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PREFACE.

THE work before the reader is entirely new, not
being in any sense a second edition of that which
I published on the same subject in 1837.

It consists of two books. In the first, I have
endeavoured to give the student who has a competent °
knowledge of arithmetic and algebra—as much for
instance as is contained in my works on those sub-
jects, to which reference is made in various places—
a view of trigonometry, as a branch of algebra
and a constituent part of the foundation of the higher
mathematics. In the second, I have given an ele-
mentary view of algebra in its purely symbolic
character, with the application of that geometrical
basis of significance which affords explanation of
every symbol.

The term double algebra has not yet obtained cur-
rency, thoﬁgh that of triple algebra has, of late years,
been much employed. It means algebra in which
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each symbol stands for an object of thought having
two distinct and independent qualities: just as the
symbol of a straight line, to be perfect, must desig-
nate both the length and direction of the line. I
have not, affer much thought, and some discussion,
been able to fix on a better name of sufficient brevity.
If, by the application of a somewhat startling adjec-
tive to the word algebra, any of those who are still
bewildered by an art in which ¢mpossible quantities,
or quantities which are not quantities, are made
objects of reasoning, should become aware that by
slow degrees, and the union of many heads, the art
has become a science, and the impossil;i]ities possible,
they, at least, will have no objection to the phrase.

A. DE MORGAN.

University College, London,
Feb, 10, 1849,
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BOOK 1.

TRIGONOMETRY.

CHAPTER I

PRELIMINARY NOTIONS.

It is proved in the sixth book of Euclid that when sides and
diagonals are given, in number enough to determine a rectilinear
figure, angles depend solely upon the proportions of sides, and
proportions of sides solely upon angles. If two angles of a triangle
be given, all the ratios of sides are given: and, If the ratio of
each of two sides to a third be given, all the angles are given.
There is then a close connexion between angles, and ratios of
lines: the branch of mathematics in which this connexion is
examined, suitable modes of expression invented, and results ob-
tained and applied, is called TRIGONOMETRY, taking its name
from one of its earliest applications, the measurement of triungles.

Trigonometry contains the science of continually undulating
magnitude; meaning magnitude which becomes alternately greater
and less, without any termination to succession of increase and
decrease. A function of z is continually undulating, when, as z
increases . continuously, say from 0 to «, ¢z never becomes per-
manently increasing nor permanently diminishing, nor permanently
approaching to a fixed limit. Ordinary algebra has no such func-
tions in its finite forms; and though it has them in its infinite
series, yet it cannot easily recognize and establish the undulating
property. Trigonometry is the branch of alyebra in which undu-
lating functions are considered. All trigonometrical functions
are not undulating : but it may be stated that in common algebra
nothing but infinite series undulate: in trigonometry nothing but
infinite series do not undulate.

Trigonometry is a branch of algebra: nevertheless, it is usually
founded on geometrical considerations. This is not an absolute

B



2 ELEMENTARY NOTIONS.

necessity: but any other foundation would make it much more
difficult for the beginner to understand. It will become evident
that another mode of establishing the algebra of undulating
quantities might have been chosen, in which no geometrical
notion need have been even alluded to.

Of all undulating magnitudes, the most simple is the periodic,
which exhibits a perpetual recurrence of the same cycles of
alteration. 1If, however a function may change while 2 changes
from 0 to @, the same changes take place while 2 changes from
a to 2a, from 24 to 3a, and so on, that function is periodic.
The general property of such a function is expressed by the
equation @ (z + a) = ¢z, true for all vilues of 2, and for one
value of a, or for its multiples. For ¢ (z +a+a)=¢(z + a)=¢z;
or ¢ (z+2a)=¢z. Similarly ¢ (z+3a)=¢2; and so on.

Consideration of angular magnitude must suggest periodic
functions. Let a straight line, fixed at one extremity, revolve
about that extremity. The total angle described may go on
increasing ad tnfinitum: the angle itself is not a periodic mag-
nitude, though beginners are apt to think so. But the direction
indicated is periodic, though not a magnitude.

There is no direction indicated during the second revolution,
which was not previously indicated during the first. Let a wheel
turn on an horizontal axle, by a handle at the end of a spoke:
the angle turned through by the spoke goes on increasing as
long as the wheel turns one way; but the height of the handle
above the ground is a periodic magnitude, which goes through
the same cycle of changes in each and every revolution. Certain
periodic functions, suggested by the revolution of a straight line
about a point, form the trigonometrical alphabet, as we shall see.

If we had now to invent a mode of measuring angles, the
most convenient first method would be to adopt the whole revo-
lution® as a standard unit; thus the angle 467 would signify

* Observe this consequence of the periodic character of direction,
that the angle has a unit expressible in words without reference to
other magnitude exhibited. *The angle through which a line revolves
in regaining the direction with which it first started,” is a perfect
description of a definite amount of angular magnitude. But no
number of volumes could describe an English foot, if drawing, and
reference to length supposed capable of access, were both prohibited.
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467-1000ths of a revolution. This plan has not been adopted:
the usual method is to divide the whole revolution into 360 equal
parts, each of which is called a degres. Each degree is divided
into 60 minutes, each minute into 80 seconds; formerly each
second was divided into 60 thirds, each third into 60 JSourths,
and 80 on. This sezagesimal mode of division was once applied
to all kinds of magnitude: thus the sixtieth part of any length,
time, weight, area, &c. was called #fs minute, the sixtieth part
of the minute sfs second, and so on. Nothing of this method
remains to us, except in the divisions of a degree of angle,
& degree of arc (the 360th part of the whole circumference of
a circle), and the hour of time. Thus it would have been said
that the circumference of a circle is very near to 3 8'29” 44"
diameters, meaning 3 + & + 5285 + 3ri4ss of a diameter.

Degrees, minutes, seconds, &c. are represented by °'" " &c.
But it must be noticed that thirds, fourths, &c. are wholly
obsolete, decimal fractions of the second being preferred. Thus
18°47° 23" “1774 indicates the following fraction of a whole
revolution,

18+ 47 23 +l774x 1
360 60x360+60x60x360 10000 ~ 60 x 60 x 360

In this mode of measurement it is worth while to remember ;—
the right angle and its multiples, 90°, 180°, 270°, 360°; the half
of a right angle and its multiples, 45° 90°, 135°, 180°, 225°,
270°, 315° 360°; and the third of a right angle and its multiples,
30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, 330°, 360°.
Also the thirds of the revolution, 120° 240° 360°; and its fifths,
72°, 144°, 216°, 288° 360°. And 360 should be well known as
2°x 3'x 5, from which its separation into pairs of factors, 2.180,
3.120, 4.90, 5.72, 6.60, 8.45, 9.40, 10.36, 12.30, 15.24, 18.20,
will be easily gathered.

The above method of measurement may be called gradual
(pronounced grade-ual). But it is not the only method in use.
There is another, which 1 shall call the arcu«l* method. To
explain this method, it must first be shewn that circumferences

¢ I have been in the habit of styling this the theoretical method,
as being used in the theory of the subject: but I shall now adopt
the term used in the text.
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of circles are to one another as their diameters. Let it be
granted that the circumference of a circle is greater than that
of any inscribed polygon, and less than that of any circum-
scribed polygon.

Draw the circle whose radius is O4. Let BO4 be the 2nth
part of a revolution: so that . ¢
2nx BD and 2n x CA are the >
circumferences of the inscribed
and circumscribed regular poly-
gons of n sides. These circum-
ferences are as BD to CA, or
as OB to OC. Consequently, d DA
if the angle BOA be made
small enough, or n great enough, the inscribed and circumscribed
regular circumferences may be made as nearly equal as we please;
and either, therefore, as near as we please to the circumference
of the circle, which lies between them in magnitude. Now take
another figure like the preceding, but constructed on a different
radius O'B’, and with all its letters accented. We know then
that the two inscribed regular circumferences of n sides are to
one another as O'B’ to OB; and also the two circumscribed
circumferences. Let P and P, C and C, Q and @ be the
circumferences of the inscribed polygons, the circles, and the
circumscribed polygons. Then the order of magnitude is always
P, G Qand P, (', Q, and the ratios P: P and Q: Q are always
equal and constant (each being the ratio of the radii) while
P and Q, and also P’ and @, can be made as nearly equal as
we please. Hence it follows that C': C" is the same ratio as
P:Pand Q:Q. Let P and Q be C-M and C+N; and
le¢ P and @ be C'-M’ and C'+ N'. Then M, N, M', N',
may each be made as small as we please; and C-M: C'- M’
being always one ratio (that of the radii), the limiting ratio C': C"
can be no other (Algebra, p.157). The same follows from the
same use of the ratio C+ N:C'+ N'.

The circumference being C, and the radius R, it follows that
the fraction C+ R is the same for all circles. It is always
denoted by 27; that is, 7 is always made to represent the fraction
which expresses the ratio of the circumference to the diameter.
An investigation of the value of 7, such as we can hereafter make,
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but of which at present we must assume the result, shews that it
is nearly 43, very much nearer to 24§, and expressed, as far as
twenty places of decimals will do it, by 3:14159265358979323846.
Its reciprocal is, to the same extent, °31830988618379067153.
I leave the student to demonstrate the following rules, the con-
venience of which is the formation of results by successive cor-
rections, so that the point at which it is desirable to stop is
pointed out by the value of the corrections.

To multiply by =, first take the multiplicand 3 times and
one-seventh of a time, deduct its 800tx part, the 100t: part of
the last, and 2 millionths of the multiplicand. Then add the
hundred-millionth of the multiplicand, and 7} per cent. of that
hundred-millionth. The result is as correct as if thirteen figures
had been used in the ordinary multiplication.

To divide by 7, take seven 22nds of the dividend, one 8000tb,
'3 millionths, and 7 hundred-millionths; then deduct 2 thousand-
millionths, and add the thousandth of the last. The result is
as correct as if thirteen decimals had been used in the ordinary
division.

Let there be an angle of which the arc is s to the radius r,
and & to the radius #/, the circumferences being ¢ and ¢. Then
the angle is to four right angles (Euc. vi. 33) as s to ¢, and

as &' to ¢. Hence 8:27r::s: 27, whence ;=§. Or, to a

given subtending angle, arcs are to one another as their radii.
Let there be another angle, having the arcs § and S’ to the
radii » and /. Then the angles are as s and &8, or as ; and :2,

or as and g . That is, any two angles being made central

aro
rad.
proportional to the two angles. For instance, the angle which

has an arc 6 to the radius 17 is to the angle which has an arc
11 to the radius 8 as & to 31,

From this theorem is derived the arcual mode of measuring
angles. Let the arcual angular unit be that angle which subtends
an arc equal to the radius, and let all other angles be measured
by the numbers of arcual units, or the fractions of an arcual
unit, which they contain. Then we shall have the following

B3

angles in any two circles, the fractions obtained from are



6 ELEMENTARY NOTIONS.

theorem: The number of arcual units in any angle is the quotient
of any arc which that angle subtends, divided by the radius.
For if 6 be the number of arcual units in the angle which
subtends s to the radius r, we have (Euc. vI. 33),

6:1::8:7, or =2,
r

When we write the equation angle = r%_r:_ » we understand by

‘angle’ an abbreviation of ‘number of arcual units contained
in the angle’.

The number of arcual units in four right angles is circum-
ference + radius, or 27; in two right angles, =; in one right
angle, 1. Since 180 degrees make = arcual units, the arcual

unit 'is 17879 degrees, or 57°205779513; it is also 3437-74677;

and 206264"-806. It may be remembered, within the hundredth
part of a second, as 57 degrees and three tenths, all but ome-
JSourth of a minute and one_fifth of a second. This is 57° 17’ 44™8.

The degree, minute, and second, are severally the fractions
*01745329, 0002908882, and ‘000004848137, of an arcual unit.
The arcual unit being our usual reference, the degree may ge-
nerally be considered as a small angle. Most of the theorems
which I assert to be approximately true for small angles, are
nearly true for an angle as small as a degree.

The student must remember not to confound 27 with 360,
nor = with 180, as is sometimes done, even by writers. That
27 =360 is true in a certain sense; and so is 20 =1, for 20 shillings
are one pound.

When a circle is divided into 360 equal arcs, each is called
a degree of arc; and the degree of arc is divided sexagesimally.
The radius is 57° 47’ 44"8 of arc. On a great circle of the earth
(the equator for instance, or a meridian), the second of arc is
about 100 feet.
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CHAPTER II.

ON THE TRIGONOMETRICAL FUNCTIONS, AND ON FORMULZE OF
ONE ANGLE.

LET two straight lines be drawn at right angles to one another ;
let them be called azes, and their point of intersection, O, the
origin. Let any line, OP, be drawn from the origin; and let

PN, PM be drawn perpendicular to the axes. In the rectangle
MOPN, ON and OM are called projections of OP upon the azes.
The projections of OP are also called coordinates of the point P:
and the coordinates are distinguished by the names abscissa and
ordinate. Usually, a projection and a parallel to the other pro-
jection are employed, as ON, NP: and then the projection is
generally named the abscissa of P, and the parallel to the other
projection, the ordinate of P. And generally the abscissa is taken
upon the axis drawn horizontal in the page, and the ordinate
parallel to the vertical axis. The letter £ usually designates an
abscissa, ¥y an ordinate; and the axes are called the axes of =
and of y.

A line terminating at O, and indefinitely extended, revolves
about O, setting out from one side of the axis of 2, 04. When
it has described an angle 6, which may be of any magnitude,
a distance r is taken off. This distance is always considered as
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positive, when r is taken off on the revolving line: and as nega-
tive, if taken off on the opposite side. Thus, the acute angle
POA being 30°, we may refer OP to a line which makes 30°
with 04, and then we say that OP is positive. But when we
say that OP is part of a line which makes 210° with 04, we call
it negative.

Again, one particular direction of revolution is considered as
positive, the other as negative. If the arrows designate the posi-
tive revolution, then OP, being positive, makes an angle with 04,
which may be called +30° or - 330°; but if OP be negative, it
makes an angle + 210° or — 150°.

On the axes, each species of coordinate or projection has its
proper algebraical sign. The starting-line of revolution is always
taken as the positive side of the axis of #; and the result of + 90°
of revolution as that of the axis of y. Thus ON is positive, ON’
is negative;* OM is positive, OM" is negative.

The axes divide the plane into four quarters: and as a line,
revolving positively, passes from 0 to §0°, from 90° to 180, from
180° to 270° and from 270° to 360°, it is said to be in the first,
second, third, and fourth quarters of space. But these might
equally well be designated as the ++, +—-, ——, and -+ quarters
of space.

In this system, ++, +-, - -, -+, the first of each pair gives
the succession + + — - ; and these are the signs of the y projections
of lines in the four quarters: the projection on the axis of y of
a line in the first quarter of space, is +; in the second, +; in the
third, —; in the fourth, —. The second of each pair gives the
succession ‘+ ——+; and these are the signs of the z projections
of lines in the four quarters. The algebraical combination of each
of the pairs gives the succession +—+—; and these are the signs

* When the revolving line comes into the position ON’, is it
negative? 1 answer, no: ON’, as a projection, is considered as part
of a line which makes an angle 0° with the starting-line; and, on
a line so described, is negative. But ON’, as a position of the line of
revolution, is part of a line which makes 180° with the starting-line ;
and thus considered, it is positive. The same considerations apply
to the other axis. A line may be considered as making with itself
an angle 0° or an angle 180°: whatever signs its parts have in the
first case, they have the opposite ones in the second.
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of the arithmetical products or quotients derived from the two
projections of a line in each of the four quarters.

Everything, that takes place in the first revolution is repeated
in the second; and is repeated in an inverted order in the first
negative revolution. In all that depends upon the direction in
which an amount of revolution terminates, an addition or sub-
traction of a whole revolution makes no difference whatever. But
in all that depends upon the actual magnitude of the angle
revolved through, an alteration by a whole revolution makes an
effective difference. Measuring arcually, 2m= +60 may most often
be confounded with 6 when m is any integer, positive or negative ;
but not always.

The primary trigonometrical functions of an angle are the ratios
of the projections to the revolving line, and to one another, direct
and inverse: these ratios are independent of the length of the
revolving line. Let z, y, r be the values, with their proper signs,
.of the abscissa, ordinate, and radius, or base, perpendicular, and
hypothenuse. The six ratios ;, %, z, ;, 2, 5 take each a
name, the etymology of which cannot be explained till we come
to exhibit the older definitions: at present they must stand for
arbitrary sounds. Let 6 be the angle by revolving through which
r has gained its position.

. is called the abbreviated into
; ab::zs . ;% cosine of 6 cosé
g orilzte pe;py;x-rd. sine of 6 sin6
% :::ini:: pe;pa::d. tangent of 6 tan@
s g eetot0 a0
2 E:—g—m.sa ll%: secant of 6 secO
5 or;ai:x;te pe}xl'pyzx.n T cosecant of 6 cosecd

1- cos6 versed sine of @  vers@

1-siné coversed sine of 0 covers@
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This table must be thoroughly learned. The terms base, per»
pendicular, and hypothenuse, referring to the right-angled triangle
in which the projections are sides, does not mean that what Euclid
would call an angle of that triangle is always the angle in question.
It is 50 when 6 is less than a right angle, or when the revolving
line is in the first quarter. But in the second quarter, 0 is a
supplement* of Euclid’s angle; in the third quarter it is an
opponent ; in the fourth quarter it is a completion. All this, and
many other things of which only hints are given, must be fixed
in the mind by attentive consideration of all the phases of the
figure of a line projected on the axes: no amount of description
will supply the place of such consideration.

It is important to remember that all the trigonometrical functions
are purely abstract numbers. They are not angles, nor lines, any
more than they are weights, or sums of money. They represent
the fractions which lines are of lines, the ratios of lines to lines.
Thus, the cosine of 60° is 1: one-half of what? Answer, one-half
of a time : when the revolving line has described 60°, the projection
on the axis of z is one-half of the revolving line; the last words
in italics contain the assertion that cos60° = 1.

Thus the functions may be advantageously remembered by
their effect as multipliers. 'The cosine and sine may be called
projecting factors: multiplication by cosf turns r into its pro-
jection on the axis of z; multiplication by sin6 turns r into its
projection on the axis of y. The projections of r are rcosé and
rsind. The tangent and cotangent are snterchanging factors:
multiplication by tan@ converts the projection on z into that on y,
multiplication by cot® converts the projection on y into that on z.

‘We may of course take a line which has as many linear units
as a certain angle has of angular units, or as a sine or tangent has

(Y

¢ The term supplement has long been used to signify the defect
from two right angles: thus 6 and » — 0 are supplements. By
opponents, 1 mean angles made by opposite straight lines with one
straight line, in the same direction of revolution: thus 6 and =+ @
are opponents, By completions, I mean angles which together make
up a whole revolution : thus of 6 and 2» — 0 each is the completion of
the other. Finally, the well-known term complement is arbitrarily
used to denote the defect from a right angle: thus 6 and 4x —0 are
complements.
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of abstract units, and in this sense it may be permitted (to those
who can do it without confusion) to talk of a line and angle being
equal, or of a line equal to the sine of an angle.. The frontispiece
has curves constructed in this manner for each of the six prineipal
functions. The origin is O, the axis of z is OA...: the abscissa
is the angle, the ordinate on one curve is the sine, &c. The
student may, when he has read a little further, detect for himself
the curve of sines, of cosines, of tangents, of cotangents, of secants,
of cosecants,

There are eight trigonometrical functions, of which two are
absolutely defined by formule; namely,

versd =1 - cosf, covers@ =1 - sin6.

Of the remaining six, we may predict that five independent
equations exist among them: for one angle and one ratio of sides
absolutely determine all the angles (and therefore all the ratios
of sides) ‘of a triangle, whensoever that given angle is a right
angle or more. There are easily found more than five relations;
but not all independent. First, there are the relations which
obviously and necessarily follow from the algebraical form of
the definitions, independently of the meaning of the symbols.
These are

cosf x secd=1,
8in@ x cosecd =1, tan6 = sinf , cotf = °?__‘£’,
cos sin@
tanf x cotéd=1.
Of these only four are independent: the third and fourth make
the fifth follow. Secondly, there are the relations which follow
from the meaning of z, y, and r. The equation 2*+y*=1+"
which follows from the application of arithmetic to Euc. I. 47,

gives
2 2 2 ] ] L]
G+ )-v (- ) v C)-G)
r r z z y y
cos’@ + sin®*0 =1, 1 4+ tan®d =sec'd, 1 + cot’d = cosec'd,

of which one only is independent; for cos'6 + sin®0 = 1, gives

. 'Y P
1 +(§_u£) = (L), or 1 + tan®@ = sec’9, &c.
cos6 cosé

The following collection of formule, either proved above, or
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easily deduced, should be carefully remembered :

. siné@
cosf. secd=1, cos'd+sin*0=1, tané = w030’
- sinf.cosecd = 1, 1 + tan*0 = sec*0, _ cosf
tanf. cotd=1, -1 + cot?@ = cosec*d in6’
op=— 1 _ gno- 209
coslU = 1/(1 +tan"9)’ = V(l+tan‘0)'

a . b
J@EEy 0 Ty

The student should, as an exercise, express each function in
‘terms of all the rest.

I now proceed to the examination of several material points
connected with the several functions.

1. Limits of value. No cosine nor sine can fall without the,
interval —1...+1: for neither # nor y can numerically exceed .
For the same reason, no secant nor cosecant can fall within the
interval - 1...+1. But a tangent or cotangent may have any
value, positive or negative. Versed and coversed sines always
lie in the interval 0...2.

2. Signs. Let r be taken positively. Then ; and ‘:-{ have

If tanf = g , cosf =

the signs of z and y. Hence cos (and its reciprocal sec6) have
their signs remembered by the succession + - - +: or the cosine
has the sign + in the first quarter, — in the second, &c. But
sin@ (and its reciprocal cosec6) have their signs remembered by
the succession ++ - -. And tan@ (and its reciprocal cot6) have
their signs remembered by the succession + - + - (page 8).

The pairs of signs by which the quarters are distinguished,
state the signs of the sine and cosine, while the sign compounded
of the other two, states that of the tangent, Thus, in the
fourth, or - + quarter, the sine is negative, the cosine positive,
and the tangent negative.

It is also worth while to remember, that while all the three
pairs’ are positive in the first quarter, each of the other quarters
has only one positive pair belonging to it.

In the first quarter, all are positive.

In the second . ... only the the sine and cosecant.
In the third .... only the tangent and cotangent.
In the fourth .... only the cosine and secant.
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The whole system remains consistent with itself if negative
values of r be introduced, under the definitions in page 8. Take
the figure in page 7 as an instance, and say that OP is negative.
Then, ON and NP being positive, the sine and cosine are
negative. And so they ought to be: for OP, being negative,
must be considered as on a line in the third quarter, and 0 as
between two and three right angles.

Versed sines and coversed sines are always positive.

3. Initial or terminal values. These are the values when
the revolving line begins or ends a quarter of space, and is on
one of the axes. In every such case one of the projections
vanishes, and the other is of the same length (but not always
of the same sign) as the revolving line itself. At 6 =0, and

6 = 7, y vanishes; at 6 = 37, and 0 = §7, z vanishes. At 0 = 27,
* the values at 6 = 0 are repeated. Examination will give the
following table, which should be remembered; partly by the
help of the connecting equations.

Arcual Angle 0 ir = 2&m | 27

Cosine 1 0 -1 0 1

Sine 0 1 0o -1 0

Targent 0 o 0 o 0

Cotangent | @ 0 o 0 ®

. Secant 1 ® -1 o 1
Cosecant @ 1 o -1 @®

Versed sine 0 1 2 1 0

Coversed sine 1 0 1 2 1

Gradual Angle | 0° 90° 180° 270° | 360°

It is hardly necessary to say that all the trigonometrical func-
tions are periodic, and that 27 is in every case the angular
extent of one period, or of a number of periods. In every case
F9 = F(0 + 27), F representing a primary trigonometrical function,
The period of the sine and cosine is 27; of the tangent, 7. I now
proceed to examine circumstances connected with this periodic
character.

The cosine is what is called an eren Junction of 6; that is,
it does not change at all when 6 is changed into - 6: or cos(- 6)

= cosf. But the sine is what is called an odd function ; that is,
C
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it changes sign when 6 is changed into - @; or sin (- 6) = - siné.
Let two equal lines revolve, one positively and one negatively:
it is clear from the elements of geometry, that whatever equal
angles they may have described, the projections on z are the
same, identically, and the projections on y differ in sign only.
Hence, « + r is the same for both; and y + r is not, but the
difference is in sign only.

The tangent is an odd function ; for tan(- 0) = sin(- 6) + cos (- 6)
=-8in6f + cosd = - tan6. The cotangent is also an odd function.
The secant and versed sine are even functions; the cosecant
is odd; the coversed sine is neither The terms even and odd, as
applied to functions in general, are suggested by the properties
of the even and odd powers.

If, 6 and the length of the revolving line being given, we
form a new angle thus, one or more right angles + 6, it will
readily be seen that the right-angled triangle made by the re-
volving line is in all cases the same in form and magnitude.
But two variations of position occur: sometimes the projections
differ in sign from those of the original triangle; sometimes
they change name, the line which was # becoming y, and vice
versd. An examination of all the cases will present the following
table :—

Angle. Absc. Ordin. Conclusions.
0 z Yy

i7-0 y  z cos(3m-0)=sino, sin(iw - 6) = cosh, tan (37— 0)= cotd, *

ir+0 -y =z cos(;w+é) =-sind, sin(47+6) =cos0, tan(3 7 + 6)=—cot,
-0 -z y cos(r-0) =—cosb, sin(w - 0) =sinf, tan(r - 6) =-tand,
w+0 -z -y cos(w+0) =-cosh, sin(r+6) =-sind, tan (7 +6) = tane,
37-0 -y -z cos(fr-06) =-sinb, sin($7—0) =—coso, tan(7r-6)= cots,
37+0 y -z cos(fr+06)=8inb, sin(3r+06)=-cost, tan(3x+6)=-cot,
2r-0 =z -y cos(27-0)=cosb, sin(27-6)=-sinb, tan(27-06)=-tans.

These transformations, it must be observed, apply to all values

of 6. For instance, let € lie between 47 and 27; then 37 -0

lies between — 7 and — $7. Draw the figure accordingly, and

it will appear that the z of either is the y of the other, both in
sign and magnitude. The formule therefore are universally true:
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but they may be best remembered by the supposition that 6 is
a small angle, so that }= - 0 is in the first right angle, 37 + 6

in the second, as also 7~ 8, and so on. All the cases may
now be contained in the following rule. According as the num-
ber of right angles is even or odd, let the function remain, or
let it be changed into its co-function (sine and cosine, &o. are
- co-functions). Then prefix the sign which the given function
has when 0 is less than a right angle; and lastly, write 6 for
the angle. For example, let it be required to simplify tan(§x + 6).
There is an odd number of right angles; 3 + 6 is in the fourth
right angle, when 6 <1: in the fourth right angle the tangent
is negative: accordingly, tan(§= +6)=~cot6. But in trans-
forming cot(r — 6), we see an even number of right angles, and
an angle in the second right angle; accordingly, cot(7—0)=- coté.

The following cases are so important that they should be
remembered apart:—

The functions of complements are co-functions,

sin(3w - 6) = cosd, cos(im-6)=sinb,
Supplements have the same sine, sin(r — 0) = siné.
Opponents have !;he same tangent, tan(7 + 6) = tané.
Completions have the same cosine, cos(27 - 6) = cos6,
cos(37 + 0) =-sinf, cos(w - 6) = - cosb,
sin(37 + 60)= eos6, tan(w - 0)=- tané.
Al the angles which have the same sine as 6 are included in
the formule 2m + 6, and (2m + 1) 7 - 6: all which have the



16 ON THE TRIGONOMETRICAL FUNCTIONS

same cosine as 6 in the formule 2mm + 6 and 2mz - 0: all which
have the same tangent as@ in mr + 0: m being any integer, posi-
tive or negative. .

To one sine there is but one cosecant; to one cosine.there
is but one secant; to one tangent there is but one cotangent;
and vice versi. But in every other case a function has two
functions of every other kind attached to it, with opposite signs.
This appears, firstly, from what precedes: any sine, for instance,
belongs to two angles, supplements, which have cosines, &c.
opposite in sign. Supplements, opponents, and completions have
their functions of equal value, and opposite signs, except in the
three cases noted above. Thus,

sin(7 + 0) = — sin6, tan(27 - 6) = - tané, &e.

. Secondly, from the equations in page 12, in which it appears
that every determination of one function in terms of one other
function requires an extraction of the square root, except when
the functions are reciprocals. Thus,

cosf =t +/(1 - 8in*0), tanO =+ 4/(1 - cos*0) + cosh, &c.

When one function is found, all the others can be found.
And by very ordinary geometry we can contrive to express the
functions of 15°, 18°, 30°, 45° 60° 72° 75°% Of these I shall
deduce some, and arrange the whole in a table, of which I
leave the student to fill up the demonstration.

(45°). This angle has equal projections, or tan 45°=1.

(80° 60°). If a, @, ¢ be the sides of an isosceles triangle,
and 26 its vertical angle, then ¢ =2asin6. Let the triangle be
equilateral; then a = 245in30°; or sin 30° = . And this is cos60°.

(18°,72°). By Euc. 1v. 10, it appears that an isosceles triangle
having 36° for its vertical angle has for its base the greater
segment of the side, as determined in 11. 11. If then a be the
side, and ¢ the hase, we have a(a-c)=¢', or 2¢=(y/5-1)a.
Hence, sin18° (or cos72°) = 1(y/5 - 1). *

(15° 75°). Take a right-angled triangle having an angle of 30°,
an hypothenuse 2, and therefore 1 for the side opposite and /3
for the side adjacent to that angle. Bisect the angle of 30°; the
bisecting line divides 1 into segments which are as 4/3 to 2: the
smaller segment is then /3 + (2 + 4/8), or //3(2 - /3), or 23 - 3.
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The bisecting line is therefore
V(3+12+9-12y3), or y12./(2 - v/3), or 23. L’% )

Hence,

=V3(/6-v2)~ 22 T

sine cosine tangent | cotangent

a|160|Y8-V2 ‘w 2-v3 | 2+43 |18

V5-1 [(1042¢8)| 5-1 |4(1042y5)
b7 187 =3 % 70728 | vo-1 |X| "
i7|30°| % iv3 $v3 V3 60°| i=
ir|46°| 1y2 1v2 1 1 45°| ir

cosine sine cotangent | tangent

Let 6 be arcually measured, and let it be the 2nth part of
four right angles. Describe a circle with the revolving line » for
its radius, and inscribe a regular polygon of n sides. One of
these sides is 2rsin6, and the whole circumference of the polygon
is 2nrsin@; that of the circle is 27», or 2x6.r. The ratio of
8in0
KB
or the smaller 6, the more near it is to unity (page 4). That is,
when 6 diminishes without limit, the fraction sin + 6 approaches
without limit to unity. The approach is distinctly seen, even
when the angle is far from very small, to ordinary notions: 5°,
in arcual units, is “0872665, and its sine is ‘0871557: these two
differ by less than the 800th part of either.

these circumferences is ; and this ratio, the larger n is made,

sin@ 1 -cosé 6 (sine *
)

. 1

Agaln, 5= =Coe8 00 0 “itcesd”
the second of which is easily got from 1-cos*@=sin*0. It follows
that the limit of tan® = 6, as 6 diminishes without limit, is 1 x 1
or 1; while that of (1-cos6)+6 is 0x 1 or 0. As 6 diminishes,
then, sin6 and tané approach to 6, but 1 - cos@ diminishes much
more rapidly than 6. Any number being named, however great,
0 contains 1-cos® more than that number of times, before 6
becomes nothing. When 6 is ‘0872665 (5° of gradual measure),

6 contains 1 -cos6 more than 20 times,
c3
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sina@ or sinad g0 a
sinf0’ ~ a0 "sinp6 "B’ 0
% for its limit, when 0 diminishes without limit. Also that » sin -

has

It is important to observe that

has the limit 8, when n increases without limit.

We have seen that tan@ and sec® both become infinite when
6=17r. Now
consequently, as 6 approaches }m, the difference of tan® and
secO diminishes without limit. Shew in a similar way that
cosecO — cotd diminishes without limit, with 6.

0, when 6 =1iw);

sin'0 o
Troos6 " T+1
Hence, when 6 is small, cos6=1-16* nearly. This, and sin6=6,
are equations which are near enough to truth for most purposes
‘of calculation, when 0 is small.

I now give an account of the method of defining the tri-
gonometrical terms which was,* until very lately, universal.

A given straight line, called the radius, revolves from a starting-
line Od, as in our definitions ; but it must be of the same length
for all angles, which need not be the case in ours. The arc de-
scribed by the revolving extremity generally (though not always)
takes the place of the angle.t Then BM was called the sine of the
arc AB (stnus, bosom, the literal translation of an Arabic word:
if BAB” represent a bow (arcus), half of the string BB” comes
against the breast of the archer). And OM is the cosine of AB:
this word is an abbreviation of sine of the complement, or com-
plemental sine; it was long before OM was considered as any-
thing but the sine of another arc, B4A'. And AM (once the
sagitta, as occupying the place of the arrow) was the versed sine
(or turned sine) of the arc AB. And A'L should have been
called the coversed-sine, as being the versed sine of the comple-
ment: but this term is only a recent invention for the completion

Again, 1-cos0= nearly, when 0 is small).

* But not from all time; for Rheticus, who gave the first
complete trigonometrical table, and invented the secant and cosecant
to complete it, used the method of ratios.

+ By constant attention to the arc of a circle, some writers
have become unable to think of angle as a magnitude.
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of the system. Draw a fangent at 4, and at 4'; and produce

OB to meet them in T'and 7. Then AT was called the tangent
(as being drawn on the tangent) of 4B; and 4'V, the tangent
of the complement, was called the cotangent of 4B. Lastly,
OT was called the secant of AB, as being on a line which cuts
the circle; and OV the cosecant.

All these definitions are thus connected with ours: the old
linear function, divided by the radius, in every case gives the
modern numerical function.

Denote the linear function by the word commencing with a
capital letter; and let OB=r, / BOA=60. Then we have

sing - MB _SindB o AT Tan 4B

OB r ’ n S04 r

mse—%- Cos 4B sec = OT Sec AB

0B T r o4 r 7’
cote-%-ﬂ_w. 0=1 OM AM _VersAB,
“mB~oa~ , ' Y= '"OB 0BT r '
cosecg = OB . OV _CosecdB (o 1 MB_AL_ Covers4B
"MB o4  r ' " oB o r

Speaking but of ultimate calculation, the old system is iden-
tical with the new one, if we only make » =1, or take the linear
unit for a radius. But there always remains this essential dis-
tinction, that the function of the old system is always a line,
that of the new one a number. In the old system the sine of
the arc of 30° is Aalf a radius, whether that radius be used as
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the measuring unit* or not. In the modern system, the sine of
the angle of 30° is the fraction which half a radius s of the
whole radius.

If we substitute in our formule the equivalents of the old
system, we have such equations as

Sin 4B CosecAB _, . Sin AB. Cosec B =+,

r r
' ] int
Cof 4B SWAP_1, or Cos* AB+Sin' AB =7, &e.

If it be occasionally desirable to refer to the old system, it
may be done without confusion by speaking of the sines, &e.
of arcs or the linear sines, &c. of angles.

The area of the circle is thus found. Inscribing the polygon

of n sides, and 6 being the 2xth part of a revolution, or ;, we
have for each of the n triangles, the area }r cosé.2r sin6, and
for the whole polygon nr* cos6 sin6, or »* cos’—': % sin’;r . When

n increases without limit, the limit of this is z+* which is the
area of the whole circle. The sector which has the angle 6,

being to the whole circle as 6 to 2, is % .

* Trigonometry might be defined as that part of the application
of Algebra to Geometry which is independent of lincar measure;
since ratios are independent of the units in which their terms are
arithmetically expressed. One disadvantage of the old system is,
that it keeps this independence of linear measure out of view.



CHAPTER III.

FORMULZE WHICH INVOLVE TWO OR MORE ANGLES.

Ir will be desirable to gain a more extended notion of the
projections of a line. If any line, 4B, be taken as belonging
to an indefinite line on which sign is recognized, a careful dis-
tinction must be drawn between 4B and BA: one is positive
and the other is negative. Thus, p. 7, NO is not z, but ON,
which is there positive, while NO is negative. If we attend
to this, we shall find that, however 4, B, C, may be distributed
on a straight line,

AC=A4AB+BC=AB-CB=BC-B4d; AB+BC+C4=0;

] [ ) ) ' (] (] [] ) ] )
4 c B +

Thus 4C=+2, AB=+17, BC=-5, and +2=+7 + (- 5).

