Exercice 1

Déterminez les dérivées de fonctions suivantes en factorisant au maximum les résultats trouvés :

$$- f(t) = \cos^3(5t)$$

 $factor(diff((cos(5*x))^3),x)$

$$-15\left(\cos\left(5x\right)\right)^{2}\sin\left(5x\right)$$

$$-g(\omega) = \frac{(\omega+1)^2}{\omega^2 + \omega + 1}$$

 $factor(diff((x+1)^2/(x^2+x+1)),x)$

$$\frac{-(x-1)(x+1)}{(x^2+x+1)^2}$$

 $-h(\theta) = -2\theta + 3 - \frac{1}{\theta}$

factor(diff(-2*x+3-1/x,x))

$$\frac{-(x+\frac{\sqrt{2}}{2})(2x-\sqrt{2})}{x^2}$$

$$-j(x) = \frac{x^2 e^x}{x+1}$$

 $factor(diff(x^2*exp(x)/(x+1),x))$

$$\frac{(x^2 + 2x + 2)xe^x}{(x+1)^2}$$

 $- k(x) = (x+1)e^{-x+1}$

factor(diff((x+1)*exp(-x+1),x))

$$-xe^{-x+1}$$

$$- m(x) = \ln\left(\frac{x+1}{x-1}\right)$$

factor(diff(ln((x+1)/(x-1)),x))

$$\frac{-2}{(x-1)(x+1)}$$

Exercice 2

Déterminez une équation de la tangente au point d'abscisse a à la courbe représentative $\mathscr C$ de la fonction f définie par

$$f: t \mapsto \frac{4t^2}{t^2 + 1} \qquad a = 2$$

La tangente a pour équation réduite $y = f'(a) \times (x - a) + f(a)$ Il faut calculer f'(x):

factor(diff(4*t^2/(t^2+1),t))

$$\frac{8t}{\left(t^2+1\right)^2}$$

L'équation s'en déduit

 $simplifier(equation(tangente(graphe(4*x^2/(x^2+1)),2)))$

$$y = \frac{(16x + 48)}{25}$$

Exercice 3

Dans le plan muni d'un repère orthonormé $\left(0;\overrightarrow{\imath},\overrightarrow{J}\right)$, on considère la courbe $\mathscr C$ représentant une fonction f définie et dérivable sur [-3;3]. La droite Δ est tangente à $\mathscr C$ au point A(-2;0) (voir figure ci-dessous).

1. Par lecture graphique, déterminer :

a)
$$f(1)$$
, $f(3)$, $f'(-2)$, $f'(1)$;
 $f(1) = 1, 5$, $f(3) = -4$, $f'(-2) = -3$, $f'(1) = 0$.

b) le signe de f'(2) puis le signe de f'(0).

2. Dresser le tableau de signe :

a) de f;

x	-3		-2		0		2		3
Signe de $f(x)$		_	Ó	+	φ	_	Ó	+	

b) de f'.

x	-3		-1		1		3
Signe de $f'(x)$		_	0	+	0	_	

3. Dresser le tableau de variations de f.

x	-3	-1	1	3
Signe de $f'(x)$	_	0	+ 0	_
Variations de f	4	-1,5	1,5	-4