the versine is always

negative.

Finally, we have to consider the definitions of the comple-

mentary functions. By the complementary-vector of A with

respect to R is meant the vector OB (Fig. 6), which is equal

and perpendicular to A in the plane of A and R, and drawn to

the side of A on which R is {Principles of the Algebra of Physics,

p. 87). Let it be denoted by A, the horizontal bar denoting

"perpendicular to." When all the lines lie in a common plane,

this notation is definite. Grassmann uses a vertical bar prefixed
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•to
1 the vector it refers to, as I A. The horizontal bar is preferable,

because in space it must be attached to a pair of vectors, and

the horizontal form allows this to be done conveniently. The

complementary vector is expressed in terms of A and R by the

equation

^ = Sin(SinAR)A

sinAR

where Sin(Sin AR) A = \(cx — az)c — (ay — bx)b}i

+ \(ay — bx)a — (bz — cy)c\j

+ {
(bz — cy)b — (ex — az)a\k.

By the complementary function is meant the function which is

obtained when A is substituted for A in the original function.

Draw PJVperpendicular to OB, and PU to OP; BV perpendicular

to OB, and UTFto OP. The prefix co- may be used to denote the

complementary function. The geometrical definitions then are

co-cos A R = (
OB) ( ON)

,

co-Sin A R = ( OB) (NP)

,

co-Sec AR =(OB)(OV), co-Tan AR = (OB) (BV),

co-zec AR = (OB)(OU), co-Dan AR = (OB)(UP),

co-Gos AR = (OB) (OW), co-Zin A R = (
OB) (B W)

.

It may be shown that co-cos AR = sin AR. Also co-Sin AR may

be denoted by Cos AR ; it is equal to . '. „ Sin AR.J H sinAR
The several trigonometric areas are exhibited synoptically in

the following table. It is evident that Hamilton's S and V are

entirely inadequate to express the various scalar and vector func-

tions of the product of two vectors.
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TRIGONOMETRIC AREAS.

Function.
Geometric

Definition.
Analytical Definition.

AR

cos AR

Sin AR

sin A R

SecAR

sec AR

TanAR

tan AR

zee AR

Dan AR

dan AR

GosAR

gos AR

ZinAR

zin AR

vers AR

co-cos AR

(OA)(OP)

(OA)(OM)

(OA)(MP)

OAxMP

(OA)(OT)

OAx OT

(OA)(AT)

OAx AT

(OA)(OQ)

(OA)(QP)

OAx QP

(OA){OS)

OAx OS

(OA)(AS)

OAx AS

(OA)(AM)

(OB) (ON)

(ai + bj + ck) (xi + yj + zk)

ax + by + cz

(bz — cy)jk + (ex — az)ki + (ay — bx) ij

s/(bz — cy) 2 + (ex — az)'1 +(ay — bx)'1

A 2

cos AR
-AR

A 2

cos AR

cos AR

SinAR

VA2R2

cos AR
sin AR

_AW
cos AR

sin AR
cos AR
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TRIGONOMETRIC AREAS (Continued).

Function.
Geometric

Definition.
Analytical Definition.

co-Sin AR

co-sin AR

co-Sec AR

co-sec AR

co-Tan AR

co-tan AR

co-zec AR

co-Dan AR

(OB){NP)

OBxNP

(OB){OV)

OBx OV

{OB)(BV)

OBxBV

(OB)(OU)

(OB) (UP)

co-dan A R OB x UP

co-Gos AR

co-gos AR

co-Zin AR

co-zin AR

(OB)(OW)

OBx OW

(OB){BW)

OBxBW

co-versAR
j

(OB)(BN)

C
-?i4^SinAR = CosAR
sin A R

cos AR

A2 —
AR

sin AR

sin AR
VAW

sin AR
CosAR

2cos AR
sin AR

A2R2

sin AR

sin AR

cos AR
sin AR

VA2
R'

J

sinAR^
R

sin AR
,

R2

/A 2R i

S2*ARav=TR

cos AR
R-

VAW

— A 2 + sinAR
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THE CIRCULAR FUNCTIONS.

In the case of the circular functions the variable vector R is

always of the same length as the initial vector A ; in other words,

OP is limited by the condition that its extremity must lie on a

circle of radius OA (Fig. 7). There is a definite area enclosed

u

N

H

\
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In addition to the triangular lines there are the curve lines or

circular lines proper ; namely, the tangent, the secant, the nor-

mal, etc. By the tangent is meant the line DP drawn from a

point in OA so as to touch the curve at P, and by the secant is

meant the line OD cut off. By the normal is meant the line OP
which starts from the line OA, and is at right angles to the

tangent at P, while 00 is the complementary line. Let these

functions be denoted by Tut, Set, Nor, respectively.

Since DP= DM+ MP,

(OA)(DP) = (OA)(DM) + (OA)(MP)
,

= (OA) (DM) + Sin AR.

But, generally, DM = sin
d

(
cos)

OA,
d(sin)

which, for the special case of the circle, becomes

I)M=-*^OA,
COSM

therefore (0,4) (DP) = - (
Sin k̂ ~ + Sin AR.
COS A r\

Again, (OA)(OD) = (OA)(OM) + (OA) (MD)

= cos AR + (0A) (MD),

which, for the case of the circle, becomes

(OA)(OD) = cos AR + (Sin AycosAR
A2R2

cos AR

A4

cos AR

For the normal we have the general relation

GP=GM+MP,
therefore (OA) (OP) = (0A) (GM) + (0A) (MP)

= (OA)(GM)+ Sin AR

= - sin
d

(
si") (OAY + Sin AR.

d(cos)
v '
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Hence for the special ease of the circle

(OA) (GP) = cos AR + Sin AR

= AR;

hence CrPis identical with OP.

Finally, OG= OM+ MG,

(OA)(OG) = (OA)(OM) + (OA)(MG)

= cos AR + sin^i^ (OAY,
, d(cos)

therefore for the special case of the circle

(OA)(OG) = cos AR - cos AR

= 0.

The ratios are defined by taking the ratio of the corresponding

area to A 2
;
thus

OD A 2

SCtl' =
02 = c^AR =

ZeCM
'

Tnt tt =
7
l-i>P=--(4»lAR| + Si 1aAR = Dan
OA A 2 cosAR A2

, . DP sinAR . ,

tnt u = ——= —-= tan u = dan u,



DEFINITIONS OF THE TRIGONOMETRIC FUNCTIONS. 27

CIRCULAR RATIOS.

Function. Analytical Definition.

Sin u

sinw

Sec u

secw

Tan u

tan?t

zee u

Danw

da,nu

Gosm

gos u

Zinu

zinw

vers u

set u

AR
A2

cos AR
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CIRCULAR RATIOS (Continued).

Function.
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CIRCULAR RATIOS (Continued).

Function.
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xr i , n
OKNow cos(u + v) = —
OA

= OL LK
OA OA'

and OL = — OM on account of the similarity of the triangles

LON and MOP,

and LK=NR = M
j)

QN,

on account of the similarity of the triangles MOP and RQN, and

the negative nature of NR with respect to 04

;

therefore cos(M + ,) =M OM MP QN
K

' OP OA^ OP OA

_ om" ojy_ j^p iv§

04 OP 0.4 OP

= cos u cos v — sin u sin v.

In a similar manner

sin(M + «) = ^2V ; OA

= LN RQ
OA OA

^ONMPNQ OM
OA OP OP OA

= MP ON OM NQ
OA OP OA OP

= sinw cosv + cosm sinu

THE EXCIRGULAR FUNCTIONS.

In this case the bounding line AP (Fig. 9) is part of a rectan-

gular hyperbola or excircle, having OA for principal axis. Let
s denote the length of the arc AP, a the length of OA, and A
the area of A OP; the analogue of the circular u is no longer
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s °A
-, but it still is Z-t-' All the triangular ideas and all the curve
a a-

ldeas which apply to the circle apply also to the excircle, and

they are expressed by analogous functions of u. These functions

are appropriately denominated by the same names, while for dis-

Fig. 9.

tinction the qualification " hyperbolic " is introduced. The abbre-

viations for the functions are distinguished by an appended h.

The analytical definition is obtained by dividing the corre-

sponding area function by A2
, and adding the condition that

(cosAR) 2 -(SinAR) 2 =A4
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In the case of the excircle

DM^sinhf^OA
d(sinh)

cosh u

^ (SinAR) 2

a cos AR

Consequently, (OA) (DP)= (
Sln A^ + Sin AR,
COS M r\

and ( OA) ( OD) = cos AR - ^4^- •

cos AR

cos AR
Again, for the excircle

GM=- Smh d
(
sinh ) QA

d(cosh)

= — cosh u OA

_ cos AR .—
j

a

consequently, (OA) (GP) = — cos A R + Sin A R.

Hence GP is the reflection of OP with respect to MP,

and ((L4)(OG) = 2cosAR.

When the radius-vector is subject to the hyperbolic condition,

the several lines drawn according to their definitions are all

different from one another ; from which we see the necessity for

these exact definitions.



DEFINITIONS OP THE TRIGONOMETRIC FUNCTIONS. 33

EXCIROULAR RATIOS.

FcNCTION. Geometric Definition. Analytical Definition.

COSh u

Sinhw

sinh u

Sechw

sechw

Tanh u

tanhit

zech u

Danh w

danh u

Goshw

goshw

Zinhw

zinhw

vei-sh u

scthw

-i- OP
OA
OM
OA
1

OA

OA

OA'

MP

MP
OA

OT

OT
OA

AT

AT
OA

OA

OQ
OA

— QP
OA*

QP
OA

OS

OS
OA

OA
AS
OA
AM
OA
OP
OA

AR
A2
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EXCIRCULAR RATIOS (Continued).

Function.
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EXCIRCULAR RATIOS (Continued).

Analytical Definition.

COS AR

sin AR-1 +

sin AR
(Cos AR) 2 Cos AR
A2 sin AR A2_

cosAR VA'R1

sin AR A2

sin AR Cos AR
A •>

A2

VA2R2

Consider now the proof of the addition theorem for two suc-

cessive excircular sectors, of which the former starts from the

principal axis. Let AOP and POQ be two such sectors (Fig. 10);

AMJLK
Fiq. 10.

the lines PM and QK are drawn perpendicular to OA as before,

but QN must now be drawn parallel to the tangent at P; NB is
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drawn perpendicular to QK&s before. Let u denote the ratio to

a2 of twice the area of AOP, and v that of POQ. By definition,

, OM A , MP
cosh u = and sinh u = —— •

OA OA

By cosh-y is meant the ratio , when the sector v is movedJ Qp>

back so as to start from OA, the area being retained constant

;

NO
and by sinh v is meant the ratio —— under the same conditions.

J OP
Now it may be shown that whatever the position of P, these

ratios are constant, provided the area of the sector is constant in

magnitude ; hence,

, ON . , NQ
coshv = , sinhi)= --s-

OP OP

By the property of the tangent to the curve, the triangles MOP
and BQN are similar as before, but now NB is positive with

respect to OA. With that modification, the same proof applies

as before, giving

OK= OM ON MP NQ,
OA OA OP OA OP'

that is, cosh(w + v) = cosh u cosh v -f- sinh u sinh v,

and KQ= MP ON OM NQ
.

OA OA OP OA OP'

that is, sinh (u + v) = sinh u cosh v + cosh u sinh v.

THE LOGARITHMIC FUNCTIONS.

The circle is a special case of the logarithmic spiral, and conse-

quently each circular ratio is a special case of what may be

called the logarithmic ratio. To understand this generalization it

is necessary to observe (Fundamental Theorems of Analysis gen-

eralized for Space, p. 16), that in the case of the circle, u is not

a simple scalar, but the index of an exponential expression au, in

which a denotes the axis of the plane of the circle. In plane

analysis, the a is apt to drop out of sight ; but in space analysis
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it must be introduced explicitly, in order to distinguish, one plane

from another. The exponential expression a" is equal to eua ,

and the generalization is obtained by making the angle ^ any

angle w. Then

guaw g»cosw+«sini».a 2

Now u sinw expresses the ratio to the square of OA of twice

the area of the circular sector AOP', corresponding to the loga-

rithmic sector AOP (Fig. 11) ; while eumsw denotes the manner

in which the radius is lengthened.

Fig. 11.

The lines PM, PQ, AT, AS, PD, PG, which refer to the axis

of OA, are drawn as before ; so also the complementary lines

which refer to the axis . of OB. The geometric definitions of

the ratios are the same as before ; the analytical definitions are
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obtained by taking the ratios of the trigonometric areas to A2
,

and introducing the special condition,

or
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initial ratio —— OP (Fig. 12), and v, w the subsequent ratio
. OA
—— OQ. As in the case of the circle, draw QN perpendicular to

A M K L

Fig. 12.