Next, the angle made by P with Q is to be carefully dis-
tinguished from the angle made by Q with P. If one be 0 the
other is - 6, or, at our pleasure, 27 - 6. To gain fixed ideas,
let us suppose that in the angle made by P with Q, denoted
by P A Q, we proceed from the positive direction of Q as a
starting-line, and thence by revolution, positive or negative ac-
cording as we want a positive or negative angle, to the positive
direction of P. But in QA P, we proceed from the positive di-
rection of P to that of Q. Ascertain from this that

PAQ+ QAP is 2m, 0, or - 2m,

according as we take the positive angles in both cases, or one
positive and one negative, or both negative.

When neither end of a line is at the origin, the projections
are determined by drawing perpendiculars from both ends of
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the line. Thus 44’ has NN’ and MM’ for projections: but
+

]
A’'4 has N'N and M'M.

The projections of the line r, making the angle 6 with the
axis of 2z, are always r cos@ and rsind. Take the preceding
figure, and first let 44’ be +. If 6 be the angle it makes with
the axis of z, that angle belongs to the + - quarter: r siné is,
as to sign, + x +, and is positive; and so is MM'. But r cos6
is + x -, or negative; and so is NN'. But if 44’ be negative,
the angle (the opposite side being now used, as in p. 8) is
of the - + quarter; and r sin@ is - x -, or +, as before; while
r co8f is — x +, or -, as before.

In the language of Euclid, equal and parallel lines have equal
projections. But we must say, equal and parallel lines, estimated
tn the same directions, have equal projections. Thus 44’ and BB
have equal projections; and so have 4’4 and B'B: but 4’4 and
BB have only projections equal in length, and differing in sign.

If any points, as 4, B, C, D, be taken, the projection of 4D
is the algebraical sum of those of 4B, BC, and CD.

These projections, taking the axis of z, are PS, PQ, QR, RS
and, by what precedes,
PS=PR+RS=PQ+QR+RS.

The only question now is this,
do PS, PQ, QR, RS, always
represent the projections, in
what manner soever the lines
AD, &c. take signs? And the
answer is in the affirmative,
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since we have seen that any variation of sign is accompanied
by a compensating variation in the mode of estimating the
angle; so that the projection remains unaltered both in sign and
magnitude, so long as the line remains unaltered in direction
and magnitude.

Now let the axes revolve through the angle ¢, giving a pair

*
= ¥
3
.
- / +:
ox
|
L2

x
-

of secondary axes; and let a revolving line, starting from the
positive side of the secondary axis z, revolve through a further
angle 6; having thus revolved through ¢ +6 from the original
starting-line. In the diagram, ¢ is about 2} right angles, and
6 is nearly three right angles more; or, if you please, a little
more than a right angle negatively. The projections of OP on
the primary axes are r cos (¢ +6) and 7 sin (¢ +6); on the se-
condary axes, r cosf and r sinf; and these last projections, ON,
and NP or OM, make angles with the primary axis of = which,
estimated by our rules, are ¢ and ¢ + 4; for the revolving axis
of y is always a right angle in advance of the axis of z. If then
we project the secondary projections on the primary axes, we have
Projections of ON are r cos6.cos¢ and r cosf.sing,

Projections of NP are rsin6.cos (¢ + 37) and 7 sin6.sin (¢ + i7).

Looking at the projections on the primary axis of z, we have
Projection of OP = Projection of ON + Projection of NP,
rcos(¢ +0) = rcos6 cos + rsinb.cos (¢ + 47),
cos(p +6) = cos@cos +5sin6 {cos(p + 1) or-sing},
cos (¢ + 6) = cosg cosd — sing sinb.
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Looking at the projections on the primary axis of y, we have

Projection of OP = Projection of ON + Projection of NP,

rsin(¢p + 6) = rcosfsing + rsindsin(¢p + 1),
sin(¢p + 0) = cosOsing + sinf {sin(¢ + 1) or cos},
-sin(¢p + 0) = sing cos6 + cossinb.

These formule being universally true, we might write -6
instead of 6, and then we have
cos (¢ - 6) = cosp cos (- ) - singsin (- ),
= cos¢ cosf + sin¢hsiné,
sing cos (- 6) + cos@sin (- 6),
= 8ing cos6 — cosgsinb.

This foundation of all the ulterior part of trigonometry, may

be stated thus,
cos (¢ + 0) = cos cosf F singsiné,
sin(¢ + 6) = sin¢d cosO + cos siné.

The formuls are not independent: but any one really con-
tains all. This has partially appeared. To shew it completely,
observe that the operations connected with projection on the
axis of y are precisely the same as those connected with the
axis of z. If we adopt the axis of y as a starting-line, and
preserve the positive direction of revolution unaltered, we may
reckon angles from the axis of y, and use cosines in determining
the projections, provided that every line which makes an angle
p with the axis of 2, be considered as making u - i, or pu+ &,
whichever we please, with the axis of y. If then we want to
apply the formula

cos(¢ + 6) = cosg cosd - singsinb,
to angles measured from y, we must alter ¢, which is measured
from z, into ¢ —i7. This gives
cos(¢+6-1m)[or cos{im-(¢p+0)}]=cos (¢p-37) cosf-sin(¢-3)sinb,
or sin(¢ + 6) = sing cosO + cos sin6.

The demonstration above given is universal: but it can only
be convincing to those who enable themselves to understand,
in the most general sense, the preliminary theorems. Any want

sin (¢ - 6)
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of such mastery over the unmiversal character of theorems in
projection will follow the student through all his course, par-
ticularly in the higher geometry and in mechanics. To break
the difficulty, it may be worth while to examine demonstrations
of particular cases, so as to show what manner of arithmetically
separate operations are algebraically presented in one by the
preceding process.

[Within these brackets, lines are not affected by any but
specified sign: thus AB when negative is written - 4B: and
no distinction is made between 4B and BA.

Q
N
\
S
0 M S A 0 A
N R

Let AOP = ¢, POQ =0, both taken in the positive direction
of revolution. In the second diagram ¢ is nearly two, and 6
nearly three, right angles. Project OQ on O4 and OP, &c. into
OM, MQ and ON, NQ; project ON, NQ into OS, SN, and
NR, RQ. In the first diagram, in which ¢ and 6 have positive
sines and cosines (and RQN = @), we have
0Qcos(¢ + 6) = OM = OS - SM = OS - RN,
= ONcosp-QN singp=0Q 086 cos -0QsinOsing,
cos(¢ + 6) = cos cosd - sin¢d sin6.
Also 0Qsin(¢p +0)=QM=RM + QR= NS + QR,
= ONsingp+ QN cosp=0Q cos0 sinp+0Q sin6 cosgp,
sin (¢ + 6) = sing cos + cose siné.
In the second diagram, RQN is not ¢, but 7 — ¢p. And first,
0Qcos(¢p + 60 -2m)= OM =08+ SM= 0S8+ RN
= ONcos NOS + QNsin NQR
= 0QcosQONcosNOS+0QsinQONsinNQR;
co8(¢p + 6 - 27) = cos QON cos NOS + sin QON sin NQR
D
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co8 QON = cos (0 — 7) = cos (7 — 0) = — cos0;
sin QON = sin (0 - 7) = - sin (7 - 6) = - sin6;
cos NOS = cos (7 - @) = — cosgp; sin NQR = sin (7 - @) = sin¢p.
Whence 008 (¢ + 6 - 27) = (- cos6) (- cosp) + (- sin0) (sin);
or cos(® + 0) = cos cosé — sin¢ sinb,
Again,
0Q sin (p16-27)= QM= QR- RM=QR- NS
=QN cos NQR- NO sin NOS
= 0Q sin QON cos NQR-0Q cos QON.sin NOS,
sin (@ +6-27)= sin QON cos NQR - cos QON .sin NOS
=(-8in6) cos (7 - P) - (- cos ) sin (7 — P),

or sin (¢ +6)=sind cos¢ + cosd sin¢.

' The student should repeat the same process on various cases.]

Obeerve that a complete proof of the cases of cos (¢ + 6) and
sin (¢ + 6) is also one of cos (¢ —6) and sin (¢ - 6), independently
of the substitution of -6 for 6. For cos (¢ - 6) is cos (¢ + 27 - 6)
or cos@ cos (27 - 0)~sin@ sin (27— 60) or cos¢ cosh + sing) sinb.

"And similarly for sin (¢ - 6).

From the table in p. 17, verify the first row by aid of the
third and fourth: find the sines and cosines of 3°, 12°, 27°, 38°,
48° 63°. From these the sines and cosines of all the multiples
of 3° may be easily expressed.

The only form of the preceding theorems which occurs among
the fundamental equations is

cos (0 - 6) = cos6.cosf + sinf.sind or 1 = cos*d + sin®.
A large collection of formule may be deduced,,as follows:
1. cos (¢ + 6) = cos cosd - sing siné.

2. cos (¢ — 6) = cos cosb + sing sind,
3. sin (@ + 6) = sing cos6 + cos sinb.
4, sin (¢ - 6) =sin¢ cosO — cos¢ sinb.
&. cos (¢ - 6) + cos (¢ + 6) = 2 cos cosé.
6. cos (¢ — 6) - cos (¢ + 6) = 2 sing sinb.
7. sin (¢ + 6) + sin (¢ - 6) = 2 sin¢ cosé.
8. sin (¢ + 6) - sin (¢ - 6) = 2 cos¢p sinb.
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. -0
For ¢ write 95%0, and for 0 write 25—3

B+9 w29,

9. cos@ + cosg = 2 cos 3 3

10. ooso-co.¢=2sin¢;o..in‘—”;—°.

$+0 _$-0

11. lm¢+sm0=2sm—2—.cosT.

12. sing - sin0=2cos 2% in® -9,

2 2
sing - sin6 _tan 3 (P -6) singp + sind b+0
13. sing + siné tan 3 (P +6)’ cos<l>+cost)x=t"m 2 &e.

_sin(¢+6) _sin(¢-6)
14. tang + tanf = cos¢p cosd’ tang - tané = cos cos6’

cos (9 -6) cos (¢ +6)
1+tangtan0 = cosg cos@’ 1-tang tan6 cos¢ cos6’

1 1= B0 ot i,
divide numerator and denominator by cos¢ cos6, and
tang + tan6
1-tang tan6’
which also follow immediately from 14,

tan (@ +6) = nn(¢—0)=%.

16. sin 20 = 2 sin6 cos 6, sin0=2singoosg.

17. cos 20 = cos®0 - 5in"0 = 2 cos*6 - 1 = 1 - 2 sin®6.

18. cos'@ =3 + 1 cos 26, s8in*0 =} — % cos 26.

7 .40 1-cosf 6
. 0= ? - 080 = —— =tan®-.
19. 1 +cosf = 2 cos 3’ 1 -co86=2sin 3’ 17c0s0 tan 3
2 tanf
20. tan 20 = l—_—am—’o.

1-sind__ I
2. m*”“(z‘g)'
1r) tanf - 1

p-T\tno -1,
22 m( Z) " tano+1
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The following remarks may be made on these formule.
5, 6,7, 8.. Remember these formule thus:

product of cosines = half cosine of difference + half cosine of sum,
product of sines = half cosine of difference — half cosine of sum,
sin greater x cos less = half sine of sum + half sine of difference,
sin less x cos greater = half sine of sum - half sine of difference.

The universal formule are here expressed (the two last, at
least) with some arithmetical limitation; by which the one most
- convenient for arithmetical operation may be selected. Thus at
once we learn to write down
8in5° cos18°=25in23°-15in13° sin50° cos4°= % sin54° + 2 sin46°,

‘We have thus convenient substitutes for multiplication of sines
and cosines by one another; of which much use was made before
the invention of logarithms: We can also resolve any product
of sines and cosines. Thus

cosasinb sinc = cos a {£ cos (b—c) -2 cos (b + ¢)}
=1{cos(b-c-a)+cos(b-c+a)}-L{cos(db+c—a)+cos(d+c+a)}
=%{cos(b-c~-a)+cos(b-c+a)-cos(b+c-a)-cos(b+c+a)
Or thus: cos a sin b sin ¢ = {1 sin (b - a) + 4 sin (b + @)} sine
=1 {4 cos(b-a—c)-3 cos(b-a+c)} + 1 {3 cos (b+a—c) — 4 cos (b+a+e)},
the same as before.

9, 10, 11, 12. Remember these formule thus:

Sum of sines = twice sine of half sum x cosine of half difference.
Difference of sines=twice cosine of half sumxsine of half direct* diff.
Sum of cosines = twice cosine of half sum x cosine of half diff.
Difference of cosines=twice sine of half sum x sine of half inverted diff.

Most write the formula 10 as

P+0 . p-6

cosg — cosf = — 2 gin g 80 —5—.

But whichever way it is written, no one will ever be expert in
the use of trigonometrical formule until cos (a -5) and cos (b - a)
prevent the instantaneous notion of perfect identity of value and
sign: while sin (2-b5) and sin (b-a) equally suggest sameness
of value with difference of sign. Again, it is frequently desirable,

® Direct, read in the order of reference; tnverted, read in the
contrary order. When ¢, 0, are mentioned in that order, ¢ — 6
is the direct difference, 6 — ¢ the inverted difference.
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after observing the effect of an interchange upon one side of
an equation, to verify the sameness of the effect on the other
gide. Thus in 9, interchange of ¢ and 6 produce no alteration
in the first side: how is it seen that no alteration is produced
on the second side? By remembering that cos 1 (0 - @) and
cos 1 (¢ - 0) are the same. Again, interchange of ¢ and 6 changes
the sign of the first side of 10; and of the second also, since
sin 1 (6 - @) and sin (¢ - 6) have different signs. A person tho-
roughly practised in these considerations remembers the general
character of the formulee 9-12, and makes the details correct
by the habit of satisfying the above conditions.

15. Two angles differ by a right angle; how are their tangents
related? If p=0+ 1w, tangp=—cot6, or 1+tang tan6=0. This
result, which is often wanted, is best remembered by the de-
nominator in 15: if tan (¢ - 6) be infinite, we must have

1 + tan¢ tané = 0.

Prove the following formula :

X _tang + tany- + tanf — tang . tan . tan@
ta(P+ ¥ +6) = 1-tan@ tany —tany tan6 - tand tangp’
from which it follows that the sum of the tangents of the three
angles of a triangle is equal to their product. Also the following:
If ¢, be the sum of the tangents of a set of angles, ¢, ¢, &c.
the sums of the products of every two, every three, &c.; then
the tangent of the sum of those angles is £, - ¢, +¢, - ... divided
by 1-#,+%~... This may best be proved by showing that if
it be true for any number of angles, it remains true when one

more angle is introduced.

If there be any number of angles, and if S, be the product
of all their cosines, and §, the sum of all the products which
have for factors the sines of n of them and the cosines of all
the rest; then the sine of the sum of those angles is 8, - 8+ 8, -...
and the cosine of the sum is §- S,+8,-....

Suppose this proposition true for any one number of angles,
and’let S, §,, &c. have the above meaning. Introduce one more
angle, having a and b for its cosine and sine, and let 7, be
now the product of all the cosines, and 7, the sum of the products
in which » are sines and the rest cosines. Now it is clear that

b3



80 FORMULZE WHICH INVOLVE

T, is S,a. Next, T, consists, first, of all the terms which compose
§,, each multiplied by b, and of those of §, each multiplied by a;
whence T,=8b+ Sa. And 7, has all the terms in §, each
multiplied by 4, and all those in 8, each multiplied by a; whence
I,=8b+8a. And thus we show that 7, =&, b+ S,a. But if
there be % angles in the first set, T}, is S;b, and S, does not
exist. But the law of connexion T}, =S;b+ 8,6 still exists if
we suppose S, =0.

Now if the cosine and sine of the sum of the % angles be
8§, - 8;+8,~ ... and 8, - §, + §; - ..., then, after introduction of the
new angle, the cosine and sine of the sum of the & + 1 angles are

8-8+8,-.)a-(8-8+8-.)bo T,-T,+T,- ...,
(8 - 85+ 8- )a+ (8- 8+8,-..)b or T,- Ty+ Ty~ ....

If then the theorem be true for % angles, it is true for & + 1.
But it is true for two angles; for, @ and 0 being those angles,
§, is cos¢ cosf, and 8, is sing cos6 + cosg sinf, and S, is
sing sin@, S, is 0, S, is 0, &c. And cos(p +0)is §,~ S, +8,~ ...,
while sin(¢+6) is §,~8,+8;-.... Hence the theorem is true
for three angles, hence for four, &c. The beginner had better
proceed in one or two cases thus:

cos(p+ Y +6)

=cos (¢ + Y) cosf - sin (¢ + Y) sind
=(cosg cosyr - sing sinyr) cosd - (sing cos Y + cos¢p sinyr) sind
=cos¢ cos Y cosd- (sin¢ siny- cosO4sing) siné cos Yo+ sin Y- sind cosp)
=8,-8,+(8,=0)-(8=0)+ .... )

If there be n angles, the number of products having m sines
is the number of distinct ways in which we can select m out
of the n angles, or the number of combinations of m out of n:

denote .this by m,; accordingly
n-1n-2 n-m+l

m, stands for n 3 g p

If all the angles be equal, and each of them be 6, each term of S,
is ¢*™s™, where c means cos® and s means sinf. Accordingly,
S,, becomes m,c"™s™, and we now have )

cos 0 = c® — 2,6™%* + 4,c" ¥ - 6,c"% + ...,

sin 70 = 1,¢™'s - 3,¢"%° + 5,6"%" - 7,8 + ...
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Now the development of (¢ +8)* is ¢” + 1,¢™"s + 2,¢" %" + ...;
whence the following theorem: Develope (c + 8)* by the binomial
theorem, and put together the odd terms, 1st, 3rd, 5th, &c., and
the even terms, 2nd, 4th, 6th, &c.; change the alternate signs
in each lot, and the results are cosz6 and sinnf. Thus we
may at once write down

cos 20 = ¢* - g*, sin 20 = 2cs,
cos 30 = ¢® - 3cs’, sin 360 = 3c% - &°,
cos 40 = ¢* - 6¢%"® + s, sin 40 = 4c% - 4cs’.

The beginner should form some of these successively; thus
sin (36) = sin (26 + 0) = sin 20. ¢ + cos 20.
=2c8.¢c+ (c* -8')8=3c%s -8
8in (40) = sin (30 + 6) =8in 30.c + cos 36 .8
= (3¢’ - &%) ¢ + (c® - 3cs®) 8
= 4¢’% — 4¢s’, and so on.

The question of finding the sine or cosine of the nth part of
an angle is now reduced to that of solving an equation of the nth
degree. For example, given the sine of an angle, b, it is required
to find the sine of its third part. Here

b=3(1 -2z -2°=3z - 42°,
z being the sine of the third part. Hence z is to be found from
42°-3z+b=0. :

For example, if the angle be 30° we have to solve

8°-6z+1=0,
which, by Horner’s method, has *173648177867 for one of its roots,
approximately; and this root is sin 10°

There are three roots to this equation, all real: but three
distinct problems are attempted, all soluble. For what we really
ask, in the equation, is the sine of the third part.of the angle
whose sine is 4. This last angle may be either 30° 360°+ 30°,
2 x 360° + 30°, 3 x 360° + 30° 4 x 380° + 30°, &c., or 180° - 30°,
8 x 180° - 30°, 5 x 180° - 30°% &c. Look among the thirds of all
these angles, and we find three angles having distinct sines, 10°,
130°, 250°; or 10° 50°, 250°. And the three values of z are the
sines of these three angles.
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From the preceding theorem we can, and with tolerable ease,
exhibit the algebraical series which cos6 and siné are equivalent

to. First, we must ascertain that, z having a fixed value, (oos ;)

neither diminishes nor increases without limit when » inereases
without limit. Of this, @ prioré, we must be uncertain, for as

n increases, cos zincreases towards unity, while the increase
of the exponent has a diminishing effect. Between the increase
and the diminutioxi, we are unable to say whether (coe 2—:)’,
for instance, is greater or less than (cos :)“ . But, taking n
8o great to begin with as that s shall be between - iz and

+%m, we easily see by our formule that the duplication of n
effects an increase. For

z z z
14+cos = cos=+cos -
n n n

e = >cos=;
o8 Bp = z 2 n’
z\™ z\"
or (cos —) > (cos -) .
2n, n,
" ,
Beginning then at cosz, the succession cosz, (cos ;) , (cos ;)"

&c. is a succession of increasing terms, of which no one exceeds
”
unity: for (cos 5:) cannot exceed unity, unless cos - could be
n

greater than unity. Accordingly, the preceding terms severally
approach to some limit: let it be L.
Now take the term which may represent any one of the
terms already found in cosnf and sinnf; namely,
n-1n-2 n-m+1

nmgm — TR e oo
m,e" ", or n —— — (m factors) po

Let n0 =3, a fized angle: but nevertheless n may be as great
as we please, provided 6 be taken =z +n. And as n increases
without limit, @ diminishes without limit. Now take the term
preceding, divide it by (cos6)”, and at the same time multiply
and divide it by 6, m times. It then becomes

=0 n0-0 no-(m+1)0 1 (sind)"

2 3 m ‘6™ (cos6)™’

(cos0)*"(sinO)".
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s-0 g-20 z-(m+1)6 (tanO\™
or ST, 3 sescee m (—0—) .
When 6 diminishes without limit, this, for every specific
z z

Y ST T T
value of m, approaches without limit to 2.5 . 5... — .1% or g—.

Next, after dividing both equations in page 30 by c* or (cos '—:)”,

perform the preceding compensatory operations on the several
terms, and equate the limits of the sides of the equations
(Algebra, page 157). We have then,
9&’=1_€+._“__ . 8i_n‘=g_.i+_z'__
z 2234 77 L 23723456

These series will be found to be convergent (Algebra, page 186);
and these equations themselves determine L. For if we make
z=0, the first gives cosO= L, or L=1: if we divide both sides
of the second by z and diminish z without limit, remembering
that sinz =~ z has the limit 1, we also find LZ=1.

Our results then are (z being an angle in arcual units),

con=l——+-i— z + 2 = eseeny
- 2 234 234.56 2.3.4.5.6.7.8
sins=s- b - P 4 il S
2.3 234.5 234.58.7 2.34.56.7.8.9 *

in which we see verification of the preceding assertions— that
cosz is an even function, and sinz an odd one — that sinz=2
and cosz = 1 - 12*, nearly, when z is small.

The readiest mode of calculation from these:series is by
throwing them into the forms

cosz:l-z—;{l-a—-i{l—%{l—%{l—......,

. 2 2 2 2
sing =2 {1—-2.——3-{1"4.~—5'{1—677'{1—‘8—.5{1-.-..",

where { indicates that the preceding multiplier is a factor of
all that follows.

Thus, the calculation of cosl (or 67°17'44™8 in gradual units)
is obtained to twelve decimal places (see the property of alter-
nating series, Algebra, page 184) from

alpln ittt 1o 1
cml_l_é{l-a{l-b-_é{l--,—.gﬂ m{l'll-lz{l aTie
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Turn 1 +13.14 into a decimal fraction of 13 places, subtract
it from unity, divide by 11.12, subtract from unity, &c., keeping
13 places throughout: the final result may be depended on to
12 places.

Those who have mastery enough over algebraical division
to divide the series for the sine by that for the cosine, will find

2 22 177 62
tanz—z+3+15+315 m*‘..uu,

the law of the terms of which is too complicated for the beginner.
Every one, however, should verify on the series, cos'z + sin®s = 1,
008’z — 8in’z = co8 22, 2sinz cosz = sin2z.

I said (page 2) that we should soon make it very evident
that a purely algebraical basis might have been made for tri-
gonometry. If we had chosen to call the preceding functions
of z, namely

1-§+..., z- 27"3+ eoey z+%‘+...,

by the names of cosine, sine, and Zangent of 2, (and their reciprocals
secant, cosecant, and cotangent), we might have investigated the
properties of these series, and we should a¢ last have arrived
at all our preceding formule of connexion; but with much
more difficulty.

I now go to the converse problem, in which it is required to
express cos™0 and sin"0 by means of sines or cosines of 6, 26, 36, &c.

First, let there be n angles a, b, ¢, d, &c., and proceed as in
page 28 with cosa cosd cosc. Thus we have

cosa cosd = 2 cos(a - ) + % cos(a + b)
cosa cosdbcose =L cos(a-b-c)+1cos(a-b+e)+2cos(a+b—c)
+4cos(a+b+e), &e.

The final divisor will be 2, the final number of cosines 2"; and,
looking at the manner in which the angles enter, we shall see the
cosine of every choice out of +a+btctdt... In every term
change the sign of every letter, which will not alter the value of
any one cosine, add the results together and divide by 2, which
will leave the whole unaltered, and we shall then have 2* for
a divisor, 2" for the number of terms, and every variety of
+atbictdt... among the angles. If we now make g, , ¢, &o.
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all equal to one another and to 6, we shall be able to subdivide
all the choices furnished in + 6 + 6 + 0 + 6 + ... (» terms) into the
following. One case of 70, taking all +, and one case of - 20,
taking all —: 1, cases of (n —2)6, with one only taken negative
(giving (n -1) 0 - 6), and as many with ~(n - 2)6, taking one
only positive: 2, cases of (r - 4) 6, taking two only -, and as many
of —(n - 4) 6, taking two only +; and so on. But at the last step
there will be a separation between the cases of n even and n odd. Ifn
be even, say = 2k, there will be at last &, cases of {(n - %) — £} 6,
or 00, taking % — and % +; the case of % taken + and & taken -
not being distinct from the former. But if # be odd, say = 2% + 1,
then there are %, cases of {(n—k)-k} 6 or 6, in which % are taken - ;
and as many of — 6, in which % are taken +. Accordingly, cos a
cos b cos ¢...being now cos"0, we have

2" cos"@ = [cosnb + cos (- n6) + 1, {cos(n - 2)0 + cos — (n - 2)6}
+2, {cos(n—4)0+cos - (n-4)6} +3,{cos(n—6) 0 +cos—(n-6)6}
+ ... ending with %, cos00 if n = 2%, and with

k,(cos0 + cos—0) if n=2k+1].

Collecting these, by help of cos(- a) = cos @, we have, for a final

form,

cosnf = gzq{cosno tncos(n-2)0 +n ”;—1 cos(n-4)6 + }
on the condition that cos06, when it occurs, is only to take Aalf
the coefficient indicated by the general law.

The beginner may proceed thus,
cos’® =1+ 1 cos20 cos®0 =3 cosf + 2(cosf + cos30)
=% (cos30 + 3 cosf)
cos'd = 1 (cos30 cos + 3 cos’d) = 1 (cos20 + cos46 + 3 + 3 cos26)
=4 (cos40 + 4 cos 20 + & cos00), &c.

Now let 0 be changed into 27 -6, or cos"0 into sin"0. If we
examine cos (m 7é‘—A), we begin by rejecting all the fours out
of m, as indicative of complete revolutions; and the final form
of this term depends on the remainder. Call 4% an even even-
number, as it is the 2%th even number, 4% +2 an odd even-number,
being the (2% +1)th; 4%k+1 an odd odd-number, is it the (2% + 1)th
odd number; and 4% + 3 an even odd-number, being the
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(2% + 2)th, Then, for even even-numbers, the above is + cos4;
for odd odd-numbers, + sin 4; for odd even-numhers, - cos 4 ;
for even odd-numbers, — sin 4. .And m -2 is of the class of
even numbers, or of odd numbers, of which m is not, &. We
have then the four following formulee :

n even even sin"0 = 2‘3-_1 {cosn@ -ncos(n-2)0+n ’-'—;—1 cos(n—4)0—...}

n odd odd sin®d = 2-—1_7{sin n0 —n sin(n-2)0 + n n_;_l sin(n—4)0—...}
. 1 n-1

n odd even sin™0 =- = cosnb - n cos(n-2)0 +n - cos(n—4)9—...}

n even odd sin"0 =- 2%_l{sin nf - n sin(n-2)0 +n ﬁ—;;- sin(n-4)0—...}

Of these the beginner should construct instances, as before.
He may also try to prove the following theorems:

n20o__ 2 _tan(45°+6) - tan(45°-06)
“cotf+tand tan(45°+0) + tan (46°-0)’
1
= = 9—2 t20
cos 20 TTtan20 tand tané = cot cot 26,
l—cosO__umO 1+cos9=cot§'

sind 2  sin@ 2
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CHAPTER 1V.
ON THE INVERSE TRIGONOMETRICAL FUNCTIONS.

‘WE may now consider cosf, &c. as functions of 6, and accord-
ingly, 6 itself as a function of cosf, or of sin6, &c. If z=cosb,
then 6 may be described as ‘an angle whose cosine is 2.’ The
continental writers denote this by angle (cosine = z), but-in our
country it is universally described by a symbol derived from a
functional analogy. If ¢ denote a function of z, then ¢ (¢x)
is denoted by ¢'z, ¢(¢*z) by @'z, and so on. On this notation
¢z should denote the function on which performance of ¢ gives z,
so that ¢(¢'z)=2, and ¢*z should denote that function which
gives ¢*(¢?z) =z. Accordingly, cosz being considered as a func-
tion of z, and the abbreviated word cos as a functional symbol,
" cos™z should denote the function which satisfies cos(cos'z) = z.
Hence, cos™z must stand for the angle (meaning any angle) whose
cosine is 2. Similarly, sin”z, tan™z, &c. stand severally for any
angle whose sine, tangent, &c. is z.

The objection to this analogy is, that we do not pursue it.
We do not employ sin*z for the sine* of the sine of z, but for
sinz x sinz or (sinz)®. The answer is, that we ought to follow
the analogy, and that we certainly should, if questions in which
the sine of the sine, or the sine of the sine of the sine, were
so frequently employed as to require abbreviation. And when
such questions actually occur, then sin®z should stand for
sin {sin (sin 2)}, and sinz x sinz x sinz should be denoted by
(sinz)’; a form which some writers prefer, as it is. But as sines
of sines, &c. very rarely occur, it is not necessary to disturb
established notation.

As above defined, ¢z and ¢’z are what are called inverse
functions. But when we talk of the inverse function of ¢z, it

¢ The student may ask, How can any thing but an angle have
asine? I answer, that 0 is not an angle, but the number of arcual
units in an angle. Every number has a sine.
E
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is as when we talk of the square root of z, knowing that there
are two. QGenerally speaking, inverse functions have more values
than one; in the case before us, an infinite number. For, let
cosz be 6, that is, let 6 be an angle which has # for its cosine;
then so has 2mr + 6, m being any integer, positive or negative.

Hence it always arises that though ¢¢p'z ==z, ¢'¢z is not
always z, but only has z for one of sts values. Thus (yz)* is z,
but 4/(2*) is either  or - 2, at pleasure, or else one or the other,
as dictated by the particular problem in hand. Similarly

cos?cosd = 2mm + 0, . tantan6 = mmr + 6,

sin?sin@ = 2mm + 0 or (2m +1) 7 - 6, cot™ cotd = mm + 6,

cos™siné = 2mm t (g - 0) , tan™ coté = m7 +

This chapter is wholly on expression, and is intended to enable
the student to understand the theorems hitherto demonstrated,
when expressed in inverse language. All that is wanted, then,
is a set of examples for consideration. I shall give two cases
with full explanation, and then write down others to be considered *
by the student. )

™

3 6, &c.

cos(2 sin'z) = 1 - 22%,

This is nothing more than cos20 =1 — 2 sin*0. Let z be the sine
of 6, that is, let 6 be an angle whose sine is #, and substitute.
The formula is to be understood as ‘the cosine of double any
angle whose sine is z is 1 - 2%’ ’

tan”z + tany = tan™ (:: ty )

In all the formule which have inverse functions for their terms,
we have choice on one side and not on the other. In the formula
4% x 9Y = 36! we are not at liberty to say that anmy square root
of 4 multiplied by any square root of 9 is any square root of 36:
but any square root of 4 multiplied by any square root of 9 is one
of the square roots of 36. And by the above we mean that any
angle whose tangent is # augmented by any angle whose tangent
is y, is ome of the angles whose tangent is (z+y)<+ (1 - zy).
It is proved thus:

mn((/)ﬂg)___1’(49.n¢+t,an€

. ., ( tan¢g + tané
1-tang.tan6’ ¢+0=mnl( 2 0)’

1 - tang. tan
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or ¢ +0 is one of the angles, &c. Let tangp =z, tan@ =y, or let
¢ = tan'z, 6 = tan™y, and substitute.
The student may now employ himself on the following:
sin cos 'z =y/(1 -2%), tansec'z= y(2*~1), sin(2sin"z) = 2zy(1-2%),
sin (3 sin'z) = 3z - 42°, sin(4sin”z) = (42 - 82°) y(1- 2%),
8z - 2°

tan (2 tan"z) = I%"- . tan(3tan’s) = 125,

taking acute angles,
T . . . .
Z=tan‘§+tan'§=4tan‘}—tan‘;§,

=4tan™} - tan® A + tan &,
sin”z + sin™y = sin™ {zy/(1 - ¥°) + yv(1 - 2},
cos”z + cosly = cos™ {/(1 - 2* - y* + &%) - 2y},

. Z+1 . .
cos tan™sin cot™'z = \/ x%2 , cos.sin™.cos.sinz = + z,

cos.sec™.sin. tan™, cos. tan™, sin cos™. tan.sinz = :: : :f’ ,
_ (62 -2) Y(* - 162 + 1622 - 1)

sin 2 cos'tan 3 cot™'z

z (@ - 3)

This is a chapter on language; and some of the preceding
examples are merely hard phrases to be construed from trigono-
metry into algebra. But such transformations have an important
use in calculation. If we wanted to calculate the value of the
last-named function of z when z = 51761328, and had such
trigonometrical -tables as those of Hutton, hereafter described,
it would be the easiest plan, beyond comparison, to proceed by
the first side. That is, we should find by the table the angle
whose cotangent is 51761328, treble it, find the tangent of the
trebled angle from the table, pass to the table of cosines with
that tangent, find the angle to it, double that angle, and take
the sine of the last. Thus sincos™z is, with tables, easier than
4/(1 = 2*), and sin 2sin™z easier than 2z/(1 - 2°).

The following are a few instances of reduction to mixed
trigonometrical forms:

V(a® + 8 - 2ab cosC') = v/{(a + b)* - 2ab (1 + cosC)}

=(a+d) J {1 4a(baczsb;’0} = (@ + b) cos sin™ (______2‘/“3’:1“0) ,
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V(a* + b - 2ab cosC) = +/{(a - b)* + 2ab (1 - cosC')}

- \/{1 \ 4a(:sin;)g'0}= (- B) sec tant (%‘(’:-_ji:_*_c_'),

V@ +¥)=a sectan"%, V(@ -?) =.acossin"éa,

-bty(@-4a) b cos*} sin™ 2vae b inta gins 20
2a a ! a °

b
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CHAPTER V.

INTRODUCTION OF THE UNEXPLAINED SYMBOL ./-1.

