
Exercice 1 Résolution d'une équation

On se propose dans cet exercice de résoudre l'équation (E) :

$$x^3 - 3x + 1 = 0$$

1. En utilisant la courbe d'équation $y = x^3$, indiquez comment on peut conjecturer le nombre de solutions de l'équation (E) en traçant une droite judicieusement choisie. Localisez ces solutions sur le graphique ci-dessous.

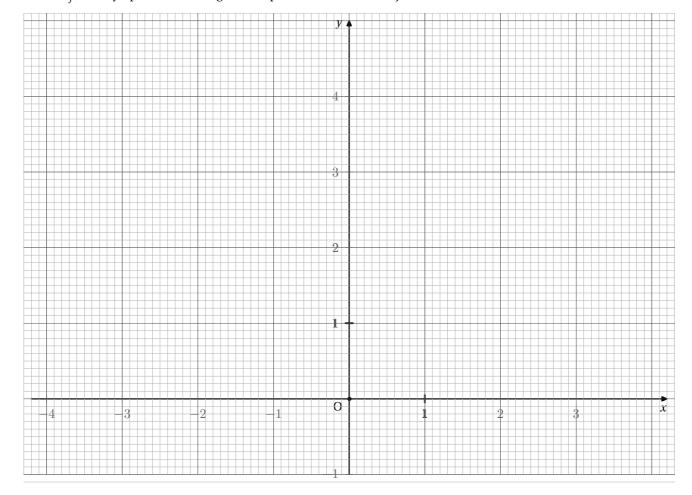
- **2.** On désigne par f la fonction définie sur \mathbb{R} par $f(x) = x^3 3x + 1$
 - a) Étudiez le sens de variations de f et dressez son tableau de variation.
 - b) Montrez que l'équation (E) admet exactement trois solutions sur \mathbb{R} que l'on notera α_1 , α_2 et α_3 telles que $\alpha_1 < \alpha_2 < \alpha_3$.
 - c) À l'aide d'une calculatrice, proposer des valeurs approchées à 10^{-3} près de α_1 , α_2 et α_3 .

Exercice 2 Étude d'une fonction

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \sqrt{x^2 + |x|}$$

On note \mathscr{C}_f la courbe représentative de f dans le plan rapporté à un repère orthonormé $\left(0; \overrightarrow{\iota}, \overrightarrow{\jmath}\right)$ d'unité graphique 2cm.


Partie A : étude de f

- **1.** Montrez que la courbe \mathscr{C}_f est symétrique par rapport à l'axe $(0; \overrightarrow{j})$. Qu'en déduisez-vous?
- 2. Déterminez la limite de f en $+\infty$.
- 3. Étudiez la dérivabilité de f en zéro. Interprétez graphiquement ce résultat.
- **4.** Étudiez le sens de variation de f.
- **5.** Dressez le tableau de variation de f sur \mathbb{R} .

Partie B: asymptotes à \mathscr{C}_f

Soit \mathcal{D} la droite d'équation $y = x + \frac{1}{2}$.

- 1. a) Montrez que \mathscr{C}_f admet \mathscr{D} comme asymptote au voisinage de $+\infty$.
 - b) Précisez les positions relatives de \mathscr{C}_f et \mathscr{D} .
- **2.** Prouvez que CR_f admet une autre asymptote dont vous donnerez une équation.
- **3.** Tracez \mathcal{C}_f , see asymptotes et les tangentes importantes sur la feuille jointe.

🏅 Exercice 3 Un peu de trigo

Sachant que $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ et $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$, exprimez $\cos(3t)$ uniquement à l'aide de $\cos(t)$.

Exercice 4 Question subsidiaire

Commentez cette citation du mathématicien syldave Otto Von Meinunterstrumpführeristdaslichtmeinernachten : « Le monde se sépare en 10 catégories : ceux qui comprennent cette phrase et les autres. »