OP ; PM, QK, NL perpendicular to OA ; and NB perpendicular

to QK. By definition,

OM MP
cos u, tv = ——-, sin u, w = ——,

OA OA

and
ON NO

cos v, w =— , sin v, to = -^.

iS
To-w, just as in the special case of the circle, the triangles

LON and MOP are similar, and the triangles NQB and POM
are similar. Hence, as before,

1 nn _ OK _ OM ON MP NQcos— v<4-
QA

-
OA op 0A 0p >

and
• 1 nn_KQ _MP ON ,0MNQSm 0A°^~OA~0AOP + OA0P'

But the versor of— OQ is «««i»« a«i»» that is, «(«+»)"»» and

OP OQ OA 1
its ratio is gj -qj» *hat is, e<"+"

,C08 "'. Hence ^j °Q = u + v>
w -

Therefore,

cos u + v, w = cos u, w cos -y, w — sin w, ?« sin v, w

and sin u + v, w = sin w, ?o cos v, w + cos m, zo sin v, w.
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THE ELLIPTIC RATIOS.

Let the bounding line be an ellipse of which OA is the semi-

major axis. The ellipse may be regarded as the orthogonal

projection of a circle of radius OA upon a plane which passes

through OA and makes an angle A. with the plane of the circle.

Let cos A be denoted by 7c. All lines in the circle parallel to OA
remain unaltered in the projection, while all lines perpendicular

to OA are diminished by the ratio cos X. Let A denote the area

of a sector AOP of the ellipse, and as before let u =——

•

The trigonometric and the curve lines (Fig. 13) are drawn

according to the same definitions as before; the geometric defi-

E
B

B

N

H

V

\ \
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Thus cosu,k=°M = cosAR
OA A2

'

OA A2
'

sin M,ft = Ml= "IoAR
04 A2

'

etc., etc., etc.

The series for the elliptic cosine is obtained by the principle

that cos w, ft = cos -, and the series for the elliptic sine by the

principle that sinw, ft = ftsin--
rC

It is found, by application of the principle stated at p. 25, that

sin

-

DM= -OA,
cos^

ft

and GJ!/=fc2 cos-OA
ft

Hence (04)(0Z>) =-^,

(04)(i)P) =-i^M).2

+ SinAR,

(OA) (GP) = ft
2 cos AR + Sin AR,

(OA) (OG) = (1 - ft
2
) cos AR,

and from these the secant, tangent, normal, and the anonymous
ratio are derived by dividing by A2

.

A question arises whether the complementary ratios should be

denned with respect to OB, Tig. 13, which is equal to OA, or

with respect to OB', the semi-minor axis. I consider that they

ought to be defined with respect to OB ; the corresponding func-

tions for OB' can be deduced from them by dividing by ft.
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In order to obtain the complementary curve ratios it is neces-

sary to find NE and HN.

Now NE= - cos^£ OB
dcos

= _cos^-^ -^-OB
k / u

i\ cos -

in-
]

,
--'S-

d( k sin

di

k cos2 M

• usm-
k

*0B

therefore ( OB) (NE) =—(cos AR)
sin AR

therefore ( OB) ( OE) = sin AR + fe2
(
cosAR )

2

sinAR

FA4

'sinAR'

and ( OB) (EP) = - fc'(cosAR )
2

+ Cos A R .

sinAR

Again, HN= - cos ^52? OB
dsin

= -sin- OB
k k

therefore ( OB) (HN) = smAR

therefore ( OB) (HP) = Sln AR + Cos A R,
fc

and ( OB) (
OH) = - sin A R iq^t
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ELLIPTIC RATIOS.

Function. Analytical Definition.

eosw, ft

Sinw, ft

sinw, ft

Sec u, k

sec u, k

Tan u, k

tan u, k

zee it, k

Dan m, A;

dan u, k

Gos m, ft

gosw, k

Zin ?«, ft

zinw, ft

versM, ft

setw, ft

AR
A2

cos AR
A2
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ELLIPTIC RATIOS (Continued).

Function. Analytical Definition.

(sinAR) 2
, SinAR

FA2 cos A R A2
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ELLIPTIC RATIOS (Continued).

Function Analytical Definition.

cos AR

VRW
FA2

sin AR
F(cosAR) 2 OosAR
A2 sinAR A2

cos AR
A 2 sin A R

sin AR
&2A2

Vfc4 cos2 AR+ sin2 AR

CosAR+ -

Vfc4 cos2AR + sin2 AR
fc
2A 2

_ sin AR 1-A;2

A2 ks

When the elliptic ratios are so denned it is not difficult to obtain

the generalized addition theorem. Let AOP and POQ (Fig. 14)

be two successive elliptic sectors of

which the former starts from the prin-

cipal axis. Draw QN parallel to the

tangent at P; and PM, QK, NL per-

pendicular to QA, and NR perpendic-

ular to QK. Let u denote the ratio

of twice the area of the sector AOP
to the square on OA, and v that of

twice the area of the sector POQ to

the square on OA; it follows that

u + v is the ratio of twice the area of the sector AOQ to the

square on OA. By definition

K L M
Fig. 14.

and

cos u, k =

cos u + v, k =

OM
OA

OK
OA

&XD.U, & = MP
OA'

KO
sin u + v, k = —-j-
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7
V ON

Now cos v, A = cos = ——

,

k OP

because the lines ON and. OP have the same direction and there-

fore the same ratio as the corresponding lines in the circle. But

as NQ and OP have different directions, and are in general lines

•which do not coincide with the principal axes, the relation of

their ratio to sin- is more complex. It will be found by exam-
k

ination of the projection that

NQ
cos-- + at sin -

k k v= sin-

sin- - + AT cos

-

k k

For the sake of brevity let the radical be denoted by q. The

triangle NQB is no longer similar to the triangle POM ; instead

of the relation

NB_ MP
NQ OP

we have the relation

NB
=z
_MP q

NQ ~~ OP k

xt , 7, OKNow cos u + v, k =
' OL

= OL LK
OA OA

OM ON MP NQ q
OP OA OP OA k

OM ON MP NQ q

OA OP OA OP k

7 7 sin u, k sin v, k= cos u, k cos v, k — —
' '

k2
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Again, sin u + v, k = - --*

= LN EQ
OA OA

= ON MP OM NQ,
OA OP OA OP q

_ MP ON OM NQ
k~ OA OP OA OP q

= sin u, k cos v, k + cos u, k sin v, k.

By sin v, k is meant the ratio of NQ to OP when the sector is

shifted back without change of area so as to start from the prin-

cipal axis.

THE HYPERBOLIC RATIOS.

Let the bounding line be an hyperbola of which OA is the

semi-major axis. The hyperbola may be regarded as the orthog-

onal projection of an excircle of radius OA upon a plane which

passes through OA and makes an angle A with the plane of the

circle. As before, let cos \ be denoted by k. Let A denote the

2A
area of a sector of the hyperbola, and let u = —i

-

The triangular and the curve lines are drawn according to the

same definitions as before ; the geometric definitions of the sev-

eral functions of u and k are the same as before. The analytical

definitions of the ratios are obtained by taking the ratio of the

corresponding area to A2
, and introducing the special condition

that

(cosAR) 2 - (
Sin

7 f
R >

2=M
k~

rp , , , OM cos AR
Thus cosh u, k =—— =———

,

etc., etc., etc.
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THE COMPLEX RATIOS.

Our method of definition applies also to the complex ratios.

Let AOQ (Fig. 15) be a complex sector made up of a circular

K MLA
Fig. 15.

sector AOP and an excircular sector POQ. Draw QN per-

pendicular to OP, and PM, QK, NL perpendicular to OA, also

NR perpendicular to QK. Let u denote the ratio of twice the

area of AOP to the square on OA, and v that of twice the area

of POQ to the square of OP. To distinguish the form of the

area let i be prefixed to v ; then u + iv denotes the ratio of twice

the area of the complex sector AOQ to the square of OA. By
definition

OM MP
cos u = ——

,

OA'
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therefore cos w + iv = cos u cos iv — sin u sin iv

= cos u cosh v — sin u sinh v.

Similarly *S _^ °J?+M *Q
bimilaily

Q^_ ^ 0p + ^ Qp

= sin u cos to + cos u sin iv

= sin u cosh v + cos u sinh v.

The function cos iv is obtained from cos v by supposing

i=V— 1 ; and sin iv from sin -y by the same process, only the

V— 1 common to all the terms must be removed.

From the symmetry of the formulae it is evident that the

order of circular-excircular or excircular-circular is indifferent.
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THE PRINCIPLES OF ELLIPTIC AND
HYPERBOLIC ANALYSIS.

[Abstract read before the Mathematical Congress at Chicago,
August 24, 1893.*]

Ix several papers recently published, entitled "Principles of

the Algebra of Physics," " The Imaginary of Algebra," and " The
Fundamental Theorems of Analysis generalized for Space," I have
considered the principles of vector analysis ; and also the princi-

ples of versor analysis, the versor being circular, logarithmic, or

equilateral-hyperbolic. In the present paper, I propose to con-

sider the versor part of space analysis more fully, and to extend

the investigation to elliptic and hyperbolic versors. The order

of the investigation is as follows : The fundamental theorem of

trigonometry is investigated for the sphere, the ellipsoid of revo-

lution, and the general ellipsoid ; then for the equilateral hyper-

boloid of two sheets, the equilateral hyperboloid of one sheet,

and the general hyperboloid. Subseqiiently, the principles arrived

at are applied to find the complete form of other theorems in

spherical trigonometry, and to deduce the generalized theorems

for the ellipsoid and the hyperboloid. At the end, the analogues

of the rotation theorem are deduced.

FUNDAMENTAL THEOREM FOR THE SPHERE.

Let aA and ft" denote any two spherical versors ; their planes

will intersect in the axis which is perpendicular to a and /J, and

* Jan. 8, 1894. I have rewritten and extended the original paper so as to

include the trigonometry of the general ellipsoid and hyperboloid. At the

time of reading the paper, I had discovered how to make this extension, but

had not had time to work it out.

1
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which we denote by af3. Let OPA (Fig. 1) represent aA, and

OAQ represent j3
B

; then OPQ, the third side of the spherical tri-

angle, represents the product aA
/3
B

-

To prove that

aAf2
B = cos A cos B — sinA sinB cos aj3

+ {cos B sin J. • a+cos^4 sin_B • /? — sin^4 sin5 sin a/? •«/?}.

The first part of this proposition, namely, that

cos aA/3
B = cos A cos B — sinA sin B cos a/3,

is equivalent to the well-known fundamental theorem of Spherical

Trigonometry ; the only difference is,

that aft denotes, not the angle included

by the sides, but the angle between

the planes ; or, to speak more accu-

rately, the angle between the axes a

and j8. It is more difficult to prove the

complementary proposition, namely,

that

Sin a-'/S^ cos .B sin .4 • a+ cos .4 sin .B • /2

— sinA sin B sin a/3 a/3,

for it is necessary to prove, not. only that the magnitude of the

right-hand member is equal to Vl — cos2«A/3
s

, but also that its

direction coincides with the axis normal to the plane of OPQ.
At page 7 of "Fundamental Theorems," I have proved the above

statement as regards the magnitude, but I was then unable to

give a general proof as regards the axis. Now, however, I am
able to supply a general proof, and it will be found of the highest

importance in the further development of the analysis.

In Kg. 1, OP is the initial line of a", and OQ the terminal line

of /3
B

; let OB be drawn equal to

cos B sinA a + cos A sin B /J — sinA sin B sin a/J • ufi ;

it is required to prove that OR is perpendicular to OP and to

OQ.

Now, OP= a~A af3 = (cos A — sinA -a5 )- a/?

IT

= cos A af3 — sin A a* «/8.
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Similarly, OQ = /3*a/3 =(cos.B + sin.B.£*)-a/3

= cos B a/3 + sinB /3
5

a/3.

By a «/8 is meant the axis which is perpendicular to a and /3,

after it is rotated by a quadrant round a. In Fig. 2, let OA and

OB represent a and /?, any two axes

drawn from 0, then a/3 is drawn from

upwards, normal to the plane of the

paper. Hence a? a/3 is OL, which is

of unit length, and drawn in the plane

of the paper, perpendicular to «. Tit

is required to find the components of

OL along a and /3. Draw LN par-

allel to /?, and LM parallel to a.

P, andNow OM or NL is

ON is
cos a/3

sin a/3
a ; hence,

sin a/}

f -5 cos a/3 lo
a a/3 = — — • a : p-

sin a/3 sin a/3

Similarly, /3
5 o0= _05^ =-^^.

/
3 + _J_. a .

sin a/3 sina/3

Consequently, the three lines expressed in terms of the axes a,

P, and a/3, are

OR = cos -B sinA a + cos A sin5 • /3 — sin ^4 sinB sin a/3 -a/3;

0P = A cos a/3 , . , 1
sin .4— e • a + sinA—

•

sin a/8 Sin a/3
p + cosA-ufi;

OQ = sin B jCOSa/3u- sinB^^! p + cosB-ap.
sin a/3 sinujS

Hence cos(OB) (OP)
„ . , . /cos a/3 cos a/?\= — cos 5 sinMf = : ?

LCC/Vsrn(sin a/3

.... „ /cos 2
a/3 1 , , a

\ sin up sin a/3

= 0.

Similarly, it may be shown that cos(OB) (OQ) = ; hence OB
has the direction of the normal to the plane of OPQ.
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To find the general expression for a spherical versor, when refer-

ence is made to a principal axis.