Ir we look at the series for sin® and cos 6, of the form obtained
in p. 33, we see that each term is one of those in I (Algebra,
p. 225). We easily deduce
., 2 _

23 234 2.3.4.5

If there existed such a quantity %, as would give ¥*=-1, ¥*=-%,
k=1, ¥ =k, &c., then cosf + % sinf would be €9, Such a quan-
tity there is not in Algebra, as hitherto considered: for A*=-1
is absurd. If, under pretence of satisfying this equation, we invent
k=+-1, and proceed to use it according to the laws which
demonstrably govern our intelligible symbols of positive and ne-
gative quantity, we adopt the process of all the algebraists, with
a fair statement of what we are doing. A use, which ought to
have been called ezperimental, of the symbol /-1, under the name
of an smpossible quantity, shewed that, come how it might, the
intelligible results (when such things occurred) of the experiment
were always true, and otherwise demonstrable. I am now going
to try some of these experiments: the student may rest assured
that the new results of this chapter will, in the second book,
be rendered demonstrative, upon a system which clearly defines
v/-1; or he may doubt it: but he must not think they are
demonstrated here, though they will have strong moral® evidence
in their favour. By giving precedence to the use of /-1, under
the above stipulation, the student will gain the advantage of
familiarity with the language of double algebra, before he ap-
proaches the difficulties.

cosO+ksin9=l+k0—§—k

# It is almost impossible to discredit Woodhouse’s remark
¢ Whether I have found a logic, by the rules of which operations
with imaginary quantities are conducted, is not now the question :
but surely this is evident, that since they lead to right conclusions,
they must have a logic.”
E3
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Say that we suppose, from the above,
€' = cos6 + sin0. y-1.
The processes of algebra constantly lead to this result, and
refuse every other; I mean those in which 4/-1 is assumed to
be something which, though unintelligible, is governed by the
laws of algebra—a fellow-subject of the other symbols, with a mask
over his features. For instance, common multiplication will give
(cos® +sin 6.4/-1) (cos + sin¢h .4/-1) = cos (P +6) + sin (P + 6)./-1.
Let f0 denote cosf +8in0.4/-1; then f0xfP=s(0+¢), and
(Algebra, p. 204) f6 must be E°, where E is independent of 6.
Accordingly,
E°-1_cos6-1 sing 1
e ~ 6 6 ° ’
Diminish @ without limit, and (p. 17, and Algebra, p. 266)
log E=0+y-1, or E=€"", E®=¢€"".
If €' =086 + 8in6. /-1, universally, then

€% = 0080 - sind. +/-1, whence
iy 071 S R e 2
0089 = T » lillo = —5—1/_-1— L4

Had these forms been intelligible, they would have been the
proper algebraical definitions of the cosme and sine of 6; and
trigonometry would have been pure algebra in the ancient sense,
and a very easy part of it. For assuming tan@ to be sin6 + cos6,
and sec6, cosec, cotf, to be reciprocals of the other three, all
the formule of trigonometry would have been proved by simple
algebraical operation. For example,

cos cosd = 2 (€' + &#7") (P4 + €0)

= 1 (#1014 POV ((p-0)9L y (9-0)VT)
=4 {cos (¢ + 0) + cos (¢ - O)}.

Since ¢! has this property, that a change of 0 into n raises

it to the nth power, we must have
(cosf +8inf. /-1)* = cos n0 + sin nd, 4/-1.

This is called De Moivre’s Theorem. The student, instead of
referring to it, must take pains to associate cosé + sinf../-1
with the notion of a quantity which is squared, cubed, &o., by
introducing a double, treble, &c. angle. And in like manner
he must associate the notion of rectprocals with cos6 +sinf. /-1
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and cos6-sind. /-1, without being obliged to bring them back
to € and €*, The following equation will assist:
(cos@ +8in@. 4/-1) (cosf - sinh. 4/-1) = cos®d + sin*@ =1.

If n be integer, the first side has one value only, and also
the second. But if n be fractional, as Z, the first side has
10 distinct values; the second apparently only one. This intro-
duces us to a new consideration of the highest importance.

We have been using an angle in two different ways: first,
absolutely, as a magnitude, in the same manner as any other
kind of magnitude; secondly, as generated by a straight line
revolving from a given starting-line, and indicating the direction
which the revolving line points out when it has revolved through
the angle. As magnitudes, @ and 6 + 27 arcual units of angle
differ as much as 0 and 0 + 27 feet, or gallons, or hours: as
indicators of direction, they yield no difference at all—they in-
dicate the same direction.

If we begin with 0 as indicating a direction (for which
0 + 2mm would have done as well), and if 0 be the solution
of a problem in which @ is a given quantity, that problem is
equally solved by F(0+2mr), m being any integer positive or
negative. So many different values as we can give to F (0 + 2mr),
so many different solutions: but if 0 be another angle, used
as an indicator of direction, then so many different values as
we can find for F(6+2mn), no two of which differ by a posi-
tive or negative multiple of 27, so many distinct answers are
indicated. And all that we say of directions applies to the
trigonometrical functions, which take value only from the direc-
tion of the revolving line, and not at all from the number of
revolutions by which it has been attained.

If 6 be an angle which indicates a direction, n6 can only
indicate one direction, when % is infeger. For, using 0 + 2mr
for 6, n0 becomes n0 + 2nmm, and 2nm is an even integer. But

if n be a commensurable arithmetical fraction, say g in its lowest

terms, then n6 indicates ¢ distinct directions, no more and no

fewer. For n(6+2mn) or ’-; 0+ 2—'22 w indicates the same di-

rection for any two values of m, m’ and m”, in which 2—’;—1-’ - 2'"7"
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is an even integer, or (m’- m")s an integer, positive or negative ;

and for no others. Now since ¢ and p are prime to each other, -
this can only be when ¢ divides m’'-m”, positively or negatively,
or when m’ and m” differ by a multiple of ¢.
If then we take the following values of m, namely,
' 0,1,23,..(g-1),

we get all that give really different directions; for every other
number, positive or negative, differs from one or another of these
by a multiple of ¢q. All the distinct directions, then, are indi-
cated by one or another of the following angles,

Po, Lo,Loy Lo, 2Po, P, g, 2o, VP,
79 9 9 q q 7 9 q q

Now if p and ¢ be prime to one another (Arithmetic, Ap-
pendix, p. 195), and if we divide p, 2p, ... (¢ - 1) p severally by g,
the remainders (which are all we need look to, since every unit
in a quotient is 27 in the angle), whatever order they may
occur in, are 1, 2, 3,... (¢-1), each occurring once somewhere.
Consequently, ‘changing the order, we may say that all the di-
rections which % (6 + 2m=) can indicate, are those indicated by

2o 2oyl on 2042 or, 29,921 of
7 9 9 7 9 q q
which may be expressed thus: If ¢ be the lowest denominator
of n, all the directions indicated by n0 may be derived from any
one of them, by successive advances of the gth part of a revo-
lution each.
In the last equation, written thus,

E Po.n?
(cos6 + 8ind . 4/-1)2 = cos 7 6 + sin p 0.y-1,

we see ¢ different results on the second side; which are the
g ambiguities of value we are taught by common algebra to
give to the first side.

If cosa +sina.+/-1 be one of the values of (cos6+siné./-1)",
then cosa-sina.+/-1 is, by similar reasoning, one of the values
of (cosf - sin@.y~1)". If sin6 =0, that is, if cos@ be either
+1 or -1, then cosf+sin@. /-1 is the same as cos@ -sin6./-1,
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or both cosa + sina.+/-1 and cosa - sina.+/-1 are values of both.
This will enable us to arrange our sets with better perception
of their connexion.

I shall now exhibit all the 12th roots of +1, and all the
12th roots of -1. For the first, 6=0, for the second 6 =, (which
gives L for a commencement), and on these angles we must
make advances of one-twelfth of a revolution at each step, stopping
when we have gained 12 distinct values for each. Gradual mea-
surement will here be most convenient.

The twelve twelfth roots of + 1.
cos0° +sin0°. /-1 gives only one root, + 1 itself

0830° 1 in30° /-1 ...... 1/3 + 1.y-1
c0860° + 8in60°% /-1 ...... 1+3v/8./-1
c0890° 1 8in90°% /-1 ...... 1 v/-1

€08120° # sin120%¢/-1 .eee.. - 31 3/8.4/-1
c08150° + 8in160°/~1 ...... - 3v3 +3./-1
c08180° 1 8in180°+/-1 ...... only one root, - 1.
The twelve twelfth roots of - 1. .
cos15° +sinl6° +/-1 gives M t ﬂ;—ﬁ Ww-1

00845° +8ind45% y-1 wrve 3y2 £ 3241

c0875° + §in76% Y1 seven. L LI AR L BRI

€08106° + §in105°%/=1 vv.s — 1/6—;“/-2 + M.,/d

08135° + 8in136%/~1 weveee ~ 22 + 4y/2/-1

008165° + 8in165%/1 ...... - ‘M + 164;‘/3 -1

‘We have now found the twelfth roots of any quantity, positive
or negative. If a be any twelfth root of +1, a'¥m, m being
positive, is a twelfth root of m. For its twelfth power is a'.m,
or m. Similarly, if 8 be any twelfth root of -1, ﬁlg/m is a
twelfth root of -m.

‘We may extend this further, as follows. Two given quan-
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tities a, and &, cannot be cosine and sine to the same angle,
unless a*+ 5 =1: but they may be proportinal to the sine
and cosine of the same angle. For if a* + 4* = m*, then '—:- and ,%

are cosine and sine to the same angle, and the tangent of that
angle is ae' Hence we have a transformation of great importance,

b
v

a+by/~-1=,/(a*+b"). (costan"f +sintan™ - V—l) J(a’+b')€m a

But this point is to be remembered: tan™z has two values
which indicate different directions; and those values are oppo-
nents; 6 being one, 6 + = is the other. Now 6 and 6 + = have
contrary sines and cosines; sin (6 + 7) = - 8in6, cos (0 + 7) = - cosé.
If we set out with a given sign, say the positive one, for /(a* + 8*),
and take the wrong angle, we shall end with - a - by/-1, instead
of +a +by/-1: we may set it right either by altering the angle,
or using the other square root of '+ 3. But as the positive

root is generally used, the proper value of tan™ g may be re-

membered as the angle whose cosine has the same sign as a.
The following would be the most convenient arrangement. One

angle which has - for tangent has its sine of the same sign as g,

and its .cosme of the same sign as b; the other has the sine
of a different sign from a, and the cosine of a different sign

from 5. Let the first be denoted by tan™ b, and the second

by tan™ _—:. Thus we have

) -3
a+by-1= y/(a" + B).€* N o y(at 4 B).
Show now that one twelfth root of a + by/-1 is
b . . b
l2/1/(a’ + b’).{cos(},tan" ;) +8in (,ﬁ,tan ' ;)V—l};

and that all the twelfth roots may be found, either by successively
increasing the angle by twelfths of a revolution, or by multiplying
the above by all the twelfth roots of + 1.
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Returning to our original notation, we have
z + yy-1 = r(cosb + sin6./-1) = re®;
z - yy-1 = r(cosd - sinb.y/-1) = re®",

The fundamental equation € = cos0 + 8in6./-1, gives the
following results; €' =1, and €' =_1, If a be a positive
quantity, we have a = €% = €l%6** "l If then any symbol z
be a logarithm of a, which satisfies a = €', we have such right
as we can take in fAis chapter to say that the ordinary arithmetical
logarithm (which we shall still denote by loga) is only one
of a class, all contained in log a + 2mmy/-1, in which m may
be any positive or negative integer. Let Aa denote any logarithm
of a; then we have \a =loga + 2mmy/-1: and the usual form
loga is one case of A\a. Here a was positive.

Now - a = (- 1).a = '™ gloga _ glogastimeinial, " op o oe
we may say that negative quantities have logarithms, and that

A(- a) =loga + (2m +1)my/-1;

but still, as before, there is no arithmetical logarithm to a negative
quantity; for, m being integer, 2m + 1 cannot vanish.

Let the student now show that, in this extension, any logarithm
of a, added to any logarithm of b, gives one of the logarithms
of ab, &c. All our ordinary logarithmic relations remain true
in this sense. Since

z+ y’\/—l - re04-1 = re(OvW).:l-l = e]ogro(Oohl)j’l'

we have all the system of logarithms exhibited in
A(z + yy/-1) = logr + (0 + 2mm)y/-1,

= tlog(2* +¥*) + (tan“ g + 2m7r) V-1

Here 2mr is not necessary, unless we restrict tan“g to be

in the first revolution; otherwise, tan™ % (remembering the dis-
tinction between it and tan™ -—‘:: ) expresses every case by itself.

A still further extension of the notion of a logarithm may

‘now be made. The base € is €™, If La represent the
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most extensive logarithm of a, which we can get from any
such form of €, it must be obtained (s being positive) thus:

(ehznw./'l)l.a = e]ogadam/-l, (elm:)L(-a) = elogl*(?nﬂ)"/-l;

La - loga + 2n7y-1 _loga+(2n+1)ry-1

or T12mry-1° ZCD="" 1 ommyr
m and n being any positive or negative integers. Proceed in
the same way with z + y/-1, and we have .

1 0+ 2 -1
oo - B G

It thus appears that there is, to the base €, an infinite number
of systems of logarithms, corresponding to the values of m, and
an infinite number of logarithms in each system, corresponding
to the value of n.

Two logarithms of one quantity, taken out of different systems,
cannot generally be found equal. If, m and m' being two integers,
we form the equation {let p = 6 + 2m, p' = 6 + 2mn'’}

logr + py-1_logr+p'v-1

T+2mmry-1 14+2mzy/-1’
clear it of fractions, and equate the possible and impossible terms,
we get pm’ = p'm and 2m'w log r + p=2mm logr + p'. Substitute
in the second the value of p’ from the first, and we get

(27m log r - p) (m' - m) =0;

either then m'=m, and the systems are the same, or 27m log r = p
and 27m' logr = p'. In these cases a logarithm of z + y+/-1 or
r€%! in each system is log r, the arithmetical logarithm of r.
But, m and m' being the indices of the bases, and n and n' those
of the particular logarithms to those bases, this requires that r
and 6 should be determined by

6 +2mn _ 0+ 2mn and lo. r_0+21m

2rm  2mm’ ' BT = 2mm ' -
n-n n'm - nm'

or logram,_m, 0-2rm,

so that, for two given systems, and two given values of # in those
systems, there is one expression, and one only, which has the same
logatithms in both.
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In ordinary algebra it is said that negative guantities have none
but smpossible logarsthms. And this in the face of the result that,
/& being a, ¢ is either +a or —a, 80 that - a has 1 for a logarithm.
‘We can now show how these isolated cases of negative quantities
with real logarithms arise.

Let us solve the general question—What expressions have real
logarithms, what are they, and in what systems? The follow-
ing equation is produced by multiplying both terms of the fraction
by 1 - 2mmr /-1,
logr + (0 + 2n7) /-1

LE+tyy-D=—Fr0mm/ 1
_ log r + 2mm (6 + 2nm) 0+2mr—2m7rlogr\/ 1
- 1+ 4m™* 1+4m'” o

This is a real quantity only when 2m= log r = 8 + 2n, in which
case L (z +yy/-1) =logr (1 +4m*7*) + (1 +4m*z*)=logr. IfO=m,
in which case y =0 and z is negative (z=r€™ "= - r) we have

2n41
log (- 7) = log r, whenever 2m= log r=(2n+1)r orr=¢*™ . This
is precisely the case we might have anticipated: for ¢ has two
real (2m)th roots, one negative. But it appears that instead of
the system being that of the base &, the base is &*"™", The
complete illustration of this difficulty may be gathered from the
second book.

Returning now to the fundamental equations, let z stand for
€ or cosf + sin@.4/~ 1. We have then

z=co80 + 8in0.,/-1, 2" = cosnf + sinnd. /-1,

2 =cosf - 8inf.y/-1, 2™ =cosnd -sinnd../-1,
2 cosf =z + 27, 2 cosnb = 2* + 2™,

24/-1.8in0=2-2" 24/~ 1.8innd = 2* - 2™,

These equations may almost be said to contain trigonometry.
Completely established, they would furnish proof of all we have
done: the deduction from them of our previous results must
be inductive proof that, somehow or other, the use of 4/-~1 does
lead to true results.

Required sin0 in terms of functions of multiples of 6:

§in'6 = ( wl_ :
=- 1{sin30 - 3sinb}, as in page 35.

)’{z -gP=- W_ti {£* -8z + 82 - 2%}

F



50 INTRODUCTION OF

. Required cos49 in powers of sin6 and cos0:
o“49___5‘+z‘=(c+s,/—l)‘+(c-s«/-l)‘
2 2
=¢* - 6¢c'%’ + 8!, as in page 31,
The student must take notice of the manner in which the aetion
of 4/~ 1 supplies the place of the rule in page 31.
‘We may now extend some of our rules. Required sin™9 cos®@
in functions of multiples of 6. That is, we have to find
(-2 (z+ )
(-1
In the numerator, the descent of each developed factor is by two
dimensions in each term; for

(-2")" is g™ - 1,e™ %"+ 2,2™ %~ ......

Now if we multiply Ka* + La*"b + Ma** + ... + Pab*" + Q8* by
a —b or by a+ b, we have as results,

(K-0) d*"' +(L-K)a"b+(M-L)a"'8*+...+(Q-P)ad* + (0-Q)b*",
(E+0)a*" +(L+K)a"b+(M+L)a* '8 +...+(Q+P)ab* + (0+Q)8*".
The shortest way of doing this is by writing down the coefficients
K, L, &c. in a row, and under them K70, LF K, &c. In this
manner we may rapidly make the multiplications, and in either
of two mutually verificatory ways: by coefficients from (z - z%)™,
and successive multiplications by z + £, or by coefficients from
(z + £7)" and suecessive multiplications by z - z%. As fo the rest,
the final divisor will be 2™, for a 2 (and 4/~ 1, if there) will be
taken up in the reconversion of £™+2™ into cosine or sine. And
if m be even-even, (y/-1)" is 1, and the result is in cosines;
if odd-odd, it is 4/-1, and the result is in sines; if odd-even,
it is — 1, and the result is, we may say, in negative cosines, the
sign of each term being changed; if even-odd, it is —4/~ 1, and
the result is in negative ‘sines. And the conclusion begins with
(m + n) 0 and this angle diminishes by 20 at each step. But
if 2 occur, there is no term distinct having 27, so that the 2 just
mentioned is not taken up in forming cos06, and must therefore
be used in denoting the coefficient; or only half the coefficient in
the result must be used. As an instance, I shall take sin®0 cos®,
in whieh, if we work both ways for verification, we shall pick up
during the process all that is wanting for finding sin™6 cos'd,
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for any value of m not exceeding 5, and &in®d cos™9, for any value
of n not exceeding 6. The conclusien which each step prepares
us for is written in abbreviation at the commencement.

¢|14+6+16+20+15+ 6+ 1

8c*{1+8+ 9+ 65~ 5- 9~ 5-1

sc*|14+44+ 4- 4-10- 4+ 4+ 441

sc*|1+83+ 0- 8- 6+ 6+ 8+ 0-3-1

s'c¢*|{1+2- 3-8+ 2+12+ 2- 8-3+2+1

c*|1+1- 865- 5+10+10-10-10+5+6-1-1

s* 1-564+10-10+ 6- 1

c |1-4+ 5+ 0- 65+ 4- 1

s*c*|1-3+ 1+ 6- 6- 1+ 83-1

8c’|1-2- 24+ 6+ 0- 84+ 2+ 2-1

g'c*|1-1- 4+ 44 6- 6- 4+ 44+41-1

&€c*|140- 6+ 0+10+ 0-10+ 0+5+0-1

8141~ 5- 5+10+10-10-10+85+65-1-1
Attending to the rest of the process, we have

2 cos'd = ¢0860+6cos40+15c0820+10 -

2*sin Ocos®d= sin70+655in80+ 9sin30+ 55ind

27 8in*0 cos*0 =-cos80 -4 cos 60 - 4 cos40+4cos20+ &

2° sin®0 cos®@ =—5in 90 - 3 sin 76 +8sin30+ 6sind

2° 8in*6 cos®d =08 100 + 2 o886 — 3 cos60-8 cos46+ 2c0820+6
2%5in*0 cos®? =8in110 + 8in99- 5sin70 - 58in 50 +10s8in 36 + 10 sind

2¢ sin%0 =gin80 -5sin30+10sin0

2% sin*0 cos 0 =sinBO -4sin40+ 5sin20

2* 8in*@cos’0=8in"70 -3sin80+ sin30+ 5eind

27 8in®0 cos’@ =s8in80 —28in60 -2 sin40+ 65sin20

2% 5in%0 cos'0=8in90 - 8in'70-4sin50 +48in30 +6sind

2° sin®0 cos’d =sin 100 -5sin60 +10sin20

2%5in%0 cos*0=8in116+ 8in90-5sin 70 - 5sin 50 + 108in36 + 10sin
Let a,+a2z +az"+... be a converging series, if extending

ad infinitum (which it need not here do), and let it be the

development of a known function of z, ¢z. It is required to find

Gy + a,z 080 + a2® c0820 +......
Mulﬁplied by 2, with &" + 2™ written for 2 cosnd in the several
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cases, it obviously becomes ¢ (22) + ¢ (2z™). It is then
1P (2) + P (@)

which can be reduced to a real form. Similarly

a,8in00 + a,z sin6 + ax® sin20 + ... is {P(22) — P (22"} + 24/- 1.
Before proceeding to some examples, it will be worth while
(seeing before us a field of such extent as the applying the
summation of any algebraical series to the summation of one
in which the terms are severally multiplied by the sine or cosine
of the multiple of an angle), to consider the transformation of
® () and @ (227).

Let there be a function of /a which, if 4/a had only one value,
would itself have only one value. This restriction of value may
be, if we please, conventional; for instance, sinb.+/a is such
a function, if we suppose ourselves restricted to ome value of
sin?d. If, then, F(y/a) can be thrown into the form P + Q. /a,
where P and Q are wholly unaffected by the change of 4/a into
-+a, F(-+/a) must be P- Q. a.

Now it is a proposition to be carefully remembered, that any
function of z+y+/-1, 2 +y /-1, &e., can always be reduced to
the form P+ Q+/-1, in which P and Q are wholly independent
of 4/-1, or are real quantities. In the second book I shall
show this independently of all particular cases: at present we
must be content with induction. The proposition is clear enough
of sums, differences, and products, however varied ; and also when
division enters, if we look at its reduction to multiplication by

1 =.’f_—-y1/-l= z Yy /-1
ziyy-1 2+y Pyt Pyt

As to powers, we can thus reduce the form (z+yy/-1)"""";
for in this we see (r€?*')**?*, or

ellog r+8v-1) (P*"/'l), or e®losr-ed+e log'wc)'l—l’ or

€?108790 o5 (glog r + pB) + €187 gin (glog r + pb) . y-1;
for €7’ we have € cosy+ € siny.4/-1; for log (z +y+/-1)
we have

m"%' V-1 4y
log (z+y v/-1)=log {y(z*+y*) € }=2log(«*+y*)+tan > V-1

If we extend our notion of cosine and sine, taking the ex-
ponential forms in p. 42 as definitions, we have
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sin (4y V1) =55 {e'“* e

a- A}V-l {€? (cosz+8inz.,/~1)~ € (cos z-sinz./-1)}
e+e? e-e?

g —sinz +——g— cosz. V-1
‘We may reduce cos (z +y 4/-1) and tan (2 +y 4/-1) in like manner.
If, with a like extension, we take sin™ (z+y 4/-1), we may make
the reductions as follows:

-6 4/-1=log (cos@-sinf.4/-1), 0=4/-1.log (cosd-sinb.,/-1),

sinz = /~1.log {y(1 -2 -z y-1},

sin™ (2 +y v-1) = -1 log {y(1-2"+ y* - 22y v-1) -2 /-1 + 9},
the second side of which, by preceding processes, can be reduced
a8 required.

If, in every case, ¢ (z+y v/-1) can be reduced to P+Q /-1,
in which P and Q are real, then, by our first remark, ¢ (z-y +/-1)
can be reduced to P - Q /-1, whence

Hop(zty v-1)+$(e-y y-1)} and } -1 {B(@+y V-1)-p(e-y -1}
are real, being P and - Q.
‘We have now to consider ¢ (2z) and ¢ (zz™), or
@ (% cos6 + z sinf.,/-1) and @ (z cosd -z sinf.4/-1).
A few principal examples will here be sufficient.
Let ¢z =(1 + 2)", ains
1+zco80 + zsin6. /-1 =4/{(1 + £ cos6)" + 2* sin"6} ¢t Taooed *

the nth power of which is

4 %8006 4 _zsiné
(1+2zcoso+z’)i"{cosntan 1rz 9— ntan 1+zcoso’ V- 1}
@ (22) + b (ax") .l

. =(1+2z cos 0 + 2" cos n tan™ 5———nry,y
¢(“)_'¢(n-l)_ i - . x8ino
Ve =(1+22 cos 0 +2%)* sinn tan T3z o080’

and these are the expressions for

14nz coso+nl'-§-1 200820+, nzsindin "-;;l 2 6in 20 4 ...
F3
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The verification of such results will be useful practice. For
instance, it is asserted above that

a_xsind _
(1+ 2z cos 0 + 2*) cos 2 tan T7zcosd 1 + 22 cos 0 + &* cos 28.

Now cos 2 tan™ a =cos* tan™ a-sin® tan™ a = (1-tan® a) +(1+tan® a).
The first side of the above is then

mn®
(1422 cos B+2%) % , or 1422 cos 04 (cos® O-sin* 0) 2°.

Let n= -1, and change z into ~z. Show that cos (-tan™ - a)
is 1:4/(1 +a*), and that sin {- tan™ (- @)} is @ = /(1 +4a'), and
then show that the above expressions give

1-zcos@
c——————————— 9 L11]
92005017 1+ 2 cos 6 +2* cos 20 + z* cos 30 + ...,

zsinf
1-2zcos0+2*

Verify these by the whole method, ¢z being 1 +(1-2). Also
show the following,

z 8in 0 + z* 5in 20 + 2° cos 30 + ...

:t'cos20+ :z“cos30+
2 2.3 e

2* sin 20 + 2° sin 30
) 23 + oo

€% oo3(zsinf)=1+2cosd +

e gin (zsin )= zsinb+
Let ¢z =log (1+z). Then
log (1 +z cos0 + zsin6.4/-1)
=%log(l +22 cos 0 + &%) + tan™

z 8in 6
l+z coso"/_l’

]
1 log (1422 cos 0+2*) =2 cos - % cos 20+ ;icos 30— Z-‘ cos 46+...,

"zﬁno—'»_i'°9f- -i"
l+zcoso—zsmo 23“12 +35m30 4sm40-|-....

If z be >-1 and <+1, both these series are convergent, and
there is no ambiguity in the first: but there is in the second.
The second series, when convergent, has one definite value:
which is it of all the values which the first side may bear?P
It must be the angle which lies between —ir and +37: for
when z passes from negative to positive through 0, the series
does the same.

‘When z is greater than unity, these series become divergent,
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and the student should avoid jfounding results upon divergent
series, as the question of their legitimacy is disputed upon
grounds to which no answer commanding anything like general
assent has yet been given. But they may be used as means of
discovery, provided that their results be verified by other means
before they are considered as established.

If 2=1, we have

lo (2 cose)—cose_°°52o+00839_cos4e+
g 2 - 2 3 Py ceey
€=sin9_sin20+sin30_sin4e
2 2 8 4 ceey

and 6 must, in the second, lie between — 7 and + 7. These series
belong to a peculiar class; they are convergent, but their con-
vergency is not easily established. Their extreme cases often
present some algebraical peculiarity. If we divide both sides
of the second by 6 and diminish 6 without limit, we have
4=1-1+1-1-... (Algebra, p. 197). This is not the place, nor
even the work, in which to discuss the peculiar character of
these series.
Let 0=1w. The first of the equations becomes
tlog(l+aY)=2s-22'+...,
as well known. But the second becomes
2,2

-1 - —— -
tan"z =2 3+5 7+...,

a remarkable series, both for its simplicity, and for the use
to which it has been put. It is convergent when z>- 1, and
not >+ 1; and thus may be made effective when tan™z > -},
and not >17. When 2 =1, tan?z = =, we have

1.1 1

A B o S

4 3 6 T

being the first calculable form in which 7= has been directly
presented. But this series, though convergent, is very slowly
80, (Algebra, page 184) and would require that we should cal-
culate 500 terms before we could be sure of three decimal places.
The following is more convergent, derived from 4+/3 = tan(3 ),

T 1111 11
é=§‘/3{1"§'§+3'§’_7‘;'§'+ ...... }
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But it is best to resolve = or some luiown fraction of it, into
two or more angles whose tangents are known. Thus,
tan} + tan} = im,
(page 39), gives

rt,1 1.1 +1(}_ 1y _
i"2%3 3(2= 3') B 2**3‘) e
which may be easily calculated, as follows. Write p and ¢

for 3 and % 9 at every step):
P = q
7= ¢
= ¢ =
r= g =
= ¢ =
= ¢'=
= g=
= ¢°=
pl7= ql'l=
= g" =
= =
f=
p’:
p"’:
,":
p"=
f:
=
Now let (p* + ¢") + n be denoted by r,.
ry = ry =
r, = r, =
Ty = ™=
= ry=
n= =
n= T =
e = Py =
Ty = 5=
ir=
=

which is correct, with the exception of the last place.
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The series for tan™z may be easily deduced from one among
a number of forms which may best be considered together: as
follows.

‘We have seen a remarkable connexion between exponential®
forms on the one hand, and trigonometrical forms on the other.
Every trigonometrical function has an imaginary exponential one
for its equivalent, and every exponential function an imaginary
trigonometrical one. Many imaginary forms of one kind are real
ones of the other; and the following is such recapitulation and
addition as will put all the most useful transformations together.

et " _ sin(zy/-1)

nf=——r 1 3 V2
-1 -Gv-1 & s
conf= & o S = cos(ev-1),
tand 1 1- 6-204-1 1 6204-1 -1 -1 _ ta.n(é.c\/—l)

IRV BN TP Vs B i L i VS |
6 = log (cos - sinfh.,/~1).//-1 = - log (cosf + 8inf./-1)./-1

sinz = log {y/(1 - 2°) - 2v/-1}.y/-1 = - log {y/(1 - 2*) + zy~1).//-1

cos’z=log{z-+/(z'-1)ly/-1=~ log{z + /(2" - 1)}y/-1

log {z + v(&* + 1)} = ’“"—é_’;"l) , log{z +y(2* - 1)} = cosz.y/-1
aov-1 _ ©080 + 8inf./-1 _ 1+ tan6.y/-1
" cos6 —sinf.y/~-1  1—tanf./-1

1 1+2/-1

“Le
tante= 51 OB T

€ = cos (zy-1) - sin (zy-1)./-1, logz = 2y-1 tan? G—I—’-; . -1)

log i—;; = 2//-1. tan™ (zy/-1),

Many of these transformations are hardly ever used in operation :
but unless the student has them before his mind, he will be
often at a loss to see the eonnexion of results which stand in
the closest relation.

The multiplicity of value of logz (or rather Az, which might
have been used throughout, as in page 47) is closely connected
with that of sin™z, &c. But the connexion was not very soon

® Eazponential; for the logarithm is only the inverse function
of the exponential one.
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noticed: and the following mode of investigating the series for
tanz was consequently faulty.

Take the logarithm of both sides of €%/ - 1+ tn0.v-1

"~ 1-tan6./-1°
20y/-1=2{tan6 v/-1+}(tan6y-1)' + (tan6./-1)'+...}, (44.p.226),
or 6=tan6 - 1tan®0 +tan*6 - ...,
a result evidently absurd, for while the first side increases from
0 to o, the second side goes through recurring periods. For
instance, taking periods of convergency, while 6 passes from
27 - 3w to 27 + 1w, the series repeats itself for the period
during which @ passes from - 47 to w. The error lies here,
2{tan6./-1 + ...} is not any logarithm we please of €', but
some one logarithm ; some one case of 20y/-1 + 2mm/-1. When
we say A4 =B, therefore LA = LB (page 48) we are correct
only (except in the case of one isolated relation between the
real and imaginary parts of 4 and B) on the supposition that
we take the same sysfem, and pair the proper logarithms of
4 and B in that system. And the equation 4 = B only gives
(any given logarithim of 4) = (the proper logarithm of B in the
same system). If we do not know the proper logarithm of B,
we must take the general case, and let the conditions of the
problem determine its specific meaning. Accordingly, instead
of 20vV-1, we must write 20v-1 + 2m=/-1, and thus we have

6 + mr =tanf - 1 tan®0 + 1 tan0 - ...... ,
which can be made true; and m must be such integer, positive
or negative, as will make 6 + mz fall between — 27 and + .

The following investigation requires one theorem from the
theory of equations: and the rest of this chapter, generallys
supposes a student who has read more than is supposed in
what precedes.

Multiply together the two factors z — €' and z - €%
we have 2*-2cosf.z+1. Or thus, z- cosd -sin6.v/-1 and
z - cosf + sin0./-1, give the product (z — cos6)' +sin®6, or
2'-2cos6.z + 1. Now observe that

z“+-},=2cos20, or z* - 2z"cos20 + 1 =0,
is satisfied by
z+21=2c08(20+-1n), or z’-2cos27?.z+1=0,
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or the roots of the second equation are among the roots of the
first. If 20 be changed into 20 + 27, no change is made in the

first equation, and the second becomes z* -2 cos(20 2”) z+1=0,

the roots of which are therefore among the roots of the first.
Now two equations 2*-ar+1=0, 2*- bz +1=0, cannot have
a root in common; for then it would be determined by az = bz,
or z=0 would give the root: and there can be no such root.
If therefore we go on, until we have obtained n equations of
the second degree, we have got 2n distinct roots for the first
of all. Consequently, by the theory of equations, we have, for
all values of z,

2™ - 2c0820.2" + 1

{z’—2cos— z+l}{z’—2cos(2o 2") 21} 2cos(2o 47’)a=+1}

...... {z‘- 2cos(2—q+ M)JH- 1}.
n n
When z2=1, 2*-2cosgp,z+1 is 2 (1-cosep) or4sm’¢, so that
,4sin'9=4sin'f.4sin'(e ) 4sxn'(o 42 ) ..4sin’(g +ﬂ’).
n n n n n n n
Extract the square root of both sides, and divide by 2;
8in@ = 2" sm 4 sin (0 + 1)3111(2 + ?1) ... 8in (g-+ w}
n o n 5 n n n

On the second side there are 7 sines, or, exclusive of the first,
n-1sines. If n-1 be an even number we may pair these,
the first and last, the second and last but one, &ec. But if
n -1 be odd, this pairing will leave one in the middle, and
n-1 being odd, the middle number is #n, whence the middle
factor is sin (g + ;i;) or cos g, which, observe, approaches unity
as O is diminished without limit. Moreover, the last one is

. [ 0
iofe-(G-9) « -2
the last but one is, similarly, sin (2— - —) &c. Hence the pair-

ing just alluded to gives .

Ot
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. L .0 . (r O\ . [ O\ . [2r O\ . (2r O
sm0=2"'sm—sm(; + —)sm(- - —)sm(—+—)sm(—— -)
n n, n n n n n n

n factors in all, the last, a single one, being cosg, if n-1 be
odd. Diyide both sides by sin (6 + n), and diminish 6 without
limit. The limit of the first side is then that of
sin0+sine or nx(sinO%O)-:—(sing% 2) or nx1l+1,
n n n

n=2"gin® ~ . sin’ 2—" sin® 3 +..... one for each pair,
n n n
and cos (0 + n), if there, has the limit unity. Now observe that
at+db a-b a-b a+d

sin (a + &) sin (@ - &) = 2 sin —5 08—~ 2 sin —g cos—5—

= (sin a + sin 3) (sin a - sin b) = sina - sin*d.
Substitute from this theorem, divide sin@ above by #, and
we have, dividing both sides by 6, and transferring n,

. 0 .. 0 . 40 : 40

o sl — sm” - sin” — s1n” -

329_ n)y_ nl)g n 1- n
0 =70 . T . o 2m P

- sm-; sin® — sin® —

n n
with the factor cos(6 +n) at the end if » —1 be odd. This

second side is always sin@ - 6, however great » may be. If
we increase » without limit,

sin® g sin® (0 . l) P
T or ”] has the limit ";'?,
sin'~2  gin® (Ic7r. -) ‘
n n

(see p. 18). If then we increase n without limit, we have

‘%L(l-;)(l-g,)(l-%) (1_%,)...@54;’.

This is a remarkable converging product from which siné
might be calculated. Whatever 6 may be, the successive factors
approach to unity, and therefore produce less and less effect.
A large number of factors will give a close approximation. Let
0=kn, and we have the convenient form

sin (kr) = kr (1 - &%) (1_1;) (1-%') (1-%....
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If & be =3,
L7 3153 6 7 4 16 36 64 100
—-5.4.1603606400- 2—5.]'.?03—5‘0'65039—.-.

This was once suggested as a mode of approximating to the
value of 7; it proceeds too slowly for that purpose, but it answers
another. If we take n factors, we see in the numerator the
square of the product of the first n even numbers, but not the
corresponding square of the product of odd numbers in the de-
nominator. One odd number more is repeated once: thus in
the denominator, taking 3 factors, we have 3.15.35 or 1%.3%.57.
Accordingly, the larger n is made, the more nearly is this
equation true,

(2.4.6... 2n 24... 2

o) =G 3 o )
185...2n-1) “**Y3% 13 oa-1"

for (n+3)7 and n7 have nearly the same square roots, if n be
very great. This, in common language, is true if n be infinite :
I mean that it may be made as nearly true as we please, if
n be large enough.

