Exercice 1

Comparez les nombres suivant en utilisant si nécessaire les théorèmes du cours. Vous détaillerez les opérations effectuées.

- 1. $12x^2 + 7$ et $6x^2 + 5$;
- 2. $\frac{12}{7}$ et $\frac{7}{4}$;
- 3. $\frac{9,01}{10^{53}}$ et $\frac{90,11}{10^{54}}$;
- **4.** On suppose dans cette question que *x* et *y* sont deux réels strictement positifs tels que *x* < *y*.
 - a) -5x + 4 et -5y + 4;
 - b) $\frac{7}{x}$ et $\frac{7}{y}$;
 - c) $2x^2 1$ et $2y^2 1$;
 - d) $\frac{7}{4x^2} 5$ et $\frac{7}{4v^2} + 1$.

Exercice 2

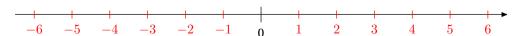
On considère les expressions A(x) et B(x) définies pour tout x par :

$$A(x) = (x-2)(2x+3) - (4x^2 - 9)$$
 et $B(x) = \left(x + \frac{1}{4}\right)^2 - \frac{25}{16}$

- **1.** Développer et réduire A(x) et B(x).
- **2.** Factoriser A(x) et B(x).
- **3.** Résoudre dans l'ensemble des nombres réels l'équation B(x) = 0.
- **4.** Étudiez le signe de (2x+3)(-x+1).

Exercice 3

On donne: $t = (\sqrt{2} - \sqrt{7})(\sqrt{2} + \sqrt{7})$ $u = \frac{1}{2} + \frac{7}{5} \times \frac{3}{4}$ $v = \frac{\frac{2}{3} + \frac{1}{2}}{2 - \frac{1}{2}}$


- 1. Calculer t, u et v et donner les résultats sous la forme la plus simple possible.
- **2.** Compléter le tableau ci-dessous à l'aide des symboles ∈ (appartient) et ∉ (n'appa rtient pas) :

Ensembles	N	\mathbb{Z}	D	Q	\mathbb{R}
t					
и					
υ					

Exercice 4

- 1. On donne les intervalles I = [-3; 3] et $J = [-\infty; 1]$

 - b) Dessiner en vert l'intervalle I et en rouge l'intervalle J sur la droite graduée :

- c) Déterminer $I \cap J$ et $I \cup J$
- 2. On donne les intervalles I =]-1; 4[et $J = [-3; +\infty[$

a) Dessiner en vert l'intervalle I et en rouge l'intervalle J sur la droite graduée :

b) Déterminer I∩J et I∪J

Exercice 5

Voici le tableau de signe d'une certaine expression :

x	-1		1		2		3		4
Signe de F(x)		_	Ó	+	0	_	Ó	+	

- 1. Quel est le signe de F(x) quand $x = \frac{5}{2}$? Quand $x = \pi$?
- **2.** Résolvez sur [-1; 4] l'inéquation $F(x) \le 0$;
- **3.** Parmi les expressions suivantes, quelle(s) est (sont) celle(s) qui NE peut(vent) PAS correspondre à F(x)?

$$-f_1(x) = -x^2 + 3x - 2$$

$$- f_2(x) = x^3 - 6x^2 + 11x - 6$$

$$-f_3(x) = -x^3 + 6x^2 - 11x + 6$$

$$- f_4(x) = (x-1)(x-2)(x-3)(x-5)$$

Vous justifierez vos réponses.

Exercice 6

Déterminer le signe des quotients suivants en fonction de la valeur de x et donner le résultat sous forme de tableau.

1.
$$\frac{2x+7}{(-3x+1)(x^2+\pi)}$$
;

2.
$$\frac{(x+9)(x^2-4)}{-5x}$$
.

Exercice 7

On donne ci-dessous 6 inéquations :

- 1. -2 < x < 4;
- **2.** $x \ge -2,5$;
- **3.** $0 \le x < 3.8$;
- **4.** $-3 \le x \le -0.5$;
- **5.** x > 0;
- **6.** $x \ge -3$.

Donner l'intervalle de \mathbb{R} défini par chaque inéquation.

Exercice 8

1. Résoudre dans ℤ l' inéquation :

$$-1 \leqslant \frac{4x - 3}{5} \leqslant 2$$

2. Résoudre dans ℝ l' inéquation :

$$-1 \leqslant \frac{4x - 3}{5} \leqslant 2$$

Exercice 9

Quel était l'animal préféré de Louis II de Bavière ? Bon week-end