Let OA represent the principal axis (Fig. 3), and let it be

denoted by a. Any versor OPA, which passes through the prin-

cipal axis, may be denoted by /3", where ft denotes a unit axis

perpendicular to a. Similarly, OAQ, another versor passing

through the principal axis, may be denoted by y", where y denotes

a unit axis perpendicular to a. The product versor OPQ is circu-

lar, but it will not, in general, pass through OA ; let it be denoted

by £
e

. Now

*» = /8V
= cos m cos v — sin u sin v cos ySy — ?
+ Jcosw sinw- (3 + cosw sinv-y — sin«sinvsin/3y ./Jy} .

We observe that the directed sine may be broken up into

two components, namely, cosvsmu- /3 + coswsinv-y, which is

perpendicular to the principal axis, and — sin m sin i; sin/Jy./Jy,

which has the direction of the

negative of the principal axis, for

Draw OS to represent the first

component cos v sin u j3, OT to

represent the second component

cosiesinii-y, and OU to represent

the third component — cos w cos

v

sin/3y a. Draw OV, the resultant

of the first two, and OR, the re-

sultant of all three. The plane

of OA and OV passes through

OB, which is normal to the plane

OPQ; hence these planes cut at right angles in a line OX; and

the angle between OA and OX is equal to that between OV and

OR, for OF is perpendicular to OA, and OR to OX. Let <£

denote the angle AOX, then

cos

and

sin <j> =

, _ Vcos2
'?; sin2w+ cos2u sin2 i;+ 2 cos w cos i> sin it sin v cos /?y

Vl— (cos u cos v — sinw sin v cos^Sy) 2

sin u sin'?; sin
/3y

Vl— (cos u cos v — sin u sin v cos /3y

)

2
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M A

Figure 4 represents a section through the plane of OA and OV.
Let XM be drawn from X perpendicular to OA ; it is equal in

magnitude to sin <£ ; and OM is equal in

magnitude to cos <j>. r
Hence the axis £ has the form

cos <£ • e — sin <j> • a,

where e denotes a unit axis perpendicular ^
to a. And

£
fl = cos 6 + sin 0(cos <£ • e — sin <£ • a)

is determined by the equations,

cos = cos u cos v — sin u sin v cos /3y,

sin 8 sin <£ = sin u sin v sin f3y,

sin 6 cos <f>-e = cos v sin « /3 + cos m sin i> • -y

(1)

(2)

(3)

The unit axis e may be expressed in terms of two axes (3 and y,

which are at right angles to one another and to a, and the angle

which c makes with /3. Hence the more general expression for

any spherical versor is

TT

£
9 = cos0 + sin0jcos<£(cosi/<-/3 + smi/'-y)— sin^>-«} 2

.

We observe that the line OX is the principal axis of the

product versor POQ.

To find the product of two spherical versors of the general form

given above.

The two factor versors may be expressed by
IT

£
u = cosw + sin«(cos<£- /3 — sin <j> a) *,

TT

and yf = cos v + sin v (cos <£'• y — sin $' a)
5

,

where {} and y denote any unit axes perpendicular to a. The

product has the form

ir

("= cos w + sin io (cos <f>"-y— sin <£"• a)*.

Since £"77" = cos u cos v — sin u sin v cos £77

+ {cosw sin w • £ + cos w sin v • 77 — sin ?i shru sin^ri • £rj\
,
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and cos fy = cos <j> cos <j>' cos /3y + sin <£ sin </>',

and Sin £17 = cos <£ cos <£' sin /?y • /?y

— (cos <j> sin <£' /3a + cos <j>' sin <£ • ay)

,

therefore cos w = cos u cos v

— sinw sinv(cos<£cos<£'coS|8y+sin<£sin<£'), (1)

sinw sin <j>" = cos w sin v sin <£'+ cos v sin w sin <£

+ sinw sin v cos<£cos<£' sin/3y, (2)

sinw cos <j>" -£ = cosm sin v cos <£'-y + cos i> sinw cos $-/3

+ sinu sin v (cos <£ sin <£' • /2a+ cos <j>' sin <£ • ay ). (3)

From equation (1) we obtain w, then from (2) we obtain <£", and

finally from (3) we obtain c.

When the factor versors are restricted to one plane, the axes

coincide ; that is, rj = £. The above formula then becomes

£0+0- _ cog cos Ql_ sjn sjn ff
w

+ (cos 6 sin 8'+ cos 6' sin 6) {
cos <£ • /J — sin <£ • a]

,

which is the fundamental theorem for trigonometry in any

plane.

When the axes are coplanar with the initial line, we have y
identical with /?, but <£', in general, different from <j>. The theo-

rem then becomes

£V' = cos 6 cos 6'— sin^ sin0' cos (<£'- <£)

+ \
(cos 6 sin 6' cos <£'+ cos 0' sin cos <£) /J

+ sin sin 6' sin (
$'— <£) • /3a

IT

— (cos 6 sin 6' sin <£'+ cos 8' sin cos <£) • «

}

2
.

If, in addition, the middle term of the sine vanishes, the axis

of the product will also be in the same plane with the other axes

and the initial line.

To prove that the sum of the squares of the three components of

the product of two general spherical versors is unity.

For shortness, let x= cos 6, y = sm6cos<j>, z = sin0sin<£;

a;' = cos 6', y' = sin0'cos<£', %' = sinfl'sin<£'. Then



PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS. 7

cos2 ©" = (xx'—yy' cos/Jy — zz')
2

= z?x<
2 + y-y' 2 cos2

/3y + «V 2 - 2 a;a%' cos /8y- 2 *a;'2»'

+ 22/2/'«2!'cOS
j8y,

(sin 6" cos <£"• e)
2= {o^' • y + srty • /J + yz' fta — zy' y~a\

2

= a?y'
2 + x'

2

y
2 + y

2
z'

2+z2y' 2+ 2 xx'yy' cos Py\-2xyy'z' cos y/ta

— 2yz'x'y' cos/fya — 2yzy'z' cos/fo • ya,

(sine" sin <£")
2 = {»«'+ *'« + 2/?/'sin/2yj 2

= asV* + «V 2 + y
2

y
n sin2

0y + 2a;a;'«a'+ 2xyy'z' sin/?y

+ 2x'yy'z sin/?y.

The sum of the square terms is (x2 + y
2 + z

2

) (x'
2 + y' 2 + z'

2

)

,

that is, 1 ; and the sum of the product terms reduces to

2 yy'zz'(cos (iy — cos/?a ya) + 2 xyy'z' (cosy (3a + sin/Jy)

— 2 yz'x'y' (cos (iya. — sin/Jy).

Now, /? and y both being perpendicular to «, cos/?y == cos /8a y«,

and sin/}y = — cosy /3a = cos/3ya. Hence the sum of the product

terms vanishes.

FUNDAMENTAL THEOREM FOR THE ELLIPSOID
OF REVOLUTION.

Imagine a circle APB (Fig. 5) to be projected on the plane

of AQB, by means of lines drawn from the points of the

circle, perpendicular to the plane,

as PQ from P; the projection

of the circle is an ellipse, hav-

ing the initial line for semi-major

axis. Let A denote the axis of

the circle, and /3 that of the

plane ; all lines perpendicular to

the initial line are in the pro-

jected figure, diminished by the

ratio cos A/?, while all lines parallel FlG g

to the initial line remain unal-

tered. Any area A in the circle will be changed into A cos A/3

in the ellipse ; and this is true whatever the form of the area.

For shortness, cos A/? will be denoted by k.
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The projecting lines, instead of being drawn perpendicular to

the plane of projection, may be drawn perpendicular to the plane

of the circle; the ratio of projection then becomes secA./3, which

may likewise be denoted by k, but k is then always greater than

unity. The figure obtained is an ellipse, having the initial line

for semi-minor axis. By the revolution of the former ellipse

round the initial line we obtain a prolate ellipsoid ; by the revo-

lution of the latter, an oblate ellipsoid.

The Fundamental Equation or Elliptic Trigonometry.

The elliptic versor is expressed by —— OP (Fig. 6), and

OA OA OA

The problem is, to find the correct analytical expressions for

these three terms. If by u we denote the ratio of twice the area

of the sector AOP to the square on

OA, then,

^ = cos^ and ^=A;sin«
OA k OA k

Hence, if j3 denote a unit axis nor-

mal to the plane of the ellipse, the

equation may be written

(¥)" cos- + sin-.
k k

(k/3y

But we observe that it is much simpler to define u as the ratio of

twice the area of AOP to the rectangle formed by OA and OB,

the semi-axes ; for then we have

(kft)
w = cos it + sin u-(k/3)^.

We attach the k to the axis rather than to the ratio, because in

forming a product of versors it does not enter as an ordinary

multiplier. When the elliptic sector does not start from the

principal axis, the element u must still be taken as the ratio of

twice the area of the sector to the rectangle formed by the axes.

The index $ is due to the rectangular nature of the components

;

it expresses the circular versor between OA and MP. When
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oblique components are used, the index is then w, the angle of

the obliquity. This is proved in Fundamental Theorems, page 10.

To find the product of two elliptic versors which are in one plane

passing through the principal axis.

Let the two versors be represented by OQA and OAP (Fig. 6);

then their product is represented by OQP Let /3 denote a unit

axis normal to the plane ; the former versor may be denoted by

(ft/0", and the latter by (ft/S)". Then

(fc/3)"(fc/3)" = |cosM + sinM.(ft/?)
5
}{cosv-|-sini>.(fc/})

5
}

IT JT

= cos u cos v+ cos m sin v (fc/3) *+ cosu sinu • (ft/3)

+ sinw sin v (ft£)
5
(ft/J)

5
.

Now (ft/3)"(fc/8)
,,= (A;/8)

M+"

= cos(w + v) + sin(w + ^-(fc/J) 1

= cos u cos v — sin u sin v

+ (cos?< sm»+ cos usin ?«)•(%/}) .

Hence (ft/J)
5
(ft/3)

! = /J'
r = — 1. From this we infer that ft is

such a multiplier that it does not affect the terms of the cosine.

To find the product of two elliptic versors which intersect in the

principal axis of the ellipsoid of revolution.

Let —— OA and— OQ (Fig. 7) represent the two versors

;

OP OA
their axes are /} and y, respectively, each being perpendicular to

a, the direction of the principal

axis OA. Let u denote the ratio

of twice the area of OPA to the

rectangle formed by the semi-axes jrn

of its ellipse, and v the ratio of

twice the area of OAQ to the rec-

tangle formed by the semi-axes of

its ellipse. The versors are denoted

by (ft/3)" and (fty)"- Now

(ft/3)" = cosw+sinw-(ft/?) ,

and (fty)* =cosi»+sinu-(fty)'
J

,

therefore (ft/8)
u (fty)" = cos u cos v + cos v sinu (ft/3)

*

+ cosMsini;-(fcy)
! +sinMsinv-(fc/3)

lr

(ftv)'
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By means of the principle that the first power of k is k, we see

that the second and third terms contribute

fc(cosi; sinw-/} + cos it sin-y • y)

to the Sine component. It remains to determine the meaning of

the fourth term, that is, the values of the coefficients x and y in

the equation

(k/3y(kYy = xcosfiy + y sin /Jy /fy
5

.

From the form of the product of two coplanar versors (page 9),

it appears that a; is — 1 ; the value of y appears to be either — ft
2

or —1.

On the former hypothesis the directed sine OR would be'

k cos v sin it- ^ + koosusmv-y —

k

2 sinusinv sin /3y a.

IT

Now OP = cos u-a — k sin u •^fiy,

and OQ = cosv- a + ksmv-yls

Py;

consequently cos (OR)( OP) = — k2 cos v sin2w
[ .

^
. "n

— k2 cosu sinw sin^f .
„^y

:
\- sinfiy

],

Vsin'/Sy sm£y HI
)

which vanishes, as before (page 3) . Similarly cos

(

OR) (OQ) = 0.

Hence the above expression gives the direction of the normal to

the plane of the product versor. But suppose that —— OA and

OQ are quadrantal elliptic versors, then cos it = cosv = 0, and

sin u = sin v = 1 ; consequently the cosine of the product would
IT

then be — cos/Jy and the sine of the product — fc
2 sin/3y a2 . But

it is evident that in this case the product versor is circular,

IT

namely, — (cos/Jy + sin/Sy • a*). Hence it appears that k2 cannot

enter as a factor of the third term of the Sine.

On the other hypothesis the directed sine is

A;(cosw sinW'/3 + cos u sin v • y) — sin u sin v sin/Jya.

This expression satisfies the test of becoming circular under

the conditions mentioned ; but its direction is not normal to the



PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS. 11

plane of the product versor. How then, is its direction related

to that plane ? It will be found that it has the direction of the

conjugate axis to the plane. Draw OV (Fig. 8), to represent

fc(cosvsinw-/J + cosM sin v-y), the component perpendicular to

the principal axis OA, and OU' in the direction opposite to the

principal axis to represent — sinu sinv sin/3y, also OU to repre-

sent the same quantity multiplied by k2
; and draw OR' and OR,

the two resultants. The plane through OA and OV will cut

the ellipsoid in a principal ellipse AXB, and as it passes through
the normal OR it will cut the plane of the product ellipse at

right angles ; let OX denote the line of intersection. Draw XA'
parallel to OA and XD the tangent at X, and let 6 denote the

circular versor between AO and OX. Now

tan0 = MXOM =
OU
OV

k sin u sin v sin /?y

Vcos2
-y sin2w + cos2u sin2v + 2 cos rt cos y sin u sin v cos /?y

but tanA'XD = — k2 cotan

__ fcVcos2y sin2M+cos2M sin2i>-f 2 cos u cost; sin it sint> cos/?y

sinw sin-y sin/Jy

= cotan VOR' = tan AOR'.