If this last equation were absolutely true, this next one would
follow, as I shall show,

1.28...n.= y(20m). ('E')" )

But as the premise only approaches to truth as = increases,
so it is also with the conclusion. Assume 1.2.3...1%=n"¢n, or
let ¢n be 1.2.3...n 0"

We have then 1.2.3.4 ... 2n - 1.2n = (20)™ ¢ (2n),
2.4 .. 20= 2"

Dividing, 13.5......... 2n - 1=(2n)" ?;;_”)
o o0 . 246...2
Dividing again, 135 2: —i= éq:;'):) = 4/ (nm).

2 ]
Hence we get Vg—;% = (;b:: or f(2n) = (fn)',
1

JSn standing for ¢n = 4/(2mn). Let (fn)* be yn,
then fn=(y¥n)" and (Y 20)™ = (Yn)*™ or v 2n=yYn.

Consequently, ¥n is either a constant, or if a function of n,
G
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does not change when n is changed into 2sn. Such functions

there are, for instance, cos (27r izg ;), or any function of it

except an inverse trigonometrical one. If, however, n be very
great, log n increases very little when n is increased by a few
units. For and about one large value of n, ¥n is then nearly
a constant; and, assuming it constant, we shall be able to show
that the way of determining that constant gives the same thing,
whatever the value of #» may be. Bt this assumption of y¥n
= constant, say ¢, renders the proof imperfect, and a more per-
fect one is beyond those who may be expected to read this
work. Take yn=c, then
Ja=c", ¢n=4/(2mn).c", and 1.2.3...n=+/(27n).c"n"
For n write n + 1, and divide by the former result, which gives
Ji+l 1 n

PR S PR RV N

If n be very great, this would give 1=1x¢x € very nearly
(Algebra, p. 225), or ¢ = €*; so that

1.2.3 ... n = 4/(27n). ¢ . n" nearly, as asserted.

This formula succeeds very well, on trial, and the first side
is found greater than the second in about the proportion of
12% + 1 to 12n.

Returning now to the form sin k7 =k (1-%%)..., for % write
2k, and we have

. aRN [, AR/, 4kN(. 4R
2smk7r.cosk1r=2k1r(1-—4k')(1——4—)(1--9—)(1—E)(1-2—5—)-..

. 4z w
But sinkr = kr (I_T) (1”1_6)
4R\ (o 4RN (. 4R
or cosk?r—(l'u")(l__g—)(l_?5)(1-71—9)"‘

a corresponding expression for the cosine. From these factorial
expressions it is in our power to find series for the logarithms of
trigonometrical functions. Let S, represent the series

1"+ 2"+ 8"+ 4™ + ... ad inf.
It is easily seen that we have
8 =1"43"+6™+ ... +2"{1+2™+ 3"+ .}
or 1"+3"4+56™+T"+...=(1-2"8,.
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Values of S, to a sufficient extent may be found in my Dif
jéreptial Caleulus, p. 554. Now

log sin k7 = log km + log (1 —&*) + log (l-’;)q-
Expand the several logarithms, after the first, and we have
4
log sin kr =log b - 8- 8, % -8, % 82,

which is convergent when %<1, and very convergent when %<3,
and, for purposes of calcalation, it need never be greater. Apply
the same method to the expression for cos %, and we have

4
log cos km = -(2'-1) §F - (2-1) S‘%- (2¢-1) S.Z;-. -y
which is convergent when % is less than 1.
From these series we get " -
log tan Am=log km + (2'-2) SH* +(2'-2) S, 5 +(2*-2) S, 5 +...

It will be observed, that §,-1, §,-1, &c. diminish very rapidly.
‘We take advantage of this by throwing the series into the form

log sin & =log kx +log (1-%*)-(8,-1) &*-(S,~1) ’.;:- (S‘-l)lg -...

log cos k7 =—log(1-k*)+log(1-4%*)-(2'-1)(S,-1 )k'-(2‘—l)(8’.—1)%‘ -

log tank 7= log kw+2log (1-%%)-log (1-4%*) +(2'-2) (S,-1) &*+...

‘We have seen that trigonometrical language affords a brief
mode of expressing, in language derived from obvious geome-
trical ideas, complicated algebraical relations. The following is
a striking instance: ‘

. z .z z z z z .z
smz-2cos§sm§—2cos§(2cos Z(2cos§...(2cos-2-,-,sm5))))--~

sina:—2"sina"--cos-ai'cots'r'cosa"cosi cos =
* "2 4 8 186777 2
Increase » without limit, and
sin z z =z =z

z z .
—5— = €08 5 CO8 7 CO8 5 COB 74 CO8 o5 ... ad inf.

Let x =1, and show that this is then only an abbreviated form
of the following,

2_v2 /(2+y2) VEH/24v2) Y(2H/@+V(2+VD)) |
o 2 2 * 2 * 2
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The student who is acquainted with the theory of equations
may be enabled to express the logarithmic series in another form.
The rest of this chapter is briefly given, and may be looked on
as a succession of exercises. It appears from

sin b = ko (1 - 2%) (1 - 2R%)....
that sink= is formed from its radical factors after the manner of

an algebraical expression, so that 1 - ..=0 may be con-

2
3—'—3 +.
sidered as an equation of infinite dimension whose roots are
+my —m, +2m, — 2m, &c. Write k for %%, and we have in
_k + L B +

2.3 2345 234667
an equation whose roots are =%, (27}, (37)",... Hence we easily
get the following theorems:

1 7 1 at 1 *

2523 2aa 1345 ZFaw 23dsen
where in =(1+P.m*n*), we understand that there is a term of
the series for every possible combination of a product of three
different integers. And by the known theorem for the reciprocals
of powers of roots of an equation, we have, ¥, standing for
7+ (27)*" + (37)™ + ...

1

1 i, _2 _ Vo, 3 _
Vi-33=% Via3tizas~® Voastasza”
and so on. Calculation of a few of these results will give

21 2 1 28 1
ez Voasawn VT isass @

and 8o on. Now V7, is §,,7* (page 62), and the fractions 4, &, &,
belong to a set which are called Bernoulli’s numbers, and are
denoted by B,, By, B,, &c., so that

_1 (@)™

=3 123,20 0
- By=% By=g By=&, Bi= & B,= & By= &5 By=1},
all which will be found by continuing the above process. These
numbers appear to follow no law, which exhibited as rational
fractions; but when exhibited under a law, as in
B,.,=2 1.2.3...2n {l + 2%4_ _317. + 4%‘ N }’

@
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it would be thought very unlikely that they should be rational
fractions.
Substitution, and writing z for %, now gives

o 2B, 2B, # 2B, 2
logsinz =logz - 12 ° 123432 1234583
. _@-12B, , -1)2B,s @-12B2_
log cosz = T2 % 1234 2 1234563
B (2°-2)2B, ,  (2'-2)2°B, 2*  (2°-2)2°B, z*
logtanz =logz+ ——5— 2"+ o= S+ 153056 5 T

Next, we have
log cos(z + &) - log cosz = log(cosh — tanz.sink)
=logcosh + log(1 — tanz . tank),
log sin(z + A) - logsinz = log (cosh + cotz . sink)
=log cosh + log(1 + totz. tank).
From the series it is obvious that log'cosA + A diminishes without
limit with A. Also it is easily deduced from page 17, that
log(1+ P tank) = A, or P(tanhk = &) - (P*tan*h = 2R) + ...
has P for its limit when % is diminished without limit. Hence,
dividing the preceding equations by 4, the limits are — tanz and
cotz. Perform the same process on each term of the series for
log cosz and logsinz: that is, change z into z +A; subtract the
term unaltered, and divide by A, retaining only the limit; and
thus deduce the equations
ootz = 1 _2'Bz 2B, 2'Ba® _
z 1.2 1234 123456

Sz 3745 946 4725 93556
_@-1)2Bz @-1)2B2 (P-1)*Bz
1.2 1234 1.2.34.5.6

=2+ v 15" 315 * 2835
eew’-l_l_e-ﬂl 2
e e VL (U )

tanz

Take cotz =+4/-1

and thence, writing — /-1 for z, show that
1 1 1 Bz B2 Bz*

ei-z 3t 2 " 234125456
63
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CHAPTER VL

ON THE CONNEXION OF COMMON AND HYPERBOLIC
TRIGONOMETRY.

THE system of trigonometry, from the moment that /-1 is
introduced, always presents an incomplete and one-sided appear-
ance, unless the student have in his mind for comparison (though
it is rarely or never wanted for what is called use), another system
in which the there-called sines and cosines are real algebraical
quantities. 'This other system will serve to explain the connexion
between logarithmic and trigonometrical functions.

In the ordinary system, a given revolving line, of a unit length,
has one extremity in a circle; and on that circle every radius has
its projections connected by the equation 2* + y*=1. Suppose we
take all possible points so placed that the projections of their
values of r are connected by the equation #*-y*=1. Those points
are all that are in a curve of the following form, called the
equilateral hyperbola, (a curve corresponding, among hyperbolas,
to the circle among ellipses; in fact the circle ought to be called

the equilateral ellipse). The two lines towards which the branches
of the curve approach without end, but which they never meet
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(called asymptotes), are at right angles to each other, and midway
between the principal axes. From any point P draw PK per-
pendicular to an asymptote. Let OK =v, KP =w. Then it is
easily seen that z = v cos45° + w cos 45° = 1 4/2 (v + w), and that
y = v 58in45° - wsin46° = 1 /2 (v- w): whence
iv+w)-t(v-w)=1 or20mw=1.

Now take one of the asymptotes and the curve that falls above
it, and take two portions of the area standing on bases which are
to one another as their initial distances from the centre; that is,
let OK: KL:: OK': K'L'. Divide each of the bases KL, K'L’
into » equal parts, and draw perpendiculars and inscribed rect-
angles in the manner shewn in the figure.

(1] D K L EK L
Let OK=v, KP=w, KL=¢; each subdivision is 2 , the
n
mth gubdivision ends at v+ '%? from the centre, so that the altitude
of the mth rectangle is 1 +2(v+ "—;t) , and the area of the mth
rectangle is ;
n. 1
y Or .
2(o + ﬁ') 2 (n N ,,.)
n t

But in the second ares 7 is the same as in the first: there-
fore the mth rectangle of the first is equal to that of the second;
and the sum of all the rectangles of the first is equal to the
sum of all the rectangles of the second. Now the area KPQL
is composed of the rectangles, and of curvilinear triangles:
these last, put together, fall short of a rectangle having the
subdivision of KZ for its base, and the fixed excess of KP
over LQ for its altitude. Therefore, as the subdivision diminishes
without limit, the sum of the curvilinear triangles diminishes
without limit: that is, the curvilinear area is the limit of the
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sum of the rectangles. And as the limits of equal quantities
are equal, the curvilinear areas KPQL and K'P'QL' are equal.
The area KPQL, then, depends only on the ratio of OL and OK.

Next, OK being v, let the area APDK (A being the vertex
in the first figure) be 4, and let v=¢(4). Put on an area
QLEF equal to ADKP (or A4) and let ADLQ be B; so
that ADEF is A + B. Then, ADKP and QLEF being equal,
we have OD: OK:: OL: OE. ]

Let OD =m, and this is m : ¢4 :: pB : (4 + B), or

M= p4 .Q, whence (Algebra p. 204), ¢4 = me4;

m m m

or v =mec4, whence ¢ is to be determined. Also, O4 =1, and
£ AOD=45° whence m=21v/2. Hence 4 =(logv-log1v2)=+loge.
To determine ¢, observe that if we increase v by A, the increase
of the area consists of a rectangle and a curvilinear triangle;
and, A diminishing without limit, the ratio of the curvilinear
triangle to the rectangle diminishes without limit. So that the
ratio (increase of curvilinear area * inscribed rectangle) has the
limit unity. Now the increase of the area is

log (v +%) —log 3v/2 logo -log }v/2

loge loge

, or lo% log(l +€);
and the area of the rectangle is 4 2(0%)';
2(w+h) 1 (A 1A

7 .Tgc(;-év—,*l".-)’
and the limit of this is 2 +loge, which must be 1; therefore
loge=2. Accordingly 4 =3}log(v2.v). The logarithms used
are, as is always supposed when nothing to the contrary is
mentioned, the Naperian, or Ayperbolic logarithms: and they
got the second name from their connexion with the hyperbola,
the fact that all other systems are equally connected with the
hyperbola not being seen when the name was given.

We can now find the curvilinear area 4PN. The area
DKPNA is made up of the rectilinear areas DKPA and APN,
and is therefore 2 DK (D4 + KP) + 2 AN.PN;

or 3v-3V2)(3V2 +w) + 2z - 1)y
=dow+3V2(v-w)-%+tay-ty=tay:

the ratio therefore is
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since 20w =1, and 1v/2(v - w)=y. That is, the rectilinear areas
ONP, DKPNA are equal; take from both the curvilinear area
APN, and there remains the sector 4 PO, and the area DKPA
{4 log (V2.0)}, equal. Call the former S, and we have
8=}log(v2v)=1log (2 +y)=}log{z + /(2" - 1)}
Accordingly we have z+y=¢€°, z-y=¢€"
S i &5 — e
FrTg T YR

If we now turn back to the circle, and if § be the area of
the sector whose angle is 6, we have, the radius being 1,

0 t]
8= (21) y or@=28. Butnow, (r being=1), 2 =cosb, y=sinb,
and we have
L @51 g t8/!
A R VA S

If, in the hyperbola, we choose to call the numbers representing
z and y the hyperbolic cosine and sine of the number of square
units in twice the sectorial area; we have, 28 being 6 (which
is not now derived from an angle), and the difference of system
being marked by capital letters in the words sine and cosine,
-0 -0 —e?
Coso=‘°;e , Sino= o Tmo=f_;+_:_,.
From this it may be deduced that in order to convert a formula
of circular trigonometry into one of hyperbolic trigonometry,
when no inverse functions enter, we have but to change cos@
into Cosf, and sind into v-1.Sin6. The following are a few
of the results:—

Cos®0 - Sin*0 =1 Cos (¢ + ) = Cosgp Cos0 + Sing Sin@
Cos*6 + Sin*6 = Cos20,  Sin (¢ + 6) = Sing Cosd + Cos¢p Sin6
Tang + Tan6@
Tan (¢ £ 6)= ETfn—"qs.Tano ;

n-1
2

Cos"0=-2—:_—l {Cosn0+nCos(n—2)0+n

Cos(n - 4)6 + }
Sin"6 = % {Cosnb + nCos(n - 2)6 + ...... } (n even)

Sin"0 = 2_,1;, (Sinnd + nSin(n-2)0 + ...} (n odd)



70 COMMON AND HYPERBOLIC TRIGONOMETRY.

This is sufficient to illustrate the analogy which exists between
the two systems. The advanced student may investigate the
connexion of the conjugate hyperbola with the trigonometry
in which the fundamental equation is Sin®6 - Cos'6 = 1.

If we now take five independent equations from page 11, say
tanf = %’ tané cotd =1, cosfsecOd =1, 5ind cosecd =1,
cos'0 +sin*0=1;
it is plain that the first four may be considered as equations
of definition or introduction for tané, cot6, sec6, cosecf; and
that, speaking of its operations merely, trigonometry is the treat-
ment of the equation 2*+y*=1. Now as this equation might
be supposed to arise from many different sources, it may be
worth while to inquire how much of what precedes is due to
this form, and how much to the application of this form to the

circle, or to angular revolution.

If we take the two following equations,

al + ab a® - a®

Ty Yoy
we are not bound to either, by assuming 2*+y*=1: but if
we take one, we must accept the other, as will appear on trial.
And then we shall find that all the direct formule of trigonometry
follow, as soon as we require that z and y shall take the names
of sin@ and cos@: the inverse forms depend in some measure
on the meaning of . Let a take the form &, and we then

regain the application of angular revolution.
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CHAPTER VII

ON THE TRIGONOMETRICAL TABLES.

THE usual trigonometrical tables are given in conjunction with
tables of logarithms; and they more frequently give logarithms
only than cosines, &c. themselves. 'When logarithms were in-
vented, they were called arfificial numbers; and the originals,
for which logarithms were computed, were accordingly called
ratural numbers. Thus, in speaking of a table of sines, to ex-
press that it is not the logarithms of sines which are given, but
sines themselves, that table would be called a table of natural
sines; and the logarithms of these would be called, not logarithms
of sines, but logarithmic* sines.

All trigonometrical tables with which the student is likely to
meet, natural or logarithmic, are constructed as follows:

1. They include only the first right angle, or from 0° to 90°,
If cos 96° be wanted, — sin 6° must be found; or sin 6° in the
table must have its sign changed. If cos 96° be wanted in mul-
tiplication, &c., the logarithm of sin 6° must be used, and the
effect of the negative sign must be properly attended to #n the
Jinal result.

2. The arrangement is always what may be called semi-gua-
drantal: the table goes only as far as 45° and that for the
remaining half of the right angle is seen by turning the table
upside down, or reading from the bottom of the page instead
of the top. There is an imitation of this in the arrangement
in page 17, in which 4 ¥3, which is both cos 30° and sin 60°,
is read as the former by the top and the right, as the latter by
the bottom and the left. Open the table so as to get tangent

¢ This leads to confusion in the minds of students, who learn
some notion of mysterious identity between a number or fraction
and its logarithm ; and write down *30103=2. The phrase is as in-
correct as royal country would be for king of the country, or con-
stabulary parish for constable of the parish.
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of 37° 15, and there will be seen, reading from the top and down-
wards, tangent of 37° 15’; but reading from the bottom and
upwards, cotangent of 52° 45. It would perhaps have been better
if the sines had run on to 90° and then all the cosines would have
been in reverse teadings: but the present mode is too firmly estab-
lished to be shaken.

In consulting the table inversely, for example, in searching
for the angle which has 9:61723 for the logarithm of its sime,
the student must not distinguish sine from cosine, nor tangent
from cotangent, but must consider sines and cosines as one table,
tangents and cotangents as one table, and must cast an eye on
both, and get to 961723 as fast as he can. For want of this
caution, some beginners will turn over page after page, until
they come to 45°% and then back again, perhaps to the very page
that was first opened.

3. The trigonometrical tables in use were constructed on the
system described in page 18, the radius being 10" or ten thou-
sand millions. Hence the logarithm of the radius was 10, and
that of most sines used 9 and a fraction, 8, 7, and even 6 occurring
towards the beginning or end of some tables. This has never
been altered; and the consequence is that every logarithm in
the tables is Zoo great by ten for us. For that which we call sin 0,
is sin @ = 10" of the tables. Hence, in all cases,

Real Logarithm = Tabular Logarithm - 10.

Thus, where the tables say 961628, we must* take out 1.61628,
or 9'61628 - 10: where they give 12:61628, we must take 2:61628.
Some tables only increase by 10 where the characteristics are
negative ; and give 9 for 1, but do not alter 0, 1, 2, &c.

‘When the process is inverse, the logarithm should be made
tabular before entering the table with it. Thus, for finding the
angle whose sine is 2-41729, we should enter the table with
8-41729.

* Many calculators prefer to consider the actual tables as if
formed upon the fiction of always avoiding negative characteristics
by increasing each of them by 10; and actually use the tables,
making corrections in'the results. For myself, I feel assured that
the student should be taught by real logarithms, and left to find his
own way to the other practice, which I much doubt his doing.
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The tables* adopt various numbers of decimal places; usually
five, six, or seven. Five-figure tables are exact enough for or-
dinary use: they may be considered as calculated to give results
within the 10th part of a minute, or 6”. Those for whom five-
figure tables are not sufficient, should use seven-figure tables:
the six-figure tables are best for those who have much to do
for which five figures is hardly correct enough.

In every table we use the words argument, snterval, function,
and difference. The argument is a technical term for that with
which we enter a table, and opposite to which we expect to find
the value of a function of that argument. Thus, in one table
angles and the logarithms of their sines are paired: if we have
a specimen of either, and want to find the corresponding one of
the other kind, that with which we enter is the argument, and
the other its function. The interval of the tables is the difference
between the successive values of the principal argument, which
values are always equidistant. Usually, one minute is the tabular
interval of angle; that is, the tables furnish trigonometrical
functions (or their logarithms) for 0°, 0°1', 0°2"...1°, 1°1'...2°...90°:
which I should describe as being of the class 0° (1’) 45°; the
table being really in two halves, one of which is only the reverse
reading of the other. But there are tables of the following de-
scriptions : 0° (107) 45°, 0° (17) 46°, 0° (1) 3° (1') 46°, &e.

The defferences of a table are the successive differences of the
functions belonging to the equidistant arguments. Thus, if oppo-
site to 6, 0 + A, 0 + 2h, 0 + 3h, &c. we have p, g, r, & &c., the
differences are ¢ -p, r - ¢, 8- r, &c., and ¢ - p is technically
called the difference of p, r — q the difference of ¢, &c.

The use of these differences lies in what is technically called
tnlerpolation, which is the mode of solving this question: Given
the tabular function for 6, 6 + &, 6 + 24, &c., required the proper
function for 6 + a given fraction of A. If the several differences
be equal, or very nearly equal, as g-p=r-g=8s-r, &c. ex-
actly or nearly, the differences only are wanted, and the differences
of the differences, &c. may be neglected. In this case we may

¢ Of ordinary tables, Hutton’s (which have gone through many
editions) are the best of seven figures; Farley’s, of six figures;
Lalande’s (reprinted by Taylor and Walten), of five figures,
H
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be said to use inferpolation of the first order ; and this is all that
will be wanted here.

The success of interpolation of the first order depends upou
the following theorem: If ¢z be a function of z, and & a small
quantity, then, for every function of z, ¢(z + %) is very nearly
equal to ¢z + ¢'z.k, where ¢’z is another function of z, depend-
ing upon ¢z for its form and character. I leave the student to
establish the following theorems, all nearly true when % is small,
and the angles (or % at least) are in arcual units:

sin (z + k) =sin z + cos z.%, cos(z + %) = cos z — sin z.%,

tan (z + k) =tan z +

R cot(z + k) = cot z -

cos® z gin® 2’
sin z cos T

sec (z + k) =sec z . cosec(z + k) = cosec x — ——.k.
(=+k) t ooz k, (@+k) sin*z

But the second and third are not approximately true when cosz
is small, nor the fifth and sixth when sinz is small.

If % be a minute or a fraction of a minute, the angle in arcual
units is sufficiently* expressed by % sin 1’: and then we have
sin (z + k) =sin 2 + cos z . sin 1'. %, &ec.

The mode of interpolation is the same as to all tables. Say
that ¢ (= + k) = ¢z + ¢z . k, very nearly: let A be the tabular
interval, and let it be required to find ¢ (z + uk), u being a
given fraction. We have then ¢ (z +%)=¢z + ¢'z.h, or the
tabular difference is 2. A, very nearly. But ¢ (z+uh)=¢z + Pz uh,
or ux tab. diff. is to be annexed, with its proper sign, to ¢pz. Were
it not for calling attention to this theorem, which is often wanted,
the interpolation might be more simply explained. Take the
log. sine of 3° 18’ and 3° 19'; we find 8-76015 and 8-76234, giving
tab. diff. = ‘00219: the table calls it 219, implying that this
number and its results are to be applied in the last places. And
this difference, or one very near it, runs on. We may then ocon-

¢ Since small angles, arcually expressed, are very nearly equal
to their sines, % x (arcual expression of one minute) and % sin 1’,
are very nearly the same, if £ minutes be a small angle. In astro-
nomical books, # sinl’, n 8in1”, &c. are very common substitutes
for n' n” &c. It may be worth while just to notice that, as to
trigonometrical functions, it matters nothing how the angles are
expressed : sinl (arcual unit) and sin 67°17° 44" *8.. are the same.
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sider the last places as augmenting at the rate of 219 per minute.
Accordingly, for half a minute we say 120, for 7-10ths of a minute
153, and so on. And it is very important to notice that sines,
tangents, secants, have positive tabular differences, while co-sines,
co-tangents, co-secants, have negative ones. If we want to find
log cos 81° 136, we must, for the augment of 06 to the angle,
subtract 6-tenths of the tabular difference. Neglect of this caution
causes more error to beginners than anything else in their use
of the tables.

The state of the tabular difference shows what degree of
accuracy the tables are prepared to yield. In a table of five
places, the smallest change which the table can indicate is a
unit in the fifth place of decimals. Now at sin 3° 18, there are
219 such units in the tabular difference; and each one belongs
to the 219th part of a minute, about the fourth of a second.
When the answer is about 3° 18/, to be determined by its sine,
the problem may be solved by five-figure tables within one 219th
of a minute. Accordingly, when there is choice, it is best to
go to those parts of the table at which the differences are largest;
shun cosines for small angles, and sines for angles near to a
right angle. Again, at the beginning of the sines, the end of
the cosines, and both the beginning and end of the tangents, the
differences change very rapidly, and the differences of the dif-
ferences become of importance. The use of the ordinary table is
generally avoided in these cases, and in the following manner.

1. Generally speaking, a table of sines with smaller interval
is annexed, extending over all or great part of the first degree.
And the tangents and simes are very nearly equal: up to half
a degree there is no practical separation.

2. At the end of the tangents, the best way is to use the
tangent of the complement, which is very small, and has very
nearly the same logarithm as the sine of the complement. For
instance, I want to find with accuracy to five figures the tangent
of 89° 46’ °18, using the English reprint of Lalande. This is the
complement of 1382, the tangent of which cannot be distinguished
from its sine. Looking into the second small table at the end,
1 find 7-60360 and 7-60674 for logsin13'-8 and logsin13'-9
(tabular interval 0’-1). The tabular difference is 314, belonging
to 0’°1; for 0/-02 I must take 2-10ths of this, or 63, which added



76 ON THE TRIGONOMETRICAL TABLES.

to the last places of 7-60360, give 7-60423; or really, 3-60423.
This iz the real logarithm of the cotangent: that of the tangent
is 2:39577. The tangent then is 248:74.

I want to find the angle whose tangent is 3174. Its logarithm
is 3-50161; that of the tangent (which confound with the sine)
of the complement is 4-49839; in the tables 6:49839. In the first
of the small tables appended to the English reprint of Lalande,
649175 and 6-49849 (with difference 674) belong to 1'4” and 1’5"
But our unattasned part* is 664; and 674 for the whole second
gives 664 for 664 - 674, or ‘985 of a second. The complement
of the angle required is then 1* 4”985, or the angle is
89° 58’ §6” -015.

Nothing but actual practice can give expertness in the use
of the tables. I should recommend a student to begin by verify-
ing some formule. For instance (page 28) the sum of the
tangents of the three angles of a triangle is equal to their product,
since tan 180° = 0. Choose three angles which make 180° find
the tangents from their logarithms, and add : add the logarithms,
and find the natural number to that sum: the two results ought
to agree. Choose a, b at pleasure, and calculate (a + ) + (ab - 1).
Find the angles to which these three are tangents: their sum
ought to be 180°

On the construction of trigonometrical tables I shall say no
more than to show the student that such a thing is possible
without any impracticable amount of calculation. If tables were
now to be constructed, methods derived from the calculus of
differences, which I cannot here describe, would take the place
of those which I mention. But even these last are much more
easy than those to which we owe the tables in use.

If we really wanted to find the sine and cosine of one minute,
which, arcually expressed, is “0002908882, we should easily find
that 6" + 2.3.4.5.6.7 has no significant figure in the first twenty
decimal places. If twenty places were enough, the following
would be quite sufficient:

¢ This is a phrase whichI use for the excess of what we want
to find over the nearest below it which we can find, Thus if the
log. tangent of the angle I want to find be 10-37466, and the nearest
underneath it in the tables is 10:37461, the unattained part is 5.
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6 ¢ . 6 6
0050—1—5(1-1—2), smO:O{l--E(I-%)}.
Next, we have
co80 + 8in6 = 4/(c0s'@ + 8in*0 + 2 8in6 cosd) = 4/(1 + &in 20),
co80 — 8in6 = 4/(cos*@ + sin*6 - 2 sin6 cosb) = 4/(1 - sin 26),
when 6 < {m, both square roots must be taken positively; and
we have
€086 = 4 /(1 + sin 20) + 1 (1 - sin 20); cos 6 = v (1 + cos 26),
siné =  y(1 + sin 26) - 1 /(1 - sin 20); sin 0 = y/3 (1 - cos 26).
So that, either the sine or cosine of an angle being given,
both the sine and cosine of its half can be found by two
extractions of the square root.
Now (page 26) we may assume that we start with the sine

and cosine of 3°, 6°, 9°, fully expressed for calculation. Thus
we have (proceeding as directed in page 26),

co8 gy _(Y3T1)(v5-1) , (v3£1) (5 +5)
sin © 8 2 * 8 '

Hence the sines and cosines of all the multiples of 3° may
be calculated first, as verifications of the process. Having de-
termined sinl’ and cosl, it is now possible, by the formule
sin (2 + 1) = sin 2. cos 1’ + cos z . sin 1’, &c., to calculate the sines
and cosines of 2, &, &c., up to 2700’ or 45°; which completes
the table of sines and cosines, from which the tangents, &c.
may be calculated by division.

Much shorter methods might be introduced, as before re-
marked, from the calculus of differences. But even from common
formule, the above labour might be considerably reduced. I
leave the student to prove the following formule :

o
€08 (30 +8) = /3. cos 8- cos(30°—6), sece=§tan(46°—g)+§oot(45°—§)',
8in(30°+60) = cos 0 - sin (30°-6), cosecd=1tané + 1 coté,

tan(45 +6) =2 tan 20 + tan (45°— 6), sec O=tan0 4 tan (459-%')‘,

cosec6 = cotf +tan g
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From which we gather that when all sines and cosines up to
30° are calculated, the rest can be found, the sines by simple
subtraction, the cosines by ome multiplication only: that when
the tangents are found up to 45° the rest can be found by simple
addition: and that all the secants and cosecants can be found by
addition only, from the tangents and cotangents.

The student may also prove the following formula, which is
often cited as a mode of verifying the tables, by instances selected
at hazard,

cos (36° + 6) + cos (36° — 6) = cos@ + sin (18° + 6) + sin (18° - 6).



(7))

CHAPTER VIIL
ON THE SOLUTION OF TRIANGLES.

THIS subject, in which (and in spherical trigonometry)
trigonometry was first constituted a distinct branch of mathe-
matics, is now of little importance in a genetal course of mathe-
matics. It consists mainly in the finding of convenient formule
for the answer to the different cases of the following question :
Given some parts of a triangle, to find the rest. This is called
the solution of a triangle. But, in truth, the method given is not
a solution of the problem, but a reduction of it to the solution
of a right-angled triangle. And the maker of the tables it is who
solves the right-angled triangle, rather than the user of them. The
former registers, for every acute angle which consists of an exact
number of minutes, all the proportions of the sides of a right-
angled triangle which has that angle for one of its angles; and
thus gives all the factors necessary to convert any known side
into another before unknown. The latter makes use of the
register, calls Aimself the sole solver of the triangle, and learns
an inaccurate conception of what he has been doing.

Let the sides of a triangle contain a, &, ¢ linear units; and
let the opposite angles, gradually measured, be 4, B, C. And

first, let C' be a right angle. By the formation of the register
just alluded to, we have

%: sind4 = cos B, a=csind = ¢ cos B,
§=tanA=cotB, a=>btand = b cot B,
d=a+?, b=4{(c-a).(c+a)

But the following formule should be remembered in words.
side = hypothenuse into sine of opposite angle,
side = hypothenuse into cosine of adjacent angle,

hypothenuse = side by sine of opposite angle,
hypothenuse = side by cosine of adjacent angle,
side = other side into tangent of opposite angle,
stds = other side by tangent of adjacent angle.
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Tﬁe following are the cases which occur, and the formule
of solution:

Given b b .
®b |tanB=Z, c=pg=epr 4-W-F
. b
¢, b | a=+/(c-b.ctd), smB=;, A =90 - B.
e, A | b=ccosd, a=csind, B=90°- 4.
a
a,A b=acotA, ¢=m, . B=90°-A.
b
= = =90°- 4.
b, A |a=>btand, ¢= B=90°

The following are the parts of one right-angled triangle with
logarithms, for exercise in these formule, previously to taking
other examples :

¢ = 1284327, log ¢ = 2:1086756,
b= 661364, log b = 18204405,
a=1100951, loga = 2:0417681,
4 = 59° 0 21"25, B = 30° 59’ 38”75,
log.sin 4 = log.cos B = 1-9330925,
log.cos4 = log.sin B = 17117649,
logtan = log.cot B= 0-2213276,
log.tan B = log.cot 4 = 1-7786724.

Special cases sometimes occur in which departures from these
formule may be advisable: as, Given b, 4, where 4 is very small.
Here ¢ =5+ cos.4 is not an advantageous formula (page 75):
but if we take

c—b=bg;:s+‘1)=2bsin'%, nearly,

since cos4 is very near unity, we get the excess of ¢ over b very
accurately.

‘We now proceed to triangles in general. Draw a perpendicular
from the angular point of C upon ¢. If this perpendicular fall
within the triangle, it is clear from the definition of a sine that
it is bsind, and also a sinB. If the perpendicular fall outside
the triangle, either 4 or B should have its external angle sub-
stituted for it: but an internal and its external angle are supple-



ON THE SOLUTION OF TRIANGLES. 81

ments, and have the same sines. Therefore, in all cases,

. . a sind a b . .
asinB =bsind, OF 3= s O o= ora:b:sind:sinB.
Sides, then, are to one another as the sines of their opposite
angles. The angles then being given (or rather, two of them
being given, and the third jfound), the proportions of the sides
are found, being those of the sines.

I shall make this the fundamental formula from which all
others are deduced, namely

a b ¢
snd = m= m ceensersnsessansanas (1)
Show that each of these three, a -sin 4, &c., is the diameter of
the circle circumscribing the triangle, found in Euc. 1v. 5.

The angles of a triangle being each less than two right
angles, opponents and completions (page 10, note) cannot both be
angles of any triangle: but supplements can, that is, one may
be an angle of one triangle, and the other of another. When,
therefore, an angle is determined by its cosine or tangent, there
is but one such angle belonging to the solution: but when it
is determined by its sine, there are two angles which may belong
to the solution; that is, there may be two distinct solutions.