Thus the direction of OR' is that of the conjugate axis of the

plane of the product versor.

Let
<f>
denote the ratio of twice the area of AOX to the square

of OA ; it is equal to the angle which OX made with OA before

the contraction. The direction of the axis was then cos
<f>

along

OB, and sin<£ along OA'; by the contraction, cos<£ has been
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changed into k cos <£ ; hence the axis of the ellipsoid, along the

direction of OB', is fc cos <£ • e — sin <j> • a, where e denotes a unit

axis in the direction of OB.

The magnitude of the product versor is determined by the

cosine function,

cos u cos v — sin u sin v cos /3y.

Suppose that an elliptic sector OXZ (Fig. 7), having the area of

the third side of the ellipsoidal triangle, starts from the semi-

major axis OX, and let OY and OZ be the rectangular projec-

tions of the bounding radius vector OZ. As the small ellipse

OPQ is derived from a principal ellipse by diminishing all lines

parallel to OX in the ratio of OX to OA, that is, in the ratio of

Vcos2
<£ + k2 sin2<£ to 1, while the transverse lines remain unal-

tered; the ratio of OF to OX is equal to the corresponding ratio

in the principal ellipse ; hence the ratio of Y to OX is equal to

cos u cos v — sinu sin v cos /3y.

Let w denote the ratio of twice the sector OPQ to the rectangle

formed by OX and the minor semi-axis of the ellipse OPQ ; this

ratio is equal to the ratio of twice the corresponding circular sec-

tor to the square of OA. By the corresponding circular sector is

meant that circular sector from which the elliptic sector was

formed by contraction along the two axes. Also, let | denote

the elliptic axis, cos <$> • fee — sin <\> • a. The product versor then

takes the form
w

£» = cosw +sinw;(cos^>-fee — sin<£- a)^,

the quantities w, <j>, and e being determined by

cos?u = cosw cos-y — sinw. sin-y cos/?y, (1)

, sinw sini> sinfiy /0 .

Bin
<f>
= H7

, (2)
VI — cosno

_ cos v sin u /? + cos u sin v y
sinw cos<£

Consequently we have for the elliptic axis OP,

(3)

t _ k{oosv sinw-/?-)- coswsint>.y) — sinw sinii sin/?y -a

Vl — COS2
MJ
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The locus of the poles of the several elliptic areas is the original

ellipsoid.

To find the product of two ellipsoidal versors of the above general
form.

The two factor versors are expressed by

£" = cosw+ sin w (cos <£•&/? — sin^-a)
,

TT

and if = cos v+ sin v (cos <j>' • ky — sin <j>' a.)
*

;

it is required to show that their product has the form

£"' = cosw + sinw(cos<£" • he — sin<£" • «) \

We have

fy = (cosm + sinw •£*) (cosv + sinv- rf
1
)

=== cosm cosv — sintt sini> cos £77

+ {costt sinv-^ + cos?; sinw-£ — sinw sin v Sin £77 J*.

The problem is reduced to finding the value of cos £77 and
Sin £7. Now £rj means the elliptic versor between the elliptic

axes

cos <f>-k/3 — sin <j> a and cos <j>' • ky — sin
<f>'

u.

To find them, we apply the following principle

:

Restore the elliptic axes to their spherical originals, find the

versor between these unit axes according to the ordinary rule,

and reduce its axes back to the ellipsoidal form. Applied to the

above, the rule means : suppose k = 1, form the cosine and the

directed Sine, and introduce k as a multiplier of those components

of the directed Sine which are perpendicular to «. Hence

cos £r) = cos <j}0os<f>' cos /3y + sin <£ sin <£',

and Sin £77 = cos <j> cos <£' sin fiya

— k(cos <j) sin<£' • /3«+sin <j> cos<t>' • ay).

If we express Sin £77 as sin £77 -£77, what must 67 now mean?
Its length is not unity, nor is it normal to the plane of £ and 77.

It means

cos<ftcos<ft
f sin/?y a — fc(cos<ft sin<fr'-/?« + sin<ft cos<tV- ay)

.

VI — cos2^
that is, the elliptic axis conjugate to the plane of £ and 77.
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Hence

cosw=coswcosu— sinwsinu(cos<£cos<£'cos/?y+sin<£ sin<£'), (1)

sinw sin <£" = cos u sin v sin <£' + cos v sin u sin <j>

+ sinitsini) cos<£cos<£' sin/}y, (2)

sinw sin <f>"
• e = cos u sinv cos <£' • y + cost; sin u cos <£ • /?

+sinwsin'y(cos<£sin<£ , -|8a-|-cos</>'sin<£.«y). (3)

FUNDAMENTAL THEOREM FOR THE GENERAL
ELLIPSOID.

To find the product of two ellipsoidal versors whose axes have the

same directions as the minor axes of the ellipsoid.

In the general ellipsoid there are three principal axes mutually

rectangular ; in Fig. 9 they are represented by OA, OB, OG. We
shall suppose the greatest semi-axis to be taken as the initial line,

but either of the others might be chosen.

Let unit axes along OA, OB, and 00 be

denoted by a, f$, y, respectively ; let k 1 de-

note the ratio of OB to OA, and k that of

00 to OA. A versor POA in the plane

COA is expressed by (k/3)
u
, while a versor

Fig 9
^ AOQ in the plane of AOB is expressed by

(k'y) v
; u denoting the ratio of twice POA

to the rectangle COA, and v that of twice AOQ to the rectangle

A OB.

jSTow (k/3) u
(Jc'y)

v=
I
cos u + sin u (JcfS) * }

{cosv + sinv-{k'y)\^

= cos u cos v + cos v sin u (kfi)
z

IT 7T IT

+ cos u sin v • (k'y)
2+ sin u sin-y • (&/?) (fc'y) •

The fourth term, as it involves two axes which are at right

angles, can contribute nothing to the cosine ; the cosine is

cosm cosi\ The second and third terms contribute kcosv sinw • /?

+ k' cosm sin i>-y to the directed Sine; while the fourth con-

tributes either — kk' sinw sinw • a or — sin?* sin« • a.

It may be shown, in the same manner as before (page 2), that

kcosv sinu- j3 + k' cosm sinv -y — kk' sin u sinv-a
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is perpendicular to both OP and OQ, hence has the direction of

the normal to their plane ; and, by the principle stated at page

13, it is seen that

ft cos v sinw-/J + fc'cosw sinv-y — Sinw sin?>-a

is the axis conjugate to the plane of POQ.
Let a plane pass through the principal axis and the perpen-

dicular component fccosi>sinw-/? + fc'cosw sini>-y ; as it passes

through the normal to the plane POQ it must cut that plane at

right angles, and OX, the line of intersection, is the principal

axis of the ellipse PQ. Let <j> denote the elliptic ratio of AOX,
and tjj the angle between ft and cos v sin u ft + cos u sin v • y, and w
the ratio of twice the elliptic versor POQ to the rectangle of the

semi-axes of its ellipse ; then the product versor takes the form

£'° = cosu>-|-sinwJcos<£(ftcosi/'-/J-|- fc'sini/fy) — sin<£- «|
2

.

For cos tc = cos u cos v, (1)

sinw sin tj> = sin u sin v, (2)

sinw cos $ cos ^ = cos v sinw, (3)

sin iv cos <£ sini/' = cos u sinw. (4)

To find the product of two ellipsoidal versors of the above form.

Let the one versor be £", where

£ = cos <j> (k cos if/
•

ft + k' sin \p • y) — sin <j> • a,

and let the other be rf, where

i) = cos <j>'(k cos xp'-ft + k' sin i// • y) — sin tj>'-u
;

it is required to show that £y has the form £"", where

£ = cos (£"(& cos \j/"-ft + k' sin i/r • y) — sin <£" • «.

Since £"77" = cos u cos u — sin u sin-u cos £77

+ {cos v sinw £ + cos « sin v • 77— sin u sin« Sin £57}
s

,

the problem reduces to finding cos £77 and Sin £77. By £77 is meant

the elliptic angle between the elliptic axes | and 77 ; the ratio of

the sector £77 to the rectangle of its ellipse is the same as the

ratio of the sector of the primitives of £ and 77 to 1. Hence the

cosine is obtained by supposing k and k' to be one, and the Sine is
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obtained by the same method, and then reducing by ft the compo-

nent having the axis /8, and by ft' the component having the

axis y. We obtain

cos £r) = cos <j> cos <j>' cos(i/> — i//) + sin <j> sin <f>',

and Sin £17 = cos <£ cos <j>' sin(i/< —ij/')-a

+ ft' (cos $ cos \j/ sin <j>'— cos <j>' cos if/' sin <£) • y
— ft (cos <j> sin \j/ sin <j>'— cos <£' sin </?' sin <£) • /3.

Hence cosw>

= cos u cos v— sin u sin w { cos <£ cos <j>' cos (ip

—

i//') + sin c£ sin <£' } , (1)

sinw cos <£" cos 1//'

= cos u sin v cos <£' cos \)/'

+

cos v sinw cos <£ cos ij/

+ sin u sin w (cos <£ sin i/r sin <£'— cos <£' sini// sin <£), (2)

sinw cos <£" sin 1//"

== cos u sin v cos <£' sin \p' 4- cos v sin w cos <j> sin i/f

— sinu sin i> (cos <£ cos k// sin <£'—cos tf>' cos i/*' sin <j>) , (3)

sinwsin(£" = cosMsin-y sin<£' + cos« sinwsin<£

— sinwsinvcos<j!>cos<£' sm(ij/ — 1//). (4)

The elliptic axis is given in magnitude and direction by
1 ^2 The locus of these axes is an ellipsoid derived

Vl — cos2
f»7

from the original ellipsoid by interchanging the ratios ft and ft'.

FUNDAMENTAL THEOREM FOR THE EQUILAT-
ERAL HYPERBOLOID OF TWO SHEETS.

In order to distinguish readily the equilateral from the general

hyperbola, it is desirable to have a single term for the equilateral

hyperbola. The term excircle, with the corresponding adjective

excircular, have been introduced by Mr. Hayward, in his "Algebra

of Coplanar Vectors." These terms are brief and suggestive, for

the equilateral hyperbola is the analogue of the circle. If we
consider the sphere, we find that its hyperbolic analogue consists

of three sheets. Two of these are similar, the one being merely

the negative of the other with respect to the centre, and are

classed together as the equilateral hyperboloid of two sheets ; the
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third is called the equilateral hyperboloid of one sheet. For

brevity we propose to call these the exsphere of two sheets, and the

exsphere of one sheet, the two together being called the exsphere.

In treating of the exsphere of two sheets, we shall generally

consider the positive sheet.

To find the expression for an exspherical versor, the plane of which

passes through the principal axis.

Let OA (Fig. 10) be the principal axis of an equilateral hyper-

boloid of two sheets, QAP a section through OA, AOP the sector

of a versor in that plane, and PM
perpendicular to OA. The versor is

denoted by -f- OP, or (OA){OP),

if OA is
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With this notation, we can deduce readily from any spherical

theorem the corresponding exspherical theorem.

A plausible hypothesis is that the i before sinh w may be con-

sidered as an index \ to be given to the axis (3, making

j8*" = coshw + sinh u- f3";

but this would leave out entirely the axis of the plane, for the

equation would reduce to

f3
iu = coshw — sinhw.

The quantity here denoted by i is the scalar V— 1, while the

index f expresses the vector V— 1.

The series for e™ is wholly scalar; but the series for e™^2

breaks up into a scalar and a vector part.

In specifying an exspherical versor, it is necessary to give not

only the ratio and the perpendicular axis of the plane, but also

the principal axis of the versor. This is the reason why the

spherical versor has to be treated with reference to a principal

axis, in order to obtain theorems which can be translated into

theorems for the exspherical versor.

To find the product of two coplanar exspherical versors, when the

common plane passes through the principal axis.

Suppose the versors shifted without change of area until the

line of meeting coincides with the principal axis. Let QOA
(Fig. 10) be denoted by /P", and AOP by f3", expressions which

axe independent of the shifting. Then

ft" = cosh u + i sinhw • @^,

fi
iv = coshv + i sinhv /3^

;

ir tr

therefore ft
u
ft" = (cosh w + i sinhw- 0*) (cosh v + sinh w-/?

¥
)

IT

= coshw coshw-HXcoshw sinhy+ cosh v sinhu) -0s

+ i
2 sinh w sinh v-fi";

but i
2 = — , and (3

W = — ;
hence

/J*"/?'" = coshw cosh v + sinhw sinhw

+ i (coshw sinh v + coshw sinhw)- /3*.

Hence ft
u
ft" = (¥

iu+v)
.
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Suppose that the sector QOP is shifted without change of area

till it starts from OA, and becomes AOB. Then

—— = cosh u cosh-u + sinh u sinh v,
OA

and ——= cosh u sinhv + coshw sinh w.
OA

To find the product of two diplanar exspherical versors when the

plane of each passes through the principal axis.

Let the two versors POA and AOQ (Fig. 11) be denoted by /?'"

and y*°, the axes (3 and y being each perpendicular to the princi-

pal axis a. Then

fF
u
y
iv = (cos iu + sin iu • /J

1
) (cos iv + sin iv y

1
)

= cosi'w cosiv — siniw siniv cos/3y

+ { cos iv sin iu /J+ cos iu sin iv • y— sin iu sin iv sin/?y • a
\

s
.

But cos iw = coshw, and sin iu = i sinhw, therefore,

puyiv _ c0Sh M coshv + sinh it sinh-y cos/?y,

+ i^coshv sinhw • /S + coshw sinhv • y— i sinhw sinhz; sin/Jy • «} .

Hence cosh/J^y*'" = cosh u cosh v + sinhw sinh v cos /3y

and Sinh jS^y*" = cosh v sinh w • /3 + coshw sinh v • y
— i sinh m sinh i> sin/?y • a.

By expanding, it may be shown that

(cosh/3"y) 2- (Sinh/3'y'") 2 = 1,

or (cos^'V") 2 +(Siii/?'y) 2 =1.

The function Sinh is the same as Sin, only an i has been

dropped from all the terms of the latter. The product versor

is also represented by a sector of an excirele of unit semi-axis.

The first and second components of the excircular Sine are per-

pendicular to the principal axis ; hence their resultant,

cosh v sinh u • /? + cosh u sinh v y,

is also perpendicular to the principal axis. Let it be represented

by OV (Fig. 11). The difficulty consists in finding the true

direction of the third component, — i sinh u sinh v sin /3y a. At
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page 53 of The Imaginary of Algebra, I suggested the following

construction

:

With V as centre, and radius equal to sinh m sinh v sin/}y,

describe a circle in the plane of OA and OV, and draw OS Or OS'
a tangent to this circle.

But another hypothesis presents itself; namely, to make the

same construction as in the case of the sphere.

Draw OU opposite to OA, and equal to sinhw sinh -u sin /3y;

and find OB, the resultant of OF and OU. We shall show that

OR satisfies the condition of being normal to the plane POQ,
while OS or OS' does not.

The reasoning at page 2 applies to give the expression for

the vectors OP and OQ.. Hence the expressions for the three

vectors OB, OP, OQ, are

OR = cosh v sinh w • /3 + cosh w sinh i> • y — sinh u sinh v sin /}y •
f3y,

OP--

OQ.

sinhw

sinh v

cos/?y

sin/Jy

1

j3 + sinhw
sin/2y

y + cosh u /3y,

ft
— sinhv

—

"-l^-y H-coshw-jSy.
Bin Py sin /3y

It follows, as there, that

cos (OB)( OP) = 0, and cos ( OB) (OQ) = 0.

Hence OB is normal to the plane POQ, and OS is not.

The function of the i before the third component of the Sine

is to indicate that the magnitude of the Sine is not VOF2 + VB2

but VOF2 - VB2
. This gives
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sinh/3'y"

= ^{cosh^ sink2u + cosh2u sinhfy + 2 cosh u cosh v sinh u sinh v cos ,87

— sinh2u sinh2* sin2/37}
= V(cosh « cosh v + sinh u sinh w cos /Sy) 2 — 1.

02?The expression gives the excircular axis both
y/OV*-VE2

in magnitude and direction. The plane of OA and OV cuts the

exsphere in an excircle, and as it passes through the normal OR,
it must cut the plane POQ at right angles. Let OX be the line

of intersection (Fig. 12). Draw XM perpendicular to OA;

draw XD a tangent to the excircle at X, and XA' parallel to

OA, and OR' the reflection of OR with respect to OV. Let <j>

denote the excircular angle of AOX; that is, the ratio of twice

the area of AOX to the square of OA.
As OR is normal to the plane POQ, it is perpendicular to OX;

but OF is perpendicular to OA; therefore the angle AOX is

equal to the angle VOR. Also as the angle AOR' is the com-

plement of R'OV and A'XD the complement of AOX, the line

OR' is parallel to the tangent XD.

Hence cosh d> = —'—= — — =
OA VOF2 -FB2

cosh2
i) sinh2M+cosh2M sinh2i>+2coshM cosh v sinh u sinhr; cos/?y

(cosh u cosh v + sinh u sinh v cos /?y)
2 — 1

MX VR

V

and sinh <£ =
OA ^/OV*-VR?

sinh u sinh v sin /?y

V (coshu cosh-y + sinhw sinh v cos /3y)
2 — 1
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The above analysis shows that the product versor of POQ
may be specified by three elements : first, e a unit axis drawn
perpendicular to OA in the plane of OA and the normal to the

plane of POQ; second, <j> the excircular angle of AOX determined

by OA and OX drawn at right angles to the normal in the plane

of OA and the normal ; third, w the versor of a unit excircle

determined by the conditions of passing through the points P
and Q and having its vertex on the line OX.
When u and v are equal, half of the line joining PQ is the

sinh of half of the versor of the product. Let y denote the sinh

of each of the factor versors, then it is easy to see from geomet-

rical considerations (v. The Imaginary of Algebra, page 53), that

. , w 1 .
,sinh-=— y Vl + cos/3y

therefore cosh— =
2 =^V2 + 2/

2(l+coSy8y)'

But it is also evident that the distance from to the mid-

point of PQ is

4
y(l-cos

/8y) + 2(,y
2 + l)

2/
2 (l-f-coSj8y) + 2

The excess of this distance over cosh^ gives the distance by

which the axis has been displaced along OX.
Hence the product versor may be expressed by an excircular

axis and an excircular versor as £", where

£ = cosh <fi-e — i sinh
<f>

• a.

To determine these quantities, we have, as in the case of the

sphere, the three equations

coshw = cosh u coshi) + sinh u sinh v cos/3y, (1)

sinhw cosh <j> = sinh u sinh v sin /3y, (2)

sinhw sinh <£•£ = cosh v shihu • ft + coshu sinh v-y. (3)

The axis c may be expressed in terms of two axes ;8 and y
forming with a a set of mutually rectangular axes, and the angle

\j/ which it makes with /?; so that for the excircular axis we
have

£= cosh
(f>
(cos \]/ /3 + sin i/f y) — i sinh

<f>
a.
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In the above investigation it is assumed that the magnitude

of the perpendicular component of the Sine is necessarily greater

than the component parallel to the principal axis. This means

that

coslA) sinh2w + cosh2w sinh2
?; -f- 2 cosh u cosh v sinh u sinh v cos fiy

is necessarily greater than sinh2w sinh2
i> sin2

/3y.

Let sin/3y = 1 ; then cos/Jy = ; and we have to compare

cosh2^ sinh2w + cosh2w sinh2v with sinh2w sinlvV

Now each term on the left is greater than the term on the right

;

therefore their sum must be greater, for each term is the square of

a real quantity. Next let sin/3y=0; then cos/3y = l; the for-

mer term becomes a complete square while the latter is ; hence

the former must always be greater than the latter.

To find the product of two exspherical versors of the general kind.

The two versors are expressed by
TT

£** = cosh it + i sinh it (cosh </> • /3 — i sinh <£ «) ,

w

and rf
v = cosh-y + i sinh v (cosh <j>' • y — i sinh<£' • a)

2
;

it is required to show that their product has the form
TT

£*"= coshw + i sinhw (cosh 4>" -e — i sinh <£"•«)*.

We have £*" = cosh it + i sinhw £*

TT

and if" = cosh v + i sinh v rj*,

therefore

gu
r)
iv = cosh u cosh v + sinhw sinhv cos £77

+i {coshu sinhfl • 77+cosh v sinh u-i—i sinh w sinhvsm^j -^}

It remains to determine cos £77 and Sin £17.

Since £ = cosh <f>-/3
— i sinh </> • «,

and rj = cosh
<f>'

-y — i sinh (/>' • a,

and as we have seen that the i is merely scalar, and does not

affect the direction, we conclude that
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cos gr) = cosh $ cosh (£' cos /?y — sinh <£ sinh $',

Sin|»y = cosh $ cosh <£' sin/3y • a

— i(cosh ^ sinh <j>' f3a + cosh <£' sinh <£ ay)

.

Substituting these values of cos £17 and Sin £-q, we obtain

coshw = cosh u cosh v

+ sinh m sinh v (cosh <£ cosh <£' cos f3y— sinh <£ sinh<£'), (1)

sinhw sinh <£" = coshu sinh « sinh <£'+ cosh v sinhw sinh $

+ sinhwsinh«cosh<£cosh<£'sin
/8y, (2)

sinhw cosh<j>"- e = coshw sinhv cosh<£'- y+cosh-y sinhw cosh <£ • /3

— sinh u sinh«(cosh^> sinh <£'-/3a+cosh<£' sinh <£• ay).(3)

Let us consider, more minutely, the above equations

cos it) = cosh </> cosh $' cos /Sy — sinh <j> sinh <j>',

and Sinfi; = cosh
<f>
cosh

<f>'
sin /3y • a

— £ (cosh <£ sinh <£' • /3a + cosh <£' sinh <£ • ay)

.

If we square these functions, we find

(cosifi;)
2 = cosh2

<£ cosh2$' cos2
/Sy + sinh2<£ sinh

2
<£'

— 2 cosh <j> cosh <£' sinh $ sinh <£' cos /Sy,

(Sin&j) 2 = cosh2<£ cosh2
<£' sin2/?y — eosh2

<£ sinh2^' — cosh2
<£' sinh2<£

— 2 cosh (j> cosh <j>' sinh $ sinh
<f>'

cos /?a ay
;

but cos/?a ay = — cosySy, and cosh2 = 1 + sinh2
, therefore,

(cos^) 2 +(Sin^) 2 = l.

As the symbol i does not affect the geometrical composition,

Sin £q must be normal to the plane of £ and 17 ; hence, if we
analyze it into sin £7 -£17, we must have sin^ = Vl— (cos £17)

2

,

and ^_

—

^h
Vl-(cos^) 2

Consider the special case, when y = /8. Then

cos $17 = cosh<£ cosh<£'— sinh rj> sinh <£',

and Sin^j; = — i(cosh <j> sinh <£' — cosh
<f>'

sinh <j>) /Ja.
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Hence |jj becomes an excircular versor. Consider next the special

case where y is perpendicular to ft. Then

cos £r) = — sinh <j> sinh <f>',

and Sm$rj = cosh <j> cosh <£' a+i(cosh <£ sinh <£'.y-)-cosh<£'sinh <£•/?).

It appears that the locus of the poles of all the axes is the

equilateral hyperboloid of one sheet, (v. page 27.)

FUNDAMENTAL THEOREM FOR THE EQUILAT-
ERAL HYPERBOLOID OF ONE SHEET.

To find the product of a circular and an excircular versor, when

they have a common plane.

K MLA
Fig. 13.

Let AOP represent a circular, and POQ an excircular, versor

(Fig. 13) ; and let them be denoted by /3" and /J'". We have

/J"/?" = /3"+ ''*' = (cosit + sinu • (5*) (cosh-y + i sinhv • /}*)

= cos u eosh-y — i sin u sinh v

-f (cosh v sin u + i cos u sinh v) • ^.

What is the meaning of the i which occurs in these scalar func-

tions ? Is the magnitude of the cosine

or is it

V (cos u cosh v) 2 — (sin w sinh i>)
2

cos u cosh v — sin u sinh v ?
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At page 48 of Definitions of the Trigonometric Functions, I show-

that

cos(w + iv) = —

—

, and sin(w + iv)= =Q,
OA OA

and that the ordinary proof for the cosine and the sine of the

sum of two angles gives

OK= OM ON MP NQ
,

OA OA OP OA OP '

that is, cos (w + iv) = cos u cosh v — sinu sinh v,

and KQ = MPON OMNQ,.
OA OA OP OA OP'

that is, sin (u + iv) = sin u cosh v + cos u sinh v.

What, then, is the function of the i ? It shows that if you
form the two squares, taking account of it, their sum will be

equal to unity. Also, in forming the products of versors, it must
be taken into account. When it is preserved, the rules for cir-

cular versors apply without change to excircular versors.

Here we have the true geometric meaning of a bi-versor, and
consequently of a bi-quaternion ; for the latter is only the former

multiplied by a line.

As a special case, let u = ^ ; we then have

this versor evidently refers to the conjugate hyperbola.

Again, let u = ir ; we have

p*+iv_ _
(cosll v _|_ i gjjjh.y .

^f
^

which refers to the opposite hyperbola.

In the following table, the related excircular versors are placed

in the same line with their circular analogues, and the diagram

(Fig. 14) shows the related versors graphically.
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Circular.
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To find the product of tioo versors of the equilateral hyperboloid

of one sheet, when each passes through the principal axis of the

hyperboloid.

Let P be a point on the excircle of one sheet (Fig. 15), OP its

radius; draw OB equal to OA, in the plane of OA and OP; AB
is joined by a quadrant of a cir-

cle, and BOP by a sector of an

excircle. Let u denote the ratio

of twice the area of the sector

POB to the square of OA
; ^ is

the ratio of twice the area of

BOA to the square of OA.