Now take the expanded form of sin (4 + B), square both sides
of the equation, and substitute values for cos’4 and cos'B; this
gives
sin{(4+B)=sin"4(1-sin*B)+(1-sin"4)sin*B+2sind sin Bcos4 cos B

=sin"4 +sin*B + 2sin 4 sin B cos(4 +B),
if 4, B, C be the angles of a triangle, we have

A+B=180°-C, sin(4+B)=sinC, cos(4+B)=- cosC;
whence  8in*C = sin’4 + sin'B - 2sin 4 sin B cos C';
divide* both sides by sin’C, for sin4 + sinC and sinB = sinC,
write a >¢, and b +¢, and then multiply by ¢'. This gives

*=a"+ b8 ~2abcosC.......ccceuvuurneene 2).

hd 'l'lm process supphes the want of a theorem with which the
student ought to be acquainted in its general form. Prove that
if an equation be Aomogencous with respect to a set of letters
», ¢, , &c., that equation remains true if p, ¢, r, &c. be erased,
and 2/, 9’, 7, &c. substxtuted, provided that p’ is to p as ¢ to g,
and as »' to r, &ec.
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Show that this proposition is the arithmetical representative of
Euclid 11. 12, 13; and that the introduction of the distinction
of positive and negative quantity prevents our needing #wo pro-
positions. '
As in page 39, we may express the above thus:
. 4[2yab.cosiC _, 2+4/ab.siniC
- 1 2 (a-~ 1 N
o=(a+b) cossin (—a+b )_(a b)sectan ——-——a - .(3)
The formula (2) may be proved thus:—From the vertex of 4
draw a perpendicular upon a. In all cases it will be seen that
each side of a triangle is the sum of the projections of the other
two upon it, provided each projection be called positive or nega-
tive, according as the angle of projection is acute or obtuse. Thus
a=bcosC+ccos B, b=ccosd+acosC, c=acos B+b cos 4.
Now ¢*=(c cos 4)'+ (¢ sin 4)
=(b-acosC) + (asin C)*=b"- 2ab cos C' + a*.

o -
The form cos C'= a_% ............... “@

is often useful. From it we have
l+cosc,=(a+2ba);—c" co8 :C_(@+bdtc)(atd-o)

2 4ad ’
l_mc,:c'-(;';b)" si°'§=(b+°'“la(zf+f“b)~

Let a + b + ¢ = 23, then
a+b-c=2(8-¢), dtc-a=2(s-a), c+ta-b=2(s-0b).
By substitution we have

,C _8(s¢) . ,g= (s-a)(s-d) 10 _(s-a) (s-0)
T e @ W3S 6o

B _s(s-d) .,B _ (s-c)(s-a) B (8-¢) (s-a)
o8y = e g g = (0

A _s(s-a) ,f - (8—_b) sm(a—c) A (c—b) (s—c)
el T "I sm2 be ) “s(s-a)

Let o= \/ (‘-—a)(c——;b)(—‘_c) , which it will presently be

shown is the radius of the inscribed circle (Euc. Iv. 4).
Show that

tand =P tan

B
2 s-a’ 2

= 5
=g e (6);

=P _  tan

(o}
s-b’ 2
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gsinAd=2 sin% cos‘; gives sin 4 = bEc +/.8(8-a)(8-b)(s-¢)..(7),

and similar forms for sin B and sin C.
If p, Py P, be the perpendiculars let fall upon a, b, ¢,

from the opposite vertices, we have
p,=bsinC=csinB, p,=csin 4=asinC, p =asin B=bsin 4...;
and the area of the triangle is expressed by any onme of the
following seven equivalent forms:

aps bpy cp, absinC besind casin B

—2"‘ ’ ‘5‘ ’ 3‘ ’ 2 ’ 2 ’ 2 ’

V{s(s-a)(s-b)(s-c)} or ps......... (8).

b sinB . a-b sind-sinB
The formuls == 54 &V ST " Gnd+sm B’
a-b -tan 1(A4-B) a- b

—_—— 8 e———— 1 —_ —_
aib " tan 3(A7B)’ or tan 2(4-B)= cot .. (9)

There are four circles which touch the three lines of a triangle :
one, the inscribed circle of Euclid, touches the three sides; of
the others, each touches one side and the other two sides pro-
duced. Let p be the radius of the first, and p,, p;, p,, those
of the other three. The area of the triangle is % (pa + pb + pc)
or ps: whence p, now used, is the same as p of the preceding for-
mula (6). Again, the area of the tm.ngle i8 1 (pod + pat - paa) or
(8 - @) pa; Whence

V26-0)(6-b(-0) o

s-a
Show that l+1+l=-l.
Pa Py Pc P

Let a, denote the projection of a on b, with its proper sign,
&c. Then
a;=a cos C, &c., b=a,+c; &c., and we have

F+b-¢ Bic-at
“0=—+27;‘— , b,=T“, &o. ...... (10)

We can now treat all the cases of oblique-angled triangles.
Of two given sides or angles, let the greater of the two, when
there is one, be denoted by the prior letter of the alphabet,
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1. Given the three sides to find the angles.
If one angle only be wanted, say 4, take
A s(s-a) . 4 \/(c-b) (8-¢)
bc ’

COSE'= ——bc—' or sm§=

preferring the first for the greatest angle, the second for the least.
If all the three angles be wanted (or even two), take

p=Vi{(s-a)(s-b) (s-¢) = 8}
tan 34 =p+ (8-a), tan §B=p +(s-D), tan 1C=p = (s-¢),
which verify each other, since 2.4 +3 B + 2 C=90°
This method was once much used. Since
al+pl’=a" ct+pt=¢, (a3-¢;) (a+c)=(a-c)(a+c),

~(@-0)(a+0)
b

or a;-c y Gtep=b;

from which determine a; and ¢;, and then use
cos 0=‘2, cosd =2,
a ¢

2. Given two sides and the included angle (a, b, C), to find
the rest. If all be wanted, calculate the angles by means of
their half sum and half difference, thus,

1443B=90°-1C, tan (34~ 1B) = 22 tan (90° - 30),
A=(4+1B)+G4-1B), B=(4+iB)-G4-1B)
sinC ,sin C .

‘inA.--bm, which ought to agree.

If only the side ¢ be wanted, take either

2 y/ab °°@=(a-b)+oos t‘m_,21/ab sin}C’;
a+bd a-b

Lastly, c=a

¢=(a+0b) cos sin™

say, for reference,
(a+b)oosS, and (a - b) + cos T..

Or thus, b= bcosC, p,=>5sinC, which find:
Co=a — by tanB=%', c=co:.B’

which is a direct reduction of the solution to that of right-angled
triangles.
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3. Given one side (¢) and two angles, required the other
sides. Calculate the third angle, and then use

a_csinA b—cﬁnB-
~"sinC’ ~ " sinC’

but if C' be obtuse, use 4 + B instead of C. Or, in any case,
A+B may be used, taking the cosine of the excess above 90°
(which excess is easily found without pen and ink) when 4 + B
is obtuse.

4. When two sides and an angle not included are given,
(a, b, B), required the rest.

First calculate 4 from sin 4 = @ sin B

7

If asin B>, sin 4> 1, and there is no solution. If asin B=5,
then sind =1, and 4 is a right angle, as is its supplement:
there is this one solution only, and ¢=acos B, C'=90°- B.
But when asinB <b, sind <1, and there are two solutions,
one acute and one obtuse. Let these be A4’ and 4”; and let
C' and C", ¢ and ¢", be the corresponding values of ‘the third
angle and side; then C"'=180°- B - 4', C"=180°- B - 4", and

asinC’ bsinC’ , asinC” bsinC"
“sind  snB’' ° snd snB
So far it seems as if we were sure of two solutions, when-
ever asinB<b. But in trigonometry we are often made to
observe what meets us so frequently in ordinary Algebra, namely,
that in constructing the conditions of a problem, we are com-
pelled to take in those of cognate problems. If we have not
until now met with such a circumstance in this present chapter,
it is because in mere solution of triangles, we have not introduced
into this isolated subject our conventions as to the measurement
of angles, which would, as in page 10, oblige us to consider
completions and opponents of Euclid’s angles as among the angles
of a triangle, and each cosine and Zangent as belonging to two
possible angles of a triangle. But each of two supplemenss may
be the angle of a triangle: and when, in our construction, we
have to use the sine of a given angle, we conjoin with our
problem that one in which the supplement of the first given
angle is made the given angle. Let B’ and B” be the acute
I

{4
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and obtuse supplements: then all we are entitled to say is that
the preceding solutions belong, each of them, to one ‘or the
other of the triangles (a, b, B') (a, b, B"). .

First, suppose the given angle .to be opposite the lesser of
the given sides (b <a). Then B < 4, and there cannot be any
obtuse value of B: that is, both solutions belong to the acute
value of B. Secondly, let the given sides be equal (b=a):
then B = 4, and 4 must be acute, and 180° - B — 4", or
180 - 4’- 4", is =0. One of the solutions vanishes into a
straight line, and the other is an isosceles triangle. Thirdly, let
the given angle be opposite the greater of the given sides (b > a).
Then B > A, there cannot be any obtuse value of 4, but both
values of B may be used, and one solution belongs to each
value. The following diagram will explain these cases.

Mm

This double solution is, as might be supposed, indicative
of the problem being one of the second degree. We have

B=c*+a*-2accos B, c=acosBt(b'-a'sin'B).

Here a sin B is p,, and t /(5" - a* sin* B) is b, with its sign, on
the supposition that ¢ is measured positively on the side of the
acute value of B; a cos B is a,; and the above equation is only
e¢=a,+b, in which ¢ has its proper sign. The consideration
of this problem, and of its connexion with Euclid vi 7, will
be a useful exercise.

The following table shews all the parts of a triangle and
their logarithms for exercise.

a = 15236 loga = 1°1828710 s - a = 3-098 log (s - a) = 014910814
b = 12414 logd = 1:0939117 s - b = 5920 log (s - b) = 0-7723217
c¢= 9018 loge = 09551102 s — ¢ = 9-316 log (s - ¢) = 0:9692295
8= 18334 logs = 12632572 ps = 5596866 logps = 1-7479449

a +b = 27650 log(a + b) = 14416951 a - b = 2-822 log(a - b) = 04505570
b +c = 21432 log (b + ¢) = 1:3310627 b — ¢ = 3-396 log (b - ¢) = 0-5309677
a ¢ = 24254 log(a+c) = 13847834 a - ¢ = 6:218 log(a - ¢) = 07936507
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log. sin. log. cos. | log. tan.
A4 =89 92354 | 19999530 | 2-1679268 | 1:8320262
B =54 33 2512 | 1-9109937 | 1-7633479 | 0-1476458
C =36 17 1148 | 17721922 | 19063714 | 1-8658208
14 =44 34 4177 | 18462647 | 1-8526583 | 1-9936064
1B =27 16 42:56 | 16611649 | 1-9487989 | 1-7123661
1C =18 8 3574 | 114933102 | 1-9778520 | 1-5154583
1(4 - B) =17 17 5921 | 1-4722989 | 1-9798951 | 1-4924039
1(B-0)= 9 8 682 | 12007551 | 1-9944564 | 1-2062988
1(4-C)=26 26 603 | 16485379 | 1-9520365 | 1°6965016
8, =44 41 306 | 1:8471366 | 18518083
S, =59 12 504 | 1-9340361 | 17091283
8, =170 57 536 | 19755783 | 1-5134140

............

T, =71 17156 | ... 1'3408970 | 0-6408380
T, =59 56289 | ......... 1-6997390 | 02375348

T, =7145609 | ......... 14954464 | 04821748
Pa= 347 logp, = 0:8661039 '
25 = 9017 logp, = 0:9550632
2. = 12:413 logp, = 10938647
b, = 10006 logd, = 10002831 ¢, = 5230 logec, .= 0-7184581

" ay = 12281 loga, = 10892424 ¢; = 133 loge, = 11230370
a, = 8835 loga, = 09462189 b, = 183 logd, = 1:2618385.
Cases may occur in which the particular values of the data
render special methods convenient. For instance, when q, b, C,
are given, and C=180°- C,, C, being very small, we may
proceed as follows:
¢ =a'+ 8" - 2ab cos (180° - C) = a* + b* + 2ab cosC,

= (a + b)" - 4ab sin*3C, = (a+b)'{1 _dab ey c,}.

+0)
By the binomial theorem, V (1-2)= 1- 1z nearly, z being small,
2ad
= e in* = - —— g§in*l
¢ (a+b)(1 = ), i w,) a+d- = sin'iC,

very nearly. But sinC = 2sin1C .cos1C, or cos1C, being very
nearly 1, we have
8in}C,=1sinC, sin*1C = 1sin*C,, very nearly:

c=a+bd- 1abein’C) ve 1
3 ayp * Veryneatly.
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If the circumscribed circle be drawn, the angle of the radii
drawn to the extremities of a, is the angle at the centre to
which 4 is the angle at the circumference. There is, then,
an isosceles triangle, in which » and » include either 24, or
360° — 24, the third side being a. Consequently,

a = 2r sin (4 or 180° - 4):
that is, 2r = @ +'sin4. The three sides of the triangle are then

2rsind, 2rsinB, 2rsinC;
and all the formule become trigonometrical identities, if these
be substituted for @, b, ¢. Thus, substitution in the formule
for sin*1C gives us
0 (sin B + sinC' - sin4)(sinC + sin4 - sin B)
4sind sinB

which is always true when 4 + B+ C=180°

Shew that the line drawn from the vertex of 4 bisecting
the side a is /(£ (3" + ¢*) - 24"} or /(0" + ¢+ 2bc cos4}). Also
that the line bisecting the angle 4 is 2bc cos3.4 = (b +¢). Shew
that

16s(s - a) (8 - b) (8 - ¢) = 2b°* + 2¢%a” + 24"0* - a* - B* - %




BOOK II.

DOUBLE ALGEBRA.

CHAPTER 1.

DESCRIPTION OF A SYMBOLIC CALCULUS.

THE object of this book is the construction of Algebra upon
a basis which will enable us to give a meaning to every symbol
and combination of symbols before it is used, and consequently
to dispense, first, with all unintelligible combination, secondly,
with all search after interpretation of combinations subsequently
to their first appearance. '

In arithmetic and in ordinary algebra we use symbols of pre-
viously assigned meaning, from which meaning, by self-evident
notions of number, &c., are derived rules of operation. The
student must understand by symbols, the peculiar symbols of
arithmetic and algebra: strictly speaking, the written or spoken
words by which meaning is conveyed are themselves symbols.
And symbols must be explained by other symbols, except when
they denote external objects or actions, in which case the symbol
may be explained by pointing to the object present or the
action taking place. Language itself is a science of symbols
(namely, words) having meanings (which are described in the
dictionary by words of the same or another language) and rules
of combination (laid down in its grammar).

No science of symbols can be fully presented to the mind,
in such a state as to demand assent or dissent, until its
peculiar symbols, their meanings, and the rules of operation,
are all stated. In this case we have but to ascertain—first,
whether the peculiar symbols be distinguishable from each other;
secondly, whether the meanings are capable of being distinetly
apprehended, each symbol having either one only, or an attain-
able and intelligible choice; thirdly, whether the given rules

13



90 DESCRIPTION OF A SYMBOLIC CALCULUS.

of operation be necessary consequences of the given meanings
as applied to the given symbols, If these inquiries produce
as many affirmative answers, the basis of the science is so far
unobjectionable ; and all intelligible conclusions which are drawn
from a correct and intelligible use of the rules of operation,
are true. But yet it may be imperfect.

First, it may be sncomplete in tts peculiar symbols. There may
be a want of symbols which those already in use suggest, but
which are not yade to appear. This is not the incompleteness to
which algebra is most Liable: it suffers more from its symbolic
combinations growing much faster than the ordinary language in
which they are, if possible, to be occasionally expressed.

Secondly, it may be tncomplete in its meanings. For example,
it may be capable of applying, with the same symbols, to more
subjects than its actual meanings take in. This is one possible
incompleteness, of a very obvious character. Another, of a much
less obvious character, and which probably nothing but actual
experience of it would have suggested, is this: symbols, defined
in a manner which makes them separately intelligible, may be
unintelligible in combination; their separate definitions may
involve what, in the attempt* to combine them, produces con-

* The student may be surprised at my saying that we should
never have imagined such a result in algebra without actual ex-
perience of it: for it may strike him immediately that in ordinary
language we may have not merely unmeaning, but contradictory,
combinations, But the answer is that we are so accustomed to
contradictory combinations, used in some emphatic sense, that
they are recognised idioms: it even happens that they express
more and better meaning while they are fresh, and before use
makes the contradiction wear off, than afterwards. When General
‘Wolfe first used the expression ¢choice of difficulties’, which was
contradiction, choice then meaning voluntary election, he made
those to whom he wrote see his position with much more effect
than could have been produced a second time by the same words.
Ordinary language has methods of instantaneously assigning meaning
to contradictory phrases: and thus it has stronger analogies with
an algebra (if there were such a thing) in which there are pre-
organized rules for explaining new contradictory symbols as they
arise, than with one in which a single instance of them demands
an immediate revision of the whole dictionary.
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tradiction. The second case may be a consequence of the first,
or it may not: contradictory combinations may arise from
limitation of meaning, and may cease to be contradictory under
extended meanings; or it may happen, either that no such
abolition of contradiction is possible in the case thought of, or
else that every extension of meaning which destroys contra-
diction in one combination creates it in another.

Thirdly, it may be incomplete in tts rules of operation. This
incompleteness may amount either to an absolute privation of
results, or only to the imposition of more trouble than, with
completeness, would be requisite. Every rule the want of which
would be a privation of results, may be called primary: all
which might be dispensed with, except for the trouble that
the want of them would give, may be treated merely as con-
sequences of the primary rules, and called secondary.

Each of the three great objects of consideration, peculiar
symbols, assigned meanings, and rules of operation, may then
be defective, independently of the rest. Can we carry the defect
so far as to imagine one or more of them to be entirely wanting P
The cases of absolute deficiency, which it may be worth while
to notice here, principally to accustom the student to the idea
of the separation, are as follows:—

1. Meanings and rules without peculiar symbols. Unques-
tionably algebra might be deprived of its peculiar symbols,
ordinary words taking their places. There is no more truth, no
more meaning, and no more possibility of drawing consequences in

(@-b)+-(a-b)=a+d

than in ‘the difference of the products of two numbers, each
multiplied by itself, divided by the difference of those numbers,
gives the sum for a quotient.” Before the time of Vieta, algebra
had always been much retarded by the want of a sufficient use
of peculiar symbols.

2. Peculiar symbols, and meanings, without rules of operation.
In this case the only process must be one of unassisted reason,
thinking on the objects which the symbols represent; as in
geometry, which has its peculiar symbols (as 4B, signifying
a line joining two points named 4 and B). But no science
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of calculation* can proceed without rules; and these geometry
doest not possess.

3. Peculiar symbols, and rules of operation, without assigned
meanings. Nothing can be clearer than the possibility of dic-
tating the symbols with which to proceed, and the mode of
using them, without any information whatever on.the meaning
of the former, or the purpose of the latter. A corresponding
process takes place in every manual art in which an assistant
obeys directions, without understanding them. The use of such
a process, as an exercise of mind, must depend much (but not
altogether) upon the value of the meanings which we suppose
are to be ultimately assigned. A person who should learn how
to put together a map of Europe dissected before the paper is
pasted on, would have symbols, various shaped pieces of wood,
and rules of operation, directions to put them together so as
to make the edges fit, and the whole form an oblong figure.
Let him go on until he can do this with any degree of expert-
ness, and he has no consciousness of having learnt anything:
but paste on the engraved paper, and he is soon made sensible
that he has become master of the forms and relative situations
of the European countries and seas.

As soon as the idea of acquiring symbols and laws of com-
bination, without given meaning, has become familiar, the stu-
dent has the notion of what I will call a symbolic caleulus;
which, with certain symbols and certain laws of combination,
is symbolic algebra: an art, not a science; and an apparently

* A caloulus, or sct of calculation, in the modern sense, is
one which has organized processes by which passage is made,
or may be made, mechanically, from one result to another. A
calculus always contains something which it would be possible
to do by machinery.

+ Those who introduce algebraical symbols into elementary geo-
metry, destroy the peculiar character of the latter to every student
who has any mechanical associations connected with those symbols ;
that is, to every student who has previously used them in ordinary
algebra. Geometrical reasoning, and arithmetical process, have
each its own office: to mix the two in elementary instruction,
is injurious to the proper acquisition of both.
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useless art, except as it may afterwards furnish the grammar
of a science. The proficient in a symbolic calculus would na-
turally demand a supply of meaning. Suppose him left without
the power of obtaining it from without: his teacher is dead, and
he must #nvent meanings for himself. His problem is, Given sym-
bols and laws of combination, required meanings for the symbols
of which the right to make those combinations shall be a logical
consequence. He tries, and succeeds; he invents a set of mean-
ings which satisfy the conditions. Has he then supplied what
his teacher would have given, if he had lived? In one par-
ticular, certainly: he has turned his symbolic calculus into a
significant one. But it does not follow that he has done it in
the way which his teacher would have taught him, had he
lived. It is Jpossible that many* different sets of meanings may,
when attached to the symbols, make the rules necessary con-
sequences. We may try this in & small way with three symbols,
and one rule of connexion. Given symbols M, N, +, and one
sole relation of combination, namely that M + N is the same
result (be it of what kind soever) as N+ M. Here is a sym-
bolic calculus: how can it be made a significant one? In the
following ways, among others. 1. M and N may be magnstwdes,
+ the sign of addition of the second to the first. 2. M and N
may be numbers, and + the sign of multiplying the first by the
second. 3. M and N may be lines, and + a direction to make
a rectangle with the antecedent for a base, and the consequent
for an altitude. 4. M and N may be men, and + the assertion
that the antecedent is the brother of the consequent. 5. M and N
may be nations, and + the sign of the consequent having fought
a battle with the antecedent: and so on.

We may also illustrate the manner in which too limited or
too extensive a meaning interferes with the formation of the
most complete significant calculus. In (1), limitation to mag-

* Most inverse questions lead to multiplicity of answers. But
the student does not fully expect this when he asks an inverse
question, unless he be familiar with the logical character of the
predicate of a proposition. A always gives B: what gives B?
answer, 4 always, and, for aught that appears, many other things.
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nitude is not necessary, unless ratio and number be signified
under the term. In (2), if M (only) were allowed to signify
number, N + M would be intelligible, but M + N would be un-
intelligible ; an smpossible symbol of this calculus. In (3), (M +N) -
signifying the rectangle, (M + N) + P would be unintelligible
at first: further examination would show that the explanation
is not complete; and that the proper extension is that M + N + P
should signify the formation of the right solid (rectangular paral-
lelepiped) with the sides M, N, P. But M+ N+ P+ Q will
be always unintelligible, as space has not four dimensions. In
(4), the extension of M and N to signify human beings, would
spoil the applicability of the rule, unless the meaning of + were
at the same time extended to signify the assertion that the
antecedent was brother or sister (as the case mighy be) of the
consequent.

But when the symbols are many, and laws of combination
various, is it to be thought possible such a number of co-
incidences should occur, as that the same symbolic combina-
tions (unlimited in number) which express truths under one set
of meanings, express other truths under another? Could two
different languages be contrived, having the same words and
grammar, but in which the words have different meanings, in
such manner that any sentence which has a true meaning in
the first, should also have a true, but a different, meaning in
the second? This last question may almost certainly be an-
swered in the negative: the thousands of arbitrary terms which
a language presents, and the hundreds of grammatical junctions,
present a possible variety of combinations of which it would be
hopeless to expect an equal number of coincidences of the kind
required. But Algebra has few symbols and few combinations,
compared with a language: more explanations than one are
practicable, and many more than have yet been discovered may
exist. And the student, if he should hereafter inquire into the
assertions of different writers, who contend for what each of
them considers as the explanation of /-1, will do well to sub-
stitute the indefinite article.

We can now form some idea of the object in view; and we
must ask, first, what are the steps through which we have gone,
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“to arrive at algebra as it stands in the mind of the student
who commences this book. They are, very briefly, as follows:

Beginning with specific or particular arithmetic, in which every
symbol of number has one meaning, we have invented signs,
and investigated rules of operation. An easy ascent is made
to general or universal arithmetic, in which general symbols of
number are invented, the letters of the alphabet being applied
to stand for numbers, each letter having a numerical meaning,
known or unknown, on each occasion of its use. And thus,
" omitting many circumstances which have no particular reference
to our present subject, we arrive at a calculus in which the
actual performance of computations is deferred until we come
to the time when the values of the letters are found or assigned.
Accordingly, whereas in particular arithmetic every computation
is completed as it arises, or declared impossible, in universal
arithmetic we have a calculus of forms of computation, in which
each numerical computation is only signified, and not performed ;
the proviso, if possible, being annexed by a reasoner to every
step of every process in which a chance of impossibility occurs.

Out of a few cases of difficulty, there is selected one, which
appears at first sight destined always to make the proviso above
mentioned an essential part of most processes of universal arith-
metic. It is the smpossible subtraction; the constant appearance
in problems of a demand to take the greater from the less, to
say how many units there are in 6-20, for instance. An ex-
amination of the circumstances under which such phenomena
occur shows, inductively, that their producing cause is always
this, that either in the statement of the problem, or in its treat-
ment, some one quantity is supposed to be of a kind diametri-
cally opposite to that which it ought to be.

Simple number, the subject of abstract arithmetic, be it par-
ticular or universal, fails to show any acknowledgment of a
distinction which strikes us in almost every notion of concrete
magnitude. Measure 10 feet from a given point on a given
line: the command is ambiguous until we are told which of
two directions to take. A sum of money in the concerns of
A and Co. is incapable of being entered in their books until
we know whether it be gain or loss. A weight is generally
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of one kind, but not always: the weight of a balloon is a ten-
dency in the direction opposite to that of most weights; or
rather, the word weight being by usage not allowed a double
gignification, we say a balloon has no weight, but something
which is the direct opposite of weight. A time, one extreme
epoch of which is mentioned, is not sufficiently described until
we know whether it is all before, or all after, the epoch. And
so on. In every one of these cases, the numerical quantity
of a concrete magnitude, described by means of a standard
unit, is not a sufficient description; it is necessary to specify
to which of two opposite kinds it belongs. This specification
must be made by something not numerical: number is wholly
inadequate.

The first suggestion would be, it might be thought, to invent
signs of distinction: but universal arithmetic makes a sugges-
tion which forces attention, before the necessity for distinction
is more than barely perceived. Should we ever suppose that
the result of a problem is gain, or distance in one direction,
or time after an epoch, &c., when it is in reality, say 4 of loss,
or of distance in the opposite direction, or of time before
the epoch, &c., the answer always presents itself as 0 -4, or
m-(m+4), or as some version of the attempt to take away
4 more than there are to be taken away. It is then judged con-
venient (that the convenience amounts to a necessity is hardly
seen at that period) to make —4 the symbol of 4 units of a kind
directly opposite to those imagined in 4, or 0 +4. And this
is the first of the steps by which universal arithmetic becomes
common, or single algebra. See Algebra, pp. 12-19 and 44-66,
for more detail.

This word single, as applied to algebra, is derived from space
of one dimension, or length, in which it is always possible to re-
present the effect of every intelligible operation of single algebra,
and the interpretation of every result which admits of any
interpretation at all. When we reckon time, gain and loss, &c.,
it is always possible to translate our reckoning into terms of
length, as. follows:

ov

A4 B
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Take any point O, in a straight line, which call the zero-point,
from which all measurement is to begin. Let OU represent the
unit of any particular magnitude, and let magnitudes of one
kind, say gains, be measured towards 4, and losses towards B.
Successive gains and losses may be taken off, and the final balance
exhibited, by the compasses. As long as the result is always of
one kind, so that an assumption to that effect would never
render the processes of pure arithmetic unintelligible, the suc-
cessive results always appear on one side of O: but the moment
a result of the contrary kind appears, (which, unless the arith-
metical computer were aware of it, and had provided accord-
ingly, would leave him with an attempt at impossible subtraction
on his hands,) it is indicated on the opposite side of O.

The convention as to the meaning of +1 and -1, namely,
that they shall represent units of diametrically opposite kinds,
is a very bold one: not merely because it takes up signs which
are originally intended for nothing but addition and subtrac-
tion, and fizes another signification on them; but because it still
employs them to connect quantities, and by & new kind of
connexion. The signs in fact are used in two senses, the direc-
tive, and the conjunctive. + (-3) tells us, by virtue of -, what we
are talking of, and by virtue of + () how we are to join what
we talk of to the rest. As conjunctive signs, + means junction,
or putting on what we speak of; and - means removal. Thus,
if + and - in the directive semse indicate gain and loss, the
question, What is

E)+E8-CED+HH-(+3)?
is the following:—A man loses 3, and gets a gain of 8, with
the removal of a loss of 7,the accession of a loss of 4, and
the removal of a gain of 3: what is the united effect of all
these actions on his previous property? The answer is, the
accession of a gain of 6, +(+5).

The mere beginner is allowed to slide into single algebra
from universal arithmetic in a manner which leads him to under-
rate the magnitude of the change. I do not see that it can
be otherwise: but, at this period, my reader may be made to
observe that the process by which we shall pass from single to

double algebra, is the surest and most demonstrative (perhaps
K
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the only demonstrative) mode of passing from universal arithmetic
to single algebra. It is not until he can drop all meanings,
collect the laws of combination of the symbols, and so form
a purely symbolic calculus, and then proceed to furnish that
calculus with extended meanings, that he becomes fully master
of the change. But the close resemblances, which make the
slide above referred to so easy, might make it doubtful whether
he would be fit to take proper note of this case of reduction
and restoration* until he has seen a more striking form of the
same process, namely, that which is exhibited in the transition
from single to double algebra.

‘When the earlier algebraists first began to occupy themselves
with questions expressed in general terms, the difficulties of
subtraction soon became obvious, inasmuch as the greater would
sometimes demand to be subtracted from the less. The science
has been brought to its present state through three distinct steps.
The first was tacitly to contend for the principle that human
faculties, at the outset of any stience, are judges both of the
extent to which its results can be carried, and of the form in
which they are to be expressed. Iynorance, the necessary pre-
decessor of knowledge, was called nafure; and all conceptions
which were declared unintelligible by the former, were supposed
to have been made impossible by the latter. The first who used
algebr:iica.l symbols in a general sense, Vieta, concluded that
subtraction was a defect, and that expressions containing it
should be in every possible manner avoided. Vitium negationis,
was his phrase. Nothing could make a more easy pillow for
the mind, than the rejection of all which could give any trouble;
but if Euclid had altogether dispensed with the vitium paral-

® Algebra, al jebr e al mokabala, restoration and reduction, got
its Arabic name, I have no doubt, from the restoration of the term
which completes the square, and reduction of the equation by ex-
tracting the square,root. The solution of a quadratic equation
was the most prominent part of the Arabic algebra. Alter the
order of the words, and the phrase may well represent the final
mode of establishing algebra: reduction of universal arithmetic to

a symbolic calculus, followed by restoration to significance under
extended meanings.
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lelorum, his geometry would have been confined to twenty-six
propositions of the first book.

The next and second step, though not without considerable
fault, yet avoided the error of supposing that the learner was
& competent critic. It consisted in treating the results of algebra
as necessarily true, and as representing some relation or other,
however inconsistent they might be with the suppositions from
which they were deduced. So secon as it was shewn that a
particular result had no existence as a quantity, it was permitted,
by definition, to have an existence of another kind, into which
no particular inquiry was made, because the rules under which
it was found that the new symbols would give true results, did
not differ from those previously applied to the old omes.” A
symbol, the result of operations upon symbols, either meant
quantity, or nothing at all; but in the latter case it was con-
ceived to be a certain new kind of quantity, and admitted as
a subject of operation, though not one of distinct conception.
Thus, 1 -2, and a - (a +b), appeared under the name of negative
quantities, or quantities less than nothing. These phrases, in-
congruous as they always were, maintained their ground, because
they always produced a true result, whenever they produced any
result at all which was intelligible: that is, the quantity less
than nothing, in defianee of the common notion that all con-
ceivable quantities are greater than nothing, and the square
root of the negative quantity, an absurdity constructed upon an
absurdity, always led to truths when they led back to arithmetic at
all, or when the ineonsistent suppositions destroyed each other.
This ought to have been the most startling part of the whole pro-
cess. That contradictions might occur, was no wonder; but that
contradictions should uniformly, and without exception, lead to
truth in algebra, and in no other species of mental occupation
whatsoever, was a circumstance worthy the name of a mystery.

Nothing could prevail against the practical result that theorems
8o produced were true; and at last, when the interpretation of
the abstract negative quantity shewed that a part at least of
the difficulty admitted of rational solution, the remaining part,
namely that of the square root of a negative quantity, was
received, and its results admitted, with increased confidence.



100 DESCRIPTION OF A SYMBOLIC CALCULUS.

The single algebra, when complete, leads to an unintelligible
combination of symbols, 4/~1: not more unintelligible than was
-1 when it first presented itself; for there are no degrees of
absurdity in absolute contradiction of terms. The use of /-1,
which leads to a variety of truths (page 41), points out that it
“must have a logic” (page 41, note). I now proceed (page 92)
to collect the symbols and laws of combination of algebra, or
to describe Symbolic Algebra.
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CHAPTER 1L
ON SYMBOLIO ALGEBRA.

IN abandoning the meanings of symbols, we also abandon
those of the words which describe them. Thus addition is to
be, for the present, a sound void of sense. It is a mode of
combination represented by -+ ; when + receives its meaning, so
also will the word addition. It is most important that the
student should bear in mind that, with one ezception, no word
nor sign of arithmetic or algebra has one atom of meaning
throughout this chapter, the object of which is symbols, and
their laws of combination, giving a symbolic algebra (page 92)
which may hereafter become the grammar of a hundred distinct
significant algebras. If any one were to assert that + and -
might mean reward and punishment, and 4, B, C, &c. might
stand for virtues and vices, the reader might believe him, or
contradict him, as he pleases—but not out of ¢Ais chapter.

The one exception above noted, which has some share of
meaning, is the sign = placed between two symbols, as in 4= B.
It indicates that the two symbols have the same resulting mean-
ing, by whatever different steps attained. That 4 and B, if
quantities, are the same amount of quantity; that if operations,
they are of the same effect, &ec.

The following laws are not all unconnected: but the unsym-
metrical character of the exponential operation, and the want
of the connecting process of + and x, pointed out in the last
chapter, renders it necessary to state them separately.

1. The fundamental symbols of algebra are
01+ - x, & ()“, and letters.
In ()" there is the best mode of expressing the peculiar case
in which the symbol consists in position; as in 4% in which
the distinctive symbolical force of the form lies in writing B

over 4,
K3
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II. It is usual to call + and - signs, and them only: but in
laying down the laws of symbolic algebra, the close connexion
existing between + and - on the one hand, and x and + on the
other, requires that the latter should also be called signs. Let
the former be called ferm-signs, the latter factor-signs. It is to
insist on this connexion that I do not (for a while) introduce
the more common synonymes for 4 x B and 4 + B, namely 4B

A
and 3‘5

III. A symbol preceded by + or — is a fterm; by x or + a
Juactor. In A™ A is the dase, B the ezponent. When an ex-
pression consists of terms, let them be called co-ferms; when of
factors, co-factors.

IV. Let 0 and 1 he a co-ferm and co-factor of every symbol,
+ and x being the comnecting signs of the symbol, but either +
or -, either x or =+, those of 0 and 1. As seen in
A=0+d=1x4A,
=A4+0=A4-0=4Ax1=4+1,
=04+1xd4d,
Thus 0 and 1 are a kind of initial or starting symbols, the first
of terms, the second of factors.
It is seen that + end x, placed before a symbol, do not alter
it: x 4 is 4, having reference to 1 understood, @s in 1x 4;
and +4 is 4, having reference to 0 understood, as in 0 + 4.

V. Co-terms and co-factors which differ only in sign, are

equivalent to term 0 and factor 1.
+d-4=0, xA4:4=1.

The more usual form of the last is 1 x 4 + 4 =1. The starting
symbol is frequently used in factors, but rarely in terms. The
student is well accustomed to + .4 and - 4, in abbreviation of
0+ Aand 0-A4: but nottox 4 and + 4 for 1 x 4 and 1 + 4.
But he must use the latter a little, if he would see the complete
analogy of the term and factor signs.

VL A symbol is said to be distributive over terms or factors
when it is the same thing whether we combine that symbol with

‘uf the terms or faetors, or whether we make it apply to
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the compound term or factor. Thus, looking at

I—".\—\ *® & & &
ABCD and 4BCD,
we see the * of the first distributed in the second.
VII. Term-signs are distributive over terms, and factor-signs
over factors: as in
+(+4-B)=+(+4)+(-B), +(x4+ B)=+(x4d)+(+B),
at full length 0+(0+4-B)=0+(0+4)+(0-B),
1:(1x4+B)=1+(1x4d)+(1+B).

VIII. The term-signs of factors may belong, each one of them,

to any factor of the compound, or to the compound.
~Ax-B=-(-4)x B=-(-) (4 x B).

IX. Like term-signs in combination produce +; unlike, -.
Like factor-signs in combination produce x; unlike, ~. As in
Hed)=—dy ~(A) =+ 4, X ()= 5 4y (M) = x4

X. Terms and factors are convertible in order, terms with
terms, factors with factors. As in

+A-B=-B+A4, xA-B==-BxA.

XI. Factors are distributive over the terms of any cofactor
with the sign x. (The corresponding law for + factors can be
deduced, and is not to be set down as fundamental). As in
G+ x(+B-C)=(+A)x(+B)+(+A)x (-C)=+Ax B-AxC,
and x (B-C)+A=B+A4-0+A.