Hence if /3 is a unit axis per-

pIG 15>
pendicular to OB and OA, the

expression for the versor POA
is 0* *". Similarly, the expression for the versor AOQ is yf +''".

Now /$* '"y* '"=(—isinhw+coshw-/32
)(— i sinh«+ cosh -y-y*)

= — (sinh it sinh-y -|- coshw coshv cos/Jy)
IT

— {i(coshu sinhv • /? + cosh^ sinhw • y) + cosh it cosh-y sin(2y a\^-

Now the magnitude of cosh it sinhv •/? + cosh-ysinhw-y may be

greater or less than cosh it coshv sin /3y. If it is greater, then

the directed sine may be thrown into the form

— i\ (cosh it sinh v /3 + coshv sinhw y) — i coshw coshv sin /?y a\,

consequently, the ratio is excircular, and the axis excircular;

hence the product takes the form

— i*
w

, where £ = cosh <j>-e. — i sinh <j> • a.

But if coshw cosh v sin /3y is the greater, the directed sine

takes the form

— {coshw coshv sinfjy-a + i(coshw sinhv-^ + cosh'y sinh it -y) \.

The ratio of the product is circular, but the axis is excircular.

Let w denote the ratio ; the axis has the form cosh<£ • a—i sinh<£-e,

so that the product is of the form

— f" = — cosw — sinw (cosh <j>- a — i sinh«£-e) .
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In the former case, the locus of the poles of the axes is the
exsphere of one sheet ; in the latter, the opposite sheet of the
exsphere of two sheets.

To find the product of two general versors of the equilateral hyper-

boloid of one sheet.

The one versor may be represented by

-{»+(<y.j8 + «.o) f
},

•where x2 — y
2 + z2 = 1, and /3 is perpendicular to a. Similarly,

the other versor may be represented by

-\x' + {iy'.y + z'-a) l
\,

where x'
2 — y'2 + z

13 = 1, and y is perpendicular to a.

The cosine of the product is

xx' + yy' cos/Jy — zz',

and the Sine of the product is

i(xy' -y + x'y- (3) + (xz' + x'z + yy' sin/Jy) • a.

As before, if (xy') 2 + (x'y) 2 + 2 xx'yy' cos fly is greater than

(xz' + x'z + yy' sin /Jy)
2
, the ratio of the product is excircular ; but

if less, it is circular. In the former case the axis is an axis

of the exsphere of one sheet, in the latter it is an axis of the

exsphere of two sheets.

To find the product of two versors which f)<iss through the prin-

cipal axis, when the one belongs to the exsphere of tivo sheets, the other

to the exsphere of one sheet.

Let the former versor be denoted by /3
iu

, and the latter by

yf+'-». Then

yE-H"_
(cosh M _|_ $ smhw . (3*) (— ? sinhii+cosh'u • y

J
)

= — £(coshw sinhv + sinhw eoshw cos/?y)

+ {cosh u cosh v-y + sinh u sinh v-fl — i sinh u cosh v sin/3y • «} .

As the magnitude of cosh wcoshi>-y + sinhw sinh v-(3 is by

reasoning similar to that at page 23 seen to be greater than

sinhw cosh v sin (3y, we see that the axis is excircular; and the

i before the scalar term shows that the ratio is excircular. From
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comparison of the table, page 27, we see that the product versor

has the form

£
i+iw

, where £ = cosh <j>-e — i sinh
<f>

a,

the equations being

sinhw = cosh u sinh v + sinh u cosh v cos fiy, (1

)

coshw sinh <£ = cosh u sinhw + sinh u cosh v cos /6y, (2)

coshw cosh <£• e = cosh w cosh «• y + sinhu sinh i> • /J. (3)

FUNDAMENTAL THEOREM FOR THE
HYPERBOLOID.

The theorems for the hyperboloid are obtained from the theo-

rems for the exsphere in the same manner as the theorems for the

ellipsoid are deduced from those for the sphere.

Two general versors for the hyperboloid of two sheets are

expressed by t** and rf", where

£ = coshi£ (cos</'-X;
/
8 + sin^ -k'y) — i sinh<£ • a,

and fj = cosh <£' (cos i/A fc/3 + sin i//- k'y) — i sinh <j>'- a.

Now g"if = (coshw + i sinhw • |
T
) (coshw + i sinh v • rf)

=coshw coshii + sinh it sinhw cosirj

+ { £(cosh?; sinhw £ + cosh it sinh?; . rj) + sinhw sinh-u Sin £77}
5

.

The problem is reduced to finding the versor £rj. We apply the

same principle as that employed in finding the versor between

two elliptic axes (page 13), namely: Restore the axes to their

excircular primitives, find the versor between these excircular

axes (page 23), and change its axis according to the ratios of the

contraction of the hyperboloid. This gives

cos£jj = cosh </> cosh <£'{cos(</r — i//') }
— sinh<£ sinh<£',

Sin £t) = cosh $ cosh <£' sin (</r — i//') • a.

— i (cosh <j} sinh <£' sini/r— cosh 4>' sinh <j> sin if/') •&/?

+ 1 (cosh
<f>
sinh <£' cos \[r— cosh <£' sinh <j> cos i/?') • k'y.

In this manner, each theorem proved for the exsphere may be

generalized for the hyperboloid.
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DE MOIVRE'S THEOREM.

To find any integral power of a versor.

Let n denote any integral number. For the general spherical
versor we have (£•)"= ?'», because the axes of the factor versors
are all the same. Hence

it

cosnw + sinnit-£2

= (cosm + sinw-p)"

= cos"m + n cos"- 1
!* sinw • t$ + n<Ji ~ ^ cos"- 2« sin2w • £*+,

from which it follows that

cos nu = cos"m — n \n ~ 1 ) cos »-2M s jn2M _|_
}

and sinnu — n cos"
_1

it sin u — w
(
w — !)(" — 2

) cosn_3w sin8w +

.

o

.

Similarly for the exspherical versor (£'")", as the axes are all

the same (£'")" = £*'"u
, and

77 7T

cosh nu + isinh»iM-^ = (coshM + isinhw-^)"

= eosh"w +ni cosh"- 1
?* sinhit •^+ n ^n ~ ^ i

2 coshn-2u sinh2u-fr+

;

therefore

coshmw = cosh"w + n
(
n ~ ' cosh"~% sinh2w+ ,

2!

andsinhrm = w. cosh"- ]
tt sinhw + w("~ 1

) (w~ ") cosh"-3Msinh3»+.

The only difference in the case of the general ellipsoidal versor

is that u is measured elliptically and £ is an ellipsoidal axis.

So for the general hyperboloidal versor, u is measured hyper-

bolically and f is a hyperboloidal axis.
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To find any integral root of a versor.

Consider first the case of an ellipsoidal versor. If u is defined

as the ratio of twice the sector to the rectangle formed by the
x

semi-axes, it cannot be greater than 2tt. Then (£")" is unambigu-
u

ously equal to £". Hence

cos- + sin--P = (cosw + sinw •£*)*.
n n '

If cos u is not less than sin u, then

11 U TV — 3£ —
cos- + sin--£2 = (cosw) n il + tanw-^J"

n n v ' '
i

1/1

, v- C - 1

,

j.? n\n J , „ )= (cosw)"-^ l+-tanw-£ 2
-\—±-^—t-t&ivu £* + y;

therefore

cos - = (cos u) " \ 1+ -^- itan2M
n ( n2 2

!

and sin- = (cosw)" < -tanw — „ ,,

,

'

-tan3u + [
n v ' {n n3 31 )

But if sin u is not less than cos u, we have the complementary

series

f"= (sinM)"p{l + cotw •rf
}"•

Consider next the case of a hyperboloidal versor. A versor for

the hyperboloid of two sheets is denoted by £". Now
1 ™ » i

(£'")" = £" ={ooshM + £sinhw.£*} n

I * I
= (coshw)"{l + i tanhw • £*}",

for coshw is always greater than sinhw ; therefore

cosh- = (eoshw)» 1 1 ^—tanh2w
n ( w2 2!

_(w-l)(2w-l)(3n-l) tanIi2
>

«4 4! K



PRINCIPLES OP ELLIPTIC AND HYPERBOLIC ANALYSIS. 33

and sinh^= (cosh M)»
{
^tanhu - (n ~^^

~

1}
tanh»M+ }•

But a versor for the hyperboloid of one sheet is expressed by

^
+i

". Now

(£*
+'")» = en " = {

- i sinhw + coshw . |*|"

= (coshw) np{l-itanhit-£ f
|",

which is expanded as before.

POLAR THEOREM.

To deduce in the trigonometry of the sphere the polar theorem

corresponding to the fundamental theorem.

The cosine theorem, which is the fundamental theorem of

spherical trigonometry, expresses the side of a spherical triangle

in terms of the opposite sides and their included angle. In

treatises on spherical trigonometry, it is shown how to deduce

from the cosine theorem a polar or supple-

mental theorem which expresses an angle

in terms of the other two angles and the

opposite side. It is our object to find the

polar theorem corresponding to the com-

plete fundamental theorem.

Let the versors of the three sides of the

spherical triangle (Fig. 16), taken the same

way round, be denoted by £
a
, if, f, where

£, rj, £ are unit axes, and a, b, c denote the

ratio of twice the area of the sector to the area

of the rectangle formed by the semi-axes of its circle (which, in

this case, is simply the square of the radius). The angles in-

cluded by the sides are usually denominated A, B, C, respectively,

but what it is necessary to consider in view of further generali-

zation is the angles between the planes, or rather the versors

between the axes. These in accordance with our notation are

denoted by ifc, ££, and irj respectively ; the axes of jthese versors,

which are also of unit length, are denoted by ??£, U, and &;,
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respectively, and they correspond to the poles of the comers of

the triangle as indicated by the figure.

The fundamental theorem is

g*rf = cos a cos b — sin a sin b cos £rj

tr

+ {cos&sina-£ + cosasin&-»7 — sin a sin 6 sin^-^}*;

but as £
c
is taken in the opposite direction, we have

£° = cos a cos b — sin a sin b cos £17

TT

+ \
— cos b sin a £ — cos a sin b -q+ sin a sin b sin £17 • £rj }

^

.

The polar theorem is obtained by changing each side into the

supplement of the corresponding angle and the angle into the

supplement of the corresponding side. Hence

COS (it — £17) = COS(tt — i)l) COS (tt— ££)

— sin(ir — r)0 sin(7r — ££) cos(ir — c)
;

that is, cos £17 = — cos ^£ cos £| — sin ^£ sin £| cos c.

When -d, i?, C, are used to denote the external angles between

the sides, the above equation is written

cos (7= — cosA cosB — sinA sinB cose.

Apply the same rule of change to the Sine part, and we obtain

Sin(7r-6/) = -cos(ir-£) Sin(™—^)-cos(tt-^) Sin(*—£f)

+ sin(7r — 77^) sin(ir — ££) sine • £

;

that is, Sin £17 = cos££ Sini;£+cos^ Sin££+sinij£ sin££ sine • £.

To deduce the polar theorem for the ellipsoid.

Let £", rf, £" denote the three versors of the original ellipsoidal

triangle taken the same way round; then the corresponding

versors of the polar triangle are r/l, ££, and £rj. The third versor

of the original triangle is given in terms of the other two by the

theorem

£
c = cos a cos b — sin a sin 6 cos £rj

7T

+ {
— cos b sina-£ — cos a sin&-?/ + sin a sin 6 Sin £77}*.
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The third versor of the polar triangle is obtained in terms of

the other two by changing each versor into the supplement of its

corresponding versor ; hence

cos $t) = — cos »;£ cos ££ — sin ^£ sin ££ cos c,

and SinfcNj = cos££ Sin^ + cos^ Sin£f + siniyS sin££ Sin£c
.

In form it is the same as for the sphere ; the only difference is

in the expressions for the ellipsoidal axes £, 17, £, and the manner

of deducing the cosine and Sine of the versor between two such

axes. (See page 13.) The polar ellipsoid is not identical with

the original ellipsoid; the ratios of the two minor axes are

interchanged.

To deduce the polar theorem for the exsphere of two sheets.

Let £**, rf
1

,
£*" denote the versors for the three sides of a triangle

of the exsphere of two sheets, taken in the same order round.

The axes £, t], £ have their poles on the exsphere of two sheets

(page 23) ; it is required to deduce the theorem for that polar

triangle. For the original triangle, we have

g° = cos ia cos ib — sin ia sin ib cos £17

ft

+ I
— cos ib sin ia £— cos ia sin ib -q+ sin ia sin ib Sin £17

}

J
.

By changing each versor into the supplement of the correspond-

ing versor, we obtain

£17 = —cos -q£ cos££ — sin^ sin££ coshc
IT

+ Jcos£f Sinij£+cosi7£ Sin£|+i' sin^ sin££ sinhc • £p.

The above cosine equation has a marked resemblance to the

fundamental equation of non-euclidean geometry (see Dr. Gun-

ther's Hyperbelfunctionen, pages 306 and 322). It is true that -qt,

and ££ are not simple circular versors, but the functions are cos

and sin in a generalized sense. I venture the opinion that non-

euclidean geometry is nothing but trigonometry on the exsphere

;

and that the so-called elliptic and hyperbolic geometries are iden-

tical with the ellipsoidal and hyperboloidal trigonometry developed

in this paper.
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To deduce the general polar theorem for the exsphere.