XIL. The relations of the starting symbols 0 and 1, as ex-
ponents, are A°=1, d'=4d,

XTIII. The exponent is distributive over factors with x (the
case of + is deducible). As in
(x A xB)=xd;x B
XIV. The operations of x and the exponential operation ( )(),

successively repeated with the same base, are reducible to the
lower operations + and x performed with the exponents. As in

A® x A4° = A%, (4°)° = 4™
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Any system of symbols which obeys these rules and no others,
—except they be formed by combinations of these rules—and
which uses the preceding symbols and no others—except they
be new symbols invented in abbreviation of combinations of these
symbols—is symbolic ulgebra. Ordinary algebra contains all these
symbols and all these rules, but its assigned meanings do not
make all results significant. I now proceed to combined symbols,
and to a sufficient amount of proof by instance, that one who
admits these rules admits, as consequences, all the combinations

of ordinary algebra.
Let 141 be abbreviated into 2; 2+1 into 3; 3+1 into 4,
and so on. Now introduce the abbreviations of 4 x B and

A + B, namely, 4B and %

We have then 4+ 4=24; for (1v), 4+ 4 is 1xAd+1x4d
or (x1) (1+41)4 or 24. Similarly, 4+ 4+ 4=34. Again,
44+7 is $4: for (X), 1x4xA+T7is 1x4+Txd, or Ax4=1,
or (vir), (viir), 4 x (x4 = T), or #4;

(4-B)(C-D) is (x1) (4-B) C-(4-B) D, or, (XI) again,
AC-BC-(AD-BD), or (vi1), AC- BC-(+ AD) -(- BD),
or (IX), AC- BC- AD + BD;

4_dc

B BC’
(x)xA+BxC=C) or (V), x A+ B, or f’

Ax0=0; for (v) Ax0 is 4 (+B- B), or (Xx1) + AB- AB,
which (v) is 0.

for x A x C + (BxC) is (viI), xAxC'?B%C’, or

From what precedes BA is 3-' This is an instance

4 A
of the deducible part of (x1); it is x4 + (B+C)=: (B+A4+C=A).
The complete rule x1, in all its parts, fundamental and deducible,
is this:—A factor may be distributed over the terms of its
cofactor, with its factor-sign or the contrary, according as the
receiving cofactor is x or +. Thus
+A4:(B+C)is :(AxB+A4AxC);

4D, CB 4D t BC

has been shewn to be BDiBD’o (x1) N

le

4,
Bt
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A®x A™® is (x1v) AP, or (1X) 43, or (V) 4% or (xu) L.
B
So that A% —L; and 2= 4740 = 47,
(i’;)" = (4B = 4°B (1) = L,
B
At is A™, or A'A', or AAd; A*is AAA, &ec.
AY gives (Aly=A1=4 (xn), or B4 = 4;
~-Ax-Bis (vii1) -(-)4 x B, or + AB, or AB;
A x(BC)is Ax(x BxC), or (vi1) 4 x (x B) x (x C),
or (Ix) 4 x BxC.

In this way the student must examine narrowly a large
number of fundamental operations, satisfying himself that he
could produce them from the rules alone, independently of every
notion of meaning. The question is this,—Might & machine,
which could, when guided, make introductions and alterations
by the preceding rules and no others, be made to turn one of
the alleged equivalent combinations into the other.

It will be exceedingly convenient to reserve the small letters
a, b, ¢, &c. most strictly to signify pure combinations of the
unit-symbol 1, with any term or factor-signs, as +2, -2, &c.:
and to use the capitals 4, B, C, &c. for other cases. With the
exception of € I shall use Greek letters only for angles.
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CHAPTER IIIL

ON AREAS AND SOLIDS.

I MAKE the first example of significant algebra to be an
application of symbolic algebra to the geometry of right areas
(rectangles) and right solids (rectangular* parallelepipeds), be-
cause the application is useful, and abounds in instances of the
distinction between symbols which become significant under the
meanings given, and those which are not significant.

However clearly a student may see that the ordinary arith-
metical proofs of the propositions in the second book of Euclid
are not sound, except for lines which are commensurable with
one another, yet, considering that every proposition which can
be proved by such arithmetical proof must be ¢ruet (as may be
otherwise established) for all lines whatsoever, it may be sus-
pected that the mechanism of the arithmetical proof is really
the mechanism of some sound and general proof. And so it
turns out, namely, that one of the significant algebras is the
method of proof desired.

+ and - are simple addition and subtraction; 4, B, &c. are
lines, if not otherwise specified, and it is easy to confine them
to lines. Again, x in 4 x B makes the symbol mean the rect-
angle under 4 and B; the second x in 4 x B x C' makes the
symbol mean the right solid under 4, B, C. The symbols
0,1,2, &c. are as in arithmetic: thus 24B is twice a rect-

¢ The length of this phrase is intolerable: and I am in the habit
of using the following extension of the word right. As a right
line is formed by the simplest and most direct motion of a point,
8o the term right area might be applied to that formed by the most
direct motion of a rightline, and right solid to the solid formed by
the most direct motion of a right area. Accordingly, the rectangle
and the rectangular parallelepiped would be the right area and right
solid.

+ The perfect confidence which a mathematician puts in these
proofs does not arise, as he knows, from their proving that their
conclusions are true, but from their proving that they can (other-
wise) be proved to be true.
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angle; x, after a symbol derived from 1, meaning common mul-
tiplication. Exponents, save only 1, (understood, X11.) 2, and 3,
need not appear. Heterogeneous terms are insignificant when
put together: thus AB + C, the area of a rectangle added to
a length, is unmeaning : as an area, the length is nothing. Again,
A - B is merely the ratio of the two lines; all the rules become
true under this meaning, joined with the others. 4B C is the
other side (C being one) of the rectangle equal to the rect-
angle under 4 and B. And ABC-+D is the area of the base
(D being the altitude) of a right solid equal to that under
A, B, C. And ABC+DE is the altitude of the same, DE
being the base. And 4* or 44 is the square on 4; A° or
AAA is the cube on 4. '

It will be very easy now to establish that these meanings
give truth to all rules which have significance: to see the follow-
ing for instance.

A(B-C)=A4B- AC, or, between the same parallels, the
rectangle under the difference of two bases is equal to the dif-
ference of the rectangles under those bases.

AB+C=A4+Cx B, or the remaining side (C' being one)
of the rectangle equal to the rectangle under 4 and B, is equal
to the proportion of B, which is expressed by the numerical ratio
of 4 to C. . :

As far as + and - are concerned, this system is that of pure
arithmetic. And 4°, ABCD (space not having four dimen-
sions), are unintelligible. And we have instances of forms which
are significant, while equivalent forms are insignificant. Thus
ABCD = E is unintelligible; there is no solid of four dimen-
sions. But the equivalent form of symbolic algebra, 4+ Ex BCD
is significant: it is such proportion of the right solid BCD as
4 is of E. Shall we then say

A+ Bx BCD=ABCD + E?

Shall we say, in common algebra,
¢ o PORIE IS
1—5+2.—'&4~...=—2

Both questions are to be answered alike. Those who can,
in common algebra, find a square root of -1, will be at no loss
to find a fourth dimension of space in which 4BC may become
ABCD: or, if they cannot find it, they have but to imagine

?



108 ON AREAS AND SOLIDS.

it, and call it an smpossible dimension, subject to all the laws
of the three we find possible. And just as 4/-1, in common
algebra, gives all its significant combinations ¢rue, so would it
be with any number of dimensions of space which the specu-
lator might choose to call into tmpossible existence.

The rules having been proved true, so far as significant, all
results produced by none but significant steps are pure geo-
metry. ’

Thus (4 + B)*=A4*+24B + B* is Euclid 11. 4: not an arith-
metical representation, but the proposition itself.

And ‘j‘;%f; = A+ AB + B, significant when 4> B, means
that the base of a right solid which equals the difference of
two cubes, the difference of their sides being the altitude, is
equal to the sum of the squares on the sides and their rect-
angle.

The student must not call this significant phase of algebra
modern, though in its separated form it may be so. The su-
periority of the Greek geometry over Greek arithmetic, in means
of expression and demonstration, caused much of the notion
on which the former is founded to find its way into the latter.
It is from this mixture that we get the terms square and cube,
as applied to axa and ax axa (numbers). Vieta, who so
materially improved the symbolic language of algebra as to be
rightfully considered the founder of its modern form, was so
thoroughly possessed with the idea of linear, areal, and solid
representation, that he would have written such an equation as
XXX+ AXX + BX = C, under the idiom

XXX+ AXX + B planum X = Csolidum,

if he had used exactly our symbols. To have done otherwise,
to have allowed B and C to be the same species of magnitude
as X and 4, would have appeared to him like asserting that
two solids and an area could make a line.

1 should recommend the student to consider this algebra
well, and, when he meets with any circumstance of ordinary
algebra in which significance is difficult to conceive or absolutely
unattainable, to try if he can imagine the corresponding case
of the subject of this chapter.
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CHAPTER 1IV.

PRELIMINARY REMAREKS ON DOUBLE ALGEBRA.

Ir, taking the rules of symbolic algebra, we were to ask
for an assignment of meaning to (-1)! which would make all
those rules true of it, we should naturally be led to select for
consideration the rule (X1v.) on which the symbolic character
most depends. It is

L= M=) =- 1,
or -1=y-1x{y-1x 1}
Consequently, /-1 must satisfy this condition, that #wice
successively applied to + 1 by the process of x (whatsoever that

be) it has the effect of changing +1 into - 1.
There may be many significant algebras in which this is

done. But the demand made by common consent is, that

our completely significant algebra shall be an eztension of the
defective system with which we commence: meaning, that so
far as that system goes, significantly, it shall be a part of the
new system. It would not help us, with reference to the mathe-
matics now established, if fifty completely significant systems
were produced, unless in one or more of them the same story
were told as in the old algebra, so far as this last tells any story
at all. We must have, if possible (and I am to show that it
is possible), all that we do understand still understood in the
same sense, with such enlargement of meaning as will give
significance to symbols which we do not now understand. Ac-
cordingly, +1 and -1 are still to signify diametrically opposite
units.

Let us then examine one of the usual systems of explanation,
in which we have a distinct conception of two diametrically op-
posed directions of measurement, and of no more. Let it be time.
Can we form any notion of an operation upon time (+1 being
an hour future measured from a certain era) which being
twice repeated, shall produce an hour past, (-1)? The answer

L
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seems obvious: go back an hour, and then go back an hour.
But a little consideration will show that this process cannot
be represented by v-1. For then 4/-1.1 would mean 1-1,
or 0, and 4/-1{y/-1.1} would be 4/~1{0}, which (page 104) must
be 0. Besides, this operation, go back an hour, is -1; and
1-1-11is -1, as required. Moreover, since by the laws of
algebra V-1 cannot be any positive or negative quantity, it
would be absurd to say that 4/-1.1 could be so interpreted
as to mean any time future, all which is already taken up by
positive quantity, or any time past, all which is taken up by
negative quantity. And we have not any other notion of time:
there is nothing (except 0, which will not do, as seen) intermediate
between time future and time past. We may then safely assert
that when +1 means a unit of future time, —1 of past time,
this algebra, significant as to all positive and negative quantity,
must remain insignificant as to /-1.

Next try the simple notion of gain and loss. If we could
imagine a commercial event, which changed £1 of otherwise
certain gain into something of an intermediate character, not
truly described either as gain or loss; but such that, should
the event happen again, it would convert the intermediate state
into £1 of certain loss—we might be prepared to hope for a
significant algebra on this basis. I will not say that such a
basis of significance is impossible; but only that it has never

" been produced, though it has been before those who think on

this subject, as a suggestion, for more than forty* years. When
any one shall succeed in producing such an intermediate state
between gain and loss, then the symbolic algebra will become
significant on a system of gain and loss.

At present, however, take what notion we may, which pre-
sents the two diametrically opposite states (page 95), we find
ourselves at a loss to make a notion of anything intermediate,
except in one case. Length and direction in a planet offers

#® See Phil. Trans.,, M, Buée ‘“Mémoire sur les Quantités Ima-
ginaires,”” read in 1805: also the first edition of Dr. Peacock’s
Algebra, pp. 366, 367,

+ I dismiss, without anything more than such allusion as will
prevent my being supposed to denyjthem, all the bases of significance
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"

an immediate solution of the question. We can pass from a
line to its opposite, not only along the line, but also by supposing
the line to turn round. The condition at the beginning of this
chapter is satisfied by supposing 1/~1 x to be a revolution through
a right angle: for a repetition of the process turns a line through
a second right angle, opposes its direction to that which it had
at first, and satisfies the equation —1=4/-1 x {{/~-1x1}. This
observation contains the first thought which led to the inquiry
into the question whether a completely significant algebra could
be constructed on definitions involving, not only opposite lengths,
but lengths in other directions. And hence it is frequently
stated that this result is derived from assuming /-1 as the symbol
of perpendicularity. But this statement does not give a fair
representation; that ,/-1 represents a unit of length perpen-
dicular to that represented by +1 is a consequence, not an as-
sumption: and a consequence of assumptions of a much more
simple character.

In inventing such a system, we obviously found an algebra
on a geometrical basis of significance. Why this limitation?
Because, except in geometry, we nowhere find the varieties of
distinet conception which will afford meaning to  our symbols.
As before seen, we are not bound to this system. The moment
any one shall afford us a distinct notion of time, or of mercantile
result, intermediate between past and future, or between gain
and loss, in a manner analogous to that in which a perpendicular
is intermediate between the two sides of its correlative per-
pendicular, that moment the system of symbolic algebra is as
ready to apply itself to time, or to gain and loss, as now to those
geometrical ideas on which it will presently be established in

significance.
c

B |04

[ e R I I I R I I R L N B ] +

If OA4 stand for a pound of receipt, and OB for one of

which may be found in length considered in three dimenmsions, or
on other than plane surfaces, or in lengths which are not recti-
linear. The number of such bases is, I have not a doubt, quite
unlimited.
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expenditure, it would be perfectly easy to keep a cash account
with a pair of compasses, on the line - + indefinitely extended.
Measure off the amount in hand at the beginning, and set oft
all receipts (at O4 for £1) towards the right, and all out-goings
towards the left, and the last point touched by the compasses
would never fail to show the balance in hand. But what money
does OC represent? Again, with O4 to represent the first
year after the Christian era, and OB the first year before,
a pair of compasses will assign its place to every stated event
that ever did happen, or that we can imagine to have hap-
pened. But what event happened at OC...the Christian ra:
and what adverb is proper to take the place of defore or affer
(neither of which will do) in the blank... By such considerations
we may see that we do not restrict ourselves to geometry, but
extend ourselves to it: with ample means of representing all the
notions we have, and introducing others for which most notions
of magnitude afford us no analogues. And we may see the
propriety of extending the meaning of a geometrical term,
and calling time, loss and gain, &c., magnitudes of one dimension.
But then arises the following question: Granting that we help
ourselves in geometry, of what use is this algebra out of
geometry, in problems which have data derived from time,
or loss and gain, &c.? To put this question properly, it should
be resolved into two, as follows :—

1. Suppose the problem is ‘at what time after a certain
epoch will an event take place which...[here describe the conditions
of the problem]...” Suppose the answer to be, that the event
must happen at 4+ 3y/-1 hours after the epoch: what does
this mean? It means that it is really and truly impossible*
that an event should happen, under the prescribed conditions,
at any imaginable moment, past or future: and that the assertion
that it can happen contains the assertions that what is, is not,
that a whole is no greater than its part, &c.

* The word impossible has been so misused in algebra, in the
sense of inezplicable, that the impossible of ordinary life, which
‘“can’t be—and never, never comes to pass,”’ requires some ad-
ditional epithet to express it in an algebraical work.
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As long as the meanings of symbols* remain unextended, “the
essential character of imaginary expressions is to denote im-
possibility: and nothing can deprive them of this signification.
Nothing like a geometrical construction can be applied to them;
they are indications of the impossibility of any such construction,
or of anything that can be exhibited to the senses.”

2. Suppose that to the above problem we obtain an answer
that the event takes place, say in 4 hours from the epoch, and
that our solution is obtained by aid of 4/-1, which however
disappears in the result. How are we free from the imputation
of applying reasoning to contradictory terms, seeing we do
not profess that, when time is the basis of significance, /-1
has any meaning. I answer that, if time continue to be our
basis of significance, we are unanswerably open to that impu-
tation: but that, if we translate the terms of our problem, that
is, substitute geometrical ones, and work a geometrical answer,
our whole process is intelligible; and so many units of length
as our geometrical answer contains, so many units of time does
the answer to the original problem contain. Algebra takes
cognizance only of wunits, not of what units they are, whether
of length or time, &c. Each of its transformations is made
in one way, whatever may be the magnitudes from which the
units represented by its symbols are derived. A problem given
in terms of one magnitude may be solved in terms of another,
provided that every condition of the problem be faithfully pre-
served.

* The quotation which follows the words in italics is from the
review of M. Buée’s memoir on Imaginary Quantities, in vol. x11.
(1808) of the Edinburgh Review. The earlier writers on this
subject were much given to supposing the explanations of v/ —1
to be absolute, and to be a demonstrable part of ordinary algebra :
the extension of meaning, or of the field of significance, was not
distinctly announced, and I imagine, indistinctly conceived. Hence,
as against M. Buée, there is an amount of propriety in the reviewer’s
remark. But, nevertheless, it is a striking instance of the con-
fusion between ignorance and nature, alluded to in page 98. The
reviewer ought to have seen that in pure arithmetic every part
of his dictum applies to negative quantities.

L3
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This is a point which, to the beginner, may require some
illustration. Suppose, then, we have this question :—Two youths
are aged 6 and 16 years; when will one be twice as old as
the other? Answer, in 4 years. Now propose it thus:—Two
youths have 6 and 16 apples; when will one have twice as many
apples as the other? The data of the question are insufficient;
there is no connexion expressed or implied between the number
of apples one may get, and that which the other may get. But
there was a connexion between their increments of age, implied
in the mention of #me, and capable of being expressed. I did
not say—*Two youths are aged 6 and 16 years, and for each
year which one advances in age, the other advances a year also,
required, &c.’; because the words in italics are necessarily due
to the mention of age. Now add to the second problem the
condition that for each apple which either gets, the second gets
one also, and we have the first problem, in which each 1 is
derived from a year, faithfully rendered into another in which
each 1 is derived from an apple: and the answer is, ¢ When each
has got four apples’.

It is a true method of finding the half of ten apples, or the
half of ten years, to describe an equilateral triangle upon a line
of ten inches, to bisect the vertical angle (Euclid 1. 11), and to
show that each of the segments of the base is 6 inches, The
student must take care, in applying a complete significant double
algebra to questions of non-geometrical magnitude, that he does
not fall into an error analogous to that of supposing the equi-
lateral triangle to be described upon the ten years, or the ten
apples.

The separation of essential from non-essential notions is ‘a
very important process to all who would think upon mathe-
matical subjects. In the first problem we see that the answer
is what it is, not because it is time of which we spoke, except
so far, that between any two moments, all person’s ages have
received the same accession. The distance run over by persons
in the same carriage would have done as well. The formation
of symbolic algebra itself is a separation of the essential con-
ditions of operation from the non-essential: the rejection of all

meaning over and above the potnfs of meaning on which trans-
formations depend.
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There is another instance of separation of essential notions
which it will be necessary to use. In thinking of a process
of arithmetic, for instance, there is the subject-matter of the
science, and the mode of operation: these two things are dis-
tinct, to those who can separate them. But there may be a
difficulty in doing this: is it possible, for example, that we
could think of addition without thinking of number or magni-
tude, or thinking of more? This point we shall try. The
subject-matter of arithmetic is number; its primary operation
is counting or numeration. This counting proceeds from O,
which represents, and must represent, the state of the mind
with respect to the number attained, before the counting begins.
Memory (and, for high numbers, reductive modes of expression)
save us from counting every time we produce number for use.
Any one who had forgotten seven must begin as children do,
first with none at all, put on one, put on another and say two,
&c. until he comes to seven. Now let us suppose that he is
to add seven to three, and that he has forgotten both seven and
the total. He must proceed first by counting seven, and then
by repeating the process of counting seven, with no alteration
except substituting 3 in place of 0, to start from. Thus we
have

In f:;‘::f"‘} 0, add one, 1; add another, 2;......6; add one, 7.

In ‘giﬁ;:""} 3, add one, 4; add another, 5;......9; add one, 10.

Accordingly, @ and b being two integers, the direction given in
forming the arithmetical symbol a + & is ‘proceed from a, first
formed, in the same manner as you proceed from 0 to form &.
Now if a and b stand for numbers, we must of course think
of number in doing this. Nevertheless the description of the
operation contains no numerical ides, except when the subject-
matter is numerical. It is only ‘Do with X as you did with ¥
to make Z’ and every book of art, on any subject whatever,
abounds with this species of direction. It is seen in our symbolic
algebra: for B is 0 + B; so that in 4 + B it is seen that 4
only takes the place of 0.

Again, let us think of arithmetical multiplication. Here the
separation of notion of operation from notion of subject-matter
is even more easily made. What is 7 times 3? It is a number
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which has a 3 for every unit which there is in 7. The direction
then is, Substitute 3 for 1 in the formation of 7. In place of
0+1+1+14+1+41+1+1 write 0+3+3+3+3+3+3+3.
Accordingly, a x b is always the result of substituting & for 1
in the formation of b, or of proceeding with @ as we proceed with
unity in forming b. This is seen in the symbols: for Bis 1 x B;
and in 4 x B, A takes the place of 1.
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CHAPTER V.

SIGNIFICATION OF SYMBOLS IN DOUBLE ALGEBRA.

THi1s particular mode of giving significance to symbolic algebra
is named from its meanings requiring us to consider space of
two dimensions (or area), whereas (page 111) all that ordinary
algebra requires can be represented in space of one dimension
(or length). If the name be adopted, ordinary algebra must
be called single. I first commence with the mere description
of the symbols, and then proceed to establish the rules in
Chapter 11.

All the symbols which in single algebra denote numbers or
magnitudes, in double algebra denote 47nes, and not merely
the lengths of lines, but their directions. Thus two lines of the
same length, but in different directions, or two lines in the
same direction, but of different lengths, must have different
symbols. Accordingly, each symbol is meant to convey a double
signification : it describes the length, and direction, of its line.

Two finite lines have the same direction, when they are
parallel, and when they run in the same direction* on these
parallels. Thus, 4 and B being points, 4B and B4 are not
entitled to the same symbol: and if 4, B, C, D be the points
of a parallelogram in order, 4B and DC have the same symbol,
but not 4B and CD. Thus AB=DC is true: 4B =CD is not.

The symbol*@ has reference to one particular point, arbi-
trarily chosen, but steadily kept to, which may be called the
origin. By X =0, we mean that X has no length: it is the
equal of a line, sg to speak, which begins and ends at the
origin. The line 1, is a line arbitrarily chosen as to length
and direction, but steadily kept to. When 1 is drawn from
the origin, the line in which it is, indefinitely extended both

* The word direction is used in two different senses. Thus
north and south are different directions on a line, and the line of
north and south is one direction among lines out of an infinite
number,
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ways, is called the wnit-line, Afterwards, and particularly with
reference to symbols of the form 4% it will recal properties
if we designate the unit-line as the azis of length, and the
perpendicular to it as the azis of direction.

Since 4 and B are found from O by progress over certain
lengths in certain directions, let us first describe the line we
choose to call 4, and then, proceeding from its extremity, let
B be set off, commencing from the completion of 4. Let the
third side of the triangle, if we take the
B which commences at the completion of
A, or the diagonal of the parallelogram,
if we take the B which commences from O,
be denoted by 4 + B. Then the operative
direction in page 115, is strictly applied to
a different subject-matter. To form 4 + B,
we put 4 in the place of 0 in 0+ B.
And just as in arithmetic 11+ 7 tells us how far we are from
0 when 7 has been counted from and after 11, so here 4+ B
is supposed to indicate how far we are from O, and in what
direction, when + B is joined to 4. And since (4 + B- B) is
to be A+0, or 0+.4, or A, annexing — B must be equiva-
lent to going over a line equal and opposite to B. And 4-B
represents the length from O, and direction attained, by going
over, first 4, and then an equal and opposite to B. And- B,
standing alone, is 0 — B, or a line equal and opposite to B
from O itself.

If 4 and B be in the same direction, A+ B and 4-B are
as in single algebra: this will appear by following the ahove
rules. And if we take the unit-line, it will appear that 1+1,
or 2, is fwo units of length in that line; 2+1 three units of
length in the same; and so on. All the symbols derived from 1,
represented by small letters (p.105) are lines in the unit-line,
continued both ways: this partly appears already, and will be
seen further.

It thus appears, that what we here denominate addition is truly
not addition of magnitude to produce magnitude, but junction
of effects to produce joint effect. It is the process of the seaman,
when. he represents himself as having only made ‘en miles (that
is, on his way to port), when perhaps he has gone, on two tacks,

o A-B
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24 miles altogether; but his effective progress is only 10 miles.
In this sense, describing two sides of a triangle, of 12 miles
each, may be of no more useful effect than describing the third
side of 10 miles. Nor is there, in one sense, the slightest
objection to saying that 12 and 12 make 10.

Let us now consider by what process 1 (OU) becomes B.
There is a change both in length and direction: the change
of length is accomplished by altering OU in the ratio of OU
to the length of B (or multiplying OU by the number of linear
units in the length of B). The change of direction is made
by turning OU through the angle made by B with OU. Now
substitute 4 in the place of 1:
multiply its length by the num-
ber of units in B, and turn it
through the angle made by B
with OU. This process strictly
follows the direction in page 116, B
and if we agree that the result A
shall be denoted by 4 x B, we
have the following rule. - The o U
length of 4 x B is the arithmetical product of the lengths of
A and B, expressed in units; and the angle of 4 x B with the
unit-line is the sum of the angles of 4 and B.

Before going further, the student must observe that we can
invent a method of representing the duplicity of our symbols.
Let letters placed within parentheses have their meaning in single
algebra, and let (a, a) signify a line of a units of length inclined
at an angle a to the unit-line. Thus 1 is (1, 0), 2 is (2, 0), &c;
-1is (1, 7), and (2, a+2mm)=(a, a). Let A=(a, a) and B=(b, B),
then we have

AXB

A x B=(ab, a + p).

This transformation is very easy: but addition is expressed
with more difficulty. 'We have
+B={yia+ b+ - a6 sinathsinf
A+B {V{a # B2 20b oos(8 - ), tan” 7 10 TS
Since 4 x B+ B is to be A4, we have for the meaning of
A + B as follows:

A+B=(%, a—ﬂ);
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or the division of this algebra consists in dividing the length
of the dividend by the length of the divisor for the number
of units of length in the quotient, and subtracting the angle
of the dividend from the angle of the divisor for the angle of
the quotient. Observe that we need not, unless we please,
use any negative number inside the parentheses: thus (-2, a)
is (2, a + 7) and (2, - a) is (2, 27 - a), or (2, 47 - a), &c. Per-
haps at first it will be best to avoid negative quantities within
these parentheses. The following are some examples:

2=00: 68 =(;.2r-4),

3x4=(,0x4,0=020; 3= $3-(3.0),

-3x 4=3,mx40=012 7)=-12

-3x-4=(3,7)x (4 7) = (12, 27) = (12, 0) = 12.

Hence it appears that in the unit-line, multiplication and
division are precisely those of single algebra. But for all other
directions except ( , 0) and ( , ), lines of the same direction
have not products in that or the opposite direction.

Let 44, A44, A4AA, &c., without any reference to ex-
ponents, be called the second, third, fourth, &c. powers of A.
And let 44, VA, VA, &c., be lines of which the meaning is
defined by +/4 x /4, VA x ¥4 x V4, &ec., being each equal
to 4, and they may be called the second, third, fourth, &ec.
roots of A. Then we have immediately

AA = (aa, 22), AAA = (aaa, 3a), AA4AA = (aaaa, 4a), &c.,
VA = (Va, L;), V4= (Va, g), V4 - (Va, Z)' &e.

As explained in pages 43, 44, choice of values immediately com-
mences, as soon as we have occasion to take a subdivision of
an 'angle. Thus, since @ + 2mm may take the place of a, we
may infer, as in the pages cited, that /4 has two directions
whose angles differ by , half a revolution; that ¥4 has three
directions, indicated by angles differing by a third of a revo-
lution; and so on. In fact that

V4 is any one of ('Va, $+m 27”-),
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where m is any integer. Thus -1 being (1, =) we have for
v/-1 either (l, g) or (l, 3?”),

or the square roots of unity are units* perpendicular to the unst

line. If, to draw a distinction, we denote (1, 7) by 4/-1, then

- 4/-1 will be denoted by (1, &x).

As yet, every symbol or combination of symbols from the
unit line, in obeying the laws of double algebra, obeys also
those of single algebra; the code of the latter being merely
a local chapter in the code of the former. But, for symbols
in general, the theorems of algebra are assertions of a much
wider kind. When we say in double algebra that

(Tx7-2x2):(71-2)=T7+2,
we repeat in substance a proposition of arithmetic, the greatest
difference being that our additions and subtractions are rather
carryings forwards and backwards with the compasses than nu-
merical efforts of mind. But in establishing
(Ad4-BB)-(4A-B)=4+ B,
we shall establish nothing less than the following geometrical
theorem.

If there be two given lines inclined at given angles to a
line of standard length and direction, and if to the standard and
each of them a third proportional be taken, and placed at an
angle with the standard double of that made by the original:
and if from the end of the first line so resulting, a line be
drawn equal, parallel, and opposite to the second: and if the
line joining the common intersection of the standard and given
lines with the last found extremity of this last line be called
a first result: and if from the extremity of the first given line
two lines be drawn equal and parallel to the second line, in
the same and opposite directions: and if the lines joining the
common intersection before named with the last found extremities
be called second and third results: then the second result is a
fourth proportional to the third result, the standard, and the

¢ Whatever may have been suggested by the considerations in
page 109, the reader will see that double algebra is far from being
founded on the assumption that /-1 denotes perpendicularity. If
suggestion be foundation, it is more nearly founded on the separation
of operation and quantity in arithmetical addition and multiplication.
M
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first result, inclined to the standard at an angle equal to the
excess of that of the first result over that of the third result.
The student should verify some general theorems of algebra
by actual drawing: this would give him practice in the meaning
of the terms.

The unit line, produced both ways, might well be called
the line of single algebra; and the positive side of it the
Uine of pure arithmetic. And it readily follows that all symbols
of double algebra are capable of being expressed by symbols of
single algebra, combined with 1/-1: or v/-1 is the only peculiar
symbol of double algebra.

To show -this, first observe that a /-1 is (e, 0) x (1, 37)
or (a, 37), or a units of length perpendicular to the unit line.
Let there be a line R, and let it be projected upon the unit line

and its perpendicular into projections of a and b units of length.
The first projection (a, 0) is properly represented by a: but
NP is (b,3m) or b4/-1: NM is b; and R is a+b+/-1, by the
definition of +. Thus we have a representation of any line,
by means of symbols from the unit line and +/-1.

Let R = (7, p), and let.the projecting factors, by which a line
at the angle p is converted into its projections, be called cosp
for the unit line, and sinp for the perpendicular. Remember
that we here recommence trigonametry : nothing out of my first
book will be used in this second until it has been proved agatn
as a consequence of double algebra. 'We may consider cosp
and sinp as by definition, the lengths of the projections of (1, p).
Accordingly, by similar triangles, @ = r cosp, b=r sinp, and
R or (r, p) is rcosp+rsinp.-1. And then we have

(1, p) = cosp +sinp.y/-1, (r,p)=r (cosp +sinp.-1)
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I shall defer the consideration of the symbol () © until it
has been established that all the rules in Chapter IL, except
XII, XIIL, XIV., are necessarily true of the above symbols. Re-
member that the symbols in parentheses, as (a, a), are strictly
those of single algebra, and can even be made those of pure
arithmetic : and that those not in parentheses are always symbols
of double algebra. Thus, at this moment, I have hardly a right
to say 3x4=12: but in (3, 0)x (4, 0) = (3 x 4, 0), common
arithmetic gives the right to say that 3 x 4 in the parentheses
is 12: so that 3 x 4 is (12, 0) or 12 of the double algebra.

I All the symbols have been made significant, except the
exponential symbol () ©. The new symbols, v, ¥, &c., though
made significant, must be deferred till we treat of exponents.

II. III. The student may now freely use 4B and % for
Ax B and 4+B.

IV. In 0+ 4 we see nothing but A4, or rather a case of 4,
which may have an infinite number of positions, and 0+ 4 is
that one which begins at the origin. In 4 +0 we only see
injunction not to proceed from the second extremity of 4 in
either direction. In common arithmetic, 7, for instance, written
alone, might be the last 7 in 18 or any other number: but 0 + 7
is the first 7 which is counted from 0: and 7 + 0 is a direction
not to count beyond 7, either forwards or backwards. In 1x 4
we have 4 described as the unit altered into the length of 4,
and made to turn through the angle of 4: in Ax1 or 41
we see A described with further direction, 1 being (1, 0), not
to alter its length, nor its angle. In common arithmetic, 1 x 7
is unity altered into 7; and 7x 1 or 71 is 7 unaltered.

V. The definitions of — and - were constructed to satisfy
+A4A-4=0,and x4+4=1.

VI. VII. Any case of VIL. may easily be shown thus. The
application of + or - to a compound term is a direction to let
the result stand, or to change it into the opposite line. Now
if we apply + to each of the simple terms, each of them stands,
and therefore their compound stands, which is equivalent to
applying the sign + to the compound. But if - be applied to
each simple term, or if each be changed into its opposite, it
will appear from common geometry that the compound is also
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changed into its opposite; so that the sign - is applied to the
compound.

Again, in 1 (1 x 4 = B) we see that the operations are
1xA+B=(g,a-ﬁ), (1,o)+(1xA+B={1+?, 21r—(a—,8)}

=(:.:, 21r+ﬁ-a).
But in 1+ (1 x 4) +(1+B) we have, since
1

l+(le)=(;,21r-a), 1+B=(z,21r-ﬁ),

(;,2r—a)+(%,27r-ﬂ), or(-g,ﬁ—a),or (2, 21r+ﬂ-¢),

as before.

VIII. The application of a term sign affects only the
angle: nor even that, unless the sign be -; in which case a
revolution through two right angles is produced. Now whether
this alteration be made on a factor or on the whole compound,
matters nothing; for whether the factor sign be x or -, revo-
lution through two right angles is of the same effect whichever
way it is made.

IX. The effect of + is merely permanence, that of -, oppo-
gition. Thus, - (- 4) is + 4, for the line equal and opposite
to the line equal and opposite to 4 must be 4 itself: other
cases may be proved with equal ease.

Again, = (+ 4) or 1+ (1 + 4), 4 being (3, a), is (1,0)_ (%,-a),
or{l%%,o-(-a)}, or (a, a), or 1 x A. '

X. The first part of this rule, that relating to terms, is
obvious: + 4 + B is the diagonal of a certain parallelogram, of
which + 4 and + B are sides; and + B + 4 is the same diagonal.
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Hence any two consecutive terms may be made to change places;
for A+B+C-D+E=(A4d+B)+(+C-D)+E

=(4+B)+(-D+C)+E=A+B-D+C+E.

And if in any arrangement any two consecutive symbols may
be made to change places, it follows that, by .change aﬁ:er
change, any one order may be converted into any other.

As to.the factors, it is plain that x and + each indicates two
distinct operations, either of which is capable of being per-
formed without the other. These operations are separately of
the convertible character, and their joint result is the same: for
instance,

AxB:(a,a)x(b B)=(ab,a+ B)=(ba,B+a)=Bx 4,
xA:B=(a,a): @ p)= (b,a, p) ( a,—ﬁ+a) =(1:B)x 4.

XI. It may help us here, and elsewhere, to remark that there
is no essential distinction between + and -, or between x and +.
Thus 4 + B is 4 - (- B), or (a, a) + (b, B) is (3, @) - (5, 7 + B).
And 4+ B is Ax (1+B). All cases of this rule may then
be contained under

AB+C)=4B + AC.

If any number of lines be multiplied by 4, it is obvious
that the products make the same angles with one another as
the originals, since each angle made with the unit line is in-
creased by a. Again, the lengths are all increased in the same
proportion, their units being all multiplied by 4. If then the
sides and diagonal B, C, B + C, be all multiplied by 4, we have
AB, AC, A (B +C), sides and diagonal of another parallel-
ogram. Therefore 4 (B+ C)=A4B + AC.

‘With the exception of what relates to exponents, we have
now a right to affirm that symbolic algebra is truly rendered
significant by the preceding definitions; and that, so far, every
identical equation of ordinary algebra is also an identical equa-
tion of double algebra. And further, that all ordinary or single
algebra is so much of the double algebra as relates to the
symbols of lines taken in the unit line or its continuation. These
consequences are inevitable, unless it can be shown, first, that
some mdlspensable rule of operation is omitted in, and cannot

M3
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be deduced from, the rules in Chapter II; and secondly, that
such omitted rule, when brought forward, is found not to be
a necessary consequence of the definitions in this chapter.

But inevitable consequences are not always easily credible :
particularly when very extensive and easily deduced consequences
stand upon a very small basis of definition. And it is not
easily credible that the whole of trigonometry should be capable
of re-establishment as a consequence of these definitions, after
throwing every part of the first book away except the defi-
nitions of cosé and siné.

A close examination of all the definitions and of all the
demonstrations of the symbolic rules will show that nothing of
geometrical theorem is assumed except the doctrines of parallel
lines and similar triangles. Nevertheless, what amounts to an
arithmetical demonstration’ of Euolid 1. 47, can be immediately
produced.

It is seen that (1, ) x (1, -6)=(1, 6-6)=1. But (1, 6)
= cosf + 8inf.4~-1 and (1, - 6) =cosf - sinf.,/-1, and their
product is cos6 cosé + sinfsind, which is therefore =1. Accord-
ingly 7 cos0 . 7 cos€ + 7 sin6 . r 8in6 = 7y, which is the arithmetical
form of 1. 47. Now it is undeniable that I. 47 is proved again
(without reasoning in a circle) from parallels and similar triangles
in v1. 31. There must be then, in our definitions, and in the
operations which are performed in

(cos 6 + 8in6 4/-1) x (cosf - 8in6 4/-1),

something which amounts to such a deduction as is made in
vi. 31. And this, it may be shown, is the fact.

Take the wider question following. From (1, ¢) x (1, 6)
=(1, ¢+ 6), we have
(cos + singp.4/-1) (cos + sin6.4/-1) = cos(¢p + &) + sin (¢+9).V—l
(cos¢h cosf - sing 8inb) + (sing cosd + cosP 8inh). /-1

= cos(p+6) + sin(Pp +6) . y/-1.

But a+b4/-1=a+b+/-1 gives a=a and b=1¥, since equal
and parallel lines have equal projections. Hence we have
cos (+6) = cosgpcosd —sing sin6, sin(p+6)=sing cos6 + cosPsind.
Now it can be shown that the steps of the preceding multipli-
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cation are, in significance, the steps, not merely of a proof of
these theorems, but of one very commonly given. Let OM be
the unit line, and OM the unit, <4 OM =6, <BOM=¢p, <BOC=06,
<COM = ¢ + 6, and construct the obvious figure.

PM
Accordingly,
OP = cosb, 0Q=cos,  OR=cos(¢p+0),
PA =sinb./-1, QB =sin¢./-1, RC=sin(p+0)./-1,
OR=0X+ XR=0X+(- RX)=0X +(- VT),
RC=RV+VC =XT+ VC.
Now, as to lengths only,
OB: OT:: 0Q: OX or 1:cosf :: cosgp : OX = cosh cosb,

OB:BQ::CT: TV VT =singpsiné,
OB:BQ::0T:TX TX =sing cosb,
OB:0Q:: TC: VC VC = cosep siné.

Therefore, using the geometrical designations as symbols of
double algebra,

OX = (cosf cosp, 0) =(cosgp, 0) x (cosb, 0) = 0Q x OP,

- VT =(singsinb, ) = (sing, 1) x (sinb, i7) = QB x PA,
XT = (sing cosé, g';r) = (sin@, 47) x (cos6, 0) = QB x OP,
VC = (cospsin®, 1) = (cosgh, 0) x (sinb, 37r) = 0Q x PA,

04 x OB=(OP + P4) (0Q + QB)
= OP.0OQ + QB.P4 + OP.QB + 0Q.PA4,
=0X+(- VT)+ XT+ VC,
=OR + RC=0C.

Here, first, we have formed OC, or (1, ¢ +6) from O4 x OB,
or (1, 6) x (1, @) with an account of the actual geometrical trans-
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formation which goes on at each step: secondly, in so doing we
have been led to
OR = OP.0Q+ QB..PA,

or cos(¢p +06) = cospcosf + (sing . 4/-1) (sinf./-1)

= cos( cosd — sing sin 6,

RC=OP.QB + OQ.PA,

or sin(¢+6).+/~1=(singp./~1) cos6 + cos P(sin. /-1).
And by this and similar instances we may satisfy ourselves that
the mechanical operations of double nigebra are, when the mind
takes cognizance of their significance, true proof of their results,
just as is the case when they represent no more than arithmetical
notions. The great difference is, that in the latter case we are

much more familiar with the subject-matter, and more readily
leam to make mere operation carry conviction.
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CHAPTER VI

ON THE EXPONENTIAL SYMBOL.

IN proceeding to treat of exponents, it is necessary to assume
the knowledge of some one system of arithmetical logarithms.
‘We cannot therefore (or certainly not at first) allow ‘the word
logarithm to be divested of its meaning, and to pass into double
algebra to receive an extended meaning. Now since our system,
" dealing in lines, gives results by measurement, the word logometer
suggests itself as a convenient variation of the word logarithm.
Let the logometer of 4 (demoted by AA4) be defined as the
result of some convenient operation on 4 which has the follow-
ing property,

Ad +\B =\ (4B).

An infinite variety of such operations may at once be given.
For, since the angle enters in multiplication and division with
the properties of a logarithm (as in—the angle of the product is
the sum of the angles of the factors,—&c.), we shall find that, -
with respect to (r, p), M logr+Np, M and N being any fixed
symbols whatever, has all the property required.

If AR = Mlogr + Np, we have, R being (¥, p),
MRR or (rr, p+p)b= Mlogrr + N (p +p)

= Mlogr + Np + Mlogr + Np'

=MR + \R.

Now as we wish to preserve the single algebra intact as to
all unit-line symbols, we must make M=1; for otherwise A(r, 0)
would not be logr. As to N, the most convenient assumption
is the form %+/-1, which would give AR =logr + kp./-1. But
it does not limit us if we make % =1: for neither the base of
the logarithms nor the mode of choosing an angular unit is yet
settled (in #his book), and the power of changing the value of &
is supplied by that of changing the unit in which the angle is
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expressed. Our definition of AR is now contained in
AR =logr + p4/-1,

or the logometer of any line has the logarithm of the length
for its projection on the unit ‘line, and the angle (meaning a line
of as many linear units as the angle has of angular units) for
its projection on the perpendicular. And this is the connexion
of the two axes with length and direction from which the terms
suggested in page 118 are derived. Thus we have, it appears,
a species of logarithm to R on each axis; or a symbol which
is augmented by addition in multiplication, &c.

In this symbol, AR, occurs, for the first time, a choice of
meanings; and that choice is unlimited. For p we may write
p * 2mm without altering the meaning of R: but for each value
of m we have a distinct logometer to R. And all the logometers
of R are diagonals of rectangles standing on one base, logr,
with altitudes p, p + 2, p+4m, &c., p-~2m p-4m, &ec.

But though every line have an infinite number of logometers,
yet every logometer has only one primitive line. For if a+5y/-1
be a logometer, its primitive can have no length except the
number whose logarithm is a, and can be in no direction except
that indicated by the angle . Consequently, if two primitives
be equal, we can only say that any logometer of the first is one
of the logometers of the second: but if two logometers be equal,
we can assert that the primitive of the first is equal to the
primitive of the second.

Now take the following as the definition of the symbol 4®.
Let its logometer be BAA : that is, let it mean the line whose
logometer is BAA. If we use, for a little while, the inverted
letter v, so that v4 shall signify the line whose logometer is 4,
we may state that we use 4" as an abbreviation of y (BAA).

Let € be the base of the arithmetical logarithms used in the
unit line: and remember that & is strictly to denote a line at
an angle 0 to the unit line; it is (g, 0), .and (g, 27), or (g, 47)
is, for a base of logarithms, or in connexion with logometers,
to be distinguished from (g, 0). Also, observe that in like
manner as we have abandoned (till we recover it) the mode
of measuring angles, so we do not yet say that & is the peculiar
base of the Naperian logarithms: let it be any which it can
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be, until we show cause for preferﬁng one base to another.
‘We have then

ME=logr + py-1 = {y(log'r + ) tan” L1,

xR = (number whose log. is » cos p, sin p),
M(a + by-1) = 1log (a* + %) + tan? 2.4-1,
x (@ + by-1) = (number whose logarithm is a, ).

Having shown that the fundamental formulee of trigonometry
are deducible from the double algebra, I now use the first book
of this treatise, in every point except specifying the mode of
taking an angular unit.

The following are the proofs that, under the above definition
of A® the laws of symbolic algebra are true.

XII. In A4° we are to see \(QxAd), or y(0+ 04/-1), or
(1,0), or 1. In 4“ we have y(1 x A4), or YA 4, or 4.

XIII. We prove two symbols identical in meaning, if we
prove any one logometer of the first equal to any one of the
second. Now, by definition, the logometer of (4B)° is CA(4B),
or C(A\A4 + AB), or CA4 + CAB. But the logometer of 4°B° is
AA° 4+ AB% or CAA + CAB. Therefore (4.B)° = A°B°, provided
that we use the same logometers of 4 on both sides, and the
same of B: that is, the same cases of a+2m7 and 8 + 2mn
on both sides.

XIV. Since M (A44°) is NA4®+Ad4°% or BAA + CMd, or
(B + C)\A, which is a logometer of 4™¢, it follows that

APAC = Auc’
if we use the same logometer of 4 throughout.

Again, \ {(4®)°}=C\A4®=CB\ 4, which is a logometer of 4®C.

Therefore (4®)° = 4%,
provided the same logometer of 4 be used on both sides.

Next it is to be shown that when the exponent is a symbol
of the unit line, as in 4™, the above definitions of the exponent
agree with those of ordinary algebra. This is in fact, contained
above: for A4* is A™, or A'A', or AA; 4% is such that

B3 - 4= 4;
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whence 4! is ¥A4; andso on. But, once for all,
A™ =y (mAd) =\ (mloga + ma+/-1) = (a™, ma),

from which all the cases can be deduced.

For A (€, 0), we have 1+0+/-1 or 1. Hence for €* we have
x (AN€) or yA4. That is, €* must be our future way of ex-
pressing \4; and we have, as in ordinary algebra, A = €M,
Again, (1, 6) has for its logometer 0 + 64/-1; therefore (1, 6)
is €'. But this is cos® + sin6.,/~1: therefore

€% = ¢0s6 + sin6.y/-1.

Here again occurs the difficulty of page 126. We get this
fundamental equation on terms so cheap, that we suspect its goodness.
And moreover, it cannot be always true, while € and the angular
unit are both unnamed. The second side does not depend for
its numerical value upon what number 6 is, but only upon what
angle it represents. 'The first side is dependent for its numerical
value upon those of € and 6. If, for instance, we choose to
halve the angular unit, so that the angle now containing € units
contains 20 units, the second side is unaltered. But

08 20 + sin 20.,/-1 is €%,

which is not €. Nevertheless it will be easy both to establish
that some such equation must exist, and that a connexion exists
between the base to be taken for the logarithmic system and
the unit of angular measure.

Having established all the fundamental rules, we may by the
process in page 205 of the Algebra, interpreting the symbols as
in the double system, show that any function which possesses
the property f4 x fB = f(A4 + B) must be of the form C*,where
C is independent of 4: and cosé + sin6f.,/-1 is such a function
of 6. Accordingly we must have

C® = cos0 + sin6.,/-1.

This result only differs from the former in that C, which is
quite arbitrary, takes the place of €, which is wholly un-
determined. Return to the first, and observe that it gives

&' =cos1 +sin L.y-1,
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which is the relation that must exist between the angular unit
and the base of the logarithms. If we were to make no appeal
to common algebra, we should proceed with this equation to
define the above relation, and in process of time we should
arrive at the result that ¢f the method of angular measurement
be arcual, the base of the logarithms must be Naperian; that
is, that if angle 1 have an arc equal to the radius, ¢ must be

1
1+l+ +23

But as it may be unsatisfactory to leave such a point behind
us, I will establish it on the following basis: the binomial
theorem with a positive integer exponent, and the theorems
that log(1+z)+z and tanz + 2z both have the limit unity
when z is diminished without limit; with, of course, the ex-
plained symbols of double algebra. And in assuming tanz + z
to have 1 for its limit, we assume the arcual unit.

. V-1\* . -1
Let us consider (1 + -—) . Its logometer is RN (1 + —) .

R R
Now
1 T
V-1 .Ror(l _) (r,p)ls( - ), say(k,—2—p)
. k cos
11 T ={ -.( 4 )1
(page 119) (1,0)+(k, 4 p) V(L4 Zesing + K, tan (ool )
V-1 . kcosP
A1) =2 o -
( +R) 1log (1 + 2ksinp + &) + tan™ To s V
And, R being (cosp + sinp.4/-1) + k, we have
y-1
R (1 + T) = P +Qy-1, where
- cosP _ mp , Kcosp
P= log (1 + 2% sinp + &*) tan™ + Fsinp’
_ . cosp . kcosp
Q= log(l+2ksmp +k&*) + —— tan l%+ksinp’

Now let the length of R increase without limit, or let %
diminish without limit. Then we have

«(2sinp + &); limit, 2sinp:
N

log (14 2ksinp +&*) _log(1+2ksinp+£*)
k T 2ksinp + &
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and, taking that angle which diminishes without limit with its
tangent, we have
1 tan-! kcosp _ - kcosp . kcosp o _Co8p
k 1+ k& sinp 1+%sinp 1+ksinp 1+ksinp’
and the limit is cosp. Hence P has for its limit

1 cosp.28inp - sinp cosp, or 0:

Q has 4 s8inp.2sinp + cosp.cosp, or 1;
and P +Q+/-1 has -1

If then the length of R increase without limit, (1 + /-1 + R)®
has for its limit v (0+1+/-1) or (1, 1), provided that the logometer
used have an angle between — 7 and + 7, and that the logarithms
used be of the system which gives log(1 + ) + z the limit unity.
Let R=n4/-1, n being integer; then

1\w-1 1\n) -1

(1+ -) or {(1 +-) has the limit (1, 1):

n, n .
but, as »n increases without limit, (1 + 1+ n)* approaches the
limit 1+ 1+ %+ ... (Algebra, page 225). Consequently we have

3 5'—31‘...

or € has the value used for that letter in single algebra.

‘We have now a completely significant system of algebra, and
the whole contents of Book I. Chapter V. are established by
demonstration, if that chapter be now inserted here.

The symbol AR is the first in which multiplicity of meaning
occurs; a property which it communicates to R®. All the mean-
ings of this last symbol, the distinction between the cases in
which their number is infinite and those in which it is finite,
&c., will be best seen by reducing R" to another form. Let

R=a+by-1, S=p+gqv-1,

1 1 V-1 .
(1+1+-+ ) =cos1 +sin 1.4/-1,

Iés = (Ekn)s = gf\R = E{&log\a’*b‘)’tan‘l;b-'/-l}{qu-l}
b . [
- e; log(a‘fb*)q tan-! at {zglog(alwﬂ)mtm‘ls } V-1

) T s
=(a*+ b')ie”m 12 s{i 1og(a3+5%)+4p tan .;},,_l

b
= {(a‘ +ByTeeny, 2 log (@ + ) + ptan® ;b}
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since 7e®! is r cosf + rsiné.y/-1 or (r, 6). Here (page 46)

tan™ (b - @) may be any angle with b+ 4 for its tangent, in

P
which the cosine and sine have the sign of ¢ and b; and (a® + b%)*
is taken with a positive sign.

First, it appears that when ¢ is not =0, that is, when the
exponent is not a symbol of single algebra, the number of values
is absolutely unlimited. But even in this case, when p is a
rational fraction, the number of directtons is no more than one
for each unit of the denominator: and when p is an integer,
there is only one direction (pages 43, 44).

Next, when ¢ =0, we have

?

(@ +by-17 = @ + 57, pran 2},
which has only one length, and as many directions as there are
units in the denominator of p. If p be incommensurable, the
number of variations of direction is infinite. The case of 4 =0
is discussed in pages 45, 46.

The effect of the term ¢+/-1 in the exponent, is the addition
of 1 ¢ log(a* + &) to the angle, and the subtraction of ¢ tan™ (b = a)
from the logarithm of the length.

The student should exercise himself in the reduction of different
forms of R® to significance, first, by the complete process, next
by the formular result. For instance, V-1"% Here +/-1 is
any case of (1, 2m= + 3#), and its logometers are contained in

(2m7 + 17)4/-1, or (2mmx + %7, 2n7 + i7). But
2mm + 2w, 2nm + iw)x (1, 2k7 + 47) = w7 + 27, 2nm 4+ 7),
for it is not worth while to distinguish 2n# and 2nz + 2k,

n and k being any integers we please. This last is the logometer
of the result required; therefore

v-1"1={ gembimeon® (9, L 1y gin} = {emdrm g} = g mebm,
Otherwise -1 =0+ 1y/-1 = g™l 191 _ Omidim,

or v-1"! is any power of s"', whose exponent is in the series
...-3,1,5,9, &c.

The following fallacy has before now been seriously proposed
as an argument against the introduction of smaginary quantities
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into ordinary algebra. Since 1°=1, 1"'=1: bat 1=,

therefore (&)'* =1 or ™ =1, which is absurd. If we try
17 we have A1 =2mm /-1, Y-1 \1 == 2m, which is the logometer

of €-2mw. -2mx

Accordingly, we admit the equation 1" =¢™"",
meaning that if m be any integer, positive or negative, & ™"
is one of the values of 1""". And if m =0, this is 1. But this
last 1 is not €™': the first 1 is (1, 0), the second is (1, 2).
How these should give different logometrical results, double
algebra makes manifest enough. The logometric operation makes
differences of jform and value both out of differences of form
without difference of value.

In the Rules Xiir. and XIv. it is demanded that the same
logometers of each symbol shall be used throughout; otherwise
the relations are not true. Does the neglect of any analogous
regulation lead to errors in single algebra? To try this, let us
see if error may be produced. First take A®.4°= 4", and
observe that AP =\Q + R means P = Qe® Use a particular
logometer in 4%, call it N\, 4, and another, \,4 + 2m= /-1, in
A°. The logometer of 4®4°, thus taken, is

Bhd + C (A +2m7 y-1), or Md™+ 2mwC -1
Hence AP, A% = 4PC @mredl

in which 4® and 4®*° are formed from the same logometer.
A very simple instance of the truth of ¢his equation will show
that beginners may commit a mistake in ordinary algebra. Let
B=C=3 m=1. Then we have 4%4}= 4'€""'=- 4. But
it ought to be +.4. This beginner’s mistake is like the following :
V4 =1+2, /4=-2, therefore y/4./4=-4, or +4=-4. The
two different forms of 4} are formed from different logometers.

Unity, when exhibited in the form &™™-

logometer 0 + 2mm+/-1: and @, exhibited as a
from the logometer loga + 2mm +/-1. If we consider as primary
that form of a symbol which takes its 'angle from the first
posttive revolution, or from O inclusive to 27 exclusive, and if
A4 denote the primary logometer thence formed, and if A 4
denote the logometer loga + (a + 2m=)+/-1, and 4,"® the value

, is formed from the

™1 is formed



ON THE EXPONENTIAL SYMBOL. 137

of A4® formed from it, we have the following equations:
A.’ = Aon E’man-I, An' = A.;ei(.;.n).',/.l,
A'_' A" = ’n J(mm-p)wrl-l, ( Au B.)°= A‘c Blc ei(nm—k-l)nc'/.l,
(4.3).°= A‘ICE{‘(M-R)BCM}I'I-I.

log (-1)

V-1
books of algebra, merely means, when brought to significance
by adoption into double algebra, that = 4/-1 is one meaning
of A (-1).

In former days, it was not uncommon to object to the equa-
tion 4/-1.4/-1 = - 1, on the ground that it should be /(- 1 x - 1)
or /1 or +1. But it was hardly seen that, on this mode of
reasoning, /a.+/a is 4/a® or + g, in all cases. And moreover this
last 48 true, if 4/a be indefinite. For then it has two values;
and if in +/a./a, we are not bound to use the same value in
both the first and second factor, then y/a.ya % + a, +a or - a,
according as y/a and /@ represent the same or different square
roots. The two square roots of a are constructed on’different
logometers; one on loga + 2mw+/-1, the other on

loga + (2m + 1) 7 4/-1.

The following equation, =, very often found in

N3
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CHAPTER VIL

MISCELLANEOUS REMARKS AND APPLICATIONS.

THE theory of logarithms admits, and even requires, an
extension above what has been given to it. The logometer of
the last chapter answers to the ordinary Naperian logarithm
of algebra; we are now to examine what answers to the loga-
rithm ¢o any base.

It will, at a future time, when a significant algebra is made
the basis of elementary instruction, be a question whether the
symbol should not indicate the amount of revolution of a line
as well as its length and direction: whether, for instance, (4, «)
and (a, ¢ + 27) should not be distinguished by some difference
of symbol. But even at present, in all that relates to logo-
meters, it will be convenient to adopt this distinction. Ac-
cordingly R may denote (r, p), p lying between 0 and 27;
while R, may denote (r, p + 2mw).

Let. B or (b, B) be the base; it is required to find the logo-
meter of X or (z, £) to this base, defined by the equation B\s*_ X,
The logometer of the last chapter has (g, 0) for its base. De-
noting A X simply by AX, we have A\, X .AB =)\X, or

AX logz + E+/-1
ME 3T e

The extension in page 48, supposes B to be (g, 2m7), and X

to be a symbol of the unit line, or £ = 2n7 or (2% + 1)7. When

logz : logh:: £: B,
we have A X = logz : logb = log(base b) .

That ¢ (a + b 4/-1) must take the form p + ¢ 4/-1, a propo-
sition collected by a laborious induction in incomplete algebra,
is now no more than was, in that algebra, the assertion that
a real function of a real quantity is a real quantity. For
every combination of symbols can be explained, and everything
explicable is a line of definite length and direction, and every
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such line can be represented by p +¢+/-1. Nor is it more
difficult to prove that if ¢z be a real, or, as we should now
call it, unit line, function of z, ¢ (z — y 4/-1) must be p — g +/-1,
For the same operations, performed on the same lines, will
produce the same resulting lines, by whatever symbols they
are denoted. Change the positive and negative directions on
the axis of direction, and also the positive and negative direc-
tions of revolution. All the symbols of the unit line still repre-
sent what they did before; but the lines which were a + b /-1
and p + g /-1, are now a - b /-1, and p - ¢ 4/-1. Therefore, the
same operations on the same lines producing the same result,
we have ¢ (a - b 4/-1)=p - g /-1: but if the function ¢ should
contain other double symbols, as &' + ' 4/-1, &ec. and if
P (@+bv-1,a+b /-1, &e)=p+q+/-1,
then P(@-by-1,d -¥b -1, &c)=p-q -1
It would seem as if there is still left one source of inexpli-
cable result: what is the angle « + B 4/-1? what is the length
a+b+/-1? or what is meant by the symbol (a+b+/-1, a+B+/-1)?
There is nothing here except such a confusion of symbols as
arises in arithmetic when 7 +4 - 5, for instance, is by mere
inadvertence of operation presented as 7 + (4 - 5). We have

a+d ’\/-l - e‘log(a’ob’)ftm-ls.»l-)’
(a+by-1) (@141 _ cllog (a%+3%)-8 e(mrlgm)v-l
= {y(a* + ") €F, tan™ §+ a),

a line of intelligible length and direction. The suppositions
which, assuming (r, p) as the solution of a problem, end with
r=a+by/-1, p=a+B4/-1, are analogous to those which in ordinary
algebra introduce the impossible subtraction into the process of
solution, when it is not necessarily produced in the answer.

If the assumption of a length @, should lead to a+pB4/-1
-as the requisite angle, it means that the length a will not do,
but that a¢# will do, with the angle a.

If we extend the definitions of cos@ and sin6 so as to derive
them from the equations

041 4 g1 841 _ 04

cosf = D) , sm9=—2—1/_T—,
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we have, when 6 lis a unit-line symbol, their meanings unaltered;
and when 0 is not, still an intelligible signification. Thus

f+ef e —e?
g—» sin(@y-1)=—5

Similarly sin™ (z+/-1), &c. can be interpreted.

The notion of continuity generally derived from ordinary
algebra is corrected in the double system. If a unit symbol
gradually change from positive to negative, passing through 0,
there is at the moment of passing through 0, an instantaneous
accession of 7 to the angle, and 7+/-1 to the logometer. Ac-
cordingly, the square roots are at once advanced by %=, the
cube roots by i7; and so on. But we are apt to think only
of length, which, in the case in question, does change continu-
ously. The only perfectly continuous way of passing from z=+a
to z=-a, is by supposing 6 to change from 0 to 7, or from
0 to —m, in the formula z=a(cosé +sinf+/-1): and the cor-
responding continuous passage from z=a to =% is obtained
by the same change made in

z=3%(a+d)+2(a-b)cosO+ %(a-d)sind./-1.

cos(04/-1) = V-1, &ec.

In this change all the roots also change continuously. In
many parts of the integral calculus, results which are inexpli-
cable on the supposition of change of length, are at least in-
telligible on the supposition of revolution of length, though the
connexion of the two is not yet elucidated.

When the data of a problem are those of the significant
system, any one of the problems which are really impossible
while the terms are those of ordinary algebra, becomes possible
as soon as the terms are allowed the extension of double algebra.
For instance, it is required to divide 2a into two parts with
the produet 5. The parts are a ++/(a*-0) and a-,/(a*-3). If
a and b be numbers, the problem is arithmetically soluble if
a*-b be positive: that is, if @ and b be unit-line symbols, the
parts required in the problem are also unit-line symbols. But
if a* - b be negative, the parts are

aty(b-a).y-1, or {\/b: + tan™ V(b;a‘)} ,

the product of these is (b, 0) or b, and their sum is a, for
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the parts are the sides of an equilateral parallelogram, of which
(a, 0) is the diagonal. But the parts are not now entitled to
that name, arithmetically speaking: they are components, but
under a law of composition which is not merely addition of
magnitude.

The following theorem, given by M. Cauchy for the deter-
mination of the number of imaginary roots of an equation, and
for the proof that every equation has as many roots as dimen-
sions, can be established with clearness by the use of double
algebraical meanings.

Let z and y be the projections of z in (z, {), or the coordinates
of the extremity of Z. Let §Z=AZ" + BZ™'+ ... an integral’
function of Z: 4, B, &c. being symbols each of ,which has only
one value, or at least, of which only one value is to be here em-
ployed. Write z + yy/-1 for Z, and let ¢ (z + y+/-1) =p + gv/-1,
where p and g are real, or unit-line, functions of z and y and
the unit-line symbols of 4, B, &c. When z and y are such that
@ (z+y+/-1)=0, let the point of which they are coordinates
be called a radical point, single, double, triple, &c., according
as there are one, two, three, &ec. roots equal to z+y+/-1. Let
the extremity of Z traverse any bounded contour whatsoever
in the positive direction of revolution. As it traverses, note the

changes of sign in £, at which the passage is through 0, neg-
ang gn 7’ ag g 8

lecting the changes at which the fraction passes through o.
Let & be the number of times that there is a change from + to -,
and ! the number of times that there is a change from - to +.
Then 4 (k-1) is the number of radical points within the contour,
on the supposition .that each radical point counts as often as
the root it indicates occurs.

First, if the theorem be true for each of the contours into
which the figure of a larger contour is divided, it is true for
the whole. For if all these contours be severally described
in the positive direction of revolution, each part, except the
external boundary, will be described twice, in two opposite
directions.  Accordingly, every change from + to — or from -
to +, on any part which is described twice, is met by another
change from - to + or from + to - when the same line is
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described in the opposite direction: and this for every thing
except the external contour.

=

If then we form % - for each contour, and sum the results,
it is the same as if we had formed it for the external contour
only.

Suppose the” whole contour divided into as many as may be
necessary of smaller ones, each of which may be as small as we
please. In order that £ -/ may have any value on a contour,
both » and ¢ must vanish on that contour. For if neither
vanish, p+ ¢ does not change sign at all, and £ -/ is but 0-0.
If ¢ only vanish, p + ¢ can only change sign in passing through oo;
and such changes are not to be reckoned as part of k¥ or /. If
p only vanish, all the changes of sign are made when p + ¢
passes through 0, and are all counted: and if a/l be counted,
there must be as many from + to — as from - to +; or k=1,
k-1=0. To give value to % -/ there remains only the case
in which » and g both vanish. Now if smaller contours be
described within those first taken, and smaller within those
again, and so on, it must be at last (whatever it may have
been at first) that only those contours which have radical
points within them, have botk p and ¢ vanishing on them. For
suppose we take one in which there is no radical point, and
subdivide it perpetually, and always find internal subdivisions,
on the contours of which p and ¢ change sign. We may pro-
ceed in this way until the extreme values of &, throughout and
within each contour, differ as little as we please, and also the
extreme values of y. That is, the values of z and y for which p
vanishes approach as nearly as we please to those for which ¢
vanishes, within the contour which has no radical point within
it: or ¢(z+yy-1) may diminish without limit within that
contour; which is absurd.



AND APPLICATIONS. 143

It is, then, to contours having radical points within them,
and no others, that we must look for the possibility of & -
having value. Let the subdivisions be so far increased in number
that no one possesses more than one radical point, single or
multiple as the case may be. Consider one of them, containing
a radical point P, to which s roots belong; and let H be the
symbol of OP. Let Q be a point on the contour, and let 0Q
be Z, and PQ, R. Then Z= H + R, and we have

$Z=¢(4+R)= MR + NE™ + ..
because ¢Z is divisible by (Z - H)', or ¢(4 + R) by R'.
‘We have then,
@Z = mr’ cos(sp + p) + nr* cos{(s + 1) p+ ¥} + ...
+ [mr' sin (sp + p) + mr"™ sin{(s + 1) p+ 9} + .1 V-1,

P _mcos(sp +p)+nrcosf(s+1)p+v}+...
or == + o
g msin(sp+p) +nrcos{s+1)p+v}+...

Let the contour be made so small that the sign of this expres-
sion is not affected by »: then it depends at last on that of
cot(sp + ). In this, while the extremity of Z traverses the
contour, ¢ passes through an interval of 2, and sp + » through
s revolutions. In each of these, the cotangent changes sign
from + to -, passing through 0 twice; but the corresponding
change from - to + is made in passing through o, and must
not be regarded. Hence k=2s, I=0; and 2(k-!)=s, the
number of roots which the radical point represents.

Since, then, the value of 4(% - 1) for the whole contour is
made up of the sum of the values for all the contours of the
subdivisions; since no subdivision yields anything except it
contain a radical point, when it yields as many units as that
point represents roots; the theorem stated follows at once.

Now we have ¢Z=A4Z"+ BZ"'+...... ,
whence it follows that, if ¢Z be p + ¢ +/-1,

p_oaz cos(nf +a) + bz"" cos{(n-1) C + B} +...

g az'sin(n{+a)+ bz cos{(n-1) C+p}+..."
Let the contour in question be a circle, with the origin for its
centre, of radius Z so great in length as to contain all the
radical points; and further, let z then increase without limit.
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The sign of p + ¢ is ultimately always that of cot (n{ + a), which,
as before, is shown to yield 2n changes from 4 to -, and no
others in which p passes through 0, while { passes through 2.
Hence £=2n, 1=0, or £(k-7)=n: that is, every integral
expression of the nth degree has neither more nor less than n
roots.

Algebraical paradoxes disappear under the application of our
significant symbols. The equation zd=c (- z)! is satisfied in-
dependently of z, by 1=¢(- 1. Change z into - z, which it
seems we may do, since the equation is now identical, and we
have (- zf =c(z)}. Multiplication gives 2} (- 2)t = 2 (- 2)},
or =1 But-c¢=1.

The explanation is as follows. Let (z, £) be the symbol
denoted by z in the above equation: if it be real, £ is a mul-
tiple of 7; but this matters nothing. Then -z is (2, & + kx)
where k is some odd number. Accordingly, # being & positive
arithmetical symbol, we have

i eon 55,

which is satisfied by 1 =c(0, k—;) When we say, change «

or (z, £) into — z, we may, if we like, take a different value of %,
and then we have, & being also an odd number,

(v’£+k7r) {Vz’£+(k2+k’)7r},

which is satisfied by the same value of ¢ as before. Multiply
the equations together, and we have

() (552 -« (1 555 o 2052

and % and & being odd numbers, % + &' is even, say 2%". Un-
doubtedly, then,
one value of 2% x one value of (- :t:)g

= ¢* {one value of (- 2)}} (one value of 23);

but we are not now sure of any common factor by which to
divide. And the double division is impossible. Let us make it
possible with respect to (- z)}, which must be done by taking
k and %' both of the form 4m+1, or both of the form 4m + 3.
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We have, then, the same form of (- 2 on both sides. But
then % + ¥ is in either case of the form 4m + 2, and therefore
the division gives

(Vx, g-) =c {Vz, g— +(2m+1) r} ’

which is always satisfied by ¢*=- 1.

If the successive changes of sign in z be made by one con-
tinuous method, say addition of 7 to the angle, then, starting
with one particular form of z3, say a, we pass successively through’
a, ay/-1, -a, —a+/-1, a, &. If by addition of —, then we
proceed through a, — ay/-1, - a, ay/-1, a, &e. And similarly
for other roots. The remembrance of the meanings of the
symbols will save rules: whatever angle we add to z, we add
the mtb part of that angle to its mth root.

The same difficulty occurs in treating the equations

b (-2)=opa, ;) ops, &e,

all of which may be made to appear to require ¢* = 1, as above.
But the first is satisfied by
pz=2" if (-1)"=¢c;
and the second by
z = (logz)™, if (-1)"=c.

And the explanation is of the preceding kind in both cases.

As long as a and b are unit-line symbols, and the length
of b less than that of a, +/(a*-5%) is a unit-line symbol, as
follows. Let O4 and OB be a and b (the reader may supply
the diagram), and take 4C'= OB on the limit line. From O
draw a tangent to the circle having centre 4 and radius AC;
let the point of contact be P, and take OQ on the positive
part of the unit line = OP. Then OQ is + 4/(a* - 5*). But when
b is of greater length than a, v(a® - %) is the symbol of a line
on the axis of direction: O is now within the circle, and if the
circle cut the positive axis of direction in R, OR is + 4/(a® - ).
All this is evident from geometry; and nothing in the higher
parts of modern geometry is more remarkable than the con-
stant connexion of the shortest semi-chord passing through a
point within a circle with the length of the tangent drawn from
a point without it.

(0]
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The stﬁdent may investigate for himself the difference of
meaning of the following theorem,

: x/(a+b)=\/a+1/(;‘—b,)i \/a—‘\/(;'—b‘)'

(the second term having the sign of ) in the cases in which
a* - b* is positive, and those in which it is negative.
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CHAPTER VIIL
ON THE ROOTS OF UNITY.

THE roots of unity are really, when algebra is made com-
plete, of an intermediate character between the quantitative
symbols 4, B, &c., and the directive symbols + and -. They

may be given absolutely to either class of symbols. Thus (l)"

is (l, Eﬁ“) , k being any positive or negative integer: and thus

1
we find (p. 132) that (1) is the unit of length inclined at any
number of nth parts of a revolution. No question, then, that
1 1
(1)% is a perfect particular case of 4" But if, considering +
and - in their directive character, we had chosen* to designate
1 .
by (+)" the prefixed sign of a change of direction which would
restore + A back to that form after n performances of its opera-
1
tion: and by (-)* a sign of such change of direction as would
change + 4 into - A4 after n such performances; we might
1 1
have established the laws of exponents over (+)* and (-)%, and
1 1
(+)"4 and (-4 would have had + 4 and - 4 for particular

cases. But the (+)"A and (-)"A of the second view are abso-
1
lutely identical with (+ l)" x A and (-1)" x 4 of the first.
The present chapter treats these roots of unity in & manner
which is by no means uncommon; and which in itself involves

¢ The only point in which I differ from the view taken by my
deceased friend, the late D. F. Gregory, one of the most profound
thinkers who has ever attended to the subject, lies in this, that
he advocated either the necessity or the unavoidable expediency
of the second view; and I look upon the two as equally sound,
and the choice as a question of convenience which is settled
merely by usage.
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a full half-leaning to the purely directive definition. The pro-
perties of these roots are established on the definition and
nothing else: no knowledge of the algebraical forms is de-
manded, or established for use. The properties, for instance,

of the forms of (l)i, their relations to one another, and to the
1 .

forms of (1)* for values of n other than 3, are quite independent
of the fact (unknown, it may perfectly well be) that their common
forms are 1 and %(1++/-8). Accordingly, the whole of this
chapter might be translated into an algebra of directive signs,
of which + and- are mere instances. Thus, that « is a directive
sign which repeated » times has the same meaning as +, might
be expressed by a” = +; = signifying identity of directive mean-
ing. I first consider the roots of +1.