Let £", if, £
c denote the three sides of an exspherical triangle

;

the axes £, i], £ are exspherical, but the ratios a, b, c may be cir-

cular or excircular, or be compounded of x or f and an excircular

ratio. For the original triangle, we have

£
c = cos a cos b — sin a sin 6 cos £17

+ {— cos a sin&-|— cosasin&-i;+ sinasin6 Sin £97}*,

and for the polar triangle,

iil = — cos ijt, cos ££ — sin i)£ sin^ cos c

+ { cos CI Sin -qt,

+

cos ifc Sin&+ sin 1$, sin t& Sinf }
*

Here the functions cos and sin are used in their most general

meaning.

SINE THEOREM.

To prove that if £", if, C denote the three versors of a spherical

triangle, then

sin i}t, _ sin ££_ sin j-q

sina sin& sine

We have cose = cos a cos& — sin a sin 6 cos £17,

and sinc-f = — cos& sin a •(— cos a smb- Tj+smasinb &w.£i)-ijij.

By squaring the second equation, we obtain

sin2 c = cos2 6 sin2 a

+

cos2 a sin2b+ sin2a sin2 b sin2 £77

+ 2 cos a cos b sina sin b cos £i?

;

then, by substituting for cos £17 from the first equation, and reduc-

ing, we obtain

sin a sin b sin £77 = Vl— cos2 a

—

cos2b— cos2
c+ 2 cos a cos 6 cos c.

Hence
s^'= sjn^ = sin&

sin c sin a sin

This theorem is also true for an ellipsoid of revolution, for then

sin a sin & sin £17 = ft: Vl — cos2a— cos26— cos2
c -f 2 cos a cos & cos a
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To find the analogue for the exsphere of the sine theorem.

Let £, ri, £ denote exspherical axes, and a, b, c versors which
may be circular, or excircular, or both combined. Then, with the
general meaning of the sin and cos functions,

sina sin 6 sin^ = Vl — cos2a— cos26— cos2 c+2 cos a cos 6 cose.

Hence si^= sinjg = sinjg

sine sin a sin&

We have seen that, if a and b are both simply excircular, it

does not follow that c is (page 28).

SUM AND DIFFERENCE THEOREMS.
The reciprocal of a given versor.

By the reciprocal of a given versor is meant the versor of
equal index but of opposite axis. Let £" denote the given
spherical versor; its reciprocal is (—1)". But it may be shown
that t" = (-!)". For

£-" = cos(— w) + sin(— u) .£*

IT

= cos u — sin u - £*

rr

= cosw + sinw- (— £)
2

= (-*)*-

Similarly the reciprocal of an exspherical versor £
m

is (— £)'"

or £
_,u

, and
IT

£~iu = cosh u — i sinh w • f
T

.

The reciprocal of an ellipsoidal versor £" is also £~", the only

difference being that | is no longer a spherical, but an ellipsoidal

axis. So for the hyperboloidal versor.

To find the analogues of the sum and difference theorems of

•plane trigonometry.

At page 45 of " The Imaginary of Algebra," I have shown how
to generalize for the sphere the following well-known theorems

in plane trigonometry, namely,

cos(^ + B) + cos(A— B) = 2 cosA cos B,

cos(^4 + B) — cos (^4 — B) = — 2 sinA sin B,
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sin(J. + B) + sin(A — B) = 2 cosB sin A,

sin(-4-f B)— sm.(A — B) = 2 cos .4 sin .B,

and cos C + cos D = 2 cos—i— cos —^—

,

z z

„ „ . C + D C-D
cos C — cosD — — 2 sin—^~— sin—-—

,

^ Z

sinC+sinZ> = 2 sin ^!±i? cos^-^,

„ r> o C+D C — DsmC— sin.D = 2cos ^^— sin-—

—

2 2

The generalized formulae of the first set for the sphere are,

using general axes £ and ij,

cos fy + cos fj7
-B = 2 cos .4 cos B,

cos £V — eos £V"" = - 2 cos (Sin^ Sin/),

Sinfy + Sin £V* = 2 cos5 Sin f,

Sinfy - Sin£Vfl = 2 j cos .4 Sin/ - Sin(Sinf Sin/) j.

Corresponding to the latter set of four equations we have

COS C
c + COS uP = 2 COS { <o* (ea-"^) * } COS(o)^ ) \

cos £
c - cos <o

J
' = - 2cos[Sin{o)fl

( <o-^ <')*} Sin(<u-^ c')'],

SinCc +Sino>1, = 2cos(a>-DZ,
c)i Sm\o>D (a

>-D
Z
c
)'l

Sin£c - Sin«>* = 2cosS<oi, (<»~'B0*S Sin^n*
- 2Sin Sinja>J>

( (B-^ <7

)'.( Sin(«u
-fl

f
e)i

The corresponding theorems for the ellipsoid are the same,

excepting that

£ = cos <f>-k/3 — sin </>•«, 17 = cos <j>' -ky — sin (£' • «.

Consequently cos £17 is the same as before, but

Sin £17= cos <£ cos <£' sin |8y -a— fc(cos</>sin<£'-/3a +cos^>' sin</>-ay).

For the general ellipsoid the only difference is in the expres-

sions for i, rj, and sin £17 • £17.
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EXPONENTIAL THEOREM.

To find the exponential series for an ellipsoidal versor.

In the expression £" for a spherical versor, the u and £ are truly-

related as index to base, for logf = u log^1 = u £
5

, and therefore
IT

f = e
u'£T

. Consequently

2! 4!

( 3! 5! >

In the case of the spherical versor, £ = cos <£ • /J — sin <£ • «, or

cos<£(cosi/'-|8 + sini/f-y) — sin^-a, where a, /J, y are unit axes

mutually rectangular.

The expansion for the ellipsoidal versor f differs only in the

way in which u is measured, and in the expression for £, which is

now cos <£&/? — sm<j>-a, or cos$(cos</ffc/3+ sin f k'y) — sin<£-a.

To find the exponential series for a hyperboloidal versor.

The expression for a versor on the exsphere of two sheets is

£'". Now
IT

2! 3!

= l + !ll+ ^ +
2! 4!

+ i

|
W +

3!
+

5!
+ H'

The expression for a mixed exspherical versor is fl+iv Now

= i +{u +iv) .e +^±^.t+^^-il +

—1 (m + *,o
2

1
(m +^) 4

..-

2! 4!

. ( ,
. (u + ivY

, \ £2
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Both the cosine and the sine break up into two components, the

one independent of i, and the other involving *'. Here we have

the sine and the cosine of the ordinary complex quantity.

As the ratio of a hyperboloidal versor may be circular or excir-

cular, or both combined, the general versor may be expressed by

i", where a is as general as stated. Then

— 1
ft

2
,
a4

2! 4!

X 3! 5! i

To find the exponential series for the product of two ellipsoidal

versors.

In the paper on The Fundamental Theorems of Analysis Gener-

alized for Space I have shown that if £" and rf denote any two

spherical versors, then

£u-„v __ gW-^+VTjE

IT IT

2!
!+(„.£ + „.,*)+! („.f*+„.,f)i+ l

(«.£*+„.,*)•+,

where the powers of the binomial are expanded according to the

binomial theorem, but subject to the special proviso that the order

of the axes £, rj must be preserved in all the axial terms. Thus

frf = 1 + U i
l + V r,

1

+ etc.

= 1 {w2 + 2wvcos£i7 + 'y
2

}

H {
u* + 4 usv cos £17 + 6 mV+ 4wu3 cos^+ t>

4

— etc.

(1)
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+ {«-||03 + 3m>2)+etc. }.£* (2)

+ | « - 1", (Bu
sv + «3

) + etc.
J-

• J (3)

+ |
—— 2 wy +— (4tA> + 4 md3

) — etc. t sin £9 -$^. (4)

In the case of the sphere

£ = cos <j> /2 — sin <£ • «,

and r] = cos <j>' -y — sin </>'•«;

consequently cos £9 = cos <£ cos <£' cos (3y + sin <£ sin $', and

Sin£i/ = cos<£cos<£'sin/Jya — (cos<£ sin<£' /?<* + cos</>' sin<£-ay).

For the ellipsoid of revolution the expansion is obtained by
introducing ellipsoidal axes £ and rj ; and the corresponding theo-

rems for the hyperboloid are obtained by changing the axes and

indices into hyperboloid axes and indices.

Tofind the exponential series for the product of two hyperboloidal

versors.

Let £ and 17 denote any two hyperboloidal axes, and u and v

general hyperboloidal ratios (p. 40) . Then the product is

IT IT

tx ,
(u-e+vy^r

1

(u.?+v v*)»
-

The form of the theorem is the same as before.

LOGARITHMIC VERSORS.

In the paper on The Fundamental Theorems of Analysis Gen-

eralized for Space, page 16, 1 have shown that when the index of

a, in e
A -<$, is generalized, we obtain the expression for the versor
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corresponding to a sector of a logarithmic spiral. Let w denote

the general angle, and a;J the generalized versor ; then

at = e*-«"

Ai „2w AS „Sw Ai „iu>

21 3! 4!

1 p a ™ i

-42 cos2w . ^43 eos3w , .= 1 + A cosw -4 \- etc.
2! 3!

. f j *-;„,,„ i

-4.* sin 2w
,
J.3 sin3w . . ) f+ "M smw H

^j
1 g-j h etc.

J-

« a

pAcoBw pA Bin w.aZ

It is there shown that w is the constant angle between the radius

vector and the tangent, or rather that it is the constant difference

between the circular versor from the principal axis to the tan-

gent, and that from the principal axis to the radius vector. It is

also shown that Asmw gives the ratio of twice the area of the

corresponding circular sector to the square of the radius, while

A cosw gives the logarithm of the ratio of the radius vector to

the principal axis.

I have there called such a logarithmic versor, when multiplied

by a length, a quinternion. In his Synopsis der Hoheren Mathe-

matik, Mr. Hagen has pointed out that the proper classical word

is quinion. A quaternion means a ratio of three elements mul-

tiplied by a length; therefore, a ratio involving an additional

element when multiplied by a length, is a quinion.

In the paper on The Imaginary of Algebra, an excircular ana-

logue is deduced, namely, afw = eA°-"", but there are in reality

three, according to whether A or w, or both, are affected by the

V=T.

To deduce the four forms of logarithmic versor.

First: circular-circular. Let £" denote a general spherical

versor, then

= 1 + up +— i
2w + — P° + etc.

2! 3!

Here w denotes the constant difference between the versor from

the principal axis to the tangent and that from the principal

axis to the radius vector.



PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS. 43

Second: circular-excircular. Let iw denote the constant dif-

ference between the excircular versor from the principal axis to

the tangent, and that from the principal axis to the radius

vector; then

= 1 + u £ '» + — • £Mw +— . £3™ 4-
2! 3!

= 14- u coshw +— cosh 2 m; + — cosh 3w 4-
2! 3!

+ i-j wsinhwH sinh2«H sinh3w>4- |- • £*

Third : excircular-circular. Let $
iu denote a general exspherical

IT

versor ; it is equal to e*"f
T

, and here 1 denotes the constant sum

of the circular versors above mentioned. Let that constant sum

be any other circular versor w. Then

IT

Hu pin •£'° pit* cos w+iu sin w • £^

= 1 4- ,-„. f +&¥ e~ + &£•?" + etc.

2! 4!

4-i{«-^-^-^+}

9 4

= 1 — — cos 2 w +— cos 4 to — etc.

2! 4!

4- i -j m cos w — ^- cos 3 w + etc.
j-

+ (_^ sin2w + ^sin4w-|-^(2! 4! )

4-i-j Msinw-^sin3w4-etc. | f •

Here both the cosine and the sine consists of a real and an ap-

parently imaginary part. The geometrical meaning has already

been explained (page 25).
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Fourth : excircular-excircular. Let iw denote the constant sum.

of the excircular versors mentioned in the second case. Then

7T

tiu __ giw •
g
lw __ gf«co8hw-«smhio • £2

= 1 -— (cosh 2w + i sinh 2 w • f
f)'+

w !

+ iw(eosh w + i sinhw £*) —

= 1 —— cosh 2 «; H cosh 4w —
2! 4!Cm3

)+ j -j m cosh m> —— cosh 3 w + >

— km sinh w sinh 3w+ >• f
I 3! J

+M — 7T sinn 2 w +— sinh 4 w — >• • f
¥

.(2! 4! )

To find the product of two logarithmic versors of the most general

hind.

Let f and -q denote general axes, and u, w, v, t general ratios

;

that is, each may be a sum of a circular and an excircular ratio.

Then £; and rft each denote a general logarithmic versor. Then

= i +(». f +,.,,) + c • *+» • *>'+ (»
•
g-+« v'Y +etc .

The powers of the binomial are formed according to the same

rule as before. (Fundamental Theorems, page 18.)

COMPOSITION OP ROTATIONS.

To find the resultant of two elliptic rotations round axes which

pass through a common point.

Two circular rotations are compounded by the principle that

the product of the half rotations is half of the resultant rotation.
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Let any two circular rotations be denoted by £" and rf, and
their resultant by J"xi/; then

( u v u v >= -i cos - cos - — sin - sin - cos £17
(.2 2 2 2

+ fcos|sin | • £ + cos | sin| • v - sin | sin| 8in^f

J

*.

Let a; = cos - cos --sin- sin - cos frj,

2 2 2 2

y = Vl-.a2
,

cos - sin- • f + cos- sm- • « — sin- sin - Sin $»
2 2 2 2

7

2 2
,

vr^^ ;

then £
u Xrf = x2 -y2 + 2xy-^.

The elliptic generalization is obtained by generalizing the axes

| and rj and finding cos £17 and Sin $rj, as at page 15.

To find the resultant of two hyperbolic rotations round axes which

pass through a common point.

Let £" and if" denote two exspherical rotations which have a

common principal axis ; let their resultant be denoted by £*" x rf"

By analogy we deduce that

iu iv

2r"xf=(^v)

= - cosh - cosh -+ sinh ^ sinh - cos £rj(22 2 2

+ ifcosh 5 sinh | • f+ cosh| sinh| • r, - i sinh| sinh | Sin^J J

'

Let a; = cosh ^ cosh ^ + sinh ^ sinh - cos fy.
2 2 2 2

y = y/x2 - 1,

cosh^ sinh^ • £+cosh£ sinh£ • v-i sinh^ sinh^ Sin*?
2 2 2 2 & &

*
= 7x^1

Then £
iu x rf = x2 + y

2 + 2 xy $.
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Suppose a fluid to move round the axis $, each particle describ-

ing a hyperbolic angle u, and then round the axis 17 by a hyper-

bolic angle v, the principal axes of the two motions coinciding

;

the resultant gives the angle, the plane, and the principal axes of

the equivalent single motion of the same kind. The axis of that

motion does not pass through the intersection of the axes of the

components.

A more general result is obtained by supposing the ratios to

be complex; the theorem is then expressed by the spherical

theorem taken in a generalized sense, just as in ordinary algebra

a; may be positive or negative.

To find the effect of an elliptic rotation on a line.

The effect of a circular rotation $
u upon a unit axis p, is given

by the equation

i
u
p = cosfp • £ + sinw Sinfp + cos it Sin (Sin £p)£.

(Principles of the Algebra of Physics, page 100.)

It was shown by Cayley that the effect of |" upon p is given

by the Sine of the product $
2 p* ^. For by the expansion of

^cos--sm-.^cos-+sin-.^,

the directed sine is found to be

cos2 - • p + sin2^cos fp f + cos^ sin^ Sin fp — sin2^ Sin(Sin£p)£.

But cos2
1 • P = cos2

^ cos £P £ + cos2~ Sin (Sin £p) £

therefore the directed sine is

cos ip f + sin u Sin $p + cos u Sin (Sin fp) f

.

To generalize for an elliptic rotation we substitute the more

general value of £ and form cos fp, Sinfp, and Sin(Sinfp)f, accord-

ing to the rules stated at page 15. For example, let

£ = fc cos <p • j8 — sin <£ •
«,

p = sin 6 • y + cos a

;
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then

cos fp = cos
<f>

sin 6 cos/Jy — sin <j> cos 6,

Sin£p = cos <£ sin 6 sin/3y « + ft(cos<£cos0-/8a — sin <£ sin • «y)

.

To find the effect of a hyperbolic rotation on a line.

Consider the simplest exspherical analogue of the spherical

theorem of the preceding article ; it is

£'"p = cos $p • £ + i sinh u Sin fp + cosh u Sin (Sin £p) £

But £ is now an excircular axis of the form

£ = cosh <f>-fl
— i sinh <£ • a.

Let, as before, p = sin 6 • y + cos 6 a
;

then cos fp = cosh <p sin cos /3y — i sinh <£ cos 0,

Sin £p = cosh
<f>

sin sin /3y .• a + cosh <£ cos • fia. — i sinh <£ sin • «y,

Sin(Sinfp)£

= cosh 2
<£ sin0sin/3y«;6 + cosh2 <£cos0- a— sinh2

<£ sin0-y

— i cosh
<f>
sinh <p cos 6-(3—i cosh <£ sinh <£ sin sin ay/? • a.

The effect of a hyperbolic rotation is obtained by taking the

more general value of f and applying the hyperbolic rules of

multiplication.





Utility of Quaternions in Physics. By A. McAulay, M.A.,
Lecturer in Mathematics and Physics in the University of Tasmania,

pp. xiv, 107. London, Macmillan & Co.

The volume before us is an essay that was submitted in December, 1887,

in competition for the Smith's Prizes at the University of Cambridge, under

the title of "Quaternions as a Practical Instrument of Physical Research."

An article bearing the original title of the essay appeared in the Philo-

sophical Magazine for June, 1892, and another extract was printed in the

Proceedings of the Royal Society of Edinburgh, 1890-91, p. 98, under the

title of "Proposed Extension of the Powers of Quaternion Differentiation."

The present volume contains the complete essay, with a short preface and

some foot-notes in addition.

The essay opens as follows :
" It is a curious phenomenon in the History

of Mathematics that the greatest work of the greatest mathematician of the

century which prides itself upon being the most enlightened the world has

yet seen, has suffered the most chilling neglect." In further description of

this phenomenon, it is stated that the work has been neglected alike by pure

analysts and mathematical physicists with very few exceptions, the grand

exception being Professor Tait ; that it is not studied at the University of

Cambridge except by a few, and only as a non-commutative algebra, not as

a geometrical method ; that there is a solid and well-nigh universal scepti-

cism as to its utility in original physical investigations, and that the physicists

who have studied it are satisfied with Maxwell's paradoxical position :
" I

am convinced that the introduction of the ideas, as distinguished from the

operations and methods of quaternions, will be of great use to us in all

parts of our subject." To complete the description of the phenomenon,

I may add that a Scottish mathematician, on reading Hamilton's Quater-

nions, first formed the alternative conclusion that either he himself was a

dull stupid or the book sheer nonsense, but on reading further was able to

arrive at the more comforting alternative ; that a German mathematician

declared the method to be " an aberration of the human intellect " ;
and

that a French mathematician gave the verdict, " Quaternions have no sense

in them, and to try to find for them a geometrical interpretation is as if one

were to turn out a well-rounded phrase, and were afterwards to bethink

oneself about.the meaning to be put into the words."
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How does the author explain the curious phenomenon ? As follows

:

" Workers naturally find themselves, while still inexperienced in the use of

quaternions, incapable of clearly thinking through them and of making

them do the work of Cartesian geometry, and they conclude that quater-

nions do not provide suitable treatment for what they have in hand.

They then grow rather disgusted with these vexatious quaternions, and,

consoling themselves with the reflection that Maxwell, before penning

the above extract, had had more experience than themselves, decide

that the subject only requires a superficial study to be rendered of as great

utility as it is capable." But the author admits that there is a veritable

stumbling-block in the way, and to remove it is the object of the essay.

He says, p. 2 :
" The fact is that the subject requires a slight development

in order readily to apply to the practical consideration of most physical

subjects. The first steps of this, which consist chiefly in the invention of

new symbols of operation and a slight examination of their chief properties,

I have endeavored to give in the following pages." The author's develop-

ment consists in an extension of quaternion differentiation, pp. 12-24.

According to Hamilton and Tait, the symbol v = * Vj \-k— is

dx ay dz

merely an operator, and therefore should be written immediately to the

left of the operand ; but, according to Mr. McAulay, it is a symbolic vector,

and therefore is capable of any position, whether before or after the

variable. He denotes the tie between the symbolic vector and the variable,

not by juxtaposition to the left, but by a common suffix. In the third

edition of his Treatise, Professor Tait allows separation, but he stickles for

separation to the^left only. A new symbolic vector A is introduced ; it

applies to all the variables in the term in which it appears. The symbol v

with a prefix, as trA, means —2 -\ j -\ k, <r being ui+vj+wk.
du dv dw

Similarly, cf> being a linear vector function of any vector whose co-ordinates

are a^bxcY , a2b2c2, a^Hi <£Q is defined as a symbolic linear vector function,

whose co-ordinates are , , . Finally, a sym-
da± dbl dc^ da2 db2 dc2 das db$ dcs

bolic vector £ is introduced, which is such that Q (a, /?) being linear in

each of the vectors a, /?,

Q{t, t) = Q<y» Pi)=Q(i, i) + QUJ) + Q(k, k).

The remainder of the essay consists of an application of the quaternion

analysis so developed to the theories of elastic solids, electricity and

magnetism, and hydrodynamics. It is almost wholly a translation into

quaternion notation of known results : the author, however, has endeavored

to advance each of the theories chosen in at least one direction- The work
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shown is designed to make good the following statements : first, that qua-
ternions are in such a stage of development as already to justify the

practically complete banishment of Cartesian geometry from physical ques-

tions of a general nature; and second, that quaternions will in physics

produce many new results that cannot be produced by the rival and older

theory. But in the preface, the author now states that he delayed publica-

tion until he could by a more striking example than any in the essay show
the immense utility of quaternions ; this he believes has been done by a

paper published in the Philosophical Transactions for 1892. At the time

of writing the essay he possessed little more than faith, and he felt that

something more than faith was needed to convince scientists. In conclu-

sion he exhorts mathematical physicists to study quaternions seriously, and

he looks forward to the time when quaternions will appear in every physical

text-book that assumes the knowledge of elementary plane trigonometry.

I agree with the author in his estimate of the value of Hamilton's quater-

nion researches : they constitute, in my opinion, the greatest mathematical

work of the century. They contain what was long sought after— a verita-

ble extension of algebra to space : I do not say the, for I believe that

there is more than one. The Cartesian analysis is also an extension of

algebra to space, but it is fragmentary and incomplete ; whereas the

quaternion analysis is the true spherical trigonometry in which the axis of

an angle as well as its magnitude is considered.

But I cannot agree with the author in his explanation of the comparative

neglect which the work has hitherto received. The notation has been a

stumbling-block. Familiar functions, such as the cosine and sine, are

replaced by new selective symbols .S and V; Greek letters are used alike

for axes, vectors, versors, and functions of these. As a consequence, the

notation is contracted; to make it more expansive, Maxwell introduced

German capitals for vectors, Mr. Heaviside used black letters instead, and

in the work before us we have a rather incongruous mixture of Greek, and

black letters. The notation has divorced the method from the rest of

analysis, so much so that Mr. McAulay believes that it is an independent

plant which cannot be grafted on the old tree of analysis {Philosophical

Magazine, Vol. 33, p. 479).

The identification of vectors and quadrantal versors has been a stumbling-

block. Quaternion analysis is nothing but spherical trigonometry in which

the axis of the angle is explicitly denoted ; this will become clear to any

one who studies the fundamental rules and the manner in which Hamilton

arrived at them. It is the analysis of directed ratios. The identification

mentioned assumes that it is also the analysis of lines, areas, volumes, and

other physical products ; it leads to the paradox that the square of a vector

is essentially negative, and to a total disregard of the dimensions of physi-
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cal quantities. Here no doubt we have the reason why Maxwell accepted

the ideas but not the operations and methods. The analysis which the

physicist mostly requires is not identical with, but complementary to, the

analysis of ratios.

The largely symbolic character of the method has been a stumbling-block.

Neither the definitions nor the rules have been placed on a clear and

unambiguous basis. The fundamental rules are based, sometimes on the

addition of quadrantal arcs, sometimes on the quadrantal rotation of an

axis. The notation v is presented as symbolic, so are the author's v> £>

and ; at most they are shorthand rather than systematic and logical

notation. Need we wonder that competent mathematicians cannot think

clearly through quaternions, for the original writers do not pretend to

do so.

The rival or antagonistic attitude towards the Cartesian analysis has been

a stumbling-block. Not only does the quaternion plant, according to Mr.

McAulay, require independent sowing, but he would have us pull up the

old Cartesian tree with its multitude of branches and far-spreading roots,

in order to make room for the new plant. But when he comes to consider

more specifically how much should be pulled up, he encounters a difficulty.

Thus, p. 3, he says, " For particular problems, such as the torsion prob-

lem for a cylinder of a given shape, we require of course the various

theories specially constructed for the solution of particular problems, such

as Fourier's theories, complex variables, spherical harmonics, etc. It will

thus be seen that I do not propose to banish these theories, but merely

Cartesian geometry." If, then, the quaternion analysis fails, and the

problem is turned over to the theory of complex variables (as at p. 49),

it is important that these two branches of analysis should be logically har-

monious and free from contradiction in matters of convention. If they are

logically harmonious, it will be easy for a student or analyst to pass from

the one to the other ; but, as a matter of fact, the conventions are contra-

dictory. Is not this the very meaning of the author's metaphor of the

independent plant that cannot be grafted on the already flourishing tree ?

In several papers recently published I have aimed at showing how this

logical harmony may be brought about, and one space-analysis be devel-

oped which shall embrace algebra, trigonometry, complex numbers, Car-

tesian analysis, Grassmann's method, and quaternions. Till this harmony

is established the ideas and methods of Hamilton will not bring forth the

great results which exist in them potentially.

Alexander Macfarlane.