LemMa. If m and n be integers prime "to one a'nother,
integers can be found, ¢ and b, such that mb-na=+1. Tum
m +n into a continued fraction, and let the approximation pre-
ceding the final restoration be a +b. Then, by the property of
the successive approximations, mb — na is either +1 or - 1.

1. Every mth root is an (mn)th root, m and n being any
integers whatsoever. For if a™ =1, then (a™)"=1, or a™ = 1.
The first root 11 or 1, is a root of every order.

2, Every power of an mth root is an mth root: for if a™ =1,
(a")*=(a")"=1, so that «® is also an mth root. This holds
whether n be positive or negative.

3. If m and » be prime to one another, no mth root (except 1)
is an nth root. Find a and b so that mb - na =+ 1; if then
a™ =1, a" = 1, we must have (¢ + (¢")* =1 or a'=10ra=1.

4. If an mth root be an nth root, it is also a %th root, where
k is the greatest common measure of m and n. Let m =Zkm/,
n = kn', m' and ' being prime to one another. Lét m'b-n'a=+1,
then mb—na=+k% Let « be both mth and nth root: then a™™*
=1, as hefore, and a™* =1, or «* = 1. For instance, we see from
(1) that the 8th roots are both 320d and 40th roots: we now see
that the 8tb roots are the only ones which are both 32nd and
40th roots.

5. There cannot be more than n nth roots. For 2"-1 is
(z - a) (x - B)...a, B being all the roots. As soon as n separate
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roots are discovered, the product becomes of the nth degree, and
is then identical with 2" - 1. And this product cannot vanish
except for £ =a, or B, &c. Nor can any of these roots be equal,
since nz™" has no root except 0.

6. If n be a prime number, and « be one root (not 1),

then 1, a, a, ... o™ are n different roots. For if a* =d', k and
being less than 7, we have = 1; but n is greater than, and
therefore prime to, k¥ - ! (being a prime number, and prime to
all numbers except its multiples), and an nth root cannot be
a (k- I)th root. .

7. If m, n, p, &c. be each prime to all the rest, and if
a and o' be two different mth roots, 8 and B' two nth roots, &c.,
it is impossible that aBy...=dB'y... For an instance, take
three classes of roots. Then because a and o' are mth roots,
and aBy=daBY, it follows that B™y™=pg"y™, and because
B™ and B™ are nth roots, §™" = ™", therefore ¢ = /' is an (mn)th
root. But o =” =1, therefore ¢ - ' is a pth root, or p and
mn being prime to each other, ¢ + 4’ is both a pth and an (mn)th
root, which cannot he.

8. If » be not a prime number, let P, Q, R, &c. be its
prime factors, and let n=P'Q?Rr... Then if a be any Prth
root, B any Q?th root, ¢y any R'th root, &c., aBy... is an nth
root. And all the nth roots can be thus found, and no more.
First, (aBy...)" or a"By"... i8 1 x 1 x 1..,, since » is a multiple
of P?, and therefore a” =1, &c. Therefore afy... ts an nth root.
Next, (by 7), no two such products can give the same nth root,
since P?, Q7, &c. are prime to each other. Thirdly, since there
are P° PP°th roots, Q° Q%th roots, &c. the number of combi-
nations of one out of each set is P?Q%.. or n. Therefore all
the varieties of such products give n different nth roots, or all
the nth roots and no more. ' '

Accordingly the whole question of finding roots has been re-
duced to that of prime orders and power-of-prime orders. All
the 360th roots, for instance, are found whence the 23th 3%th and
5th roots are found.

9. Every order has some roots which belong to no lower

order. If » be a prime number, this is the case with n -1 of
03
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the roots (all except 1). If n be of the form P*, P being prime,
any nth root of a lower order than » must be (7) of the prit
order: for, P heing prime, P* is the only form of common
measure of P’ and lower numbers, % not exceeding » - 1. Hence
there are P? - P*" or P*'(P-1) of the P’ roots which
are of no lower kind. Next, if » be PPQ°R’... and if we take
apy... where a is one of the P*® roots which are of no lower
kind, &c. then aBy... is an nth root of no lower order. For
(2By...)" =1 must give a™ =1, " =1, &c.: if «™ be not =1,
a” = (By...)™, and o™ being a PPth root, so is (By...)™ But
this last is a (Q*R-...)th root, and PP and Q?R... are prime
to each other. Therefore a™ =1, &c. Now since a™ =1, and
a is a P*™ and no lower root, m has P® among its factors;
since 8™ = 1, &c., m has Q among its factors; and so on. Hence
m cannot be less than n, or P’Q'R’...; while it is obvious that
it may be n.

Hence the number of nth roots which are of no lower order
is PP'QU...x(P-1)(Q-1)...: that is, (Arithmetic, p. 196)
for every number less than n¢and prime to it, (1 included)
there is an nth root which is no lower root: and all the other
nth roots are lower roots.

Let those nth roots which are no lower roots, be called prin-
cipal* nts roots. Then there are 4 principal 12th roots: for
less than 12, and prime to it, we have 1, 2, 7, 11.

Grant one principal root, and all above follows immediately.
For if 1, a, ' ...... a"! be all different, and if we select o,
in which % is prime to m, then 1, a, o*, ...... a®"* are all dif-
ferent, and embrace the whole of the first series in a different
order. For the succession 1, &, 2%, ... (n - 1) k& with each term
divided by =, gives the same remainder in no two cases
(Arithmetic, p. 195). But if & =0n + r, it =a”: and therefore,
in the second series, we see nothing but the first series with
its terms altered in order. Thus, if @ be a principal 12th root,

* I would have said primitive nth roots, but Gauss has used
this last word in connexion with the subject of roots. Moreover,
it is not that these roots are primitive nth roots, so much as that
tnth’ is the primitive ordinal of these roots.



ON THE ROOTS OF UNITY. 151

the principal 12th roots are e, o®, o, a", and if we form the
powers of these, dividing by «" whenever it occurs, we have
the 12th roots, all of them, arranged in the following sequences :—

1 a & & a® a® d a o ad° a
1 a& a° o a a a" o o & o
1 & o o a" a® a a® o d° o
l a‘l alo a’ a‘ a7 a‘ a. a‘ a’ a’ a

10. All the powers of an nth root are cyclical. Thus, if a
be a principal root, we have cycle of n; for we have 1, a, ...
a™l " (=1), a™ (= a), But if « be not a principal root,
" the cycle is in number sub-multiple of n. If, for instance,
n being 12, a be a sixth root, we have a®=1, a’ = @, o®* = a*, &ec.
The negative powers are only the same cycle repeated back-
wards; thus ¢ =a", ¢?=a"% &ec.

The most convenient way of comsidering the roots is by
arranging them in reciprocal couples, or from the beginning
and end of the cycle. Thus, @ being a principal 12th root,
we distribute the 12 roots into 1; « and e", or @ and e';
a* and @, or «® and a®; «®and a3; a*and «*; o and a®; and
lastly, a%, not «® and «® for a®=a® and each must be - 1.
The student must remember not to couple + 1 and - 1.

The cycles of couples have a reverse order, both in the couples
and in their succession. Thus the double cycles of 12th roots run
thus: 1, a and a, o* and a?, o and o*, «* and a¥, ¢® and a®,
a® or -1, o’ and a7 which is a® and a° a® and «®, which is
a™* and o', &c.

[Hitherto we have had nothing to distinguish one principal
root from another. But when we consider the values of the roots
(page 45) we see one pair of roots, hoth principal, and principal
among principals. They are the ones which have the smallest
angles in the first revolution, positive and negative : namely,

cos -2— + sin g;_r v-1 and cos (— 27) + sinh (— —) V-1,

21r

sin 27
contained in cos —

. /-1

gnz) short of
the nth is an equivalent of (1, 0). But they are distinguished

These are principal roots, for no power of (1,
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from all other principal roots, in that they, by their powers,
furnish the simplest forms of all the other roots, namely, with
angles in the first half-revolutions, positive and negative. They
ought to be called radical nth roots.]

11. We show a mode of forming all the 12th roots whenever
we show a mode of proceeding from number to number, in
such manner that by casting out 12 whenever it arises, we get
the results 0, 1, 2,......11, in any order whatever. Thus,
beginning with any number, and proceeding by additions of 1,
or 5, or 7, or 11, we obtain all the succession 0, 1,... 11, as
in (9). Can we now do this by successive multiplications?
Trial will give reason to announce, in any case we may take,
that, leaving® out 0 (and consequently o or 1), we can always
find a multiplier or multipliers which will succeed with a prime
number. With 13, for insiance, the following multipliers will
succeed: 2, 6, 7, 11. Take any number to begin with, say 4;
choose 6 as a multiplier; throw out 13 as it arises, and we
shall have the succession 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5,
(cycle complete) 4, 11, 1, &c. Beginning with 1, as most con-
venient, we have for the 13 13, roots of unity, a, a% a", df,
', @, a% o, &% o, o', a"; which, with 1, complete the list.
Of this cycle it is immediately seen that if for a we write any
other, as o°, the cycle is only made to begin in another place,
and its successions are uninterrupted. Thus %, (2*), (a*)", (<*)°,
&c., are @*, a*, a", a, &c. That is, we have a method of arrang-
ing the roots in recurring cycles such that the substitution of
one root for another only disturbs the commencement of the
cycle, and not the order in which the roots occur. I return
to this subject again.

12. Every function of the 7 nth roots, or of any of them,
which admits of being expanded in integer powers, positive or
negative, of them all, is always reducible to the form

A+ da+ Ad + ...+ A, 0™,

a being a principal root. For when the expansion is made, so

* That we must leave out 0 is obvious enough, after what we
have seen of it as a starting symbol of addition, as opposed to 1,
the starting symbol of multiplication,
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that every term is of the form o*B%y ..., a, B, v, ... being
nth roots, substitution of the values of B, ,... in terms of a
will give a series of powers of &, which is reduced to the pre-
ceding form, since e"=1, a™=a, &c. Observe, I here speak
of the form only: that form may not be fit for calculation,
for 4, A,, &c., or some of them, may he divergent series.

13. The sum of the nth roots, the sum of the products of
every two, of every three, &c., is 0: but the product of all is
-1 or +1, according as n is even or odd. This follows from
the structure of 2" -1, and the theory of equations.

14. The sum of the mth powers of the nth roots of unity
is always 0, except where m is n or a multiple of it, positive
or negative, and then it is n. For

1-ao™

" ” *mn nm L,
1"+ a™+a™+... + =y Tam

If m be n, or a positive or negative multiple of it, the first
side is obviously 1+1+... or n. In every other case, a™ is
not =1 and o™ is =1: whence the sum of the terms is O.
Better thus, if it were not that proofs of unexpected simplicity
are suspicious. Multiply the sum by o™, it undergoes no altera-
tion except transferring 1™ from the beginning to the end. If
the sum be S, we have then §=a™8, or §=0, unless a™=1.,

15. Any symmetrical function of the % nth roots, otherwise

real, is real: for every such symmetrical function is a real func-
tion of the sum, the products of every two, &c.

16. If in any function of '{/A, VB, ¥ C, &c., we multiply
VA separately by every mth root, VB by every nth root, &c.,
and introduce every combination of these values into the function,
giving mnp ... functions in all, and multiply the resulting func-
tions together, the product will be a rational function of 4, B, C,
&c. For example, y/z +Vy: 1 and ~1 are the square roots
of unity, let 1, «, a*, be the cube roots. Then I say that

(V2 Vy) (-vVarVy) (Vz-aVy) (-vzray) (VaraVy) (-VatatVy)
is a rational function of z and .

A rational function of A is known by its presenting the
same value, if for .4 be substituted in it a":/A, a being any
nth root of unity.
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If in the product preceding, which is a symmetrical fumction
of :/A, aV4, ... a™! n\/A, a being a principal nth root, we
substitute «*V.4 for '1'/A, we have the same function of c"'w/A,
a¥¥ 4, &c....a™1Y/ 4, or of the same quantities interchanged
in order, which, as the function is symmetrical, makes no dif-
ference. Hence the product is a real function of 4; and so
of the rest.

The product of the six factors in the example is y*— 2

17. If a, B, ¥, ... be all or some of the nth roots, and if
¢(a, B, 7, ...) be a function of a, B, ¥, ... capable of expansion
‘into A+ dja+t...+ A,,_‘a”"; then
b(a By 7,..)+ (<% B Y. ) 4.+ (a, gV, ™, L) =nd,,

Returning to the mode of arrangement in (9), we see that
if m and m' be two numbers which, divided by p, leave Te-
mainders r and #, say gp+r and ¢p+¢, the remainder of the
product mm’ is that of »m'. If then we take a, a%, ... until
we get above p, and then reject the multiple of p, take only
the remainder r, go on with ra, ra?% ... until we get ahove p
again, and proceed as before, we really form the remainders of
the successive powers of @. Thus, if we want to know the
remainders of the powers of 2 divided by 11, we have but to
form the series 2, 4, 8, (16, reject 11) 5, 10, (20, reject 11) 9,
(18, reject 11) 7, (14, reject 11) 3, 6, (12, reject 11) 1, 2, 4, 8,
&c. Now it is proved, in works on the theory of numbers, that
if any prime number be taken, n, there are numbers less than n
for which the powers, successively divided by », yield all the
n -1 possible remainders before any recur. That one of these
should always exist, is enough for our purpose: but, in truth, so
many numbers (1 included) as are less than and prime to n-1,
80 many numbers less than n are there for which the powers
yield all remainders before any recur. Thus, calling such num-
bers primitive* subordinates of m, and examining 19, a prime
number, we find that 18 has 6 numbers below it, and prime
to it. There are then 6 primitive subordinates of 19, and they

* Gauss calls them primitive roots of the integer n: but this
term would cause confusion, unless the analogies by which it is
justified were introduced.
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are 2, 3, 10, 13, 14, 15. That is, taking 14, 14', 14*... 14",
all yield different remainders when divided by 19; so that all
the numbers 1, 2, 3, ... 18, are among those remainders. If then

a be a principal 19t root of unity, all the 19th roots, except 1,
are contained in the set

18
a“, a“', aus, voa¥ ,

and no one twice. The advantage of this is, that if for « we

write another, we only change the commencement of the cycle.

Thus, if for a we write a** °, we only remove the first and second

above to the end. This is not the case when we write one for

another in the more natural cycle , o ...a™.

ticularly that the root 1 never enters this series.
Let all the (n—1)th roots be known, and let w be one of them.
Let us consider the expression

Remember par-

-1
m’ n-2
+a” W,

P=ad"+d"w+a™ut +......
m heing a primitive subordinate of n. Remember that w"'=1.
‘We see that change of a into @™ is here equivalent to multipli-
cation by w; change of a into a™ to multiplication by «*; and
so on. So that P*' is not affected by writing any other root
for a. Hence if P** be really constructed by multiplication, it
will be found mdependent of a, or a function of w only; say Q.
Hence P = 's/Q can be expressed. Let the form of it em-
ployed be called ¢w. Do this for each root 1, w, w?, ...0™?,
w being a principal (n~1)th root: and let a,, a, a, ... be the
successive nth roots a™, ... We have then, taking the obvious
equation when 1 is used for w,

-l=e,+a, +a +.ceeeininnita,,,
Pw=a,+aw +awt+ .eeeeinss + @ 0"

‘Pt =a, + et +a, P L+ @, WO,
From which, by the property in (14), we find

n-1)a=-1+ ¢w+ P + ... + Puw™?,
(n-1)a,=-1+ 0w+ PP’ + ......... + DD w2
(n 1) a, =-14 w""“qbw + w""”’qﬁw + s + w"‘""""’d)w“,

(n l) -—l+w¢w+w'¢w’+ +w"‘"’¢w""
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Whence it appears that when » is a prime number, the nth
roots can be expressed in terms of the (»—1)th roots, and are
therefore algebraically determinable when the latter are so.

‘Writers on this subject give methods of reducing the labour
of the preceding : but as my object* is to show the possibility
only of finding the ntt roots when n is a prime number, and
the (n - 1)th roots are known, I shall content myself with giving
at length the determination of the fiféh roots; 5 being a prime
number and the 4th roots known. One primitive subordinate of
5 is 2; and the succession is 2, 4, 3, 1. Hence, a being a fifth
root other than 1, and w a fourth root, the fourth power of
a + a'w + @' + aw® is independent of a. Now, remembering
that w'=1, «* = w, &c., the square of the preceding is

(a*+a*+2)+2(a' +a) w+ (a®+a®+ 2) w* + 2 (a® + &) o,
and the square of this will be found, remembering that

lta+a*+e®+a*=0,
to be — 1 + 4w + 140* - 160°. Let w,, w,, w, w,, be the fourth
roots, and Q,, &c. the values of the preceding. Then we have
"\/ Q, =d + a'w, + a’w + aw )},
and similarly for the rest. If w, = 4/-1, w,==1, wy=-v-1, w, = 1,
we have Q, =- 15 + 20 /-1, Q, =25, Q;=-15-20 /-1, Q,= 1.

‘We now proceed to discover which of the fourth roots is to
be used; nothing being known except that we are to take the
same form in all cases. With no restriction, there are 4x4 x4 x 4,
or 256 different systems of equations. Onme form is determined
by the question: 1/9 must be -1; for a®*+a'+a®+a=-1.
Hence the form of x/ 1 required is that of a principal fourth
root moved through an odd number of right angles. Now in
the case of a + b /-1, each form of the fourth root has all the
properties of a principal form; for no one of these fourth
roots is a square root. And to a4 +b+/~1 and a-b+/-1 cor-
responding forms are such as p + ¢ +/-1 and p - ¢ +/-1, sym-

¢ The hint of this limitation of object is taken from the late
Mr. Murphy’s work on the Theory of Equations: but I have not
thought it necessary to enter, even so far as Mr. Murphy has done,
into the methods of reduction.
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metrically disposed with respect to the axis of length. Take
such a pair at pleasure, and move them in the same direction
through an odd number of right angles, and we have a pair
such as —p + ¢ 4/-1 and p + ¢ 4/-1, which are symmetrically dis-
posed with respect to the axis of direction: and such is the
pair which must be chosen.

Now if we extract the fourth roots of — 15 + 20 4/-1 by the
formula ’

V@tby-1)=+ {\/ V&‘fgﬂi“ + \/ &2’?_):_“, \,_1},
we shall find them all contained in ’

tptgy-l, and (tptgv/-1).v-],
using like signs in the two terms for — 15 + 20 4/-1, and unlike
signs for —15-20+/-1. And p=+/3(5++/5), ¢ = vV%(5 — v5).
Choosing a pair symmetrical with respect to the axis of direc-
tion, we form the following equations:
-pt+gy-l=a’+a*y/~-1-a’-ay-1,
-/b=d"-a*+a*-a,
ptg/-l=a'-a'y/-1-a+ay-l,
-l=ad'+ad'+a’+a.

Sum these as they stand, and then sum them after multipli-
cation by —v-1, -1, y-1, 1; =1, 1, - 1, 1; 4/-1, =1, - -1, 1.
We thus obtain

@=-3(/6+1) +igy-l, a=3(/5-1)+ipy-L
P=-3(/5+1)-3gVv-1, a=i(/6-1)-1pV-],
which are well-known values of the fifth roots. Changes of sign
in p, or ¢, or both, have no other effect except different appor-
tionment of the above expressions among the roots a, a*, o’ a.

The extraction of the square root of a + b +/-1 is an operation
to which Euclid’s geometry is competent; it requires only the
bisection of an angle, and the determination of a mean propor-
tional, to obtain {¥(a® + %), 3tan™d + &} from {y/(a" + %), tan™d + a}.

Hence it follows that wherever # is a prime number, and
n-1is a power of 2, the formation of the nth roots of unity is
a geometrical® operation, in the ancient sense. Euclid mastered

¢ This is the discovery of Gtauss, and is the most remarkable
addition to the power of construction which the ancient geometry
has received since the time of Euclid.
. P
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the cases # =3, n=5; the next one is # =17, and the next
n = 257.

The theory of the roots of — 1 is really contained in that of
the roots of +1. Since 2 =1 is solved both by 2" =1 and
z" =-1, it follows that all the nth roots of - 1 are among the
2nth roots of + 1. If a be a principal 2nth root of + 1, we must
have a" = -1, a™ = - 1, &c., and the n nth roots of — 1 are seen
in @, @°, &% ... @™, Speaking now of roots of — 1 only, we have
the following theorems, answering to some of those in page 148.
The student may make a complete list of analogous theorems.
Every mth root is an {m(2n + 1)}ih root. Every odd power of
an mth root is an mth root. If m and n be prime to one
another, no mth root (except — 1, if both be odd) is an nth root:
for a 2mth root of + 1 would then be a 2nth root, which can only
happen as to a square root.

If « be a principal 2ath root of 1, it is a pnncxpal nth root
of —=1. For in that case a, @ ... a®* are all different, and
only " is —1. And there are no other principal nth roots of
-1,

Let « be a principal nth root of — 1, or 2nth root of + 1. Then
a, d® ...a™"! are all different ; multiply each by @, and o, o!,... ™
are all different. Nor can any one of the first set be the same
as any one of the second: for if a* = a1, we have a" = @*(*-3)
or -1=+1, which is absurd. Therefore there are as many
principal nth roots of -1 as 2nth roots of + 1, and no more.

The sum of the kth powers of the nth roots of — 1 is always 0,
except where & is a multiple of n. The series a* + a™ + ... 4 al¥-1k
is not altered by multiplying by a%, except by removing the
first term to the end: consequently it is 0 except when a* =1,
that is, except when % is a multiple of n. If it be an even
multiple, the sum is #; if an odd multiple, it is - n.

Among the uses which may be made of the roots of unity,
the following are remarkable.

An expression may be formed, which goes through recurring
periods of changes while z, of which it is a function, takes suc-
cessive integer values. Let n, stand for (a®+8°+...... n
a, B, &c., being all the nth roots of +1. Then as z changes
through 0,1, 2,...n, % + 1, &c., S changes through 1, 0,0,...1,0,...
Thus a4,, represents the ztb payment of a rent of £a, which
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is due only every fourth year, the ycar after next being a year
of payment. This is

a w w m m
i {cos(z -2) gt cos(2z - 4) 3 + cos(3z - 6) 3 + cos(4z - 8) 5}’

the coefficient of the imaginary part always vanishing in a sum

of powers.
This is 2 (1 + cosmz — cos - — cosﬁrf).
4 2 2

Again, ap, +am, , +am, o+ ... + G, M, Tepresents an ex-
pression which takes the cycle of values @, a,...a,, as z
passes through 0, 1, ... n—1; and repeats the same while z
changes through », n+1, ... 2n - 1: so that ¢z =a,, when r
is the.remainder in the division of z by n.

If n, be formed from the nth roots of - 1, the above represents
an expression in which the second cycle is formed by changing
all the signs, the third by restoring them; and so on.

If ¢z be 4, + Az + A2' + ... a finite or infinite series, the
roots of unity enable us* to give a finite form to

Ap+ Apn® + A + ...
First, suppose m <n: for z write az, ¢ being one of the nth
roots of 1, and multiply by "™, forming " ™¢az. Do the same for
each root and add the results. The theorem on the sums of
the powers of the roots then gives
20" "Paz

n

= A2+ Aprd™ + A ™™ 4 ...

Divide by z", and write ¥z for z, and the required result is
obtained. If m>m, say m=pn +k(k<n); find dsz*+ 4, 2" +...
and subtract as many of the first terms as are requisite.

If the nth roots of - 1 be used, we may in the same manner
find 4,, - 4,,,x + ...

For instance, let it be required to find
z z* z

BT RN T IR TRE AR i CA LA

* In my Differential Calcwlus, I gave this as (to me) new,
expressing a doubt that so apparently obvious a method should
never have struck any one. I have since found it given by Thomas
Simpson, in the Philosophical Transactions, as read Nov. 16, 1758.



v

160 ON THE ROOTS OF UNITY.

Write z* for z, and multiply by 2* + 1.2.3.4.5, and we have
selected terms out of &, each fourth one being taken, beginning
at z° - 1.2.34.5. Begin at z, and we should obtain the whole
series from

HOE + (106" 4 (-1 + (-1,

E-s..+1'z-z+ z +
o IR b A WX ¥ W Ay

. «,n__ -:’- o 4
Whence  1.2.3.4.5 {‘ ¢”, snVs 1

W o
is the value of the required series.

In using this method, it will be best to take a pair of corre-
sponding roots, of the form cosf tsin6+/-1, and work out,
in general terms, that part of the sum of the - functions which
arises from that pair. Suppose for instance, ¢z = (1 + z)*, and
that 4,2" + 4,,,2™" + ... is required, m being < n. If

a =086 + 8ind 4/-1,

we have ¢ (az)=(1 + zcosf + z sind.4/-1)*

LR L L
= (1+ 2z cos0 + 2% €'t*%" Fewcond
Multiply this by a*™ or by o™, then change the sign of 6,
and add, and we have for the part of Xa""™¢paz which depends
on the two roots in cos6 1 sinf./-1,

E .
T [ _, zsinf
(1 + 2z cos6 + 2*)* .2cos {ktan‘m-aw}
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CHAPTER IX.

SCALAR VIEW OF ALGEBRAICAL SYMBOLS.

* It will be admitted that the view of the extended meanings
of 4+ B and A x B given in pages 118, 119, is a very natural,
and even necessary, consequence of the separation of subject
matter and operative direction in pages 115, 116: and that it makes
the entrance of the extended subject-matter dictate the mode
of assigning significance to 4 + B and 4 x B. But the transition
to A® appears destitute of sufficient obligation to previous sug-
gestion. This chapter, which is above most elementary students,
is intended to defend the mode of transition, and to show that
the adverse judgment which may be given upon it is partly
to be compared to the opinion which a beginner forms upon
the law of a series when he has expanded but one or two
terms, and which he retracts when he sees those that follow;
and partly due to a failure of consistency in algebraic notation.

In 4 + B and 4 x B we see convertible operations, and we
take the hint to denote convertible operation by a symbol
placed between the subjects: thus 4°B, 4*B, might denote
other convertible operations performed with the instruments 4, B.
Again, we see also a character of ascent, and a connexion: namely,
the right of distribution of the higher operation over the terms,
or separate instruments, of the lower. Let us continue on this
hint, and invent an operation which bears to 4 x B the same
relation as 4 x B to 4 + B; and another yet again above
the last; and so on. Having symbols for the first two, we
keep them: and provide a notation indicative of the degree
of ascent, just as we retain the terms square and cube, and
then pass to third power, fourth power, &c.

Let 4“B, A”B, A’B, indicate the successive steps of

the ascent, so that our equations of definition are
3
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A+B=B+A4, Ax(B+C)=(AxB)+(4xC)| 0+0=0 | 4+0=4

AxB=BxAd, A"(BxC)=(4”B)x(4"C)| 1x1=1 | Adx1=4

A"B=B"Ad, A"(B"C)=(A4"B)" (A" C) | Q)" Qy=0,| A" Qg= A4

A"B=B*A4, A" (B"C)=(4"B)"(4"C) |0 Q,=Q,| 4" Q=4
&ec. &e. &e.

Again, in 4 + B and 4 x B we have initial symbols 0 and 1;
of which it is the property, as in 0+0=0, 1x1=1, that when
no instrument except the initial symbol is used, nothing but
the initial symbol results. The equations of the second and
third columns are formed by obvious extensioft.

Now let us denominate by the name of scalar function or
operation the fun¢tion which has this property, that its per-
formance on the compound is' equivalent to the next lower
compound of its performance on the separate terms: so that,
if M, 4 be the symbol of the scalar function ¢onnecting 4™"B
and 4 ™B, we have

Mogyn (A ®B) = Ay, o d) 0 My, B

It might at first be supposed that we could have different
scalar functions at every transition: but a moment’s consideration
will show that the perfect accordance of the different symbolic
relations would enable us to generalize the scalar system, so
as to make all its steps alike, if it should so happen that in
any one part of the system we found a scalar function of a
more general character than had theretofore appeared. The
utmost variety that we can admit is, that in one ascent one
particular case should be taken, and in another, another, of
the most general form which exists.

Nor is any argument against the above to be derived from
the fact of the sequence of operations having a commencement;
for there is i truth no commencement. The operation which
precedes 4'B or A + B is A°B, satisfying

4+ (B°C)=(4 + BY(4 + ).

And, understanding any sign + or — in parentheses, in an alge-
braical sense, we have

A, (B C)=(4°B)"(4°C), &c.
The initial symbols may be represented by Q, Q. O‘_,,, &e.
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The system of operations is then interminable in both direc-
tions. Let M be the symbol of the scalar function, and let ¢
represent its inverse function: so that \Ad = Ay4 = 4, for one
value at least. Suppose, in order to assimilate our system to
that of algebra, that whatever forms A4 may have, 4 has but
one form; so that \A4 is 4, though \y4 may only have 4
for one of its forms. It would be best, as in algebra, to con-
struct a main system upon one form of A4, and to express the
results of other forms of A4 in terms of that system. In this
trunk-system, we may consider y and A as having each only
one form; and all the direct operations as having each only
one form. It is now clear that if only one of the convertible
operations be given, and the scalar function, all are given; and
that we have

A®B =yAA®XB), Q=D
for QA4 ®™Q,) = \A4d = 4; and this is 4™ yQ,, whence
Q,,, =2

The symbols of ordinary algebra, considering the various
accidents by which they have attained their posiﬁbm, have
great, but not perfect, consistency. We have 4 + B, 4 x B,
and the scalar function log.4 ; the last derived immediately, by
Napier, from the connexion of 4 +B and 4B, and not in-
directly* from the exponential function, which he knew nothing
of. The exponential function is out of the system, strictly speak-
ing: for it will be found that the scale of operations having
the indices...... (- ), (-1), 0, 1, 11, 111, IV, &c., is, in the ordi-
pary language, N being used for log.,

...... (et + e"b), ME"+e), ME+e), a+b,
X (Aa + \b) or ab, ~+*(Ma+\'b) or 2 or g™ or B9
* (\a + %) or 5')‘.")‘.", &e.

The initial symbols are A%, A0, O, O, 1, &, &%, &c.

¢ So that by going back to the sources, we find the logarithm
first exhibited as the scalar function by Napier, its inventor, and
the trigonometrical system first appearing as jfounded on ratios, in
the writings of Rheticus, who first presented it complete.
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Accordingly, in 4®, there is not scalar relation between A
and B, but between A4 and B. ' And the preceding is not
merely justification, but even proof, of the necessity of making
Y(A42\B) the definition of the next step to 4.B, and of making
\(BrA4) the definition of A® our symbolic departure from
Y(A4A\B).

The origin of 4" is connected with a notion which is developed
in the following. Looking at 0 and 1 not as the initial symbols
of two distinct operations, but as the initial symbol of an opera-
tion (+) and the scalar step of its subject, let successive operations,
¢ and V¥, be defined by the relation that

V(4 +1) =¢(¥4, B)

That is, let the several definitions be derived from the solutions of
@(4+1)=¢4 + B, which gives ¢4 = 4B, '
¢(4 +1)= Bpd, .« . . ¢$4d=B*
$(4 +1)= B*". &e.

This last gives a function not capable of finite representation
under existing symbols, though we may commence with

¢l=a, ¢2=B% ¢3=B"), &

It is neither to be expected nor desired that any substitute
should be adopted for 4®; but the more the mind accustoms
itself to consider this as a function rather of log 4 than of 4,
the better.

Any two convertible functions of # and y, ¢ (2, y) and ¥ (z, y)
being given, as two consecutive members of a scale, the follow-
ing condition of distribution must be satisfied,

Yz, ¢y 2 =9V (2, 9) V(2 9}
and the scalar function must be determined from
M (7, y) = P (Az, Ny),
\ being a functional symbol.

Every solution of this system is a chance for the invention
of an algebra, in which, ¢ (2, y) being denoted by z+y and
V¥ (2, y) by 2y, and \(Az, A\y) by 2\ or y)\', all the laws of
ordinary algebra remain good.

In double algebra, the scalar function, in its most generai

form, is
AR=(m +ny/-1)log r + (u + v4/-1)0,
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the condition A(r, 0) = log », which is necessary to the complete
and unaltered inclusion of single algebra, gives m=1, n=0.

And it will be found on inquiry*, that the adoption of

logr+(n+vv-1)0
is of no effect whatever, except what would in common algebra
be called the choice of €**”*") instead of €' for a base of
angular exponentials.

If a moment’s hesitation should arise on the retrograde symbols
of the scale, the reader may try the equation

4+ B°C=(4+B)°(4+0C),
A +1og (€° + €°) = log (6**® + €4*°),

When two successive operations have the required distribu-
tive character, that character necessarily attaches to the next
one, if formed from the scalar function. Thus, if A”B be de-
fined as v (A4 x w), we have

A" (BxC)=y{AAd x(AB+AC)} =Y (M4 x \B +\4 x AC).
But Px Q=y(AP+\Q) or \(P + Q) =P x \Q; so that
A" (B x C)=Y(AAd xAB)x \(Ad xAC)=A"B x A"C,
and so on for the rest.

When the inverse scalar function is used, the regressive
system has the same properties as the progressive one with
the direct scalar function: for

(4" B) = xA*B.

Hitherto I have said nothing of inverse operations. Let
A,B be the inverse operation of 4"B; so that 4"B,B=A.
And for 4B and 4,B use 4-B and 4+ B. If any one of
the inverse signs follow the rule of signs (p. 103), so does the
next. That is, if for instance Q,,(Q,,4) give Q;”4 or 4,
we have Q,,(Q,"4)=Q"4=A4. For

A(4,BYA\B=\(A,B"B)=\A4 or \(4,B)=\4 ,\B,
MO, (Q,4)) =20, 0 (2, 4) =0, A, A4)
=Q,,,(Q,,A4) = \d4, by hypothesis,

* The complete investigation will be found in a paper “On
the foundation of Algebra, Part 111,” in vol. viil. of the Cambridge
Philosophcal Transactions.,
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or Q,,(2,,4) is 4. And conversely, if the rule of slgna be
true for Q,, 4 it is true for Q,, 4.

An algebra, similar to ours, requires but the followmg fun-
damental basis. .

Two consecutive operations, 4 + B, 4 x B, convertible, so
that 4+ B=B+A4 and 4x B=Bxd, and having the second
distributive over the first as in (B+C)x A=BxA4+Cx 4.

A scalar operation, A4, having the property

M(4 x B) =\d4 + \B.

One starting symbol, 0, wholly ineffective in its own operation,
so that
0+0=0,0+A4=4,

An inverse operation, seen in 4 - B, so that (4-B)+B=4;
and giving 0 - (0 - 4) = 4.

Strictly speaking, one operation and its inverse, and the
scalar function and its inverse, are sufficient for expression:
thus y(A4 + AB) is sufficient to express 4 xB. And hence
the whole system of scalar functions and starting symbols may
be deduced. But the invention of fwo operations, followed by
that of a scalar function, has been the order of discovery.

The formation of a symbolic system on the seven operations
of addition, subtraction, multiplication, division, involution, evo-
lution, and formation of a logarithm, is both redundant and
unsymmetrical: but the redundancy is rich in means of ex-
pression, and the reduction to symmetry is easy to one practised
in the language of algebra as it stands. This last will be best
seen by assimilating the notation more closely to that of common
algebra. Let 0, 0,, 0,, 0,,, &c., be thus defined:

0,=1, 0,=¢ 0,=¢5 0,= e*, &e., or 0,=Y"0.

Let n,=¢€" n,=¢" &. or ng=~'n.

Let the progressive symbols be +, +,, +,, &c. and x, x,, X,,,
&c. thus connected; x is +, x, is +,, &c. Then, the convertible
and distributive properties remaining, we have all theorems of
ordinary algebra holding good, when any one suffix is placed
below + x and all numerical coefficients. Thus

(@+,0)x,(@+,b)=ax,b+,2,%x,ax,b+,bx,b
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means the following in ordinary language. The first side-is
e (AOAB) xa Aoy
€ ;
the second stde is
RUBL N ‘X'e".)\‘a,)\’b RURLY
el(s )-A(e ). Ae
b
whence the equation may be easily verified. This chapter may
serve to show the necessity of connecting successive operations
by the scalar or logarithmic operation, and the ease with which
it may be done without any permanent disturbance of established
notation.

THE END,

Metcalfe und Palmer, Printérs, Cambridge.
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